Development & Simulation of a Test Environment for Vehicle Dynamics a Virtual Test Track Layout.

Size: px
Start display at page:

Download "Development & Simulation of a Test Environment for Vehicle Dynamics a Virtual Test Track Layout."

Transcription

1 Development & Simulation of a Test Environment for Vehicle Dynamics a Virtual Test Track Layout. PhD.C. -Eng. Kmeid Saad 1 1 Introduction Vehicle Dynamic Libraries Virtual Driver ROAD Test Track Development Development & Simulation of a Test Environment Conclusion References Abstract: As computers have gotten faster, and user interfaces have drastically improved, virtual development and simulation platforms have become widely used in the automotive industry for efficiently evaluating hundreds of test conditions. Configurable vehicle dynamics (Engine, Transmission, Brake Hydraulics, Steering, Driveshaft, Differential, suspension, Brakes, Tires) and simulation packages already exists in many integration platforms. These platforms usually also enables the user to create virtual test tracks for vehicles with various dynamic and static parameters to run on. Considering some of the main advantages of virtual test tracks, i.e. high level of repeatability, direct control over road parameters and possibilities in identifying dangerous maneuvers, this paper will concentrates on the development of a virtual test track that aids not only in the development and simulation of a test environment for vehicle dynamics, but also in the Actual construction (on-site) of the test track. The paper also provides an insight on some of the possible benefits of virtual test tracks, such as ease of adjustment and modification, ease of use, flexibility in road configuration and trajectory/path definition, as well as the possibility to run Software In the Loop (SIL) and Hardware In the Loop (HIL) simulations. Keywords: Vehicle dynamic libraries, virtual simulation, integration platforms, virtual test track layout. 1 MSc. Eng. Kmeid Saad, PhD Candidate, Technical University of Graz-Austria/ University Assistant, Faculty of Electrical Engineering, ADAS Masters Course/ University of Applied Sciences Kempten- Germany, kmeid.saad@hs-kempten.de 1

2 1 Introduction Looking at the automotive industry one can see that engineers have achieved dramatic advancements in the technology employed in automobiles. More than ever vehicle dynamics and the ability to test and fine tune them is playing an important role in vehicle design and development. A knowledge of the forces and moments generated by pneumatic (rubber) tires at the ground is essential, especially when this knowledge is further used to generate configurable vehicle dynamics models for virtual integration platforms. Vehicle dynamics in its wide-ranging sense includes all forms of conveyance, i.e. ships, airplanes, railroad trains, track-laying vehicles, as well as rubber-tired vehicles (the automobile) [1], which we will concentrate on. The dominant forces acting on the vehicle to control performance are developed by the tire against the road, so one should also understand the behavior of the tires, over the broad range of operating conditions. Much vehicle dynamics study involve the study of the motions accomplished in accelerating, braking, cornering and ride, how and why these forces are produced. Understanding vehicle dynamics and various associated use cases, can be accomplished at two levels: 1 Empirical: The empirical understanding derives from trial and error where we can learn which factors influence the vehicle performance. However extrapolating, adapting past experience to new condition may produce new, if not, unexpected results. 2 Analytical: The analytical approach attempts to describe the mechanics of interest based on the known laws of physics so that an analytical model can be established. The analytical model is usually represented by algebraic or differential equations. The model provides a predictive and repeatable capability, so that changes necessary to reach a given performance goal can be identified. Favoring the Analytical method for its repeatability and reliability overtime gave birth to many new mathematical models and sub models of the vehicle. Soon enough the ability to simulate these models became a necessity. 2

3 Today with the computational power available, it is now possible to assemble models (equations) for the behavior of individual components of the vehicle that can be integrated to comprehensive models of the overall vehicle. This leads to better simulation and evaluation of the car s behavior. In the following we will continue on elaborating on the process of development and simulation of a test environment for vehicle dynamics, especially on the process and on the advantages of developing a virtual test track, i.e. proofing ground. 2 Vehicle Dynamic Libraries Vehicle dynamic Libraries provide a foundation for model-based vehicle dynamics analysis, in particular related to road-vehicle handling. Vehicle dynamics libraries can be featured as a user extensible and object-oriented architecture that can be accessed to optimize and verify the design of vehicle s systems/subsystems from the early design phases through control design and implementation. The possibility of real-time simulation performance makes vehicle dynamics libraries suitable for HIL/SIL simulations [2]. Vehicle dynamics libraries also provide the possibility to study models in detail for indepth understanding of vehicle components/subcomponents as well as updating or adding new components at different levels [2]. A hierarchical structure can be created or even directly provided, templates and predefined components, configuration of different vehicles is convenient and straightforward for different test scenarios. It is unique in that it provides true multi-body, multi-domain simulation with real-time performance, and model export capabilities [3]. So all in all one can say that vehicle dynamic libraries allow for a very flexible design. 3 Virtual Driver After the construction of the automobile from various vehicle dynamic models, one should also think about the possibility to control the vehicle and drive it through different test cases with different maneuvers. For this purpose the so called Virtual Driver is created and configured. The Virtual Driver enables the user to add the control actions of a human driver to the complete vehicle simulation. These actions include steering, braking, gas pedal position, gear shifting and clutch operation. Sure they can vary from one virtual driver to another, i.e. from one software to another. 3

4 Virtual Driver actions could include the following: Driving within the lane boundaries (corner cutting) Driving speed adaption according to track and vehicle behavior Influence on the speed by other vehicle parameters (gear select, gas, etc...) Orientation and steering Figure 1 illustrates one possible structure of a virtual driver, where the driver is also capable of learning abilities. The importance of the virtual driver also lies in the ability to automatically and consistently adapt to the vehicle to handle it by identifying its behavior. These features are mainly essential in order to exclude any possible human driving errors. This also enables us to execute various maneuvers that are considered to be dangerous if done by human drivers. 4 ROAD Fig.1 Virtual Driver Model The road is one of the most important features that should be modeled or integrated in any simulation platform. It provides the foundation of all use cases since without it the virtual driver will have nowhere to run/drive. Different integration platforms enables you to build open and closed tracks, add obstacles and markers to the road, manipulate specific road conditions and introduce many crucial environmental and external factors to your simulations. The width of the entire track can be defined with specific friction coefficients and different driving lanes can be set to be used: the left or the right one or maybe even in 4

5 the middle of the road. Traffic signs road bumps and others can also be configured and adapted to the road parameters to insure a more realistic test scenarios. Environmental conditions like the temperature, the time of day or the wind velocity for the simulation can also be defined. If the model takes these parameters into account, they will influence the results of your simulation. For specific sensor models also the sun s position, respectively the shadows on the ground can be altered and thus the behavior of the sensor models, this could be of great importance for image based sensors. 5 Test Track Development Until the 1920s, automotive testing was done in the same place as most automobile driving -- on city streets and country roads. But as the automobile became an increasingly important mode of transportation and the roads filled with cars, this ceased to be feasible. It was too dangerous to test cars in public places. In 1924, General Motors opened the Milford Proving Grounds in what was then a fairly isolated portion of Michigan. It was the world's first dedicated automotive proving ground. A typical automotive proving ground looks like a combination of a military base and an amusement park. From the air, Proving Ground consists of loops and whorls, straight lines and circles [4]. Contidrom [5] VW Testgelände Ehra-Lessien [6] Opel Testzentrum Dudenhofen [7] Porsche Testgelände Weissach [8] Audi Neustadt / Donau [8] Daimler Prüfgelände Immendingen [9] BMW Aschheim bei München [10] Fig.2 Proving Grounds in Germany 5

6 This is the place where developers and engineers can test and learn how to get an outof-control skid back under control or how to deal with an unexpected tire blowout and evaluate various vehicle dynamic tunings. Further tests are illustrated bellow: 1. Active Safety-Tests: Braking on μ-split according to ECE R13H. Change test according to ISO Progressive cornering according to ISO Constant cornering according to ISO Braking in a turn according to ISO Car-Tests: Cornering. Braking in a turn. Load change. Steering evaluation. Driving performance measurement. 3. Tire-Tests: Dry handling. Dry braking. Wet brakes. Driving stability (dry). 4. Connected Cars-Tests: Adaptive Cruse Control (ACC). Car-to -car communication. Car-Infrastructure communication. Intersection assistant. 5. City Park: Crossings. Roundabouts. Traffic Signals. Road Signs. Building. 6

7 As our final goal is to integrate all of our virtual components (vehicle, driver, environment, road etc.) in a development and simulation environment a virtual test track layout should also be modeled. The following example roughly shows the process of developing such a model based on a given area/physical developing ground. 1. Airfield (former military airfield) Google Maps: 2. Airfield Testing Ground AutoCAD: 3. Testing Ground Digital Track (CarMaker): 7

8 8

9 Now that the virtual test track is generated, as shown in the previous images (using IPG CarMaker), the next step would be to configure the simulation to the user s needs. 6 Development & Simulation of a Test Environment At this stage all of the predefined components come together to create a configurable and repeatable testing environment. Adding Environmental factors (Fog). 9

10 Conducting and comparing specific use cases, (Emergency brake assist). 7 Conclusion As a conclusion and in order to get to benefit from all of the simulation capabilities, we should be able to answer the following questions: Are the two approaches equivalent?? If yes, then how to prove it? If no, then by what % the virtual simulation approach does reflects the real life testing approach? Table 1 represents an example of a look up table that could be populated with data based on test results and comparison between virtual and real testing. 10

11 7 References [1] Fundamentals of Vehicle Dynamic, Thomas D.Gillespie [2] [3] [4] [5] [6] [7] [8] [9] html [10] 11

David Howarth. Business Development Manager Americas

David Howarth. Business Development Manager Americas David Howarth Business Development Manager Americas David Howarth IPG Automotive USA, Inc. Business Development Manager Americas david.howarth@ipg-automotive.com ni.com Testing Automated Driving Functions

More information

Virtual Testing of Autonomous Vehicles

Virtual Testing of Autonomous Vehicles Virtual Testing of Autonomous Vehicles Mike Dempsey Claytex Services Limited Software, Consultancy, Training Based in Leamington Spa, UK Office in Cape Town, South Africa Experts in Systems Engineering,

More information

Virtual Homologation of Software- Intensive Safety Systems: From ESC to Automated Driving

Virtual Homologation of Software- Intensive Safety Systems: From ESC to Automated Driving Virtual Homologation of Software- Intensive Safety Systems: From ESC to Automated Driving Dr. Houssem Abdellatif Global Head Autonomous Driving & ADAS TÜV SÜD Auto Service Christian Gnandt Lead Engineer

More information

Steering a Driving Simulator Using the Queueing Network-Model Human Processor (QN-MHP)

Steering a Driving Simulator Using the Queueing Network-Model Human Processor (QN-MHP) University of Iowa Iowa Research Online Driving Assessment Conference 2003 Driving Assessment Conference Jul 22nd, 12:00 AM Steering a Driving Simulator Using the Queueing Network-Model Human Processor

More information

Significant Reduction of Validation Efforts for Dynamic Light Functions with FMI for Multi-Domain Integration and Test Platforms

Significant Reduction of Validation Efforts for Dynamic Light Functions with FMI for Multi-Domain Integration and Test Platforms Significant Reduction of Validation Efforts for Dynamic Light Functions with FMI for Multi-Domain Integration and Test Platforms Dr. Stefan-Alexander Schneider Johannes Frimberger BMW AG, 80788 Munich,

More information

ADAS Development using Advanced Real-Time All-in-the-Loop Simulators. Roberto De Vecchi VI-grade Enrico Busto - AddFor

ADAS Development using Advanced Real-Time All-in-the-Loop Simulators. Roberto De Vecchi VI-grade Enrico Busto - AddFor ADAS Development using Advanced Real-Time All-in-the-Loop Simulators Roberto De Vecchi VI-grade Enrico Busto - AddFor The Scenario The introduction of ADAS and AV has created completely new challenges

More information

MotionDesk. 3-D online animation of simulated mechanical systems in real time. Highlights

MotionDesk. 3-D online animation of simulated mechanical systems in real time. Highlights MotionDesk 3-D online animation of simulated mechanical systems in real time Highlights Tight integration to ModelDesk and ASM Enhanced support for all aspects of advanced driver assistance systems (ADAS)

More information

Applied Collaboration for the Virtualization of Roads and Customer Approval as Exemplified by a Brake Control System

Applied Collaboration for the Virtualization of Roads and Customer Approval as Exemplified by a Brake Control System Applied Collaboration for the Virtualization of Roads and Customer Approval as Exemplified by a Brake Control System Sven-Etienne Henschel, Rohan Deshetti Applied Collaboration for the Virtualization of

More information

CarSim/TruckSim/BikeSim Real-Time Hardware In the Loop Mechanical Simulation Corporation

CarSim/TruckSim/BikeSim Real-Time Hardware In the Loop Mechanical Simulation Corporation CarSim/TruckSim/BikeSim Real-Time Hardware In the Loop Mechanical Simulation Corporation www.carsim.com What is Hardware In the Loop (HIL)? Pure Simulation Software In the Loop (SIL) Plant Model Simulation

More information

Intelligent driving TH« TNO I Innovation for live

Intelligent driving TH« TNO I Innovation for live Intelligent driving TNO I Innovation for live TH«Intelligent Transport Systems have become an integral part of the world. In addition to the current ITS systems, intelligent vehicles can make a significant

More information

Driving Simulators for Commercial Truck Drivers - Humans in the Loop

Driving Simulators for Commercial Truck Drivers - Humans in the Loop University of Iowa Iowa Research Online Driving Assessment Conference 2005 Driving Assessment Conference Jun 29th, 12:00 AM Driving Simulators for Commercial Truck Drivers - Humans in the Loop Talleah

More information

Figure 1.1: Quanser Driving Simulator

Figure 1.1: Quanser Driving Simulator 1 INTRODUCTION The Quanser HIL Driving Simulator (QDS) is a modular and expandable LabVIEW model of a car driving on a closed track. The model is intended as a platform for the development, implementation

More information

Link: https://www.springerprofessional.de/en/virtual-test-driving-hardware-independent-integration-of-series-/

Link: https://www.springerprofessional.de/en/virtual-test-driving-hardware-independent-integration-of-series-/ Link: https://www.springerprofessional.de/en/virtual-test-driving-hardware-independent-integration-of-series-/6429576 DEVELOPMENT SIMUL ATION VIRTUAL TEST DRIVING HARDWARE-INDEPENDENT INTEGRATION OF SERIES

More information

LEARNING FROM THE AVIATION INDUSTRY

LEARNING FROM THE AVIATION INDUSTRY DEVELOPMENT Power Electronics 26 AUTHORS Dipl.-Ing. (FH) Martin Heininger is Owner of Heicon, a Consultant Company in Schwendi near Ulm (Germany). Dipl.-Ing. (FH) Horst Hammerer is Managing Director of

More information

Final Report Non Hit Car And Truck

Final Report Non Hit Car And Truck Final Report Non Hit Car And Truck 2010-2013 Project within Vehicle and Traffic Safety Author: Anders Almevad Date 2014-03-17 Content 1. Executive summary... 3 2. Background... 3. Objective... 4. Project

More information

ADAS/AD Challenge. Copyright 2017, dspace GmbH

ADAS/AD Challenge. Copyright 2017, dspace GmbH ADAS/AD Challenge 2 dspace Automotive Simulation Models (ASM) for ADAS and AD Michael Peperhowe, Group Manager ASM VD & Traffic dspace GmbH Rathenaustr. 26 33102 Paderborn Germany 3 ASM Overview 4 ASM

More information

Intelligent Technology for More Advanced Autonomous Driving

Intelligent Technology for More Advanced Autonomous Driving FEATURED ARTICLES Autonomous Driving Technology for Connected Cars Intelligent Technology for More Advanced Autonomous Driving Autonomous driving is recognized as an important technology for dealing with

More information

Embracing Complexity. Gavin Walker Development Manager

Embracing Complexity. Gavin Walker Development Manager Embracing Complexity Gavin Walker Development Manager 1 MATLAB and Simulink Proven Ability to Make the Complex Simpler 1970 Stanford Ph.D. thesis, with thousands of lines of Fortran code 2 MATLAB and Simulink

More information

Video Injection Methods in a Real-world Vehicle for Increasing Test Efficiency

Video Injection Methods in a Real-world Vehicle for Increasing Test Efficiency DEVELOPMENT SIMUL ATION AND TESTING Video Injection Methods in a Real-world Vehicle for Increasing Test Efficiency IPG Automotive AUTHORS For the testing of camera-based driver assistance systems under

More information

Moving Obstacle Avoidance for Mobile Robot Moving on Designated Path

Moving Obstacle Avoidance for Mobile Robot Moving on Designated Path Moving Obstacle Avoidance for Mobile Robot Moving on Designated Path Taichi Yamada 1, Yeow Li Sa 1 and Akihisa Ohya 1 1 Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1,

More information

Development and Validation of Virtual Driving Simulator for the Spinal Injury Patient

Development and Validation of Virtual Driving Simulator for the Spinal Injury Patient CYBERPSYCHOLOGY & BEHAVIOR Volume 5, Number 2, 2002 Mary Ann Liebert, Inc. Development and Validation of Virtual Driving Simulator for the Spinal Injury Patient JEONG H. KU, M.S., 1 DONG P. JANG, Ph.D.,

More information

Chapter 1: Introduction to Control Systems Objectives

Chapter 1: Introduction to Control Systems Objectives Chapter 1: Introduction to Control Systems Objectives In this chapter we describe a general process for designing a control system. A control system consisting of interconnected components is designed

More information

Industrial applications simulation technologies in virtual environments Part 1: Virtual Prototyping

Industrial applications simulation technologies in virtual environments Part 1: Virtual Prototyping Industrial applications simulation technologies in virtual environments Part 1: Virtual Prototyping Bilalis Nikolaos Associate Professor Department of Production and Engineering and Management Technical

More information

Industrial Keynotes. 06/09/2018 Juan-Les-Pins

Industrial Keynotes. 06/09/2018 Juan-Les-Pins Industrial Keynotes 1 06/09/2018 Juan-Les-Pins Agenda 1. The End of Driving Simulation? 2. Autonomous Vehicles: the new UI 3. Augmented Realities 4. Choose your factions 5. No genuine AI without flawless

More information

P1.4. Light has to go where it is needed: Future Light Based Driver Assistance Systems

P1.4. Light has to go where it is needed: Future Light Based Driver Assistance Systems Light has to go where it is needed: Future Light Based Driver Assistance Systems Thomas Könning¹, Christian Amsel¹, Ingo Hoffmann² ¹ Hella KGaA Hueck & Co., Lippstadt, Germany ² Hella-Aglaia Mobile Vision

More information

Vehicle-in-the-loop: Innovative Testing Method for Cognitive Vehicles

Vehicle-in-the-loop: Innovative Testing Method for Cognitive Vehicles Dr.-Ing. Thomas Schamm, M.Sc. Marc René Zofka, Dipl.-Inf. Tobias Bär Technical Cognitive Assistance Systems FZI Research Center for Information Technology FZI FORSCHUNGSZENTRUM INFORMATIK Vehicle-in-the-loop:

More information

Evaluation of Connected Vehicle Technology for Concept Proposal Using V2X Testbed

Evaluation of Connected Vehicle Technology for Concept Proposal Using V2X Testbed AUTOMOTIVE Evaluation of Connected Vehicle Technology for Concept Proposal Using V2X Testbed Yoshiaki HAYASHI*, Izumi MEMEZAWA, Takuji KANTOU, Shingo OHASHI, and Koichi TAKAYAMA ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

More information

Physics Based Sensor simulation

Physics Based Sensor simulation Physics Based Sensor simulation Jordan Gorrochotegui - Product Manager Software and Services Mike Phillips Software Engineer Restricted Siemens AG 2017 Realize innovation. Siemens offers solutions across

More information

Driver-in-the-Loop: Simulation as a Highway Safety Tool SHAWN ALLEN NATIONAL ADVANCED DRIVING SIMULATOR (NADS) THE UNIVERSITY OF IOWA

Driver-in-the-Loop: Simulation as a Highway Safety Tool SHAWN ALLEN NATIONAL ADVANCED DRIVING SIMULATOR (NADS) THE UNIVERSITY OF IOWA Driver-in-the-Loop: Simulation as a Highway Safety Tool SHAWN ALLEN NATIONAL ADVANCED DRIVING SIMULATOR (NADS) THE UNIVERSITY OF IOWA Shawn Allen Iowa Driving Simulator 3D support for Automated Highway

More information

Research in Advanced Performance Technology and Educational Readiness

Research in Advanced Performance Technology and Educational Readiness Research in Advanced Performance Technology and Educational Readiness Enhancing Human Performance with the Right Technology Ronald W. Tarr Program Director RAPTER-IST University of Central Florida 1 Mission

More information

TECHNICAL REPORT. NADS MiniSim Driving Simulator. Document ID: N Author(s): Yefei He Date: September 2006

TECHNICAL REPORT. NADS MiniSim Driving Simulator. Document ID: N Author(s): Yefei He Date: September 2006 TECHNICAL REPORT NADS MiniSim Driving Simulator Document ID: N06-025 Author(s): Yefei He Date: September 2006 National Advanced Driving Simulator 2401 Oakdale Blvd. Iowa City, IA 52242-5003 Fax (319) 335-4658

More information

Work Domain Analysis (WDA) for Ecological Interface Design (EID) of Vehicle Control Display

Work Domain Analysis (WDA) for Ecological Interface Design (EID) of Vehicle Control Display Work Domain Analysis (WDA) for Ecological Interface Design (EID) of Vehicle Control Display SUK WON LEE, TAEK SU NAM, ROHAE MYUNG Division of Information Management Engineering Korea University 5-Ga, Anam-Dong,

More information

VSI Labs The Build Up of Automated Driving

VSI Labs The Build Up of Automated Driving VSI Labs The Build Up of Automated Driving October - 2017 Agenda Opening Remarks Introduction and Background Customers Solutions VSI Labs Some Industry Content Opening Remarks Automated vehicle systems

More information

The application of Work Domain Analysis (WDA) for the development of vehicle control display

The application of Work Domain Analysis (WDA) for the development of vehicle control display Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 160 The application of Work Domain Analysis (WDA) for the development

More information

A Virtual Environments Editor for Driving Scenes

A Virtual Environments Editor for Driving Scenes A Virtual Environments Editor for Driving Scenes Ronald R. Mourant and Sophia-Katerina Marangos Virtual Environments Laboratory, 334 Snell Engineering Center Northeastern University, Boston, MA 02115 USA

More information

A Winning Combination

A Winning Combination A Winning Combination Risk factors Statements in this presentation that refer to future plans and expectations are forward-looking statements that involve a number of risks and uncertainties. Words such

More information

Hardware-in-loop Electronic Throttle System Based On Simulink Ning Chen 1,a,Pinchang Zhu 1,b

Hardware-in-loop Electronic Throttle System Based On Simulink Ning Chen 1,a,Pinchang Zhu 1,b Applied Mechanics and Materials Online: 2011-10-24 ISSN: 1662-7482, Vols. 128-129, pp 898-903 doi:10.4028/www.scientific.net/amm.128-129.898 2012 Trans Tech Publications, Switzerland Hardware-in-loop Electronic

More information

Simulation and Animation Tools for Analysis of Vehicle Collision: SMAC (Simulation Model of Automobile Collisions) and Carmma (Simulation Animations)

Simulation and Animation Tools for Analysis of Vehicle Collision: SMAC (Simulation Model of Automobile Collisions) and Carmma (Simulation Animations) CALIFORNIA PATH PROGRAM INSTITUTE OF TRANSPORTATION STUDIES UNIVERSITY OF CALIFORNIA, BERKELEY Simulation and Animation Tools for Analysis of Vehicle Collision: SMAC (Simulation Model of Automobile Collisions)

More information

Ground vibration testing: Applying structural analysis with imc products and solutions

Ground vibration testing: Applying structural analysis with imc products and solutions Ground vibration testing: Applying structural analysis with imc products and solutions Just as almost any mechanical structure, aircraft body parts or complete aircrafts can be modelled precisely and realistically

More information

Volkswagen Group: Leveraging VIRES VTD to Design a Cooperative Driver Assistance System

Volkswagen Group: Leveraging VIRES VTD to Design a Cooperative Driver Assistance System Volkswagen Group: Leveraging VIRES VTD to Design a Cooperative Driver Assistance System By Dr. Kai Franke, Development Online Driver Assistance Systems, Volkswagen AG 10 Engineering Reality Magazine A

More information

ITDNS Design and Applications (2010 present)

ITDNS Design and Applications (2010 present) ITDNS Design and Applications (2010 present) Kevin F. Hulme, Ph.D. University at Buffalo Chunming Qiao, Adel Sadek, Changxu Wu, Kevin Hulme University at Buffalo Graduate Student support (2010 present)

More information

High Performance Computing

High Performance Computing High Performance Computing and the Smart Grid Roger L. King Mississippi State University rking@cavs.msstate.edu 11 th i PCGRID 26 28 March 2014 The Need for High Performance Computing High performance

More information

FAIL OPERATIONAL E/E SYSTEM CONCEPT FOR FUTURE APPLICATION IN ADAS AND AUTONOMOUS DRIVING

FAIL OPERATIONAL E/E SYSTEM CONCEPT FOR FUTURE APPLICATION IN ADAS AND AUTONOMOUS DRIVING FAIL OPERATIONAL E/E SYSTEM CONCEPT FOR FUTURE APPLICATION IN ADAS AND AUTONOMOUS DRIVING Fail Safe Fail Operational Fault Tolerance ISO 26262 Hermann Kränzle, TÜV NORD Systems OUR FUNCTIONAL SAFETY CERTIFIED

More information

Combining ROS and AI for fail-operational automated driving

Combining ROS and AI for fail-operational automated driving Combining ROS and AI for fail-operational automated driving Prof. Dr. Daniel Watzenig Virtual Vehicle Research Center, Graz, Austria and Institute of Automation and Control at Graz University of Technology

More information

Adaptive Controllers for Vehicle Velocity Control for Microscopic Traffic Simulation Models

Adaptive Controllers for Vehicle Velocity Control for Microscopic Traffic Simulation Models Adaptive Controllers for Vehicle Velocity Control for Microscopic Traffic Simulation Models Yiannis Papelis, Omar Ahmad & Horatiu German National Advanced Driving Simulator, The University of Iowa, USA

More information

PEGASUS Effectively ensuring automated driving. Prof. Dr.-Ing. Karsten Lemmer April 6, 2017

PEGASUS Effectively ensuring automated driving. Prof. Dr.-Ing. Karsten Lemmer April 6, 2017 PEGASUS Effectively ensuring automated driving. Prof. Dr.-Ing. Karsten Lemmer April 6, 2017 Starting Position for Automated Driving Top issue! Technology works Confidence Testing differently automated

More information

KNOW & FEEL. Enhance your interdisciplinary system knowledge and feel the implementation of objective criteria in the vehicle.

KNOW & FEEL. Enhance your interdisciplinary system knowledge and feel the implementation of objective criteria in the vehicle. FOR ADAS KNOW & FEEL Enhance your interdisciplinary system knowledge and feel the implementation of objective criteria in the vehicle. Develop Advanced Driver Assistance Systems that will delight your

More information

Automotive Technology

Automotive Technology Automotive Technology Dr. Mohamad Zoghi, Acting Chair Automotive Technology Department Mohamad.Zoghi@farmingdale.edu 631-794-6292 School of Engineering Technology Associate in Applied Science Degree The

More information

Stanford Center for AI Safety

Stanford Center for AI Safety Stanford Center for AI Safety Clark Barrett, David L. Dill, Mykel J. Kochenderfer, Dorsa Sadigh 1 Introduction Software-based systems play important roles in many areas of modern life, including manufacturing,

More information

BMW - Using Virtual Test Rigs for Loads Prediction

BMW - Using Virtual Test Rigs for Loads Prediction BMW - Using Virtual Test Rigs for Loads Prediction BMW Applies LMS Breakthrough in Durability Engineering The Holy Grail for many durability engineers is to reliably predict where and when their products

More information

Assessments of Grade Crossing Warning and Signalization Devices Driving Simulator Study

Assessments of Grade Crossing Warning and Signalization Devices Driving Simulator Study Assessments of Grade Crossing Warning and Signalization Devices Driving Simulator Study Petr Bouchner, Stanislav Novotný, Roman Piekník, Ondřej Sýkora Abstract Behavior of road users on railway crossings

More information

WB2306 The Human Controller

WB2306 The Human Controller Simulation WB2306 The Human Controller Class 1. General Introduction Adapt the device to the human, not the human to the device! Teacher: David ABBINK Assistant professor at Delft Haptics Lab (www.delfthapticslab.nl)

More information

Simulationbased Development of ADAS and Automated Driving with the Help of Machine Learning

Simulationbased Development of ADAS and Automated Driving with the Help of Machine Learning Simulationbased Development of ADAS and Automated Driving with the Help of Machine Learning Dr. Andreas Kuhn A N D A T A München, 2017-06-27 2 Fields of Competence Artificial Intelligence Data Mining Big

More information

Connected and Autonomous Technology Evaluation Center (CAVTEC) Overview. TennSMART Spring Meeting April 9 th, 2019

Connected and Autonomous Technology Evaluation Center (CAVTEC) Overview. TennSMART Spring Meeting April 9 th, 2019 Connected and Autonomous Technology Evaluation Center (CAVTEC) Overview TennSMART Spring Meeting April 9 th, 2019 Location Location Location Tennessee s Portal to Aerospace & Defense Technologies Mach

More information

Mechanical Simulation. Advanced Vehicle Dynamics Solutions

Mechanical Simulation. Advanced Vehicle Dynamics Solutions Mechanical Simulation Advanced Vehicle Dynamics Solutions www.carsim.com Introduction Mechanical Simulation Corporation develops and distributes vehicle dynamics software tools for simulating the way cars

More information

Note to Teacher. Description of the investigation. Time Required. Materials. Procedures for Wheel Size Matters TEACHER. LESSONS WHEEL SIZE / Overview

Note to Teacher. Description of the investigation. Time Required. Materials. Procedures for Wheel Size Matters TEACHER. LESSONS WHEEL SIZE / Overview In this investigation students will identify a relationship between the size of the wheel and the distance traveled when the number of rotations of the motor axles remains constant. It is likely that many

More information

LAB 5: Mobile robots -- Modeling, control and tracking

LAB 5: Mobile robots -- Modeling, control and tracking LAB 5: Mobile robots -- Modeling, control and tracking Overview In this laboratory experiment, a wheeled mobile robot will be used to illustrate Modeling Independent speed control and steering Longitudinal

More information

Qosmotec. Software Solutions GmbH. Technical Overview. QPER C2X - Car-to-X Signal Strength Emulator and HiL Test Bench. Page 1

Qosmotec. Software Solutions GmbH. Technical Overview. QPER C2X - Car-to-X Signal Strength Emulator and HiL Test Bench. Page 1 Qosmotec Software Solutions GmbH Technical Overview QPER C2X - Page 1 TABLE OF CONTENTS 0 DOCUMENT CONTROL...3 0.1 Imprint...3 0.2 Document Description...3 1 SYSTEM DESCRIPTION...4 1.1 General Concept...4

More information

Application Research on BP Neural Network PID Control of the Belt Conveyor

Application Research on BP Neural Network PID Control of the Belt Conveyor Application Research on BP Neural Network PID Control of the Belt Conveyor Pingyuan Xi 1, Yandong Song 2 1 School of Mechanical Engineering Huaihai Institute of Technology Lianyungang 222005, China 2 School

More information

Projekt Sichere Intelligente Mobilität Testfeld Deutschland. Project Safe Intelligent Mobilty Test Field Germany

Projekt Sichere Intelligente Mobilität Testfeld Deutschland. Project Safe Intelligent Mobilty Test Field Germany Projekt Sichere Intelligente Mobilität Testfeld Deutschland Project Safe Intelligent Mobilty Test Field Germany ETSI TC ITS Workshop 4-6 February 2009 ETSI, Sophia Antipolis, France Dr. Christian Weiß,

More information

Engineering Support for the Design of Electrohydraulic Drive Systems.

Engineering Support for the Design of Electrohydraulic Drive Systems. Engineering Support for the Design of Electrohydraulic Drive Systems. Engineering Support. Designing electrohydraulic drive systems requires optimum coordination between hydraulic, electronic and mechanical

More information

A SERVICE-ORIENTED SYSTEM ARCHITECTURE FOR THE HUMAN CENTERED DESIGN OF INTELLIGENT TRANSPORTATION SYSTEMS

A SERVICE-ORIENTED SYSTEM ARCHITECTURE FOR THE HUMAN CENTERED DESIGN OF INTELLIGENT TRANSPORTATION SYSTEMS Tools and methodologies for ITS design and drivers awareness A SERVICE-ORIENTED SYSTEM ARCHITECTURE FOR THE HUMAN CENTERED DESIGN OF INTELLIGENT TRANSPORTATION SYSTEMS Jan Gačnik, Oliver Häger, Marco Hannibal

More information

Deliverable D1.6 Initial System Specifications Executive Summary

Deliverable D1.6 Initial System Specifications Executive Summary Deliverable D1.6 Initial System Specifications Executive Summary Version 1.0 Dissemination Project Coordination RE Ford Research and Advanced Engineering Europe Due Date 31.10.2010 Version Date 09.02.2011

More information

Tech Center a-drive: EUR 7.5 Million for Automated Driving

Tech Center a-drive: EUR 7.5 Million for Automated Driving No. 005 lg January 18, 2016 Joint Press Release of the Partners Tech Center a-drive: EUR 7.5 Million for Automated Driving Kick-off of Cooperation Project of Science and Industry in the Presence of Minister

More information

Note to the Teacher. Description of the investigation. Time Required. Additional Materials VEX KITS AND PARTS NEEDED

Note to the Teacher. Description of the investigation. Time Required. Additional Materials VEX KITS AND PARTS NEEDED In this investigation students will identify a relationship between the size of the wheel and the distance traveled when the number of rotations of the motor axles remains constant. Students are required

More information

Integrating Product Optimization and Manufacturability in Graduate Design Course

Integrating Product Optimization and Manufacturability in Graduate Design Course Session 2525 Integrating Product Optimization and Manufacturability in Graduate Design Course Mileta M. Tomovic Purdue University Abstract As CAD/FEA/CAM software tools are becoming increasingly user friendly

More information

Design of a Flight Stabilizer System and Automatic Control Using HIL Test Platform

Design of a Flight Stabilizer System and Automatic Control Using HIL Test Platform Design of a Flight Stabilizer System and Automatic Control Using HIL Test Platform Şeyma Akyürek, Gizem Sezin Özden, Emre Atlas, and Coşku Kasnakoğlu Electrical & Electronics Engineering, TOBB University

More information

Development of a Laboratory Kit for Robotics Engineering Education

Development of a Laboratory Kit for Robotics Engineering Education Development of a Laboratory Kit for Robotics Engineering Education Taskin Padir, William Michalson, Greg Fischer, Gary Pollice Worcester Polytechnic Institute Robotics Engineering Program tpadir@wpi.edu

More information

ME375 Lab Project. Bradley Boane & Jeremy Bourque April 25, 2018

ME375 Lab Project. Bradley Boane & Jeremy Bourque April 25, 2018 ME375 Lab Project Bradley Boane & Jeremy Bourque April 25, 2018 Introduction: The goal of this project was to build and program a two-wheel robot that travels forward in a straight line for a distance

More information

REDUCING THE VIBRATIONS OF AN UNBALANCED ROTARY ENGINE BY ACTIVE FORCE CONTROL. M. Mohebbi 1*, M. Hashemi 1

REDUCING THE VIBRATIONS OF AN UNBALANCED ROTARY ENGINE BY ACTIVE FORCE CONTROL. M. Mohebbi 1*, M. Hashemi 1 International Journal of Technology (2016) 1: 141-148 ISSN 2086-9614 IJTech 2016 REDUCING THE VIBRATIONS OF AN UNBALANCED ROTARY ENGINE BY ACTIVE FORCE CONTROL M. Mohebbi 1*, M. Hashemi 1 1 Faculty of

More information

Using FMI/ SSP for Development of Autonomous Driving

Using FMI/ SSP for Development of Autonomous Driving Using FMI/ SSP for Development of Autonomous Driving presented by Jochen Köhler (ZF) FMI User Meeting 15.05.2017 Prague / Czech Republic H.M. Heinkel S.Rude P. R. Mai J. Köhler M. Rühl / A. Pillekeit Motivation

More information

Virtual Testing at Knorr-Bremse

Virtual Testing at Knorr-Bremse Virtual Testing at Knorr-Bremse Dr. Frank Günther Martin Kotouc 15. Deutsches LS-Dyna Forum October 16, 2018 Right here, 14 yrs, 2 days, 1 hr ago Virtual Testing at Knorr-Bremse Agenda Boundary conditions

More information

THE BENEFITS OF APPLICATION OF CAD/CAE TECHNOLOGY IN THE DEVELOPMENT OF VEHICLES IN THE AUTOMOTIVE INDUSTRY

THE BENEFITS OF APPLICATION OF CAD/CAE TECHNOLOGY IN THE DEVELOPMENT OF VEHICLES IN THE AUTOMOTIVE INDUSTRY 1. Saša VASILJEVIĆ, 2. Nataša ALEKSIĆ, 3. Dragan RAJKOVIĆ, 4. Rade ĐUKIĆ, 5. Milovan ŠARENAC, 6. Nevena BANKOVIĆ THE BENEFITS OF APPLICATION OF CAD/CAE TECHNOLOGY IN THE DEVELOPMENT OF VEHICLES IN THE

More information

William Milam Ford Motor Co

William Milam Ford Motor Co Sharing technology for a stronger America Verification Challenges in Automotive Embedded Systems William Milam Ford Motor Co Chair USCAR CPS Task Force 10/20/2011 What is USCAR? The United States Council

More information

Next-generation automotive image processing with ARM Mali-C71

Next-generation automotive image processing with ARM Mali-C71 Next-generation automotive image processing with ARM Mali-C71 Steve Steele Director, Product Marketing Imaging & Vision Group, ARM ARM Tech Forum Taipei July 4th 2017 Pioneers in imaging and vision 2 Automotive

More information

Microscopic traffic simulation with reactive driving agents

Microscopic traffic simulation with reactive driving agents 2001 IEEE Intelligent Transportation Systems Conference Proceedings - Oakland (CA) USA = August 25-29, 2001 Microscopic traffic simulation with reactive driving agents Patrick A.M.Ehlert and Leon J.M.Rothkrantz,

More information

Evaluation of automated vehicle behavior in intersection scenarios

Evaluation of automated vehicle behavior in intersection scenarios Evaluation of automated vehicle behavior in intersection scenarios Thomas Streubel, Pierre De Beaucorps, Fawzi Nashashibi To cite this version: Thomas Streubel, Pierre De Beaucorps, Fawzi Nashashibi. Evaluation

More information

Outlook on Candidate Performance Specifications for QRTV

Outlook on Candidate Performance Specifications for QRTV Outlook on Candidate Performance Specifications for QRTV 3rd GTR Working Group on QRTV 5-7 December 2011 INTERNATIONAL ORGANIZATION OF MOTOR VEHICLE MANUFACTURERS Page 1 Dec. 2011 Given Task by QRTV Working

More information

Activity Template. Subject Area(s): Science and Technology Activity Title: Header. Grade Level: 9-12 Time Required: Group Size:

Activity Template. Subject Area(s): Science and Technology Activity Title: Header. Grade Level: 9-12 Time Required: Group Size: Activity Template Subject Area(s): Science and Technology Activity Title: What s In a Name? Header Image 1 ADA Description: Picture of a rover with attached pen for writing while performing program. Caption:

More information

White paper on CAR150 millimeter wave radar

White paper on CAR150 millimeter wave radar White paper on CAR150 millimeter wave radar Hunan Nanoradar Science and Technology Co.,Ltd. Version history Date Version Version description 2017-02-23 1.0 The 1 st version of white paper on CAR150 Contents

More information

Intelligent Tyre Promoting Accident-free Traffic

Intelligent Tyre Promoting Accident-free Traffic Intelligent Tyre Promoting Accident-free Traffic 1 Introduction Research and development work in automotive industry has been focusing at an intensified pace on developing vehicles with intelligent powertrain

More information

A flexible application framework for distributed real time systems with applications in PC based driving simulators

A flexible application framework for distributed real time systems with applications in PC based driving simulators A flexible application framework for distributed real time systems with applications in PC based driving simulators M. Grein, A. Kaussner, H.-P. Krüger, H. Noltemeier Abstract For the research at the IZVW

More information

Automated Testing of Autonomous Driving Assistance Systems

Automated Testing of Autonomous Driving Assistance Systems Automated Testing of Autonomous Driving Assistance Systems Lionel Briand Vector Testing Symposium, Stuttgart, 2018 SnT Centre Top level research in Information & Communication Technologies Created to fuel

More information

KIKS 2013 Team Description Paper

KIKS 2013 Team Description Paper KIKS 2013 Team Description Paper Takaya Asakura, Ryu Goto, Naomichi Fujii, Hiroshi Nagata, Kosuke Matsuoka, Tetsuya Sano, Masato Watanabe and Toko Sugiura Toyota National College of Technology, Department

More information

Multi-Robot Coordination. Chapter 11

Multi-Robot Coordination. Chapter 11 Multi-Robot Coordination Chapter 11 Objectives To understand some of the problems being studied with multiple robots To understand the challenges involved with coordinating robots To investigate a simple

More information

Next-generation automotive image processing with ARM Mali-C71

Next-generation automotive image processing with ARM Mali-C71 Next-generation automotive image processing with ARM Mali-C71 Chris Turner Director, Advanced Technology Marketing CPU Group, ARM ARM Tech Forum Korea June 28 th 2017 Pioneers in imaging and vision signal

More information

MULTI-LAYERED HYBRID ARCHITECTURE TO SOLVE COMPLEX TASKS OF AN AUTONOMOUS MOBILE ROBOT

MULTI-LAYERED HYBRID ARCHITECTURE TO SOLVE COMPLEX TASKS OF AN AUTONOMOUS MOBILE ROBOT MULTI-LAYERED HYBRID ARCHITECTURE TO SOLVE COMPLEX TASKS OF AN AUTONOMOUS MOBILE ROBOT F. TIECHE, C. FACCHINETTI and H. HUGLI Institute of Microtechnology, University of Neuchâtel, Rue de Tivoli 28, CH-2003

More information

Cruden Panthera simulator software suite

Cruden Panthera simulator software suite Cruden simulator software suite Automotive OEM departments and first tier companies, motorsport teams, universities and research institutes use Cruden simulators to significantly reduce the cost and time

More information

TRB Workshop on the Future of Road Vehicle Automation

TRB Workshop on the Future of Road Vehicle Automation TRB Workshop on the Future of Road Vehicle Automation Steven E. Shladover University of California PATH Program ITFVHA Meeting, Vienna October 21, 2012 1 Outline TRB background Workshop organization Automation

More information

Transportation Informatics Group, ALPEN-ADRIA University of Klagenfurt. Transportation Informatics Group University of Klagenfurt 3/10/2009 1

Transportation Informatics Group, ALPEN-ADRIA University of Klagenfurt. Transportation Informatics Group University of Klagenfurt 3/10/2009 1 Machine Vision Transportation Informatics Group University of Klagenfurt Alireza Fasih, 2009 3/10/2009 1 Address: L4.2.02, Lakeside Park, Haus B04, Ebene 2, Klagenfurt-Austria Index Driver Fatigue Detection

More information

From development to type approval

From development to type approval Felix Fahrenkrog Adrian Zlocki From development to type approval Technical Workshop Athens, Greece 21-22 APRIL 2016 // Motivation Challenges & Goals of Automobile Development ADAS and automated driving

More information

AUTOMOTIVE CONTROL SYSTEMS

AUTOMOTIVE CONTROL SYSTEMS AUTOMOTIVE CONTROL SYSTEMS This engineering textbook is designed to introduce advanced control systems for vehicles, including advanced automotive concepts and the next generation of vehicles for Intelligent

More information

Israel Railways No Fault Liability Renewal The Implementation of New Technological Safety Devices at Level Crossings. Amos Gellert, Nataly Kats

Israel Railways No Fault Liability Renewal The Implementation of New Technological Safety Devices at Level Crossings. Amos Gellert, Nataly Kats Mr. Amos Gellert Technological aspects of level crossing facilities Israel Railways No Fault Liability Renewal The Implementation of New Technological Safety Devices at Level Crossings Deputy General Manager

More information

Testing in the Google car era Are we ready?

Testing in the Google car era Are we ready? Testing in the Google car era Are we ready? Prof. Massimo Violante Politecnico di Torino Dep. of Control and Computer Engineering Nicola Frisco TXT e-solutions Head of Simulation & Training Systems The

More information

ADVANCED TRUCKING SIMULATORS

ADVANCED TRUCKING SIMULATORS ADVANCED TRUCKING SIMULATORS Fifth Dimension Technologies We make drivers Safer, more Productive and less Destructive! ADVANCED TRAINING SIMULATOR BENEFITS The 5DT Advanced Training Simulator provides

More information

Connected Car Networking

Connected Car Networking Connected Car Networking Teng Yang, Francis Wolff and Christos Papachristou Electrical Engineering and Computer Science Case Western Reserve University Cleveland, Ohio Outline Motivation Connected Car

More information

Fig.2 the simulation system model framework

Fig.2 the simulation system model framework International Conference on Information Science and Computer Applications (ISCA 2013) Simulation and Application of Urban intersection traffic flow model Yubin Li 1,a,Bingmou Cui 2,b,Siyu Hao 2,c,Yan Wei

More information

ADVANCED TRUCKING SIMULATORS

ADVANCED TRUCKING SIMULATORS ADVANCED TRUCKING SIMULATORS Fifth Dimension Technologies We make drivers Safer, more Productive and less Destructive! ADVANCED TRAINING SIMULATOR BENEFITS The 5DT Advanced Training Simulator provides

More information

A.I in Automotive? Why and When.

A.I in Automotive? Why and When. A.I in Automotive? Why and When. AGENDA 01 02 03 04 Definitions A.I? A.I in automotive Now? Next big A.I breakthrough in Automotive 01 DEFINITIONS DEFINITIONS Artificial Intelligence Artificial Intelligence:

More information

Problem types in Calculus

Problem types in Calculus Problem types in Calculus Oliver Knill October 17, 2006 Abstract We discuss different type of problems in calculus and attach a vector (concept, complexity,applicability) to each problem. This can help

More information