Waves and Modes. Part I. Standing Waves. A. Modes

Size: px
Start display at page:

Download "Waves and Modes. Part I. Standing Waves. A. Modes"

Transcription

1 Part I. Standing Waves Waves and Modes Whenever a wave (sound, heat, light,...) is confined to a finite region of space (string, pipe, cavity,... ), something remarkable happens the space fills up with a spectrum of vibrating patterns called standing waves. Confining a wave quantizes the frequency. Standing waves explain the production of sound by musical instruments and the existence of stationary states (energy levels) in atoms and molecules. Standing waves are set up on a guitar string when plucked, on a violin string when bowed, and on a piano string when struck. They are set up in the air inside an organ pipe, a flute, or a saxophone. They are set up on the plastic membrane of a drumhead, the metal disk of a cymbal, and the metal bar of a xylophone. They are set up in the electron cloud of an atom and the quark cloud of a proton. Standing waves are produced when you ring a bell, drop a coin, blow across an empty soda bottle, sing in a shower stall, or splash water in a bathtub. Standing waves exist in your mouth cavity when you speak and in your ear canal when you hear. Electromagnetic standing waves fill a laser cavity and a microwave oven. Quantum-mechanical standing waves fill the space inside carbon nanotubes and quantum computers. A. Modes A mass on a spring has one natural frequency at which it freely oscillates up and down. A stretched string with fixed ends can oscillate up and down with a whole spectrum of frequencies and patterns of vibration. Mass on Spring String with Fixed Ends (mass m, spring constant k) (length L, tension F, mass density µ) f = 2π k m f = 2L F µ Fundamenta l f 2 = 2f 2 nd harmonic f 3 = 3f 3 rd harmonic f 4 = 4f 4 th harmonic

2 These special Modes of Vibration of a string are called STANDING WAVES or NORMAL MODES. The word standing wave comes from the fact that each normal mode has wave properties (wavelength λ, frequency f), but the wave pattern (sinusoidal shape) does not travel left or right through space it stands still. Each segment (λ/2 arc) in the wave pattern simply oscillates up and down. During its up-down motion, each segment sweeps out a loop. Node λ/2 λ/2 f Node f Node A standing wave is a system of fixed nodes (separated by λ/2) and vibrating loops (frequency f). In short, a standing wave is a flip-flopping sine curve. All points on the string oscillate at the same frequency but with different amplitudes. Points that do not move (zero amplitude of oscillation) are called nodes. Points where the amplitude is maximum are called antinodes. The mathematical equation of a standing wave is y(x,t) = sin(2πx/λ) cos(2πft). The shape term sin(2πx/λ) describes the sinusoidal shape of the wave pattern of wavelength λ. The flip-flop term cos(2πft) describes the up-down oscillatory motion of each wave segment at frequency f. Each mode is characterized by a different λ and f. B. Harmonics The simplest normal mode, where the string vibrates in one loop, is labeled n = and is called the fundamental mode or the first harmonic. The second mode (n = 2), where the string vibrates in two loops, is called the second harmonic. The n th harmonic consists of n vibrating loops. The set of all normal modes {n =, 2, 3, 4, 5,... } is the harmonic spectrum. The spectrum of natural frequencies is {f, f 2, f 3, f 4, f 5,... }. Note that the frequency f n of mode n is simply a whole-number multiple of the fundamental frequency: f n = nf. The mode with 3 loops vibrates three times as fast as the mode with loop. Harmonics are the basis of HARMONY in music. The sectional vibrations of a string as one whole, two halves, three thirds, and so on, are very special because these vibrations produce musical tones that sound the most pleasant when sounded together, i.e. they represent the most harmonious combination of sounds. This explains the origin of the word harmonic. Exercise: Sketch the 6 th harmonic of the string. If the frequency of the 5 th harmonic is 00 Hz, what is the frequency of the 6 th harmonic? If the length of the string is 3 m, what is the wavelength of the 6 th harmonic? 2

3 Part II. Creating a Mode Resonance In general, when you pluck a string, you excite an infinite number of harmonic modes. How do you excite only one of the modes? There are three different methods:. The Mathematician Method: Sine Curve Initial Condition Pull Pull If you pull each mass element of a stretched string away from equilibrium (flat string) so that the string forms the shape of a sine curve, and then let go, the whole string will vibrate in one normal mode pattern. If you start with any other initial shape one that is not sinusoidal then the motion of the string will be made up of different modes. Starting out with an exact sine-curve shape is not easy to do you need some kind of fancy contraption. Pull 2. The Musician Method: Touch and Pluck Guitar players and violin players do this all the time. They gently touch the string at one point (where you want the node to be) and pluck the string at another point (antinode) to make a loop. The oscillation (up and down motion) of the plucked loop will drive the rest of the string to form additional equal-size loops which oscillate up and down at the same frequency as the driving loop. Pluck Touch 3. The Physicist Method: Resonance If you gently shake (vibrate) the end of a string up and down, a wave will travel to the right (R), hit the fixed end, and reflect back to the left (L). If you shake at just the right resonance frequency one that matches one of the natural frequencies of the string then the two traveling waves (R and L) will combine to produce a standing wave of large amplitude: R + L = STANDING WAVE. R+L R L Resonance Since RESONANCE is one of the most important concepts in science, we will focus on this idea. Resonance phenomena are everywhere: tuning a radio, making music, shattering a glass with your voice, imaging the body with an MRI machine, shaking cherry trees, designing lasers, engineering bridges, skyscrapers, and machine parts, etc. Consider pushing a person in a swing. If the frequency of your hand (periodic driving force) matches the natural frequency of the swing, then the swing will oscillate with large amplitude. It is a matter of timing, not strength. A sequence of gentle pushes applied at just the right time in perfect rhythm with the swing will cause a dramatic increase in the amplitude of the swing. A small stimulus gets amplified into a LARGE response. Experiment: Shake a Slinky, Make a Mode Go into the hallway. Stretch the slinky (in the air, not on the floor) so that its end-to-end length is 4 to 5 m. It is okay if the slinky sags a little. Keep one end fixed. GENTLY shake (vibrate) the other end side-to-side (side-to-side is easier than up-and-down). DO NOT shake with a large force or large amplitude. Remember that resonance is all in the timing, not the force! Shake at 3

4 just the right frequency to produce the two-loop (n = 2) normal mode. When you have tuned into this n = 2 state, take special note: You are now RESONATING with the coil. You and the coil are one! Your shaking hand is perfectly in-sync with the coil s very own natural vibration. The frequency of your hand matches f 2 of the coil. Note how the distance D hand that your hand moves back and forth is much smaller than the distance D coil that the coil moves back and forth. The driven slinky system has the ability to amplify a small input (D hand ) into a large output (D coil ). This is the trademark of resonance: a weak driving force (hand moves a little) causes a powerful motion (coil moves a lot). Estimate the values of D hand and D coil by simply observing the motions of your hand and the coil when you are resonating with the coil. Compute the Amplification Factor for this driven coil system. D hand = cm D coil = cm Amplification Factor : D coil / D hand =. Musical Interlude When you pluck a guitar string, bow a violin string, blow into a flute, or hit a drumhead, the object (string, air, plastic) will vibrate with a whole spectrum of modes all at the same time! Fourier s Theorem says that the general motion of any vibrating system can be represented by a superposition of mode motions. This is a far-reaching principle in science and engineering. When you pluck the A-string of a guitar, the resulting musical tone consists of the fundamental tone ( loop 00 Hz) plus the overtones 200 Hz, 300 Hz, 400 Hz, etc). Thought Experiment: Hands-on proof of Plucked String = Mixture of Harmonic Modes Suppose you pluck the A-string of a guitar and then lightly touch this vibrating string at its exact midpoint. Draw a picture of the plucked string before and after the touch. Assume that the fundamental (-loop) and the octave (2-loop) are much louder than the higher harmonics. Before After What tone do you hear after the touch? 4

5 Part III. Discovering a Harmonic Spectrum A. Experiment: Measuring the Spectrum Use the slinky as before keep one end fixed, make the length 4 to 5 meters, shake the other end. Record the length: L = m. Shake at the right frequencies to create the first three harmonics n =, 2, 3. Note: the uncertainty in measuring the integer n is exactly equal to zero: n ± 0! Measure the period of each harmonic. Note that the period of the flip-flopping loops on the slinky is equal to the period of your shaking hand. Use a stopwatch to measure the time for ten flip flops and then divide by ten to get the period. Sketch the shape of each mode you observed. Record your measured values of the period and the frequency of each mode. Mode Number Mode Shape Period (s) Frequency (Hz) 2 3 Do your measured frequencies satisfy the harmonic law f n = nf? Explain. B. Theory: Calculating the Spectrum Derive the f n formula. So far, you have measured the spectrum of natural frequencies of the slinky system. You will now calculate this spectrum based on the theory of waves. In the space below, combine the Kinematic Relation v = λf with the Harmonic Relation n(λ/2) = L to find how the frequency f n of mode n depends on the three variables n, v, and L. f n = To calculate the numerical value of f n from your theoretical formula, you will need to know the values of L and v for your slinky system. 5

6 Record L. Length of stretched slinky on which you observed n=,2,3: L = m. Find v. The velocity of a wave on a string (or a slinky) does not depend on the shape of the wave. All small disturbances propagate along the string at the same speed. So the best way to measure the value of v is to make a wave which is easiest to observe. The simplest kind of wave is a single pulse. Stretch the coil as before so that it has the same length L. Keep both ends fixed. At a point near one end, pull the slinky sidewise (perpendicular to the length) and release. This will generate a transverse traveling wave. Observe this wave disturbance (pulse) as it travels down the slinky, reflects off the other end, and travels back to its point of origin. Use a stopwatch to measure the time it takes for the pulse to make four round trips, i.e. 4 down-and-back motions along the entire length of the coil. Divide by 4 to get the round-trip time t r. Calculate the velocity v of the wave on your coil using the fact that the wave pulse travels a distance 2L (down L + back L) during the round trip time. Round-Trip Time t r = s. Wave Velocity v = m/s. Calculate f. Calculate the harmonic frequencies f, f 2, f 3 using your theoretical formula derived above. Show your calculation. C. Compare Experimental and Theoretical Spectrum Summarize your measured (Part A) and calculated (Part B) values of the natural frequencies {f, f 2, f 3 } that characterize your slinky system. n f n (measured) f n (calculated) % Difference 2 3 6

7 Part IV. Precision Measurement of Proper Tones and Wave Speed The system you will study consists of a string of finite length under a fixed tension. One end of the string is connected to an electric oscillator a high-tech shaker. Instead of you shaking the string by hand, the electric oscillator moves the string up and down at a frequency that you can control with high precision. The tension in the string is due to a precisely known mass hanging on the other end. Your research goal is to answer two basic questions:. What are the natural frequencies of this string system? 2. What is the speed of a wave on this system? Erwin Schrödinger, who won the Nobel Prize in Physics for the discovery of Quantum (Wave) Mechanics, referred to these natural frequencies as the proper tones of the system. A. Frequency Spectrum Hang 50 grams from the end of the string. Set up the standing waves n =, 2, 3, 4, 5 by driving the string with the electric oscillator using the following procedure. Procedure for Resonating with the String: Start with the frequency of the oscillator equal to.0 Hz. Set the amplitude of the oscillator equal to one-half its maximum value. Look at the end of the string attached to the oscillator. It is going up and down once every second just like your hand shaking the slinky! Now slowly increase the frequency until the first (n =) resonance is achieved where the string forms one big flip-flopping loop. If the oscillator makes a rattle sound, then decrease the amplitude. Continue to increase the frequency and successively tune into each of the overtones n = 2, 3, 4, 5. Record your measured values of f, f 2, f 3, f 4, f 5 : n f n (Hz) Do these natural frequencies (proper tones) of your string system form a harmonic spectrum? Explain. B. Wave Speed The wave speed on the string is too fast to measure with a stopwatch. Flick the string and try to observe the traveling pulse. Good Luck. Setting up standing waves is the gold-standard technique to measure the speed of any kind of wave from sound in air (300 m/s) to light in a vacuum (300,000,000 m/s). When you set up a standing wave, you are in effect freezing (taking a snapshot of) the speeding wave so you can easily observe the shape of the wave and measure the wavelength. 7

8 You will find the wave speed v using two different methods:. Space - Time Method: Measure λ and f for each mode n. Compute v = λf. You have already measured f for each n. To find λ for each n, measure the length L of your string (between it s two fixed endpoints) and then compute λ from the Fitting Condition: mode n consists of n half-waves stuffed inside L. The picture below shows the n = 3 fit. L λ/2 λ/2 λ/2 L = m. n λ (m) f (Hz) v = λf (m/s) average v = m/s. = mph. 2. Force - Mass Method: Measure F and µ of string. Compute v = (F/µ) /2. = m/s. The tension F in the string is equal to the weight of the hanging mass. To find the mass density µ of the string (µ mass per unit length), use the sample string on the back table. Do not remove the string attached to your oscillator and weight. Note: The sample string came from the same spool of string as the actual string and therefore has the same value of µ. The sample string may have a larger mass and a larger length than the actual string, but the mass-per-length ratio is the same. Tension: F = N. Mass density: µ mass / length = ( kg) / ( m) = kg/m. Wave Speed: v = (F/µ) /2 = m/s. Compare your two results for v [space-time λf and force-mass (F/µ) /2 ]: 8

9 Part V. Design Project: Create a 3-Loop 57 Hz The system consists of your stretched string, electric oscillator, and hanging weight. The application requires that you set up a 3-loop standing wave pattern on the string that vibrates at the rate of 57 cycles per second. The system parameter that you can change is the tension in the string. The Theory First work out the theory, then do the experiment. Recall the three essential elements of wave theory: () Kinematics: v = λf. (2) Dynamics: v = F/µ. (3) Harmonics: nλ/2 = L. The string parameters are length L, tension F, mass density µ, number of loops n. The wave properties are velocity v, frequency f, wavelength λ.. Carefully derive the formula that gives F as a function of the four parameters: n, L, f, µ. F = 2. Write the numerical values of the parameters: n =. L = m. f = Hz. µ = kg/m. 3. Substitute these values into your F formula to find the tension value: F = N. 4. Compute the value of the hanging mass: m = kg. The Experiment. Set the tension in the string by hanging the amount of mass as predicted by your theory. 2. Turn on the oscillator. 3. Vary the frequency of the oscillator so that the 3-loop mode is established on the string loud and clear, i.e. fine tune the frequency until the loop amplitude is maximum. 4. Record the value of this 3-loop frequency: f 3 = Hz. 5. Compare this experimental value of f 3 with the Design Specs value of 57 Hz. % difference between f 3 and 57 Hz is %. 9

Music. Sound Part II

Music. Sound Part II Music Sound Part II What is the study of sound called? Acoustics What is the difference between music and noise? Music: Sound that follows a regular pattern; a mixture of frequencies which have a clear

More information

Introduction. Physics 1CL WAVES AND SOUND FALL 2009

Introduction. Physics 1CL WAVES AND SOUND FALL 2009 Introduction This lab and the next are based on the physics of waves and sound. In this lab, transverse waves on a string and both transverse and longitudinal waves on a slinky are studied. To describe

More information

Music: Sound that follows a regular pattern; a mixture of frequencies which have a clear mathematical relationship between them.

Music: Sound that follows a regular pattern; a mixture of frequencies which have a clear mathematical relationship between them. The Sound of Music Music: Sound that follows a regular pattern; a mixture of frequencies which have a clear mathematical relationship between them. How is music formed? By STANDING WAVES Formed due to

More information

Demonstrate understanding of wave systems. Demonstrate understanding of wave systems. Achievement Achievement with Merit Achievement with Excellence

Demonstrate understanding of wave systems. Demonstrate understanding of wave systems. Achievement Achievement with Merit Achievement with Excellence Demonstrate understanding of wave systems Subject Reference Physics 3.3 Title Demonstrate understanding of wave systems Level 3 Credits 4 Assessment External This achievement standard involves demonstrating

More information

Waves and Sound Practice Test 43 points total Free- response part: [27 points]

Waves and Sound Practice Test 43 points total Free- response part: [27 points] Name Waves and Sound Practice Test 43 points total Free- response part: [27 points] 1. To demonstrate standing waves, one end of a string is attached to a tuning fork with frequency 120 Hz. The other end

More information

16.3 Standing Waves on a String.notebook February 16, 2018

16.3 Standing Waves on a String.notebook February 16, 2018 Section 16.3 Standing Waves on a String A wave pulse traveling along a string attached to a wall will be reflected when it reaches the wall, or the boundary. All of the wave s energy is reflected; hence

More information

L 23 Vibrations and Waves [3]

L 23 Vibrations and Waves [3] L 23 Vibrations and Waves [3] resonance clocks pendulum springs harmonic motion mechanical waves sound waves golden rule for waves musical instruments The Doppler effect Doppler radar radar guns Review

More information

PHYSICS 102N Spring Week 6 Oscillations, Waves, Sound and Music

PHYSICS 102N Spring Week 6 Oscillations, Waves, Sound and Music PHYSICS 102N Spring 2009 Week 6 Oscillations, Waves, Sound and Music Oscillations Any process that repeats itself after fixed time period T Examples: Pendulum, spring and weight, orbits, vibrations (musical

More information

ABC Math Student Copy

ABC Math Student Copy Page 1 of 17 Physics Week 9(Sem. 2) Name Chapter Summary Waves and Sound Cont d 2 Principle of Linear Superposition Sound is a pressure wave. Often two or more sound waves are present at the same place

More information

Chapter4: Superposition and Interference

Chapter4: Superposition and Interference Chapter4: Superposition and Interference 1. Superposition and Interference Many interesting wave phenomena in nature cannot be described by a single traveling wave. Instead, one must analyze complex waves

More information

Chapter 18. Superposition and Standing Waves

Chapter 18. Superposition and Standing Waves Chapter 18 Superposition and Standing Waves Particles & Waves Spread Out in Space: NONLOCAL Superposition: Waves add in space and show interference. Do not have mass or Momentum Waves transmit energy.

More information

Worksheet 15.2 Musical Instruments

Worksheet 15.2 Musical Instruments Worksheet 15.2 Musical Instruments 1. You and your group stretch a spring 12 feet across the floor and you produce a standing wave that has a node at each end and one antinode in the center. Sketch this

More information

Waves are generated by an oscillator which has to be powered.

Waves are generated by an oscillator which has to be powered. Traveling wave is a moving disturbance. Can transfer energy and momentum from one place to another. Oscillations occur simultaneously in space and time. Waves are characterized by 1. their velocity 2.

More information

Review. Top view of ripples on a pond. The golden rule for waves. The golden rule for waves. L 23 Vibrations and Waves [3] ripples

Review. Top view of ripples on a pond. The golden rule for waves. The golden rule for waves. L 23 Vibrations and Waves [3] ripples L 23 Vibrations and Waves [3] resonance clocks pendulum springs harmonic motion mechanical waves sound waves golden rule for waves musical instruments The Doppler effect Doppler radar radar guns Review

More information

No Brain Too Small PHYSICS

No Brain Too Small PHYSICS WAVES: STANDING WAVES QUESTIONS No Brain Too Small PHYSICS PAN FLUTES (2016;1) Assume the speed of sound in air is 343 m s -1. A pan flute is a musical instrument made of a set of pipes that are closed

More information

Ch17. The Principle of Linear Superposition and Interference Phenomena. The Principle of Linear Superposition

Ch17. The Principle of Linear Superposition and Interference Phenomena. The Principle of Linear Superposition Ch17. The Principle of Linear Superposition and Interference Phenomena The Principle of Linear Superposition 1 THE PRINCIPLE OF LINEAR SUPERPOSITION When two or more waves are present simultaneously at

More information

Waves and Sound. AP Physics 1

Waves and Sound. AP Physics 1 Waves and Sound AP Physics 1 What is a wave A WAVE is a vibration or disturbance in space. A MEDIUM is the substance that all SOUND WAVES travel through and need to have in order to move. Classes of waves

More information

Copyright 2009 Pearson Education, Inc.

Copyright 2009 Pearson Education, Inc. Chapter 16 Sound 16-1 Characteristics of Sound Sound can travel through h any kind of matter, but not through a vacuum. The speed of sound is different in different materials; in general, it is slowest

More information

(a) What is the tension in the rope? (b) With what frequency must the rope vibrate to create a traveling wave with a wavelength of 2m?

(a) What is the tension in the rope? (b) With what frequency must the rope vibrate to create a traveling wave with a wavelength of 2m? 1. A rope is stretched between two vertical supports. The points where it s attached (P and Q) are fixed. The linear density of the rope, μ, is 0.4kg/m, and the speed of a transverse wave on the rope is

More information

Preview. Sound Section 1. Section 1 Sound Waves. Section 2 Sound Intensity and Resonance. Section 3 Harmonics

Preview. Sound Section 1. Section 1 Sound Waves. Section 2 Sound Intensity and Resonance. Section 3 Harmonics Sound Section 1 Preview Section 1 Sound Waves Section 2 Sound Intensity and Resonance Section 3 Harmonics Sound Section 1 TEKS The student is expected to: 7A examine and describe oscillatory motion and

More information

2. When is an overtone harmonic? a. never c. when it is an integer multiple of the fundamental frequency b. always d.

2. When is an overtone harmonic? a. never c. when it is an integer multiple of the fundamental frequency b. always d. PHYSICS LAPP RESONANCE, MUSIC, AND MUSICAL INSTRUMENTS REVIEW I will not be providing equations or any other information, but you can prepare a 3 x 5 card with equations and constants to be used on the

More information

Sound & Music. how musical notes are produced and perceived. calculate the frequency of the pitch produced by a string or pipe

Sound & Music. how musical notes are produced and perceived. calculate the frequency of the pitch produced by a string or pipe Add Important Sound & Music Page: 53 NGSS Standards: N/A Sound & Music MA Curriculum Frameworks (2006): N/A AP Physics Learning Objectives: 6.D.3., 6.D.3.2, 6.D.3.3, 6.D.3.4, 6.D.4., 6.D.4.2, 6.D.5. Knowledge/Understanding

More information

Chapter 16. Waves and Sound

Chapter 16. Waves and Sound Chapter 16 Waves and Sound 16.1 The Nature of Waves 1. A wave is a traveling disturbance. 2. A wave carries energy from place to place. 1 16.1 The Nature of Waves Transverse Wave 16.1 The Nature of Waves

More information

Waves. Topic 11.1 Standing Waves

Waves. Topic 11.1 Standing Waves Waves Topic 11.1 Standing Waves Standing Waves The Formation When 2 waves of the same speed and wavelength and equal or almost equal amplitudes travelling in opposite directions meet, a standing wave is

More information

Chapter PREPTEST: SHM & WAVE PROPERTIES

Chapter PREPTEST: SHM & WAVE PROPERTIES 2 4 Chapter 13-14 PREPTEST: SHM & WAVE PROPERTIES Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A load of 45 N attached to a spring that is hanging vertically

More information

Standing waves in a string

Standing waves in a string Standing waves in a string Introduction When you shake a string, a pulse travels down its length. When it reaches the end, the pulse can be reflected. A series of regularly occurring pulses will generate

More information

Chapter 17. Linear Superposition and Interference

Chapter 17. Linear Superposition and Interference Chapter 17 Linear Superposition and Interference Linear Superposition If two waves are traveling through the same medium, the resultant wave is found by adding the displacement of the individual waves

More information

Copyright 2010 Pearson Education, Inc.

Copyright 2010 Pearson Education, Inc. 14-7 Superposition and Interference Waves of small amplitude traveling through the same medium combine, or superpose, by simple addition. 14-7 Superposition and Interference If two pulses combine to give

More information

Physics in Entertainment and the Arts

Physics in Entertainment and the Arts Physics in Entertainment and the Arts Chapter VIII Control of Sound The sound characteristics (acoustics) of a room depend upon a great many complex factors room size/shape wall/floor/ceiling materials

More information

Name: Date: Period: Physics: Study guide concepts for waves and sound

Name: Date: Period: Physics: Study guide concepts for waves and sound Name: Date: Period: Physics: Study guide concepts for waves and sound Waves Sound What is a wave? Identify parts of a wave (amplitude, frequency, period, wavelength) Constructive and destructive interference

More information

Physics 140 Winter 2014 April 21. Wave Interference and Standing Waves

Physics 140 Winter 2014 April 21. Wave Interference and Standing Waves Physics 140 Winter 2014 April 21 Wave Interference and Standing Waves 1 Questions concerning today s youtube video? 3 Reflections A sinusoidal wave is generated by shaking one end (x = L) of a fixed string

More information

Standing Waves. Lecture 21. Chapter 21. Physics II. Course website:

Standing Waves. Lecture 21. Chapter 21. Physics II. Course website: Lecture 21 Chapter 21 Physics II Standing Waves Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html Standing

More information

Interference & Superposition. Creating Complex Wave Forms

Interference & Superposition. Creating Complex Wave Forms Interference & Superposition Creating Complex Wave Forms Waves & Interference I. Definitions and Types II. Parameters and Equations III. Sound IV. Graphs of Waves V. Interference - superposition - standing

More information

Review of Standing Waves on a String

Review of Standing Waves on a String Review of Standing Waves on a String Below is a picture of a standing wave on a 30 meter long string. What is the wavelength of the running waves that the standing wave is made from? 30 m A.

More information

Vibrations on a String and Resonance

Vibrations on a String and Resonance Vibrations on a String and Resonance Umer Hassan and Muhammad Sabieh Anwar LUMS School of Science and Engineering September 7, 2010 How does our radio tune into different channels? Can a music maestro

More information

Warm-Up. Think of three examples of waves. What do waves have in common? What, if anything, do waves carry from one place to another?

Warm-Up. Think of three examples of waves. What do waves have in common? What, if anything, do waves carry from one place to another? Warm-Up Think of three examples of waves. What do waves have in common? What, if anything, do waves carry from one place to another? WAVES Physics Waves If you can only remember one thing Waves transmit

More information

CHAPTER 11 TEST REVIEW -- MARKSCHEME

CHAPTER 11 TEST REVIEW -- MARKSCHEME AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response MULTIPLE CHOICE DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM

More information

Chapter 14, Sound. 1. When a sine wave is used to represent a sound wave, the crest corresponds to:

Chapter 14, Sound. 1. When a sine wave is used to represent a sound wave, the crest corresponds to: CHAPTER 14 1. When a sine wave is used to represent a sound wave, the crest corresponds to: a. rarefaction b. condensation c. point where molecules vibrate at a right angle to the direction of wave travel

More information

A mechanical wave is a disturbance which propagates through a medium with little or no net displacement of the particles of the medium.

A mechanical wave is a disturbance which propagates through a medium with little or no net displacement of the particles of the medium. Waves and Sound Mechanical Wave A mechanical wave is a disturbance which propagates through a medium with little or no net displacement of the particles of the medium. Water Waves Wave Pulse People Wave

More information

Physics 1C. Lecture 14C. "The finest words in the world are only vain sounds if you cannot understand them." --Anatole France

Physics 1C. Lecture 14C. The finest words in the world are only vain sounds if you cannot understand them. --Anatole France Physics 1C Lecture 14C "The finest words in the world are only vain sounds if you cannot understand them." --Anatole France Standing Waves You can also create standing waves in columns of air. But in air,

More information

Properties and Applications

Properties and Applications Properties and Applications What is a Wave? How is it Created? Waves are created by vibrations! Atoms vibrate, strings vibrate, water vibrates A wave is the moving oscillation Waves are the propagation

More information

PHYSICS 107 LAB #3: WAVES ON STRINGS

PHYSICS 107 LAB #3: WAVES ON STRINGS Section: Monday / Tuesday (circle one) Name: Partners: Total: /40 PHYSICS 107 LAB #3: WAVES ON STRINGS Equipment: Function generator, amplifier, driver, elastic string, pulley and clamp, rod and table

More information

Physics Standing Waves. Tues. 4/18, and Thurs. 4/20

Physics Standing Waves. Tues. 4/18, and Thurs. 4/20 Physics 116 2017 Standing Waves Tues. 4/18, and Thurs. 4/20 A long string is firmly connected to a stationary metal rod at one end. A student holding the other end moves her hand rapidly up and down to

More information

Resonant Tubes A N A N

Resonant Tubes A N A N 1 Resonant Tubes Introduction: Resonance is a phenomenon which is peculiar to oscillating systems. One example of resonance is the famous crystal champagne glass and opera singer. If you tap a champagne

More information

Final Reg Wave and Sound Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Final Reg Wave and Sound Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Final Reg Wave and Sound Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) What is the frequency of a 2.5 m wave traveling at 1400 m/s? 1) 2)

More information

SECTION A Waves and Sound

SECTION A Waves and Sound AP Physics Multiple Choice Practice Waves and Optics SECTION A Waves and Sound 1. Which of the following statements about the speed of waves on a string are true? I. The speed depends on the tension in

More information

Sound Interference and Resonance: Standing Waves in Air Columns

Sound Interference and Resonance: Standing Waves in Air Columns Sound Interference and Resonance: Standing Waves in Air Columns Bởi: OpenStaxCollege Some types of headphones use the phenomena of constructive and destructive interference to cancel out outside noises.

More information

SECTION A Waves and Sound

SECTION A Waves and Sound AP Physics Multiple Choice Practice Waves and Optics SECTION A Waves and Sound 2. A string is firmly attached at both ends. When a frequency of 60 Hz is applied, the string vibrates in the standing wave

More information

b) (4) How large is the effective spring constant associated with the oscillations, in N/m?

b) (4) How large is the effective spring constant associated with the oscillations, in N/m? General Physics I Quiz 7 - Ch. 11 - Vibrations & Waves July 22, 2009 Name: Make your work clear to the grader. Show formulas used. Give correct units and significant figures. Partial credit is available

More information

L 5 Review of Standing Waves on a String

L 5 Review of Standing Waves on a String L 5 Review of Standing Waves on a String Below is a picture of a standing wave on a 30 meter long string. What is the wavelength of the running waves that the standing wave is made from? 30

More information

Chapter 05: Wave Motions and Sound

Chapter 05: Wave Motions and Sound Chapter 05: Wave Motions and Sound Section 5.1: Forces and Elastic Materials Elasticity It's not just the stretch, it's the snap back An elastic material will return to its original shape when stretched

More information

Resonance Tube Lab 9

Resonance Tube Lab 9 HB 03-30-01 Resonance Tube Lab 9 1 Resonance Tube Lab 9 Equipment SWS, complete resonance tube (tube, piston assembly, speaker stand, piston stand, mike with adaptors, channel), voltage sensor, 1.5 m leads

More information

PC1141 Physics I. Speed of Sound. Traveling waves of speed v, frequency f and wavelength λ are described by

PC1141 Physics I. Speed of Sound. Traveling waves of speed v, frequency f and wavelength λ are described by PC1141 Physics I Speed of Sound 1 Objectives Determination of several frequencies of the signal generator at which resonance occur in the closed and open resonance tube respectively. Determination of the

More information

Resonance Tube. 1 Purpose. 2 Theory. 2.1 Air As A Spring. 2.2 Traveling Sound Waves in Air

Resonance Tube. 1 Purpose. 2 Theory. 2.1 Air As A Spring. 2.2 Traveling Sound Waves in Air Resonance Tube Equipment Capstone, complete resonance tube (tube, piston assembly, speaker stand, piston stand, mike with adapters, channel), voltage sensor, 1.5 m leads (2), (room) thermometer, flat rubber

More information

Sound, acoustics Slides based on: Rossing, The science of sound, 1990.

Sound, acoustics Slides based on: Rossing, The science of sound, 1990. Sound, acoustics Slides based on: Rossing, The science of sound, 1990. Acoustics 1 1 Introduction Acoustics 2! The word acoustics refers to the science of sound and is a subcategory of physics! Room acoustics

More information

Vibrations and Waves. Properties of Vibrations

Vibrations and Waves. Properties of Vibrations Vibrations and Waves For a vibration to occur an object must repeat a movement during a time interval. A wave is a disturbance that extends from one place to another through space. Light and sound are

More information

Waves. September 30, 2010

Waves. September 30, 2010 Waves September 30, 2010 1.1 Characteristics of waves A wave is a travelling disturbance that carries energy from one point to another. Some waves are mechanical: they need a medium like air or water in

More information

g L f = 1 2π Agenda Chapter 14, Problem 24 Intensity of Sound Waves Various Intensities of Sound Intensity Level of Sound Waves

g L f = 1 2π Agenda Chapter 14, Problem 24 Intensity of Sound Waves Various Intensities of Sound Intensity Level of Sound Waves Agenda Today: HW #1 Quiz, power and energy in waves and decibel scale Thursday: Doppler effect, more superposition & interference, closed vs. open tubes Chapter 14, Problem 4 A 00 g ball is tied to a string.

More information

THE PRINCIPLE OF LINEAR SUPERPOSITION AND INTERFERENCE PHENOMENA

THE PRINCIPLE OF LINEAR SUPERPOSITION AND INTERFERENCE PHENOMENA THE PRINCIPLE OF LINEAR SUPERPOSITION AND INTERFERENCE PHENOMENA PREVIEW When two waves meet in the same medium they combine to form a new wave by the principle of superposition. The result of superposition

More information

1) The time for one cycle of a periodic process is called the A) period. B) frequency. C) wavelength. D) amplitude.

1) The time for one cycle of a periodic process is called the A) period. B) frequency. C) wavelength. D) amplitude. Practice quiz for engineering students. Real test next Tuesday. Plan on an essay/show me work question as well. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers

More information

PHYS102 Previous Exam Problems. Sound Waves. If the speed of sound in air is not given in the problem, take it as 343 m/s.

PHYS102 Previous Exam Problems. Sound Waves. If the speed of sound in air is not given in the problem, take it as 343 m/s. PHYS102 Previous Exam Problems CHAPTER 17 Sound Waves Sound waves Interference of sound waves Intensity & level Resonance in tubes Doppler effect If the speed of sound in air is not given in the problem,

More information

Welcome to PHYS 1240 Sound and Music Professor John Price. Cell Phones off Laptops closed Clickers on Transporter energized

Welcome to PHYS 1240 Sound and Music Professor John Price. Cell Phones off Laptops closed Clickers on Transporter energized Welcome to PHYS 1240 Sound and Music Professor John Price Cell Phones off Laptops closed Clickers on Transporter energized Guitar Tuning bar pair Big string Gong rod Beats: Two Sources with Slightly Different

More information

(i) node [1] (ii) antinode...

(i) node [1] (ii) antinode... 1 (a) When used to describe stationary (standing) waves explain the terms node...... [1] (ii) antinode....... [1] (b) Fig. 5.1 shows a string fixed at one end under tension. The frequency of the mechanical

More information

Waves Q1. MockTime.com. (c) speed of propagation = 5 (d) period π/15 Ans: (c)

Waves Q1. MockTime.com. (c) speed of propagation = 5 (d) period π/15 Ans: (c) Waves Q1. (a) v = 5 cm (b) λ = 18 cm (c) a = 0.04 cm (d) f = 50 Hz Q2. The velocity of sound in any gas depends upon [1988] (a) wavelength of sound only (b) density and elasticity of gas (c) intensity

More information

1. At which position(s) will the child hear the same frequency as that heard by a stationary observer standing next to the whistle?

1. At which position(s) will the child hear the same frequency as that heard by a stationary observer standing next to the whistle? Name: Date: Use the following to answer question 1: The diagram shows the various positions of a child in motion on a swing. Somewhere in front of the child a stationary whistle is blowing. 1. At which

More information

Waves & Interference

Waves & Interference Waves & Interference I. Definitions and Types II. Parameters and Equations III. Sound IV. Graphs of Waves V. Interference - superposition - standing waves The student will be able to: HW: 1 Define, apply,

More information

H. Pipes. Open Pipes. Fig. H-1. Simplest Standing Wave on a Slinky. Copyright 2012 Prof. Ruiz, UNCA H-1

H. Pipes. Open Pipes. Fig. H-1. Simplest Standing Wave on a Slinky. Copyright 2012 Prof. Ruiz, UNCA H-1 H. Pipes We proceed now to the study of standing waves in pipes. The standing waves in the pipe are actually sound waves. We cannot see sound waves in air. However, we can readily hear the tones. The advantage

More information

Physics 20 Lesson 31 Resonance and Sound

Physics 20 Lesson 31 Resonance and Sound Physics 20 Lesson 31 Resonance and Sound I. Standing waves Refer to Pearson pages 416 to 424 for a discussion of standing waves, resonance and music. The amplitude and wavelength of interfering waves are

More information

Resonance Tube. 1 Purpose. 2 Theory. 2.1 Air As A Spring. 2.2 Traveling Sound Waves in Air

Resonance Tube. 1 Purpose. 2 Theory. 2.1 Air As A Spring. 2.2 Traveling Sound Waves in Air Resonance Tube Equipment Capstone, complete resonance tube (tube, piston assembly, speaker stand, piston stand, mike with adaptors, channel), voltage sensor, 1.5 m leads (2), (room) thermometer, flat rubber

More information

Unit 10 Simple Harmonic Waves and Sound Holt Chapter 12 Student Outline

Unit 10 Simple Harmonic Waves and Sound Holt Chapter 12 Student Outline Unit 10 Simple Harmonic Waves and Sound Holt Chapter 12 Student Outline Variables introduced or used in chapter: Quantity Symbol Units Vector or Scalar? Spring Force Spring Constant Displacement Period

More information

PHYSICS AND THE GUITAR JORDY NETZEL LAKEHEAD UNIVERSITY

PHYSICS AND THE GUITAR JORDY NETZEL LAKEHEAD UNIVERSITY PHYSICS AND THE GUITAR JORDY NETZEL LAKEHEAD UNIVERSITY 2 PHYSICS & THE GUITAR TYPE THE DOCUMENT TITLE Wave Mechanics Starting with wave mechanics, or more specifically standing waves, it follows then

More information

Physics B Waves and Sound Name: AP Review. Show your work:

Physics B Waves and Sound Name: AP Review. Show your work: Physics B Waves and Sound Name: AP Review Mechanical Wave A disturbance that propagates through a medium with little or no net displacement of the particles of the medium. Parts of a Wave Crest: high point

More information

In Phase. Out of Phase

In Phase. Out of Phase Superposition Interference Waves ADD: Constructive Interference. Waves SUBTRACT: Destructive Interference. In Phase Out of Phase Superposition Traveling waves move through each other, interfere, and keep

More information

Concepts in Physics. Friday, November 26th 2009

Concepts in Physics. Friday, November 26th 2009 1206 - Concepts in Physics Friday, November 26th 2009 Notes There is a new point on the webpage things to look at for the final exam So far you have the two midterms there More things will be posted over

More information

Resonance in Air Columns

Resonance in Air Columns Resonance in Air Columns When discussing waves in one dimension, we observed that a standing wave forms on a spring when reflected waves interfere with incident waves. We learned that the frequencies at

More information

Sound Lab. How well can you match sounds?

Sound Lab. How well can you match sounds? How well can you match sounds? Shake each container and listen to the noise it makes. Can you hear the different sounds they make? Describe each of the sounds you hear on your lab sheet. Do two or more

More information

The quality of your written communication will be assessed in your answer. (Total 6 marks)

The quality of your written communication will be assessed in your answer. (Total 6 marks) Q1.A stationary wave is formed on a stretched string. Discuss the formation of this wave. Your answer should include: an explanation of how the stationary wave is formed a description of the features of

More information

Experiment: P34 Resonance Modes 1 Resonance Modes of a Stretched String (Power Amplifier, Voltage Sensor)

Experiment: P34 Resonance Modes 1 Resonance Modes of a Stretched String (Power Amplifier, Voltage Sensor) PASCO scientific Vol. 2 Physics Lab Manual: P34-1 Experiment: P34 Resonance Modes 1 Resonance Modes of a Stretched String (Power Amplifier, Voltage Sensor) Concept Time SW Interface Macintosh file Windows

More information

Q15.9. Monday, May 2, Pearson Education, Inc.

Q15.9. Monday, May 2, Pearson Education, Inc. Q15.9 While a guitar string is vibrating, you gently touch the midpoint of the string to ensure that the string does not vibrate at that point. The lowest-frequency standing wave that could be present

More information

Chapter 7. Waves and Sound

Chapter 7. Waves and Sound Chapter 7 Waves and Sound What is wave? A wave is a disturbance that propagates from one place to another. Or simply, it carries energy from place to place. The easiest type of wave to visualize is a transverse

More information

Musical instruments: strings and pipes

Musical instruments: strings and pipes Musical instruments: strings and pipes Physics 211 Syracuse University, Physics 211 Spring 2017 Walter Freeman April 24, 2017 W. Freeman Musical instruments: strings and pipes April 24, 2017 1 / 11 Announcements

More information

WAVES. Chapter Fifteen MCQ I

WAVES. Chapter Fifteen MCQ I Chapter Fifteen WAVES MCQ I 15.1 Water waves produced by a motor boat sailing in water are (a) neither longitudinal nor transverse. (b) both longitudinal and transverse. (c) only longitudinal. (d) only

More information

Lecture Presentation Chapter 16 Superposition and Standing Waves

Lecture Presentation Chapter 16 Superposition and Standing Waves Lecture Presentation Chapter 16 Superposition and Standing Waves Suggested Videos for Chapter 16 Prelecture Videos Constructive and Destructive Interference Standing Waves Physics of Your Vocal System

More information

Q1. The figure below shows two ways in which a wave can travel along a slinky spring.

Q1. The figure below shows two ways in which a wave can travel along a slinky spring. PhysicsAndMathsTutor.com 1 Q1. The figure below shows two ways in which a wave can travel along a slinky spring. (a) State and explain which wave is longitudinal..... On the figure above, (i) clearly indicate

More information

CHAPTER 12 SOUND ass/sound/soundtoc. html. Characteristics of Sound

CHAPTER 12 SOUND  ass/sound/soundtoc. html. Characteristics of Sound CHAPTER 12 SOUND http://www.physicsclassroom.com/cl ass/sound/soundtoc. html Characteristics of Sound Intensity of Sound: Decibels The Ear and Its Response; Loudness Sources of Sound: Vibrating Strings

More information

Properties of Sound. Goals and Introduction

Properties of Sound. Goals and Introduction Properties of Sound Goals and Introduction Traveling waves can be split into two broad categories based on the direction the oscillations occur compared to the direction of the wave s velocity. Waves where

More information

Lab 12. Vibrating Strings

Lab 12. Vibrating Strings Lab 12. Vibrating Strings Goals To experimentally determine relationships between fundamental resonant of a vibrating string and its length, its mass per unit length, and tension in string. To introduce

More information

Pre Test 1. Name. a Hz b Hz c Hz d Hz e Hz. 1. d

Pre Test 1. Name. a Hz b Hz c Hz d Hz e Hz. 1. d Name Pre Test 1 1. The wavelength of light visible to the human eye is on the order of 5 10 7 m. If the speed of light in air is 3 10 8 m/s, find the frequency of the light wave. 1. d a. 3 10 7 Hz b. 4

More information

Sound 05/02/2006. Lecture 10 1

Sound 05/02/2006. Lecture 10 1 What IS Sound? Sound is really tiny fluctuations of air pressure units of pressure: N/m 2 or psi (lbs/square-inch) Carried through air at 345 m/s (770 m.p.h) as compressions and rarefactions in air pressure

More information

Waves-Wave Behaviors

Waves-Wave Behaviors 1. While playing, two children create a standing wave in a rope, as shown in the diagram below. A third child participates by jumping the rope. What is the wavelength of this standing wave? 1. 2.15 m 2.

More information

MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START

MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START Laboratory Section: Last Revised on September 21, 2016 Partners Names: Grade: EXPERIMENT 11 Velocity of Waves 1. Pre-Laboratory Work [2 pts] 1.) What is the longest wavelength at which a sound wave will

More information

Date Period Name. Write the term that corresponds to the description. Use each term once. beat

Date Period Name. Write the term that corresponds to the description. Use each term once. beat Date Period Name CHAPTER 15 Study Guide Sound Vocabulary Review Write the term that corresponds to the description. Use each term once. beat Doppler effect closed-pipe resonator fundamental consonance

More information

Waves ADD: Constructive Interference. Waves SUBTRACT: Destructive Interference. In Phase. Out of Phase

Waves ADD: Constructive Interference. Waves SUBTRACT: Destructive Interference. In Phase. Out of Phase Superposition Interference Interference Waves ADD: Constructive Interference. Waves SUBTRACT: Destructive Interference. In Phase Out of Phase Superposition Traveling waves move through each other, interfere,

More information

Waves ADD: Constructive Interference. Waves SUBTRACT: Destructive Interference. In Phase. Out of Phase

Waves ADD: Constructive Interference. Waves SUBTRACT: Destructive Interference. In Phase. Out of Phase Superposition Interference Waves ADD: Constructive Interference. Waves SUBTRACT: Destructive Interference. In Phase Out of Phase Superposition Traveling waves move through each other, interfere, and keep

More information

SUMMARY. ) f s Shock wave Sonic boom UNIT. Waves transmit energy. Sound is a longitudinal mechanical wave. KEY CONCEPTS CHAPTER SUMMARY

SUMMARY. ) f s Shock wave Sonic boom UNIT. Waves transmit energy. Sound is a longitudinal mechanical wave. KEY CONCEPTS CHAPTER SUMMARY UNIT D SUMMARY KEY CONCEPTS CHAPTER SUMMARY 9 Waves transmit energy. Crest, trough, amplitude, wavelength Longitudinal and transverse waves Cycle Period, frequency f 1_ T Universal wave equation v fλ Wave

More information

Physics 17 Part N Dr. Alward

Physics 17 Part N Dr. Alward Physics 17 Part N Dr. Alward String Waves L = length of string m = mass μ = linear mass density = m/l T = tension v = pulse speed = (T/μ) Example: T = 4.9 N μ = 0.10 kg/m v = (4.9/0.10) 1/2 = 7.0 m/s Shake

More information

Honors Physics-121B Sound and Musical Acoustics Introduction: Production of Sounds by Various Sources: Media That Transmit Sound:

Honors Physics-121B Sound and Musical Acoustics Introduction: Production of Sounds by Various Sources: Media That Transmit Sound: Honors Physics-121B Sound and Musical Acoustics Introduction: This unit deals with the properties of longitudinal (compressional) waves traveling through various media. As these waves travel through the

More information

Version 001 HW#1 - Vibrations & Waves arts (00224) 1

Version 001 HW#1 - Vibrations & Waves arts (00224) 1 Version HW# - Vibrations & Waves arts (4) This print-out should have 5 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Superposition. points

More information

Lab 11. Vibrating Strings

Lab 11. Vibrating Strings Lab 11. Vibrating Strings Goals To experimentally determine relationships between fundamental resonant of a vibrating string and its length, its mass per unit length, and tension in string. To introduce

More information

Standing Waves + Reflection

Standing Waves + Reflection Standing Waves + Reflection Announcements: Will discuss reflections of transverse waves, standing waves and speed of sound. We will be covering material in Chap. 16. Plan to review material on Wednesday

More information