18 Logarithmic Functions

Size: px
Start display at page:

Download "18 Logarithmic Functions"

Transcription

1 18 Logarithmic Functions Concepts: Logarithms (Section 3.3) Logarithms as Functions Logarithms as Exponent Pickers Inverse Relationship between Logarithmic and Exponential Functions. The Common Logarithm Definition and Graphs Exponential Notation vs. Logarithmic Notation Evaluating Common Logarithms The Natural Logarithm Definition and Graphs Exponential Notation vs. Logarithmic Notation Evaluating Common Logarithms Logarithms with Different Bases Definition and Graphs Exponential Notation vs. Logarithmic Notation Evaluating Common Logarithms 18.1 Logarithms Exponential functions are one-to-one functions. Consequently, each exponential function has an inverse function. Recall that inverse functions are useful because they undo operations. Addition and Subtraction are inverse operations. Multiplication and Division are inverse operations. Similarly, exponentiation and taking the logarithm are inverse operations. These operations undo each other. Why might you want to undo exponentiation? Suppose you want to solve the following equation. 10 x = 3 What is happening to x? 1

2 How do we undo this? Taking the x th root is not a reasonable solution. This would lead to: 10 = x 3 10 = 3 1 x This is even worse than before. We now have 1 as an exponent. What we need is something x to pull x out of the exponent place and put it on the ground, in a manner of speaking. Logarithms are the answer. One Calculus teacher was fond of saying that logarithms are exponent pickers. Recall that the name of a function does not need to be a single letter. Up to this point in the course, we have been very lazy and unimaginative in naming our functions. It is not terribly useful to call a functions f or g, but these names are sufficient for simple examples. Moreover, we have used f and g to mean lots of different functions. But some functions occur so regularly that it makes more sense to give them permanent names that are a bit more descriptive. This is the case with logarithms. Logarithms will have names like log, log 2, log 3, and ln. Because these are functions, they have inputs and these inputs are placed in parentheses next to the function name. For example log(x), is the output of the function named log when x is the input of the function The Common Logarithm The common logarithm is the inverse function of f(x) = 10 x. The name of the common logarithm function is either log 10 (said log base 10 ) or log for short. Example 18.1 (Common Log Graph) Sketch the graphs of y = f(x) = 10 x and y = g(x) = log(x) on the same coordinate system. What is the domain of log? 2

3 Recall that x and y trade places in inverse functions. This leads to the following definition for the common logarithm function. Definition 18.2 (Common Logs) Let x and y be real numbers with x > 0. Then log(x) = y if and only if 10 y = x. In other words, log(x) chooses (or picks) the exponent to which 10 must be raised to produce x. Example 18.3 (Common Logs) Evaluate each of the following. log(100) log(10 9 ) ( ) 1 log 1000 ( ) 1 log log( 3 100) Example 18.4 (Exponential Notation and Logarithmic Notation) Convert the logarithmic statement to an exponential statement. log(10, 000) = 4 Example 18.5 (Exponential Notation and Logarithmic Notation) Convert the exponential statement to a logarithmic statement = 1 1, 000 3

4 The Natural Logarithm As we mentioned before, the function f(x) = e x is especially important in Calculus, Business Applications, Engineering Applications, and Biological Applications. The inverse function of f is ln(x). This is called the natural logarithm function. Example 18.6 (Natural Log Graph) Sketch the graphs of y = f(x) = e x and y = g(x) = ln(x) on the same coordinate system. What is the domain of ln? Recall that x and y trade places in inverse functions. This leads to the following definition for the common logarithm function. Definition 18.7 (Natural Logs) Let x and y be real numbers with x > 0. Then ln(x) = y if and only if e y = x. In other words, the ln(x) chooses (or picks) the exponent to which e must be raised to produce x. Example 18.8 (Natural Logs) Evaluate each of the following. ln(e 5 ) ln ( ) 1 6 e 11 4

5 Example 18.9 (Exponential Notation and Logarithmic Notation) Convert the logarithmic statement to an exponential statement. ln(1) = 0 Example (Exponential Notation and Logarithmic Notation) Convert the exponential statement to a logarithmic statement. e Example (Logarithm Domain) Find the domain of f(x) = ln(x 2 3x 10) Logarithms with Different Bases The common logarithm (log) is sometimes called log base 10 and can also be written log 10. The natural logarithm (ln) is sometimes called log base e and can also be written log e. In fact, there is a logarithm associated with any positive base a that is not equal to 1. Definition (Logarithms with Different Bases) Let x and y be real numbers with x > 0. Let a be a positive real number that is not equal to 1. Then log a (x) = y if and only if a y = x. In other words, the log a (x) picks the exponent to which a must be raised to produce x. 5

6 Example (Logartithms with Different Bases) Evaluate each of the following. log 2 (16) log 3 ( 1 81 ) log 1 (16) 2 Example (Exponential Notation and Logarithmic Notation) Convert the exponential statement to a logarithmic statement. 5 3 = 125 Example (Logarithm Domain) Find the domain of f(x) = log 7 (2 5x). 6

7 Properties of Logarithms Each property of logarithms is derived from the definition of the logarithm and/or a property of exponents. Property log(1) = ln(1) = log a (1) = Property log(10) = ln(e) = log a (a) = Property log(10 x ) = ln(e x ) = log a (a x ) = Property log(x) = e ln(x) = a log a (x) = 7

8 Example Simplify e x ln(2). Rewrite 5 x as e to a power. Example Evaluate log( ). Property (Product Law for Logarithms) For all u > 0 and v > 0 Proof: log(uv) = log(u) + log(v) ln(uv) = ln(u) + ln(v) log a (uv) = log a (u) + log a (v) 8

9 Property (Quotient Law for Logarithms) For all u > 0 and v > 0 ( u ) log = log(u) log(v) v ( u ) ln = ln(u) ln(v) v ( u ) log a = log v a (u) log a (v) Example ( xy ) Use the properties of logarithms to express ln z logarithms. as a sum and or difference of three Example Use the properties of logarithms to write the expression using the fewest number of logarithms possible. log(x 2 + 2) + log(x) log(y) + log(w) log(z) Property (Power Law for Logarithms) For all u > 0 and all k Proof: log(u k ) = k log(u) ln(u k ) = k ln(u) log a (u k ) = k log a (u) 9

10 Example ( ) x 3 Use the properties of logarithms to express log y in terms of log(x), log(y), and log(z). z 10

11 Example Use the properties of logarithms to write the expression using the fewest number of logarithms possible. log(x 2 ) 2 log(y) 3 log(z) Property (Change of Base) If a, b, c > 0 and neither a nor b equals 1, then log a (c) = log b(c) log b (a). Example (Change of Base) Use your calculator to approximate log 5 (67). Example (Earthquakes) You should read Example 10 in Section 5.4 of your textbook about the Richter scale. It is interesting. 11

12 18.2 Solving Exponential and Logarithmic Equations Example Solve. log(x + 5) = 3 Example Solve. log 8 (x 5) + log 8 (x + 2) = 1 Example Solve. e x+2 = 5 12

13 Example Solve. 2 x 7 3 = 1 Example Solve. 2 x 5 = 3 2 2x Example Joni invests 1000 at an interest rate of 5% compounded monthly. When will the value of Joni s investment reach $2500? 13

5.4 Transformations and Composition of Functions

5.4 Transformations and Composition of Functions 5.4 Transformations and Composition of Functions 1. Vertical Shifts: Suppose we are given y = f(x) and c > 0. (a) To graph y = f(x)+c, shift the graph of y = f(x) up by c. (b) To graph y = f(x) c, shift

More information

Math 147 Section 5.2. Application Example

Math 147 Section 5.2. Application Example Math 147 Section 5.2 Logarithmic Functions Properties of Change of Base Formulas Math 147, Section 5.2 1 Application Example Use a change-of-base formula to evaluate each logarithm. (a) log 3 12 (b) log

More information

Logarithmic Functions and Their Graphs

Logarithmic Functions and Their Graphs Logarithmic Functions and Their Graphs Accelerated Pre-Calculus Mr. Niedert Accelerated Pre-Calculus Logarithmic Functions and Their Graphs Mr. Niedert 1 / 24 Logarithmic Functions and Their Graphs 1 Logarithmic

More information

Properties of Logarithms

Properties of Logarithms Properties of Logarithms Accelerated Pre-Calculus Mr. Niedert Accelerated Pre-Calculus Properties of Logarithms Mr. Niedert 1 / 14 Properties of Logarithms 1 Change-of-Base Formula Accelerated Pre-Calculus

More information

Chapter 3 Exponential and Logarithmic Functions

Chapter 3 Exponential and Logarithmic Functions Chapter 3 Exponential and Logarithmic Functions Section 1 Section 2 Section 3 Section 4 Section 5 Exponential Functions and Their Graphs Logarithmic Functions and Their Graphs Properties of Logarithms

More information

Logarithms. Since perhaps it s been a while, calculate a few logarithms just to warm up.

Logarithms. Since perhaps it s been a while, calculate a few logarithms just to warm up. Logarithms Since perhaps it s been a while, calculate a few logarithms just to warm up. 1. Calculate the following. (a) log 3 (27) = (b) log 9 (27) = (c) log 3 ( 1 9 ) = (d) ln(e 3 ) = (e) log( 100) =

More information

Section 7.2 Logarithmic Functions

Section 7.2 Logarithmic Functions Math 150 c Lynch 1 of 6 Section 7.2 Logarithmic Functions Definition. Let a be any positive number not equal to 1. The logarithm of x to the base a is y if and only if a y = x. The number y is denoted

More information

Lesson 8. Diana Pell. Monday, January 27

Lesson 8. Diana Pell. Monday, January 27 Lesson 8 Diana Pell Monday, January 27 Section 5.2: Continued Richter scale is a logarithmic scale used to express the total amount of energy released by an earthquake. The Richter scale gives the magnitude

More information

Comparing Exponential and Logarithmic Rules

Comparing Exponential and Logarithmic Rules Name _ Date Period Comparing Exponential and Logarithmic Rules Task : Looking closely at exponential and logarithmic patterns ) In a prior lesson you graphed and then compared an exponential function with

More information

5.5 Properties of Logarithms. Work with the Properties of Logarithms. 296 CHAPTER 5 Exponential and Logarithmic Functions

5.5 Properties of Logarithms. Work with the Properties of Logarithms. 296 CHAPTER 5 Exponential and Logarithmic Functions 296 CHAPTER 5 Exponential and Logarithmic Functions The Richter Scale Problems 3 and 32 use the following discussion: The Richter scale is one way of converting seismographic readings into numbers that

More information

You could identify a point on the graph of a function as (x,y) or (x, f(x)). You may have only one function value for each x number.

You could identify a point on the graph of a function as (x,y) or (x, f(x)). You may have only one function value for each x number. Function Before we review exponential and logarithmic functions, let's review the definition of a function and the graph of a function. A function is just a rule. The rule links one number to a second

More information

171S5.4p Properties of Logarithmic Functions. November 20, CHAPTER 5: Exponential and Logarithmic Functions. Examples. Express as a product.

171S5.4p Properties of Logarithmic Functions. November 20, CHAPTER 5: Exponential and Logarithmic Functions. Examples. Express as a product. MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 5: Exponential and Logarithmic Functions 5.1 Inverse Functions 5.2 Exponential Functions and Graphs 5.3 Logarithmic Functions

More information

S56 (5.1) Logs and Exponentials.notebook October 14, 2016

S56 (5.1) Logs and Exponentials.notebook October 14, 2016 1. Daily Practice 21.9.2016 Exponential Functions Today we will be learning about exponential functions. A function of the form y = a x is called an exponential function with the base 'a' where a 0. y

More information

Logs and Exponentials Higher.notebook February 26, Daily Practice

Logs and Exponentials Higher.notebook February 26, Daily Practice Daily Practice 2.2.2015 Daily Practice 3.2.2015 Today we will be learning about exponential functions and logs. Homework due! Need to know for Unit Test 2: Expressions and Functions Adding and subtracng

More information

Exponential and Logarithmic Functions. Copyright Cengage Learning. All rights reserved.

Exponential and Logarithmic Functions. Copyright Cengage Learning. All rights reserved. 5 Exponential and Logarithmic Functions Copyright Cengage Learning. All rights reserved. 5.3 Properties of Logarithms Copyright Cengage Learning. All rights reserved. Objectives Use the change-of-base

More information

8.1 Exponential Growth 1. Graph exponential growth functions. 2. Use exponential growth functions to model real life situations.

8.1 Exponential Growth 1. Graph exponential growth functions. 2. Use exponential growth functions to model real life situations. 8.1 Exponential Growth Objective 1. Graph exponential growth functions. 2. Use exponential growth functions to model real life situations. Key Terms Exponential Function Asymptote Exponential Growth Function

More information

J.7 Properties of Logarithms

J.7 Properties of Logarithms J.7. PROPERTIES OF LOGARITHMS 1 J.7 Properties of Logarithms J.7.1 Understanding Properties of Logarithms Product Rule of Logarithms log a MN = log a M +log a N Example J.7.1. Rewrite as a sum of logarithms:

More information

Logarithms ID1050 Quantitative & Qualitative Reasoning

Logarithms ID1050 Quantitative & Qualitative Reasoning Logarithms ID1050 Quantitative & Qualitative Reasoning History and Uses We noticed that when we multiply two numbers that are the same base raised to different exponents, that the result is the base raised

More information

Math Lecture 2 Inverse Functions & Logarithms

Math Lecture 2 Inverse Functions & Logarithms Math 1060 Lecture 2 Inverse Functions & Logarithms Outline Summary of last lecture Inverse Functions Domain, codomain, and range One-to-one functions Inverse functions Inverse trig functions Logarithms

More information

Algebra Adventure Directions. Format: Individual or Pairs (works best)

Algebra Adventure Directions. Format: Individual or Pairs (works best) Algebra Adventure Directions Format: Individual or Pairs (works best) Directions: Each student will receive an Algebra Adventure WS that they will keep track of their stations and work. Each pair will

More information

Instructor Notes for Chapter 4

Instructor Notes for Chapter 4 Section 4.1 One to One Functions (Day 1) Instructor Notes for Chapter 4 Understand that an inverse relation undoes the original Understand why the line y = xis a line of symmetry for the graphs of relations

More information

Siyavula textbooks: Grade 12 Maths. Collection Editor: Free High School Science Texts Project

Siyavula textbooks: Grade 12 Maths. Collection Editor: Free High School Science Texts Project Siyavula textbooks: Grade 12 Maths Collection Editor: Free High School Science Texts Project Siyavula textbooks: Grade 12 Maths Collection Editor: Free High School Science Texts Project Authors: Free

More information

UNIT #1: Transformation of Functions; Exponential and Log. Goals: Review core function families and mathematical transformations.

UNIT #1: Transformation of Functions; Exponential and Log. Goals: Review core function families and mathematical transformations. UNIT #1: Transformation of Functions; Exponential and Log Goals: Review core function families and mathematical transformations. Textbook reading for Unit #1: Read Sections 1.1 1.4 2 Example: The graphs

More information

Algebra 2 (Standard) DIA #6

Algebra 2 (Standard) DIA #6 Name: Class: Date: Algebra 2 (Standard) DIA #6 Multiple Choice Identify the choice that best completes the statement or answers the question.. An initial population of 865 quail increases at an annual

More information

Example: The graphs of e x, ln(x), x 2 and x 1 2 are shown below. Identify each function s graph.

Example: The graphs of e x, ln(x), x 2 and x 1 2 are shown below. Identify each function s graph. Familiar Functions - 1 Transformation of Functions, Exponentials and Loga- Unit #1 : rithms Example: The graphs of e x, ln(x), x 2 and x 1 2 are shown below. Identify each function s graph. Goals: Review

More information

Properties of Logarithms

Properties of Logarithms Properties of Logarithms Warm Up Lesson Presentation Lesson Quiz Algebra 2 Warm Up Simplify. 1. (2 6 )(2 8 ) 2 14 2. (3 2 )(3 5 ) 3 3 3 8 3. 4. 4 4 5. (7 3 ) 5 7 15 Write in exponential form. 6. log x

More information

Section 1.5 An Introduction to Logarithms

Section 1.5 An Introduction to Logarithms Section. An Introduction to Logarithms So far we ve used the idea exponent Base Result from two points of view. When the base and exponent were given, for instance, we simplified to the result 8. When

More information

Radical Expressions and Graph (7.1) EXAMPLE #1: EXAMPLE #2: EXAMPLE #3: Find roots of numbers (Objective #1) Figure #1:

Radical Expressions and Graph (7.1) EXAMPLE #1: EXAMPLE #2: EXAMPLE #3: Find roots of numbers (Objective #1) Figure #1: Radical Expressions and Graph (7.1) Find roots of numbers EXAMPLE #1: Figure #1: Find principal (positive) roots EXAMPLE #2: Find n th roots of n th powers (Objective #3) EXAMPLE #3: Figure #2: 7.1 Radical

More information

S56 (5.3) Logs and Exponentials.notebook March 02, 2016

S56 (5.3) Logs and Exponentials.notebook March 02, 2016 Daily Practice 22.2.206 Today we will be learning about exponential and logarithmic functions. Homework due tomorrow. Need to know for Unit Test 2: Expressions and Functions Adding and subtracng logs,

More information

PREREQUISITE/PRE-CALCULUS REVIEW

PREREQUISITE/PRE-CALCULUS REVIEW PREREQUISITE/PRE-CALCULUS REVIEW Introduction This review sheet is a summary of most of the main topics that you should already be familiar with from your pre-calculus and trigonometry course(s), and which

More information

MA10103: Foundation Mathematics I. Lecture Notes Week 3

MA10103: Foundation Mathematics I. Lecture Notes Week 3 MA10103: Foundation Mathematics I Lecture Notes Week 3 Indices/Powers In an expression a n, a is called the base and n is called the index or power or exponent. Multiplication/Division of Powers a 3 a

More information

14.2 Limits and Continuity

14.2 Limits and Continuity 14 Partial Derivatives 14.2 Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Let s compare the behavior of the functions Tables 1 2 show values of f(x,

More information

3.3 Properties of Logarithms

3.3 Properties of Logarithms Section 3.3 Properties of Logarithms 07 3.3 Properties of Logarithms Change of Base Most calculators have only two types of log keys, one for common logarithms (base 0) and one for natural logarithms (base

More information

Chapter 4, Continued. 4.3 Laws of Logarithms. 1. log a (AB) = log a A + log a B. 2. log a ( A B ) = log a A log a B. 3. log a (A c ) = C log a A

Chapter 4, Continued. 4.3 Laws of Logarithms. 1. log a (AB) = log a A + log a B. 2. log a ( A B ) = log a A log a B. 3. log a (A c ) = C log a A Chapter 4, Continued 4.3 Laws of Logarithms 1. log a (AB) = log a A + log a B 2. log a ( A B ) = log a A log a B 3. log a (A c ) = C log a A : Evaluate the following expressions. log 12 9 + log 12 16 log

More information

Alg 2/Trig Honors Qtr 3 Review

Alg 2/Trig Honors Qtr 3 Review Alg 2/Trig Honors Qtr 3 Review Chapter 5 Exponents and Logs 1) Graph: a. y 3x b. y log3 x c. y log2(x 2) d. y 2x 1 3 2) Solve each equation. Find a common base!! a) 52n 1 625 b) 42x 8x 1 c) 27x 9x 6 3)

More information

Math 138 Exam 1 Review Problems Fall 2008

Math 138 Exam 1 Review Problems Fall 2008 Chapter 1 NOTE: Be sure to review Activity Set 1.3 from the Activity Book, pp 15-17. 1. Sketch an algebra-piece model for the following problem. Then explain or show how you used it to arrive at your solution.

More information

Math Exam 1 Review Fall 2009

Math Exam 1 Review Fall 2009 Note: This is NOT a practice exam. It is a collection of problems to help you review some of the material for the exam and to practice some kinds of problems. This collection is not necessarily exhaustive.

More information

Logarithmic Functions

Logarithmic Functions C H A P T ER Logarithmic Functions The human ear is capable of hearing sounds across a wide dynamic range. The softest noise the average human can hear is 0 decibels (db), which is equivalent to a mosquito

More information

Maxima and Minima. Terminology note: Do not confuse the maximum f(a, b) (a number) with the point (a, b) where the maximum occurs.

Maxima and Minima. Terminology note: Do not confuse the maximum f(a, b) (a number) with the point (a, b) where the maximum occurs. 10-11-2010 HW: 14.7: 1,5,7,13,29,33,39,51,55 Maxima and Minima In this very important chapter, we describe how to use the tools of calculus to locate the maxima and minima of a function of two variables.

More information

Review #Final Exam MATH 142-Drost

Review #Final Exam MATH 142-Drost Fall 2007 1 Review #Final Exam MATH 142-Drost 1. Find the domain of the function f(x) = x 1 x 2 if x3 2. Suppose 450 items are sold per day at a price of $53 per item and that 650 items are

More information

Algebra I CC Exam Review #1 H o2m0b1l3v 7KRu9tmal NSIoffrtGwaafrKeB 5LZLhCe.h m na3ldll 3rPiagBhlt8sm 4rEe0sPevr3vKe6dR.S. y x y. ( k ) ( 10) ( ) ( )

Algebra I CC Exam Review #1 H o2m0b1l3v 7KRu9tmal NSIoffrtGwaafrKeB 5LZLhCe.h m na3ldll 3rPiagBhlt8sm 4rEe0sPevr3vKe6dR.S. y x y. ( k ) ( 10) ( ) ( ) -1-5 b2e0r143a qkxustsah YS3ogfrtFwiazr9e3 BLjLPCQ.W R paslllj LrkiTgphqtysN drzeosqegrqvcezdj.o I YMOaPdyev LwhiVtthR AINnXfriknHirtleD famlwgue4bsryas e2r.j Worksheet by Kuta Software LLC Algebra I CC

More information

A P where A is Total amount, P is beginning amount, r is interest rate, t is time in years. You will need to use 2 nd ( ) ( )

A P where A is Total amount, P is beginning amount, r is interest rate, t is time in years. You will need to use 2 nd ( ) ( ) MATH 1314 College Algera Notes Spring 2012 Chapter 4: Exponential and Logarithmic Functions 1 Chapter 4.1: Exponential Functions x Exponential Functions are of the form f(x), where the ase is a numer 0

More information

Lesson #2: Exponential Functions and Their Inverses

Lesson #2: Exponential Functions and Their Inverses Unit 7: Exponential and Logarithmic Functions Lesson #2: Exponential Functions and Their 1. Graph 2 by making a table. x f(x) -2.25-1.5 0 1 1 2 2 4 3 8 2. Graph the inverse of by making a table. x f(x).25-2.5-1

More information

Honors Algebra 2 Assignment Sheet - Chapter 1

Honors Algebra 2 Assignment Sheet - Chapter 1 Assignment Sheet - Chapter 1 #01: Read the text and the examples in your book for the following sections: 1.1, 1., and 1.4. Be sure you read and understand the handshake problem. Also make sure you copy

More information

DOWNLOAD OR READ : THE LOG OF A NONCOMBATANT WWI CENTENARY SERIES PDF EBOOK EPUB MOBI

DOWNLOAD OR READ : THE LOG OF A NONCOMBATANT WWI CENTENARY SERIES PDF EBOOK EPUB MOBI DOWNLOAD OR READ : THE LOG OF A NONCOMBATANT WWI CENTENARY SERIES PDF EBOOK EPUB MOBI Page 1 Page 2 the log of a noncombatant wwi centenary series the log of a pdf the log of a noncombatant wwi centenary

More information

A slope of a line is the ratio between the change in a vertical distance (rise) to the change in a horizontal

A slope of a line is the ratio between the change in a vertical distance (rise) to the change in a horizontal The Slope of a Line (2.2) Find the slope of a line given two points on the line (Objective #1) A slope of a line is the ratio between the change in a vertical distance (rise) to the change in a horizontal

More information

Determine the intercepts of the line and ellipse below: Definition: An intercept is a point of a graph on an axis. Line: x intercept(s)

Determine the intercepts of the line and ellipse below: Definition: An intercept is a point of a graph on an axis. Line: x intercept(s) Topic 1 1 Intercepts and Lines Definition: An intercept is a point of a graph on an axis. For an equation Involving ordered pairs (x, y): x intercepts (a, 0) y intercepts (0, b) where a and b are real

More information

Practice Test 3 (longer than the actual test will be) 1. Solve the following inequalities. Give solutions in interval notation. (Expect 1 or 2.

Practice Test 3 (longer than the actual test will be) 1. Solve the following inequalities. Give solutions in interval notation. (Expect 1 or 2. MAT 115 Spring 2015 Practice Test 3 (longer than the actual test will be) Part I: No Calculators. Show work. 1. Solve the following inequalities. Give solutions in interval notation. (Expect 1 or 2.) a.

More information

ENGR 102 PROBLEM SOLVING FOR ENGINEERS

ENGR 102 PROBLEM SOLVING FOR ENGINEERS PRACTICE EXAM 1. Problem statement 2. Diagram 3. Theory 4. Simplifying assumptions 5. Solution steps 6. Results & precision 7. Conclusions ENGR 102 PROBLEM SOLVING FOR ENGINEERS I N T O / C S U P A R T

More information

NOTES: SIGNED INTEGERS DAY 1

NOTES: SIGNED INTEGERS DAY 1 NOTES: SIGNED INTEGERS DAY 1 MULTIPLYING and DIVIDING: Same Signs (POSITIVE) + + = + positive x positive = positive = + negative x negative = positive Different Signs (NEGATIVE) + = positive x negative

More information

HW#02 (18 pts): All recommended exercises from JIT (1 pt/problem)

HW#02 (18 pts): All recommended exercises from JIT (1 pt/problem) Spring 2011 MthSc103 Course Calendar Page 1 of 7 January W 12 Syllabus/Course Policies BST Review Th 13 Basic Skills Test F 14 JIT 1.1 1.3: Numbers, Fractions, Parentheses JIT 1.1: 2, 6, 8, 9 JIT 1.2:

More information

Examples: Find the domain and range of the function f(x, y) = 1 x y 2.

Examples: Find the domain and range of the function f(x, y) = 1 x y 2. Multivariate Functions In this chapter, we will return to scalar functions; thus the functions that we consider will output points in space as opposed to vectors. However, in contrast to the majority of

More information

Inverse functions and logarithms

Inverse functions and logarithms Inverse unctions and logarithms Recall that a unction is a machine that takes a number rom one set and puts a number o another set. Must be welldeined, meaning the unction is decisive: () always has an

More information

Higher. Expressions & Functions. Unit 2 Course Contents. Higher Higher Higher Higher Higher. Higher Higher. Higher Higher. Higher Higher.

Higher. Expressions & Functions. Unit 2 Course Contents. Higher Higher Higher Higher Higher. Higher Higher. Higher Higher. Higher Higher. Higher Higher Higher Higher Higher Higher Higher Higher Higher Higher Higher Higher Higher Higher Higher Higher Higher Higher Higher Higher Higher Higher xpressions & unctions Unit 2 Course Contents Higher

More information

School of Business. Blank Page

School of Business. Blank Page Logarithm The purpose of this unit is to equip the learners with the concept of logarithm. Under the logarithm, the topics covered are nature of logarithm, laws of logarithm, change the base of logarithm,

More information

11.7 Maximum and Minimum Values

11.7 Maximum and Minimum Values Arkansas Tech University MATH 2934: Calculus III Dr. Marcel B Finan 11.7 Maximum and Minimum Values Just like functions of a single variable, functions of several variables can have local and global extrema,

More information

Data Analysis Part 1: Excel, Log-log, & Semi-log plots

Data Analysis Part 1: Excel, Log-log, & Semi-log plots Data Analysis Part 1: Excel, Log-log, & Semi-log plots Why Excel is useful Excel is a powerful tool used across engineering fields. Organizing data Multiple types: date, text, numbers, currency, etc Sorting

More information

Graphing Exponential Functions Answer Key Algebra 2

Graphing Exponential Functions Answer Key Algebra 2 Graphing Answer Key Algebra 2 Free PDF ebook Download: Graphing Answer Key Algebra 2 Download or Read Online ebook graphing exponential functions answer key algebra 2 in PDF Format From The Best User Guide

More information

Section 2.1 Factors and Multiples

Section 2.1 Factors and Multiples Section 2.1 Factors and Multiples When you want to prepare a salad, you select certain ingredients (lettuce, tomatoes, broccoli, celery, olives, etc.) to give the salad a specific taste. You can think

More information

Gouvernement du Québec Ministère de l Éducation, ISBN

Gouvernement du Québec Ministère de l Éducation, ISBN Gouvernement du Québec Ministère de l Éducation, 2004 04-00908 ISBN 2-550-43699-7 Legal deposit Bibliothèque nationale du Québec, 2004 1. INTRODUCTION This Definition of the Domain for Summative Evaluation

More information

Permutation Groups. Every permutation can be written as a product of disjoint cycles. This factorization is unique up to the order of the factors.

Permutation Groups. Every permutation can be written as a product of disjoint cycles. This factorization is unique up to the order of the factors. Permutation Groups 5-9-2013 A permutation of a set X is a bijective function σ : X X The set of permutations S X of a set X forms a group under function composition The group of permutations of {1,2,,n}

More information

A C E. Answers Investigation 4. Applications. Dimensions of 39 Square Unit Rectangles and Partitions. Small Medium Large

A C E. Answers Investigation 4. Applications. Dimensions of 39 Square Unit Rectangles and Partitions. Small Medium Large Answers Applications 1. An even number minus an even number will be even. Students may use examples, tiles, the idea of groups of two, or the inverse relationship between addition and subtraction. Using

More information

Practice Midterm 2 Solutions

Practice Midterm 2 Solutions Practice Midterm 2 Solutions May 30, 2013 (1) We want to show that for any odd integer a coprime to 7, a 3 is congruent to 1 or 1 mod 7. In fact, we don t need the assumption that a is odd. By Fermat s

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Name Date Chapter 3 Eponential and Logarithmic Functions Section 3.1 Eponential Functions and Their Graphs Objective: In this lesson ou learned how to recognize, evaluate, and graph eponential functions.

More information

11.2 LIMITS AND CONTINUITY

11.2 LIMITS AND CONTINUITY 11. LIMITS AND CONTINUITY INTRODUCTION: Consider functions of one variable y = f(x). If you are told that f(x) is continuous at x = a, explain what the graph looks like near x = a. Formal definition of

More information

constant EXAMPLE #4:

constant EXAMPLE #4: Linear Equations in One Variable (1.1) Adding in an equation (Objective #1) An equation is a statement involving an equal sign or an expression that is equal to another expression. Add a constant value

More information

Mathematics for Biology

Mathematics for Biology MAT1142 Department of Mathematics University of Ruhuna A.W.L. Pubudu Thilan Logarithms Why do we need logarithms? Sometimes you only care about how big a number is relative to other numbers. The Richter,

More information

An interesting class of problems of a computational nature ask for the standard residue of a power of a number, e.g.,

An interesting class of problems of a computational nature ask for the standard residue of a power of a number, e.g., Binary exponentiation An interesting class of problems of a computational nature ask for the standard residue of a power of a number, e.g., What are the last two digits of the number 2 284? In the absence

More information

8.5 Training Day Part II

8.5 Training Day Part II 26 8.5 Training Day Part II A Solidify Understanding Task Fernando and Mariah continued training in preparation for the half marathon. For the remaining weeks of training, they each separately kept track

More information

Lesson 21: If-Then Moves with Integer Number Cards

Lesson 21: If-Then Moves with Integer Number Cards Student Outcomes Students understand that if a number sentence is true and we make any of the following changes to the number sentence, the resulting number sentence will be true: i. Adding the same number

More information

LOGARITHMIC FUNCTIONS AND THEIR APPLICATIONS

LOGARITHMIC FUNCTIONS AND THEIR APPLICATIONS . Logarithmic Functions and Their Applications ( 3) 657 In this section. LOGARITHMIC FUNCTIONS AND THEIR APPLICATIONS In Section. you learned that eponential functions are one-to-one functions. Because

More information

MHF4U - Unit 6 Test. Multiple Choice - Answer on SCANTRON Identify the choice that best completes the statement or answers the question.

MHF4U - Unit 6 Test. Multiple Choice - Answer on SCANTRON Identify the choice that best completes the statement or answers the question. MHF4U - Unit 6 Test Multiple Choice - Answer on SCANTRON Identify the choice that best completes the statement or answers the question 1 The function has the point (10, 1) on its graph Find the coordinates

More information

266&deployment= &UserPass=b3733cde68af274d036da170749a68f6

266&deployment= &UserPass=b3733cde68af274d036da170749a68f6 Sections 14.6 and 14.7 (1482266) Question 12345678910111213141516171819202122 Due: Thu Oct 21 2010 11:59 PM PDT 1. Question DetailsSCalcET6 14.6.012. [1289020] Find the directional derivative, D u f, of

More information

Welcome Accelerated Algebra 2!

Welcome Accelerated Algebra 2! Welcome Accelerated Algebra 2! Tear-Out: Pgs. 348-354 (classwork) Pg. 355 (homework) U5H6: Pg. 355 #7-9, 11-12,14-16, 18-23 Updates: U5Q2 will be January 30 th U5T will be February 6 th Agenda (1) Warm-Up!

More information

Intro to Probability Instructor: Alexandre Bouchard

Intro to Probability Instructor: Alexandre Bouchard www.stat.ubc.ca/~bouchard/courses/stat302-sp2017-18/ Intro to Probability Instructor: Alexandre Bouchard Announcements Webwork out Graded midterm available after lecture Regrading policy IF you would like

More information

Exponential equations: Any equation with a variable used as part of an exponent.

Exponential equations: Any equation with a variable used as part of an exponent. Write the 4 steps for solving Exponential equations Exponential equations: Any equation with a variable used as part of an exponent. OR 1) Make sure one and only one side of the equation is only a base

More information

MATH 105: Midterm #1 Practice Problems

MATH 105: Midterm #1 Practice Problems Name: MATH 105: Midterm #1 Practice Problems 1. TRUE or FALSE, plus explanation. Give a full-word answer TRUE or FALSE. If the statement is true, explain why, using concepts and results from class to justify

More information

Recursive relations (Part 2/2). p.1/16

Recursive relations (Part 2/2). p.1/16 Recursive relations (Part 2/2). p.1/16 Bounded Definition. Let R(x, i) be a relation on N. The relation R obtained from R by bounded existential quantification is defined as follows: ( R)(x, y) iff i y

More information

1 Equations for the Breathing LED Indicator

1 Equations for the Breathing LED Indicator ME 120 Fall 2013 Equations for a Breathing LED Gerald Recktenwald v: October 20, 2013 gerry@me.pdx.edu 1 Equations for the Breathing LED Indicator When the lid of an Apple Macintosh laptop is closed, an

More information

Lesson 11: Linear and Exponential Investigations

Lesson 11: Linear and Exponential Investigations Hart Interactive Algebra Lesson Lesson : Linear and Exponential Investigations Opening Exercise In this lesson, you ll be exploring linear and exponential function in five different investigations. You

More information

Lesson 5.4 Exercises, pages

Lesson 5.4 Exercises, pages Lesson 5.4 Eercises, pages 8 85 A 4. Evaluate each logarithm. a) log 4 6 b) log 00 000 4 log 0 0 5 5 c) log 6 6 d) log log 6 6 4 4 5. Write each eponential epression as a logarithmic epression. a) 6 64

More information

Lesson 6.1 Linear Equation Review

Lesson 6.1 Linear Equation Review Name: Lesson 6.1 Linear Equation Review Vocabulary Equation: a math sentence that contains Linear: makes a straight line (no Variables: quantities represented by (often x and y) Function: equations can

More information

Lecture 19 - Partial Derivatives and Extrema of Functions of Two Variables

Lecture 19 - Partial Derivatives and Extrema of Functions of Two Variables Lecture 19 - Partial Derivatives and Extrema of Functions of Two Variables 19.1 Partial Derivatives We wish to maximize functions of two variables. This will involve taking derivatives. Example: Consider

More information

Similarly, the point marked in red below is a local minimum for the function, since there are no points nearby that are lower than it:

Similarly, the point marked in red below is a local minimum for the function, since there are no points nearby that are lower than it: Extreme Values of Multivariate Functions Our next task is to develop a method for determining local extremes of multivariate functions, as well as absolute extremes of multivariate functions on closed

More information

8.1 Day 1: Understanding Logarithms

8.1 Day 1: Understanding Logarithms PC 30 8.1 Day 1: Understanding Logarithms To evaluate logarithms and solve logarithmic equations. RECALL: In section 1.4 we learned what the inverse of a function is. What is the inverse of the equation

More information

Discussion 8 Solution Thursday, February 10th. Consider the function f(x, y) := y 2 x 2.

Discussion 8 Solution Thursday, February 10th. Consider the function f(x, y) := y 2 x 2. Discussion 8 Solution Thursday, February 10th. 1. Consider the function f(x, y) := y 2 x 2. (a) This function is a mapping from R n to R m. Determine the values of n and m. The value of n is 2 corresponding

More information

Modular Arithmetic. Kieran Cooney - February 18, 2016

Modular Arithmetic. Kieran Cooney - February 18, 2016 Modular Arithmetic Kieran Cooney - kieran.cooney@hotmail.com February 18, 2016 Sums and products in modular arithmetic Almost all of elementary number theory follows from one very basic theorem: Theorem.

More information

Prolegomena. Chapter Using Interval Notation 1

Prolegomena. Chapter Using Interval Notation 1 Chapter 1 Prolegomena 1.1 Using Interval Notation 1 Interval notation is another method for writing domain and range. In set builder notation braces (curly parentheses {} ) and variables are used to express

More information

FUNCTIONS OF SEVERAL VARIABLES AND PARTIAL DIFFERENTIATION

FUNCTIONS OF SEVERAL VARIABLES AND PARTIAL DIFFERENTIATION FUNCTIONS OF SEVERAL VARIABLES AND PARTIAL DIFFERENTIATION 1. Functions of Several Variables A function of two variables is a rule that assigns a real number f(x, y) to each ordered pair of real numbers

More information

Math 5BI: Problem Set 1 Linearizing functions of several variables

Math 5BI: Problem Set 1 Linearizing functions of several variables Math 5BI: Problem Set Linearizing functions of several variables March 9, A. Dot and cross products There are two special operations for vectors in R that are extremely useful, the dot and cross products.

More information

Solutions to the problems from Written assignment 2 Math 222 Winter 2015

Solutions to the problems from Written assignment 2 Math 222 Winter 2015 Solutions to the problems from Written assignment 2 Math 222 Winter 2015 1. Determine if the following limits exist, and if a limit exists, find its value. x2 y (a) The limit of f(x, y) = x 4 as (x, y)

More information

33. Riemann Summation over Rectangular Regions

33. Riemann Summation over Rectangular Regions . iemann Summation over ectangular egions A rectangular region in the xy-plane can be defined using compound inequalities, where x and y are each bound by constants such that a x a and b y b. Let z = f(x,

More information

14.7 Maximum and Minimum Values

14.7 Maximum and Minimum Values CHAPTER 14. PARTIAL DERIVATIVES 115 14.7 Maximum and Minimum Values Definition. Let f(x, y) be a function. f has a local max at (a, b) iff(a, b) (a, b). f(x, y) for all (x, y) near f has a local min at

More information

M.Tolotti - Mathematics (Preparatory) - September Exercises. Maximize p(g(x))g(x) q x subject to x R +

M.Tolotti - Mathematics (Preparatory) - September Exercises. Maximize p(g(x))g(x) q x subject to x R + M.Tolotti - Mathematics (Preparatory) - September 2010 1 Exercises EXERCISE 1. where Maximize p(g(x))g(x) q x subject to x R + p : R R is constant, i.e. p(g(x)) = p = 1 for all x. g(x) = 35x x 2. q = 10.

More information

Goals: To study constrained optimization; that is, the maximizing or minimizing of a function subject to a constraint (or side condition).

Goals: To study constrained optimization; that is, the maximizing or minimizing of a function subject to a constraint (or side condition). Unit #23 : Lagrange Multipliers Goals: To study constrained optimization; that is, the maximizing or minimizing of a function subject to a constraint (or side condition). Constrained Optimization - Examples

More information

5.1, 5.2, 5.3 Properites of Exponents last revised 12/4/2010

5.1, 5.2, 5.3 Properites of Exponents last revised 12/4/2010 48 5.1, 5.2, 5.3 Properites of Exponents last revised 12/4/2010 Properites of Exponents 1. *Simplify each of the following: a. b. 2. c. d. 3. e. 4. f. g. 5. h. i. j. Negative exponents are NOT considered

More information

14.1 Functions of Several Variables

14.1 Functions of Several Variables 14 Partial Derivatives 14.1 Functions of Several Variables Copyright Cengage Learning. All rights reserved. 1 Copyright Cengage Learning. All rights reserved. Functions of Several Variables In this section

More information

Sect 4.5 Inequalities Involving Quadratic Function

Sect 4.5 Inequalities Involving Quadratic Function 71 Sect 4. Inequalities Involving Quadratic Function Objective #0: Solving Inequalities using a graph Use the graph to the right to find the following: Ex. 1 a) Find the intervals where f(x) > 0. b) Find

More information

LINEAR EQUATIONS IN TWO VARIABLES

LINEAR EQUATIONS IN TWO VARIABLES LINEAR EQUATIONS IN TWO VARIABLES What You Should Learn Use slope to graph linear equations in two " variables. Find the slope of a line given two points on the line. Write linear equations in two variables.

More information

Chapter Summary. What did you learn? 270 Chapter 3 Exponential and Logarithmic Functions

Chapter Summary. What did you learn? 270 Chapter 3 Exponential and Logarithmic Functions 0_00R.qd /7/05 0: AM Page 70 70 Chapter Eponential and Logarithmic Functions Chapter Summar What did ou learn? Section. Review Eercises Recognize and evaluate eponential functions with base a (p. ). Graph

More information