Probability. 4-6 Counting. Fundamental Counting Rule Permutations Combinations

Size: px
Start display at page:

Download "Probability. 4-6 Counting. Fundamental Counting Rule Permutations Combinations"

Transcription

1 Probability 4-6 Counting Fundamental Counting Rule Permutations Combinations

2 Fundamental Counting Rule (Space Rule) For a sequence of two or more events m and n The first event occurs m ways and the second occurs n ways, the events can occur m x n ways

3 Example 1 Assume that a criminal found your credit card and claims that all the digits were randomly generated. What is the probability of getting your social security number? Is the criminal s claim that your number was randomly generated likely to be true?

4 Solution to Ex. 1 9 digits in SSN. Each of the 9 spaces can be filled with 10 possible numbers. * * * * * * * * 1,000,000,000 possibilities 1/1,000,000,000

5 Example 2 In computer science, a byte is defined to be a sequence of 8 bits. Each bit must be a 0 or 1 (this is why it s called a binary code, there are only two choices). How many different bytes are possible?

6 solution 2^8=256

7 Example 3 We have already talked about how the order that questions are asked can influence how survey subjects answer questions. To avoid this, pollsters often rearrange the order questions are presented. If a polling agency plans to conduct a consumer survey by asking 5 questions, how many different versions of the survey could be constructed?

8 Factorial Rule The factorial symbol (!) denotes the product of decreasing whole numbers. 4! = = 24 Factorial Rule a collection of n different items can be arranged in order n! different ways.

9 Factorial Rule and Routing Problems Routing problems often involve the factorial rule.verizon want to route calls through the shortest networks. Federal Express wants to find the shortest routes between 3 cities. How many different routes are possible?

10 Routes to National Parks During the summer, you want to visit six national parks: Glacier, Yellowstone, Yosemite, Arches, Zion, and Grand Canyon. You want to plan the most efficient route and list all of them. How many different routes are possible?

11 Permutations Rule The number of permutations (or sequences) of r items from n available items (not allowing repetition) is n! n P r ( n r)!

12 Conditions for Permutations There must be a total of n different items available. (The permutations rule above does not apply if some of the items are identical) Select r of the n items (without replacement) Rearrangements of the same items are considered different sequences. Order is taken into account.

13 Exacta Bet An exacta bet in horse is when you select the first and second place finishers in order. The Kentucky Derby had 20 horses. If I randomly select two horses for an exacta, what is the probability that I win?

14 Solution N=20 horses, we select 2(r) without replacement. n! 20! 380 ( n r)! (20 2)! 1/380

15 Permutations Rule (when some items are identical to others) If there are n items with n alike, n alike,... n alike, 1 2 k the number of permutations of all n items is n! n! n!... n! 1 2 k

16 Assigning seats There are students in your class. of them are males and are females. How many ways can you be arranged?

17 Combinations Rule The number of combinations of r items from n different items is n! n C r ( n r)! r!

18 Conditions for Combinations There must be n different items available. Select r of the n items (without repetition). Rearrangements of the same items are considered the same groupings. Order is not taken into account (if the same items are present in different order, the groupings are considered the same.)

19 Example of Permutations and Combinations The Board of Trustees at a college has 9 members. Each year, they elect a 3-person committee to oversee buildings and grounds. Each year, they also elect a chairperson, vice chairperson, and secretary.

20 Choosing the Type of Problem a. When the board elects the buildings and grounds committee, how many different 3-person committees are possible? b. When the board elects the 3 officers, how many different slates of candidates are possible?

21 Summary Is there a sequence of events in which the first can occur m ways, the second n ways, etc...? If so, use the fundamental counting rule. M*n*... Are there n different items and are all of them to be used in different arrangements? If so use factorial rule, n!

22 Are there n different items and are only some of them to be used in different arrangements? If so use Permutations. npr Are there n items with some of them identical to eachother and is there a need to find the total number of different arrangements of all those n items? If so use repetition rule. n!/n1!n2!... Are there n different items, with some of them selected and is there a need to find the total number of combinations, where order is irrelevant? If so, use Combinations. ncr

23 HMWK 1-21 odd

7.4 Permutations and Combinations

7.4 Permutations and Combinations 7.4 Permutations and Combinations The multiplication principle discussed in the preceding section can be used to develop two additional counting devices that are extremely useful in more complicated counting

More information

Section : Combinations and Permutations

Section : Combinations and Permutations Section 11.1-11.2: Combinations and Permutations Diana Pell A construction crew has three members. A team of two must be chosen for a particular job. In how many ways can the team be chosen? How many words

More information

Math 1116 Probability Lecture Monday Wednesday 10:10 11:30

Math 1116 Probability Lecture Monday Wednesday 10:10 11:30 Math 1116 Probability Lecture Monday Wednesday 10:10 11:30 Course Web Page http://www.math.ohio state.edu/~maharry/ Chapter 15 Chances, Probabilities and Odds Objectives To describe an appropriate sample

More information

Permutations. Used when "ORDER MATTERS"

Permutations. Used when ORDER MATTERS Date: Permutations Used when "ORDER MATTERS" Objective: Evaluate expressions involving factorials. (AN6) Determine the number of possible arrangements (permutations) of a list of items. (AN8) 1) Mrs. Hendrix,

More information

MAT 155. Key Concept. Notation. Fundamental Counting. February 09, S4.7_3 Counting. Chapter 4 Probability

MAT 155. Key Concept. Notation. Fundamental Counting. February 09, S4.7_3 Counting. Chapter 4 Probability MAT 155 Dr. Claude Moore Cape Fear Community College Chapter 4 Probability 4 1 Review and Preview 4 2 Basic Concepts of Probability 4 3 Addition Rule 4 4 Multiplication Rule: Basics 4 7 Counting Key Concept

More information

Permutations and Combinations

Permutations and Combinations Permutations and Combinations In statistics, there are two ways to count or group items. For both permutations and combinations, there are certain requirements that must be met: there can be no repetitions

More information

Spring 2015 Math227 Test #2 (Chapter 4 and Chapter 5) Name

Spring 2015 Math227 Test #2 (Chapter 4 and Chapter 5) Name Spring 2015 Math227 Test #2 (Chapter 4 and Chapter 5) Name Show all work neatly and systematically for full credit. You may use a TI calculator. Total points: 100 Provide an appropriate response. 1) (5)

More information

Determine whether the given events are disjoint. 4) Being over 30 and being in college 4) A) No B) Yes

Determine whether the given events are disjoint. 4) Being over 30 and being in college 4) A) No B) Yes Math 34 Test #4 Review Fall 06 Name Tell whether the statement is true or false. ) 3 {x x is an even counting number} ) A) True False Decide whether the statement is true or false. ) {5, 0, 5, 0} {5, 5}

More information

Fundamentals of Probability

Fundamentals of Probability Fundamentals of Probability Introduction Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1. An impossible

More information

* Order Matters For Permutations * Section 4.6 Permutations MDM4U Jensen. Part 1: Factorial Investigation

* Order Matters For Permutations * Section 4.6 Permutations MDM4U Jensen. Part 1: Factorial Investigation Section 4.6 Permutations MDM4U Jensen Part 1: Factorial Investigation You are trying to put three children, represented by A, B, and C, in a line for a game. How many different orders are possible? a)

More information

STAT 430/510 Probability Lecture 1: Counting-1

STAT 430/510 Probability Lecture 1: Counting-1 STAT 430/510 Probability Lecture 1: Counting-1 Pengyuan (Penelope) Wang May 22, 2011 Introduction In the early days, probability was associated with games of chance, such as gambling. Probability is describing

More information

8.3 Probability with Permutations and Combinations

8.3 Probability with Permutations and Combinations 8.3 Probability with Permutations and Combinations Question 1: How do you find the likelihood of a certain type of license plate? Question 2: How do you find the likelihood of a particular committee? Question

More information

S = {(1, 1), (1, 2),, (6, 6)}

S = {(1, 1), (1, 2),, (6, 6)} Part, MULTIPLE CHOICE, 5 Points Each An experiment consists of rolling a pair of dice and observing the uppermost faces. The sample space for this experiment consists of 6 outcomes listed as pairs of numbers:

More information

* Order Matters For Permutations * Section 4.6 Permutations MDM4U Jensen. Part 1: Factorial Investigation

* Order Matters For Permutations * Section 4.6 Permutations MDM4U Jensen. Part 1: Factorial Investigation Section 4.6 Permutations MDM4U Jensen Part 1: Factorial Investigation You are trying to put three children, represented by A, B, and C, in a line for a game. How many different orders are possible? a)

More information

Unit on Permutations and Combinations (Counting Techniques)

Unit on Permutations and Combinations (Counting Techniques) Page 1 of 15 (Edit by Y.M. LIU) Page 2 of 15 (Edit by Y.M. LIU) Unit on Permutations and Combinations (Counting Techniques) e.g. How many different license plates can be made that consist of three digits

More information

Finite Math - Fall 2016

Finite Math - Fall 2016 Finite Math - Fall 206 Lecture Notes - /28/206 Section 7.4 - Permutations and Combinations There are often situations in which we have to multiply many consecutive numbers together, for example, in examples

More information

The Fundamental Counting Principle & Permutations

The Fundamental Counting Principle & Permutations The Fundamental Counting Principle & Permutations POD: You have 7 boxes and 10 balls. You put the balls into the boxes. How many boxes have more than one ball? Why do you use a fundamental counting principal?

More information

CS 237: Probability in Computing

CS 237: Probability in Computing CS 237: Probability in Computing Wayne Snyder Computer Science Department Boston University Lecture 5: o Independence reviewed; Bayes' Rule o Counting principles and combinatorics; o Counting considered

More information

C) 1 4. Find the indicated probability. 2) A die with 12 sides is rolled. What is the probability of rolling a number less than 11?

C) 1 4. Find the indicated probability. 2) A die with 12 sides is rolled. What is the probability of rolling a number less than 11? Chapter Probability Practice STA03, Broward College Answer the question. ) On a multiple choice test with four possible answers (like this question), what is the probability of answering a question correctly

More information

Lesson A7 - Counting Techniques and Permutations. Learning Goals:

Lesson A7 - Counting Techniques and Permutations. Learning Goals: Learning Goals: * Determine tools and strategies that will determine outcomes more efficiently * Use factorial notation effectively * Determine probabilities for simple ordered events Example 1: You are

More information

Using a table: regular fine micro. red. green. The number of pens possible is the number of cells in the table: 3 2.

Using a table: regular fine micro. red. green. The number of pens possible is the number of cells in the table: 3 2. Counting Methods: Example: A pen has tip options of regular tip, fine tip, or micro tip, and it has ink color options of red ink or green ink. How many different pens are possible? Using a table: regular

More information

Probability and Counting Techniques

Probability and Counting Techniques Probability and Counting Techniques Diana Pell (Multiplication Principle) Suppose that a task consists of t choices performed consecutively. Suppose that choice 1 can be performed in m 1 ways; for each

More information

Unit 5 Radical Functions & Combinatorics

Unit 5 Radical Functions & Combinatorics 1 Graph of y Unit 5 Radical Functions & Combinatorics x: Characteristics: Ex) Use your knowledge of the graph of y x and transformations to sketch the graph of each of the following. a) y x 5 3 b) f (

More information

Redwood High School. Department of Mathematics Advanced Algebra Test S2 #6.

Redwood High School. Department of Mathematics Advanced Algebra Test S2 #6. Redwood High School. Department of Mathematics Advanced Algebra 2015-2016 Test S2 #6. Hard Worker's name: Find the indicated probability. 1) Of the 69 people who answered "yes" to a question, 12 were male.

More information

STAT 430/510 Probability

STAT 430/510 Probability STAT 430/510 Probability Hui Nie Lecture 1 May 26th, 2009 Introduction Probability is the study of randomness and uncertainty. In the early days, probability was associated with games of chance, such as

More information

Term 4 Test 3 Graded Assignment 1 Extra Practice

Term 4 Test 3 Graded Assignment 1 Extra Practice Algebra 2 p l2c0sa5j UKcustTaw WSeozfZtlwzaZr\eh slql^cf.b H OAKlYlc ZriiEgWhotAsb Lrwe\sXenrEvgeOdy. Term 4 Test 3 Graded Assignment Extra Practice State if each scenario involves a permutation or a combination.

More information

Permutations. and. Combinations

Permutations. and. Combinations Permutations and Combinations Fundamental Counting Principle Fundamental Counting Principle states that if an event has m possible outcomes and another independent event has n possible outcomes, then there

More information

ACTIVITY 6.7 Selecting and Rearranging Things

ACTIVITY 6.7 Selecting and Rearranging Things ACTIVITY 6.7 SELECTING AND REARRANGING THINGS 757 OBJECTIVES ACTIVITY 6.7 Selecting and Rearranging Things 1. Determine the number of permutations. 2. Determine the number of combinations. 3. Recognize

More information

CHAPTER 8 Additional Probability Topics

CHAPTER 8 Additional Probability Topics CHAPTER 8 Additional Probability Topics 8.1. Conditional Probability Conditional probability arises in probability experiments when the person performing the experiment is given some extra information

More information

Chapter 2 Math

Chapter 2 Math Chapter 2 Math 3201 1 Chapter 2: Counting Methods: Solving problems that involve the Fundamental Counting Principle Understanding and simplifying expressions involving factorial notation Solving problems

More information

Aim: How many different ways???

Aim: How many different ways??? May 14th Aim: How many different ways??? Get Ready: Some books are laid on a desk. Two are English, three are mathematics, one is French, and four are global. Theresa selects an English book and Isabelle

More information

Chapter 5 - Elementary Probability Theory

Chapter 5 - Elementary Probability Theory Chapter 5 - Elementary Probability Theory Historical Background Much of the early work in probability concerned games and gambling. One of the first to apply probability to matters other than gambling

More information

CHAPTER 9 - COUNTING PRINCIPLES AND PROBABILITY

CHAPTER 9 - COUNTING PRINCIPLES AND PROBABILITY CHAPTER 9 - COUNTING PRINCIPLES AND PROBABILITY Probability is the Probability is used in many real-world fields, such as insurance, medical research, law enforcement, and political science. Objectives:

More information

19.2 Permutations and Probability

19.2 Permutations and Probability Name Class Date 19.2 Permutations and Probability Essential Question: When are permutations useful in calculating probability? Resource Locker Explore Finding the Number of Permutations A permutation is

More information

Math 166: Topics in Contemporary Mathematics II

Math 166: Topics in Contemporary Mathematics II Math 166: Topics in Contemporary Mathematics II Xin Ma Texas A&M University September 30, 2017 Xin Ma (TAMU) Math 166 September 30, 2017 1 / 11 Last Time Factorials For any natural number n, we define

More information

Math 227 Elementary Statistics. Bluman 5 th edition

Math 227 Elementary Statistics. Bluman 5 th edition Math 227 Elementary Statistics Bluman 5 th edition CHAPTER 4 Probability and Counting Rules 2 Objectives Determine sample spaces and find the probability of an event using classical probability or empirical

More information

We introduced the Counting Principle earlier in the chapter.

We introduced the Counting Principle earlier in the chapter. Section 4.6: The Counting Principle and Permutations We introduced the Counting Principle earlier in the chapter. Counting Principle: If a first experiment can be performed in M distinct ways and a second

More information

PERMUTATION AND COMBINATION

PERMUTATION AND COMBINATION PERMUTATION AND COMBINATION Fundamental Counting Principle If a first job can be done in m ways and a second job can be done in n ways then the total number of ways in which both the jobs can be done in

More information

1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building?

1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building? 1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building? 2. A particular brand of shirt comes in 12 colors, has a male version and a female version,

More information

Learning Objectives for Section 7.4 Permutations and Combinations. 7.4 Permutations and Combinations

Learning Objectives for Section 7.4 Permutations and Combinations. 7.4 Permutations and Combinations Learning Objectives for Section 7.4 Permutations and Combinations The student will be able to set up and compute factorials. The student will be able to apply and calculate permutations. The student will

More information

, -the of all of a probability experiment. consists of outcomes. (b) List the elements of the event consisting of a number that is greater than 4.

, -the of all of a probability experiment. consists of outcomes. (b) List the elements of the event consisting of a number that is greater than 4. 4-1 Sample Spaces and Probability as a general concept can be defined as the chance of an event occurring. In addition to being used in games of chance, probability is used in the fields of,, and forecasting,

More information

Math 102 Practice for Test 3

Math 102 Practice for Test 3 Math 102 Practice for Test 3 Name Show your work and write all fractions and ratios in simplest form for full credit. 1. If you draw a single card from a standard 52-card deck what is P(King face card)?

More information

Sec. 4.2: Introducing Permutations and Factorial notation

Sec. 4.2: Introducing Permutations and Factorial notation Sec. 4.2: Introducing Permutations and Factorial notation Permutations: The # of ways distinguishable objects can be arranged, where the order of the objects is important! **An arrangement of objects in

More information

Basic Probability & Statistics Exam 2 { Part I { Sections (Chapter 4, Chapter 5) March 19, 2009

Basic Probability & Statistics Exam 2 { Part I { Sections (Chapter 4, Chapter 5) March 19, 2009 NAME: INSTRUCTOR: Dr. Bathi Kasturiarachi Math 30011 Spring 2009 Basic Probability & Statistics Exam 2 { Part I { Sections (Chapter 4, Chapter 5) March 19, 2009 Read through the entire test before beginning.

More information

6.1.1 The multiplication rule

6.1.1 The multiplication rule 6.1.1 The multiplication rule 1. There are 3 routes joining village A and village B and 4 routes joining village B and village C. Find the number of different ways of traveling from village A to village

More information

Elementary Combinatorics

Elementary Combinatorics 184 DISCRETE MATHEMATICAL STRUCTURES 7 Elementary Combinatorics 7.1 INTRODUCTION Combinatorics deals with counting and enumeration of specified objects, patterns or designs. Techniques of counting are

More information

LEVEL I. 3. In how many ways 4 identical white balls and 6 identical black balls be arranged in a row so that no two white balls are together?

LEVEL I. 3. In how many ways 4 identical white balls and 6 identical black balls be arranged in a row so that no two white balls are together? LEVEL I 1. Three numbers are chosen from 1,, 3..., n. In how many ways can the numbers be chosen such that either maximum of these numbers is s or minimum of these numbers is r (r < s)?. Six candidates

More information

Unit 2 Lesson 2 Permutations and Combinations

Unit 2 Lesson 2 Permutations and Combinations Unit 2 Lesson 2 Permutations and Combinations Permutations A permutation is an arrangement of objects in a definite order. The number of permutations of n distinct objects is n! Example: How many permutations

More information

Solving Counting Problems

Solving Counting Problems 4.7 Solving Counting Problems OAL Solve counting problems that involve permutations and combinations. INVESIAE the Math A band has recorded 3 hit singles over its career. One of the hits went platinum.

More information

Permutations & Combinations

Permutations & Combinations Permutations & Combinations Extension 1 Mathematics HSC Revision UOW PERMUTATIONS AND COMBINATIONS: REVIEW 1. A combination lock has 4 dials each with 10 digits. How many possible arrangements are there?

More information

How can I count arrangements?

How can I count arrangements? 10.3.2 How can I count arrangements? Permutations There are many kinds of counting problems. In this lesson you will learn to recognize problems that involve arrangements. In some cases outcomes will be

More information

Permutation and Combination

Permutation and Combination BANKERSWAY.COM Permutation and Combination Permutation implies arrangement where order of things is important. It includes various patterns like word formation, number formation, circular permutation etc.

More information

Bayes stuff Red Cross and Blood Example

Bayes stuff Red Cross and Blood Example Bayes stuff Red Cross and Blood Example 42% of the workers at Motor Works are female, while 67% of the workers at City Bank are female. If one of these companies is selected at random (assume a 50-50 chance

More information

HOMEWORK ASSIGNMENT 5

HOMEWORK ASSIGNMENT 5 HOMEWORK ASSIGNMENT 5 MATH 251, WILLIAMS COLLEGE, FALL 2006 Abstract. These are the instructor s solutions. 1. Big Brother The social security number of a person is a sequence of nine digits that are not

More information

4.3 Rules of Probability

4.3 Rules of Probability 4.3 Rules of Probability If a probability distribution is not uniform, to find the probability of a given event, add up the probabilities of all the individual outcomes that make up the event. Example:

More information

Section 6.4 Permutations and Combinations: Part 1

Section 6.4 Permutations and Combinations: Part 1 Section 6.4 Permutations and Combinations: Part 1 Permutations 1. How many ways can you arrange three people in a line? 2. Five people are waiting to take a picture. How many ways can you arrange three

More information

Chapter Permutations and Combinations. Section 4 Permutations and Combinations. Example. Definition of n Factorial (n!)

Chapter Permutations and Combinations. Section 4 Permutations and Combinations. Example. Definition of n Factorial (n!) Chapter 7 Logic, Sets, and Counting Section 4 Permutations and Combinations 7.4 Permutations and Combinations For more complicated problems, we will need to develop two important concepts: permutations

More information

Welcome! Worksheet Counting Principal, Permutations, Combinations. Updates: U4T is 12/12

Welcome! Worksheet Counting Principal, Permutations, Combinations. Updates: U4T is 12/12 Welcome! U4H1: Worksheet Counting Principal, Permutations, Combinations Updates: U4T is 12/12 Announcement: December 16 th is the last day I will accept late work. No new assignment list since this section

More information

Probability Rules 3.3 & 3.4. Cathy Poliak, Ph.D. (Department of Mathematics 3.3 & 3.4 University of Houston )

Probability Rules 3.3 & 3.4. Cathy Poliak, Ph.D. (Department of Mathematics 3.3 & 3.4 University of Houston ) Probability Rules 3.3 & 3.4 Cathy Poliak, Ph.D. cathy@math.uh.edu Department of Mathematics University of Houston Lecture 3: 3339 Lecture 3: 3339 1 / 23 Outline 1 Probability 2 Probability Rules Lecture

More information

MAT104: Fundamentals of Mathematics II Summary of Counting Techniques and Probability. Preliminary Concepts, Formulas, and Terminology

MAT104: Fundamentals of Mathematics II Summary of Counting Techniques and Probability. Preliminary Concepts, Formulas, and Terminology MAT104: Fundamentals of Mathematics II Summary of Counting Techniques and Probability Preliminary Concepts, Formulas, and Terminology Meanings of Basic Arithmetic Operations in Mathematics Addition: Generally

More information

Section 6.4. Sampling Distributions and Estimators

Section 6.4. Sampling Distributions and Estimators Section 6.4 Sampling Distributions and Estimators IDEA Ch 5 and part of Ch 6 worked with population. Now we are going to work with statistics. Sample Statistics to estimate population parameters. To make

More information

PERMUTATIONS AND COMBINATIONS

PERMUTATIONS AND COMBINATIONS PERMUTATIONS AND COMBINATIONS 1. Fundamental Counting Principle Assignment: Workbook: pg. 375 378 #1-14 2. Permutations and Factorial Notation Assignment: Workbook pg. 382-384 #1-13, pg. 526 of text #22

More information

Fundamental Counting Principle 2.1 Page 66 [And = *, Or = +]

Fundamental Counting Principle 2.1 Page 66 [And = *, Or = +] Math 3201 Assignment 1 of 1 Unit 2 Counting Methods Name: Fundamental Counting Principle 2.1 Page 66 [And = *, Or = +] Identify the choice that best completes the statement or answers the question. 1.

More information

MATH 215 DISCRETE MATHEMATICS INSTRUCTOR: P. WENG

MATH 215 DISCRETE MATHEMATICS INSTRUCTOR: P. WENG MATH DISCRETE MATHEMATICS INSTRUCTOR: P. WENG Counting and Probability Suggested Problems Basic Counting Skills, Inclusion-Exclusion, and Complement. (a An office building contains 7 floors and has 7 offices

More information

Chapter 5 Probability

Chapter 5 Probability Chapter 5 Probability Math150 What s the likelihood of something occurring? Can we answer questions about probabilities using data or experiments? For instance: 1) If my parking meter expires, I will probably

More information

Chapter 4. Probability and Counting Rules. McGraw-Hill, Bluman, 7 th ed, Chapter 4

Chapter 4. Probability and Counting Rules. McGraw-Hill, Bluman, 7 th ed, Chapter 4 Chapter 4 Probability and Counting Rules McGraw-Hill, Bluman, 7 th ed, Chapter 4 Chapter 4 Overview Introduction 4-1 Sample Spaces and Probability 4-2 Addition Rules for Probability 4-3 Multiplication

More information

Section The Multiplication Principle and Permutations

Section The Multiplication Principle and Permutations Section 2.1 - The Multiplication Principle and Permutations Example 1: A yogurt shop has 4 flavors (chocolate, vanilla, strawberry, and blueberry) and three sizes (small, medium, and large). How many different

More information

Fundamental Counting Principle 2.1 Page 66 [And = *, Or = +]

Fundamental Counting Principle 2.1 Page 66 [And = *, Or = +] Math 3201 Assignment 2 Unit 2 Counting Methods Name: Fundamental Counting Principle 2.1 Page 66 [And = *, Or = +] Identify the choice that best completes the statement or answers the question. Show all

More information

Question 1: How do you count choices using the multiplication principle?

Question 1: How do you count choices using the multiplication principle? 8.1 Permutations Question 1: How do you count choices using the multiplication principle? Question 2: What is factorial notation? Question 3: What is a permutation? In Chapter 7, we focused on using statistics

More information

Block 1 - Sets and Basic Combinatorics. Main Topics in Block 1:

Block 1 - Sets and Basic Combinatorics. Main Topics in Block 1: Block 1 - Sets and Basic Combinatorics Main Topics in Block 1: A short revision of some set theory Sets and subsets. Venn diagrams to represent sets. Describing sets using rules of inclusion. Set operations.

More information

PERMUTATIONS AND COMBINATIONS

PERMUTATIONS AND COMBINATIONS 8 PERMUTATIONS AND COMBINATIONS FUNDAMENTAL PRINCIPLE OF COUNTING Multiplication Principle : If an operation can be performed in 'm' different ways; following which a second operation can be performed

More information

Chapter 11: Probability and Counting Techniques

Chapter 11: Probability and Counting Techniques Chapter 11: Probability and Counting Techniques Diana Pell Section 11.1: The Fundamental Counting Principle Exercise 1. How many different two-letter words (including nonsense words) can be formed when

More information

Quiz 2 Review - on Notebook Paper Are You Ready For Your Last Quiz In Honors Math II??

Quiz 2 Review - on Notebook Paper Are You Ready For Your Last Quiz In Honors Math II?? Quiz 2 Review - on Notebook Paper Are You Ready For Your Last Quiz In Honors Math II?? Some things to Know, Memorize, AND Understand how to use are n What are the formulas? Pr ncr Fill in the notation

More information

P (5, 3) and as we have seen P (5, 3) = 60.

P (5, 3) and as we have seen P (5, 3) = 60. Section 6.4: Permutations In this section we study a useful formula for the number of permutations of n objects taken k at a time. It is really just a special application of the multiplication principle,

More information

CHAPTER 5 BASIC CONCEPTS OF PERMUTATIONS AND COMBINATIONS

CHAPTER 5 BASIC CONCEPTS OF PERMUTATIONS AND COMBINATIONS CHAPTER 5 BASIC CONCEPTS OF PERMUTATIONS AND COMBINATIONS BASIC CONCEPTS OF PERM UTATIONS AND COM BINATIONS LEARNING OBJECTIVES After reading this Chapter a student will be able to understand difference

More information

Chapter 1. Probability

Chapter 1. Probability Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.

More information

Introduction. Firstly however we must look at the Fundamental Principle of Counting (sometimes referred to as the multiplication rule) which states:

Introduction. Firstly however we must look at the Fundamental Principle of Counting (sometimes referred to as the multiplication rule) which states: Worksheet 4.11 Counting Section 1 Introduction When looking at situations involving counting it is often not practical to count things individually. Instead techniques have been developed to help us count

More information

Math 3201 Unit 3: Probability Name:

Math 3201 Unit 3: Probability Name: Multiple Choice Math 3201 Unit 3: Probability Name: 1. Given the following probabilities, which event is most likely to occur? A. P(A) = 0.2 B. P(B) = C. P(C) = 0.3 D. P(D) = 2. Three events, A, B, and

More information

Dependence. Math Circle. October 15, 2016

Dependence. Math Circle. October 15, 2016 Dependence Math Circle October 15, 2016 1 Warm up games 1. Flip a coin and take it if the side of coin facing the table is a head. Otherwise, you will need to pay one. Will you play the game? Why? 2. If

More information

Combinatorics and Intuitive Probability

Combinatorics and Intuitive Probability Chapter Combinatorics and Intuitive Probability The simplest probabilistic scenario is perhaps one where the set of possible outcomes is finite and these outcomes are all equally likely. A subset of the

More information

6.4 Permutations and Combinations

6.4 Permutations and Combinations Math 141: Business Mathematics I Fall 2015 6.4 Permutations and Combinations Instructor: Yeong-Chyuan Chung Outline Factorial notation Permutations - arranging objects Combinations - selecting objects

More information

Fundamental Counting Principle

Fundamental Counting Principle Lesson 88 Probability with Combinatorics HL2 Math - Santowski Fundamental Counting Principle Fundamental Counting Principle can be used determine the number of possible outcomes when there are two or more

More information

Lesson 7: Calculating Probabilities of Compound Events

Lesson 7: Calculating Probabilities of Compound Events Lesson 7: alculating Probabilities of ompound Events A previous lesson introduced tree diagrams as an effective method of displaying the possible outcomes of certain multistage chance experiments. Additionally,

More information

Slide 1 Math 1520, Lecture 15

Slide 1 Math 1520, Lecture 15 Slide 1 Math 1520, Lecture 15 Formulas and applications for the number of permutations and the number of combinations of sets of elements are considered today. These are two very powerful techniques for

More information

Exercises Exercises. 1. List all the permutations of {a, b, c}. 2. How many different permutations are there of the set {a, b, c, d, e, f, g}?

Exercises Exercises. 1. List all the permutations of {a, b, c}. 2. How many different permutations are there of the set {a, b, c, d, e, f, g}? Exercises Exercises 1. List all the permutations of {a, b, c}. 2. How many different permutations are there of the set {a, b, c, d, e, f, g}? 3. How many permutations of {a, b, c, d, e, f, g} end with

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Study Guide for Test III (MATH 1630) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the number of subsets of the set. 1) {x x is an even

More information

4.4: The Counting Rules

4.4: The Counting Rules 4.4: The Counting Rules The counting rules can be used to discover the number of possible for a sequence of events. Fundamental Counting Rule In a sequence of n events in which the first one has k 1 possibilities

More information

9.1 Counting Principle and Permutations

9.1 Counting Principle and Permutations 9.1 Counting Principle and Permutations A sporting goods store offers 3 types of snowboards (all-mountain, freestyle, carving) and 2 types of boots (soft or hybrid). How many choices are there for snowboarding

More information

Section 5.4 Permutations and Combinations

Section 5.4 Permutations and Combinations Section 5.4 Permutations and Combinations Definition: n-factorial For any natural number n, n! n( n 1)( n 2) 3 2 1. 0! = 1 A combination of a set is arranging the elements of the set without regard to

More information

Permutations (Part A)

Permutations (Part A) Permutations (Part A) A permutation problem involves counting the number of ways to select some objects out of a group. 1 There are THREE requirements for a permutation. 2 Permutation Requirements 1. The

More information

Sec 4.4. Counting Rules. Bluman, Chapter 4

Sec 4.4. Counting Rules. Bluman, Chapter 4 Sec 4.4 Counting Rules A Question to Ponder: A box contains 3 red chips, 2 blue chips and 5 green chips. A chip is selected, replaced and a second chip is selected. Display the sample space. Do you think

More information

Ÿ 8.1 The Multiplication Principle; Permutations

Ÿ 8.1 The Multiplication Principle; Permutations Ÿ 8.1 The Multiplication Principle; Permutations The Multiplication Principle Example 1. Suppose the city council needs to hold a town hall meeting. The options for scheduling the meeting are either Monday,

More information

Name: Teacher: DO NOT OPEN THE EXAMINATION PAPER UNTIL YOU ARE TOLD BY THE SUPERVISOR TO BEGIN. Mathematics 3201

Name: Teacher: DO NOT OPEN THE EXAMINATION PAPER UNTIL YOU ARE TOLD BY THE SUPERVISOR TO BEGIN. Mathematics 3201 Name: Teacher: DO NOT OPEN THE EXAMINATION PAPER UNTIL YOU ARE TOLD BY THE SUPERVISOR TO BEGIN Mathematics 20 SAMPLE MID-YEAR EXAMINATION #2 January 205 Value: 70 Marks Duration: 2 Hours General Instructions

More information

Concepts. Materials. Objective

Concepts. Materials. Objective . Activity 14 Let Us Count the Ways! Concepts Apply the multiplication counting principle Find the number of permutations in a data set Find the number of combinations in a data set Calculator Skills Factorial:

More information

How is data presented, compared and used to predict future outcomes?

How is data presented, compared and used to predict future outcomes? How is data presented, compared and used to predict future outcomes? The standards for this domain MM1D1 Students will determine the number of outcomes related to a given event. MM1D2 Students will use

More information

Section 5.4 Permutations and Combinations

Section 5.4 Permutations and Combinations Section 5.4 Permutations and Combinations Definition: n-factorial For any natural number n, n! = n( n 1)( n 2) 3 2 1. 0! = 1 A combination of a set is arranging the elements of the set without regard to

More information

Exam 2 Review (Sections Covered: 3.1, 3.3, , 7.1) 1. Write a system of linear inequalities that describes the shaded region.

Exam 2 Review (Sections Covered: 3.1, 3.3, , 7.1) 1. Write a system of linear inequalities that describes the shaded region. Exam 2 Review (Sections Covered: 3.1, 3.3, 6.1-6.4, 7.1) 1. Write a system of linear inequalities that describes the shaded region. 5x + 2y 30 x + 2y 12 x 0 y 0 2. Write a system of linear inequalities

More information

Math 3012 Applied Combinatorics Lecture 2

Math 3012 Applied Combinatorics Lecture 2 August 20, 2015 Math 3012 Applied Combinatorics Lecture 2 William T. Trotter trotter@math.gatech.edu The Road Ahead Alert The next two to three lectures will be an integrated approach to material from

More information

Unit Nine Precalculus Practice Test Probability & Statistics. Name: Period: Date: NON-CALCULATOR SECTION

Unit Nine Precalculus Practice Test Probability & Statistics. Name: Period: Date: NON-CALCULATOR SECTION Name: Period: Date: NON-CALCULATOR SECTION Vocabulary: Define each word and give an example. 1. discrete mathematics 2. dependent outcomes 3. series Short Answer: 4. Describe when to use a combination.

More information

Combinations and Permutations Long-Term Memory Review Review 1

Combinations and Permutations Long-Term Memory Review Review 1 Review 1 1. A is an arrangement of a set of objects in which order IS important. 2. A is an arrangement of a set of objects in which order IS NOT important.. How do you read?. 4. How do your read C or.

More information