Slide 1 Math 1520, Lecture 13

Size: px
Start display at page:

Download "Slide 1 Math 1520, Lecture 13"

Transcription

1 Slide 1 Math 1520, Lecture 13 In chapter 7, we discuss background leading up to probability. Probability is one of the most commonly used pieces of mathematics in the world. Understanding the basic concepts of sets and counting is fundamental to understanding probability. In this lecture we discuss some useful formulas that can be used to count the number of elements in a set. This is part of a much larger subject called combinatorics.

2 Slide 2 Set Notation and Terminology (Review) 1. A set is an unordered collection of objects so that no object may occur twice and we can determine definitively whether an object is an element of a set or not. We use braces, { }, to denote a set. Example: A = {a, b, c} 2. The objects in a set are called elements. If a is an element of a set A we write a A. Example: b {a, b, c} 3. A set written in roster notation lists all the elements of the set. Example: B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 4. A set written in set builder notation gives a rule that describes the property or properties of the set. Example: B = {x x is an integer between 1 and 10} 5. Two sets are equal if they have exactly the same elements. Example: {a, b, c} = {b, c, a} 6. A is a subset of B if every element of A is also an element of B. We write this as A B. Example: {x x is a maple tree} {x x is a tree} 7. A is a proper subset of B if every element of A is also an element of B but A B. We write this as A B. Example: {x x is a maple tree} {x x is a tree} 8. The empty set is written as and is the set that has no elements. It is a subset of every set. Example: {x x is a tree} 9. The universal set is written as U and is the set that contains all objects of interest in a particular application. It is context dependent. Example: U is the set of all possible 5 card poker hands if we are studying only 5 card poker hands.

3 Slide 3 Unions, Intersections and Complements (Review) We frequently use the following operations on sets. The union of two sets A and B is written A B and is the collection of all elements that are either in A or in B or both. Example: {1, 3, 4} {1, 2, 4, 5} = {1, 2, 3, 4, 5} The intersection of two sets A and B is written A B and is the collection of all elements that are in both A and B. Example: {1, 3, 4} {1, 2, 4, 5} = {1, 4} Two sets are disjoint if their intersection is empty. Example: {1} {2} = so {1} and {2} are disjoint sets. The complement of a set A in the universal set U is written A c and is the set of all elements that are in U but not in A. Example: If U = {1, 2, 3, 4, 5} and A = {1, 3, 4} then A c = {2, 5}.

4 Slide 4 Why do we need counting in Probability? Recall this example from the last lecture: What is the probability of getting a flush in poker? We could write the set of all flushes to be F = S D H C where S = {x : x is a poker hand consisting of 5 spades} D = {x : x is a poker hand consisting of 5 diamonds} H = {x : x is a poker hand consisting of 5 hearts} C = {x : x is a poker hand consisting of all clubs} and the symbol means to take the union. 1. In finding the probability, we need to count the number of ways we get a flush. 2. To do this we need to count how many elements are in each of the sets S, D, H, C and add them together. 3. This is a basic rule we can use in general that we will see.

5 Slide 5 Counting the Number of Elements in a set The number of elements in the finite set A is denoted by n(a). This is also sometimes called the cardinality of the set. (All the sets for this lecture will be finite.) Examples 1. n( ) = 0 2. n({a, b, c, d}) = 4 3. If A = {1, 2, 3} and B = {4, 5} then n(a B) = 5 4. If A = {a, b, c} and B = {c, a, z} then n(a B) = 4 5. If A = {a, b, c} and B = {c, a, z} then n(a B) = 2 6. If U = {x x is an integer with 1 x 10} and A = {2, 4, 8} then n(a c ) = 7

6 Slide 6 iclicker Question If A = {1, 2, 3, 5, 7} and B = {2, 4} then what is n(a B) A. 6 B. 5 C. 7 D. 4

7 Answer to Question If A = {1, 2, 3, 5, 7} and B = {2, 4} then what is n(a B) A. 6 is the correct answer. B. 5 C. 7 D. 4

8 Slide 7 Counting Rules On previous slides we encountered problems on finding the number of elements in sets with unions. Here are some general rules that may help. If U is the universal set and A U then n(a c ) = n(u) n(a) If A and B are disjoint sets then n(a B) = n(a) + n(b) If A and B are two sets, not necessarily disjoint, then n(a B) = n(a) + n(b) n(a B) If A, B, C are three sets, not necessarily disjoint, then n(a B C) = n(a) + n(b) + n(c) n(a B) n(a C) n(b C) +n(a B C) This can be generalized to any (finite) number of (finite) sets. 1. Illustrate these rules using Venn Diagrams and/or examples.

9 Slide 8 iclicker Question Suppose that n(b) = 10, n(a B) = 4 and n(a) = 12 then what is n(a B) A. 22 B. 26 C. 14 D. 16

10 Answer to Question Suppose that n(b) = 10, n(a B) = 4 and n(a) = 12 then what is n(a B) A. 22 B. 26 C. 14 D. 16 is the correct answer. The correct answer is = 18

11 Slide 9 iclicker Question Suppose that n(b) = 5, n(a B) = 6 and n(a B) = 3 then what is n(a) A. 4 B. 3 C. 5 D. 7

12 Answer to Question Suppose that n(b) = 5, n(a B) = 6 and n(a B) = 3 then what is n(a) A. 4 is the correct answer. B. 3 C. 5 D. 7 Substituting the known numbers into n(a B) = n(a) + n(b) n(a B) we get 6 = n(a) so we solve for n(a) to get n(a) = 4.

13 Slide 10 iclicker Question Of 50 employees of a store located in downtown Boston, 18 people take the subway to work, 12 take the bus and 7 take both the subway and the bus. How many take either the subway or the bus or both to work? A. 23 B. 50 C. 19 D. 30

14 Answer to Question Of 50 employees of a store located in downtown Boston, 18 people take the subway to work, 12 take the bus and 7 take both the subway and the bus. How many take either the subway or the bus or both to work? A. 23 is the correct answer. B. 50 C. 19 D. 30 The answer is = 23

15 Slide 11 iclicker Question Of 50 employees of a store located in downtown Boston, 18 people take the subway to work, 12 take the bus and 7 take both the subway and the bus. How many come to work without taking the subway or the bus? A. 23 B. 27 C. 20 D. 13

16 Answer to Question Of 50 employees of a store located in downtown Boston, 18 people take the subway to work, 12 take the bus and 7 take both the subway and the bus. How many come to work without taking the subway or the bus? A. 23 B. 27 is the correct answer. C. 20 D. 13 If U is the set of all employees, we want n ((A B) c ) where A is the set of people that take the subway and B is the set of people that take the bus. We calculate n ((A B) c ) = n(u) n(a B) = = 27

17 Slide 12 iclicker Question Of 50 employees of a store located in downtown Boston, 18 people take the subway to work, 12 take the bus and 7 take both the subway and the bus. How many people take only the subway (and not the bus) to work? A. 11 B. 5 C. 12 D. 7

18 Answer to Question Of 50 employees of a store located in downtown Boston, 18 people take the subway to work, 12 take the bus and 7 take both the subway and the bus. How many people take only the subway (and not the bus) to work? A. 11 is the correct answer. B. 5 C. 12 D. 7 The answer is 18 7 = 11

19 Slide 13 iclicker Question To help plan the number of meals to be prepared at a college cafeteria, a survey conducted of students revealed the following data: 130 students ate breakfast, 180 students ate lunch, 275 students ate dinner, and 68 ate breakfast and lunch, 112 ate breakfast and dinner, 90 ate lunch and dinner, and 58 students ate all three meals. How many students were there that ate at least one meal in the cafeteria according to the survey? A. 370 B. 371 C. 372 D. 373

20 Answer to Question To help plan the number of meals to be prepared at a college cafeteria, a survey conducted of students revealed the following data: 130 students ate breakfast, 180 students ate lunch, 275 students ate dinner, and 68 ate breakfast and lunch, 112 ate breakfast and dinner, 90 ate lunch and dinner, and 58 students ate all three meals. How many students were there that ate at least one meal in the cafeteria according to the survey? A. 370 B. 371 C. 372 D. 373 is the correct answer. The total is = 373

21 Slide 14 iclicker Question To help plan the number of meals to be prepared at a college cafeteria, a survey conducted of students revealed the following data: 130 students ate breakfast, 180 students ate lunch, 275 students ate dinner, and 68 ate breakfast and lunch, 112 ate breakfast and dinner, 90 ate lunch and dinner, and 58 students ate all three meals. How many students were there that ate at exactly two meals in the cafeteria according to the survey? A. 99 B. 98 C. 97 D. 96

22 Answer to Question To help plan the number of meals to be prepared at a college cafeteria, a survey conducted of students revealed the following data: 130 students ate breakfast, 180 students ate lunch, 275 students ate dinner, and 68 ate breakfast and lunch, 112 ate breakfast and dinner, 90 ate lunch and dinner, and 58 students ate all three meals. How many students were there that ate at exactly two meals in the cafeteria according to the survey? A. 99 B. 98 C. 97 D. 96 is the correct answer. This is an example where it is best to draw out a Venn Diagram rather than using formulas.

Section Introduction to Sets

Section Introduction to Sets Section 1.1 - Introduction to Sets Definition: A set is a well-defined collection of objects usually denoted by uppercase letters. Definition: The elements, or members, of a set are denoted by lowercase

More information

ACHS Math Team Lecture: Introduction to Set Theory Peter S. Simon

ACHS Math Team Lecture: Introduction to Set Theory Peter S. Simon ACHS Math Team Lecture: Introduction to Set Theory Peter S. Simon Introduction to Set Theory A set is a collection of objects, called elements or members of the set. We will usually denote a set by a capital

More information

Class 8 - Sets (Lecture Notes)

Class 8 - Sets (Lecture Notes) Class 8 - Sets (Lecture Notes) What is a Set? A set is a well-defined collection of distinct objects. Example: A = {1, 2, 3, 4, 5} What is an element of a Set? The objects in a set are called its elements.

More information

Block 1 - Sets and Basic Combinatorics. Main Topics in Block 1:

Block 1 - Sets and Basic Combinatorics. Main Topics in Block 1: Block 1 - Sets and Basic Combinatorics Main Topics in Block 1: A short revision of some set theory Sets and subsets. Venn diagrams to represent sets. Describing sets using rules of inclusion. Set operations.

More information

Sets. Definition A set is an unordered collection of objects called elements or members of the set.

Sets. Definition A set is an unordered collection of objects called elements or members of the set. Sets Definition A set is an unordered collection of objects called elements or members of the set. Sets Definition A set is an unordered collection of objects called elements or members of the set. Examples:

More information

Principles of Counting. Notation for counting elements of sets

Principles of Counting. Notation for counting elements of sets Principles of Counting MATH 107: Finite Mathematics University of Louisville February 26, 2014 Underlying Principles Set Counting 2 / 12 Notation for counting elements of sets We let n(a) denote the number

More information

Example: If A = {1, 2, 3} and B = {3, 4, 5}, then A B= {3}.

Example: If A = {1, 2, 3} and B = {3, 4, 5}, then A B= {3}. Section 1.3: Intersection and Union of Two Sets Exploring the Different Regions of a Venn Diagram There are 6 different set notations that you must become familiar with. 1. The intersection is the set

More information

Math 166: Topics in Contemporary Mathematics II

Math 166: Topics in Contemporary Mathematics II Math 166: Topics in Contemporary Mathematics II Xin Ma Texas A&M University September 30, 2017 Xin Ma (TAMU) Math 166 September 30, 2017 1 / 11 Last Time Factorials For any natural number n, we define

More information

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5.

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Math 166 Spring 2007 c Heather Ramsey Page 1 Math 166 - Exam 2 Review NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Section 7.1 - Experiments, Sample Spaces,

More information

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5.

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Math 166 Spring 2007 c Heather Ramsey Page 1 Math 166 - Exam 2 Review NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Section 7.1 - Experiments, Sample Spaces,

More information

In how many ways can we paint 6 rooms, choosing from 15 available colors? What if we want all rooms painted with different colors?

In how many ways can we paint 6 rooms, choosing from 15 available colors? What if we want all rooms painted with different colors? What can we count? In how many ways can we paint 6 rooms, choosing from 15 available colors? What if we want all rooms painted with different colors? In how many different ways 10 books can be arranged

More information

Chapter 1 Math Set: a collection of objects. For example, the set of whole numbers is W = {0, 1, 2, 3, }

Chapter 1 Math Set: a collection of objects. For example, the set of whole numbers is W = {0, 1, 2, 3, } Chapter 1 Math 3201 1 Chapter 1: Set Theory: Organizing information into sets and subsets Graphically illustrating the relationships between sets and subsets using Venn diagrams Solving problems by using

More information

CSE 21 Mathematics for Algorithm and System Analysis

CSE 21 Mathematics for Algorithm and System Analysis CSE 21 Mathematics for Algorithm and System Analysis Unit 1: Basic Count and List Section 3: Set CSE21: Lecture 3 1 Reminder Piazza forum address: http://piazza.com/ucsd/summer2013/cse21/hom e Notes on

More information

Chapter 1. Set Theory

Chapter 1. Set Theory Chapter 1 Set Theory 1 Section 1.1: Types of Sets and Set Notation Set: A collection or group of distinguishable objects. Ex. set of books, the letters of the alphabet, the set of whole numbers. You can

More information

Chapter 5: Probability: What are the Chances? Section 5.2 Probability Rules

Chapter 5: Probability: What are the Chances? Section 5.2 Probability Rules + Chapter 5: Probability: What are the Chances? Section 5.2 + Two-Way Tables and Probability When finding probabilities involving two events, a two-way table can display the sample space in a way that

More information

4.3 Finding Probability Using Sets

4.3 Finding Probability Using Sets 4.3 Finding Probability Using ets When rolling a die with sides numbered from 1 to 20, if event A is the event that a number divisible by 5 is rolled: a) What is the sample space,? b) What is the event

More information

7.1 Experiments, Sample Spaces, and Events

7.1 Experiments, Sample Spaces, and Events 7.1 Experiments, Sample Spaces, and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment

More information

Such a description is the basis for a probability model. Here is the basic vocabulary we use.

Such a description is the basis for a probability model. Here is the basic vocabulary we use. 5.2.1 Probability Models When we toss a coin, we can t know the outcome in advance. What do we know? We are willing to say that the outcome will be either heads or tails. We believe that each of these

More information

If you roll a die, what is the probability you get a four OR a five? What is the General Education Statistics

If you roll a die, what is the probability you get a four OR a five? What is the General Education Statistics If you roll a die, what is the probability you get a four OR a five? What is the General Education Statistics probability that you get neither? Class Notes The Addition Rule (for OR events) and Complements

More information

Math 1070 Sample Exam 1

Math 1070 Sample Exam 1 University of Connecticut Department of Mathematics Math 1070 Sample Exam 1 Exam 1 will cover sections 4.1-4.7 and 5.1-5.4. This sample exam is intended to be used as one of several resources to help you

More information

Slide 1 Math 1520, Lecture 15

Slide 1 Math 1520, Lecture 15 Slide 1 Math 1520, Lecture 15 Formulas and applications for the number of permutations and the number of combinations of sets of elements are considered today. These are two very powerful techniques for

More information

( ) = A. 2. Write the following sets using the roster method. 3. Write the following sets using set-builder notation.

( ) = A. 2. Write the following sets using the roster method. 3. Write the following sets using set-builder notation. 2.6. EXERISES 1. True or False? a. The empty set has no subsets. b. No set has exactly 14 distinct subsets. c. For any two finite sets and,

More information

The study of probability is concerned with the likelihood of events occurring. Many situations can be analyzed using a simplified model of probability

The study of probability is concerned with the likelihood of events occurring. Many situations can be analyzed using a simplified model of probability The study of probability is concerned with the likelihood of events occurring Like combinatorics, the origins of probability theory can be traced back to the study of gambling games Still a popular branch

More information

SET THEORY AND VENN DIAGRAMS

SET THEORY AND VENN DIAGRAMS Mathematics Revision Guides Set Theory and Venn Diagrams Page 1 of 26 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier SET THEORY AND VENN DIAGRAMS Version: 2.1 Date: 15-10-2015 Mathematics

More information

1. The empty set is a proper subset of every set. Not true because the empty set is not a proper subset of itself! is the power set of A.

1. The empty set is a proper subset of every set. Not true because the empty set is not a proper subset of itself! is the power set of A. MAT 101 Solutions to Sample Questions for Exam 1 True or False Questions Answers: 1F, 2F, 3F, 4T, 5T, 6T, 7T 1. The empty set is a proper subset of every set. Not true because the empty set is not a proper

More information

8.2 Union, Intersection, and Complement of Events; Odds

8.2 Union, Intersection, and Complement of Events; Odds 8.2 Union, Intersection, and Complement of Events; Odds Since we defined an event as a subset of a sample space it is natural to consider set operations like union, intersection or complement in the context

More information

MATH 1324 (Finite Mathematics or Business Math I) Lecture Notes Author / Copyright: Kevin Pinegar

MATH 1324 (Finite Mathematics or Business Math I) Lecture Notes Author / Copyright: Kevin Pinegar MATH 1324 Module 4 Notes: Sets, Counting and Probability 4.2 Basic Counting Techniques: Addition and Multiplication Principles What is probability? In layman s terms it is the act of assigning numerical

More information

Define and Diagram Outcomes (Subsets) of the Sample Space (Universal Set)

Define and Diagram Outcomes (Subsets) of the Sample Space (Universal Set) 12.3 and 12.4 Notes Geometry 1 Diagramming the Sample Space using Venn Diagrams A sample space represents all things that could occur for a given event. In set theory language this would be known as the

More information

Probability. Ms. Weinstein Probability & Statistics

Probability. Ms. Weinstein Probability & Statistics Probability Ms. Weinstein Probability & Statistics Definitions Sample Space The sample space, S, of a random phenomenon is the set of all possible outcomes. Event An event is a set of outcomes of a random

More information

Poker Hands. Christopher Hayes

Poker Hands. Christopher Hayes Poker Hands Christopher Hayes Poker Hands The normal playing card deck of 52 cards is called the French deck. The French deck actually came from Egypt in the 1300 s and was already present in the Middle

More information

Sets, Venn Diagrams & Counting

Sets, Venn Diagrams & Counting MT 142 College Mathematics Sets, Venn Diagrams & Counting Module SC Terri Miller revised December 13, 2010 What is a set? Sets set is a collection of objects. The objects in the set are called elements

More information

Exam 2 Review (Sections Covered: 3.1, 3.3, , 7.1) 1. Write a system of linear inequalities that describes the shaded region.

Exam 2 Review (Sections Covered: 3.1, 3.3, , 7.1) 1. Write a system of linear inequalities that describes the shaded region. Exam 2 Review (Sections Covered: 3.1, 3.3, 6.1-6.4, 7.1) 1. Write a system of linear inequalities that describes the shaded region. 5x + 2y 30 x + 2y 12 x 0 y 0 2. Write a system of linear inequalities

More information

The probability set-up

The probability set-up CHAPTER 2 The probability set-up 2.1. Introduction and basic theory We will have a sample space, denoted S (sometimes Ω) that consists of all possible outcomes. For example, if we roll two dice, the sample

More information

The probability set-up

The probability set-up CHAPTER The probability set-up.1. Introduction and basic theory We will have a sample space, denoted S sometimes Ω that consists of all possible outcomes. For example, if we roll two dice, the sample space

More information

Mathematical Foundations of Computer Science Lecture Outline August 30, 2018

Mathematical Foundations of Computer Science Lecture Outline August 30, 2018 Mathematical Foundations of omputer Science Lecture Outline ugust 30, 2018 ounting ounting is a part of combinatorics, an area of mathematics which is concerned with the arrangement of objects of a set

More information

Finite Math - Fall 2016

Finite Math - Fall 2016 Finite Math - Fall 206 Lecture Notes - /28/206 Section 7.4 - Permutations and Combinations There are often situations in which we have to multiply many consecutive numbers together, for example, in examples

More information

Reading 14 : Counting

Reading 14 : Counting CS/Math 240: Introduction to Discrete Mathematics Fall 2015 Instructors: Beck Hasti, Gautam Prakriya Reading 14 : Counting In this reading we discuss counting. Often, we are interested in the cardinality

More information

4.1 Sample Spaces and Events

4.1 Sample Spaces and Events 4.1 Sample Spaces and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment is called an

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Study Guide for Test III (MATH 1630) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the number of subsets of the set. 1) {x x is an even

More information

Intermediate Math Circles November 1, 2017 Probability I

Intermediate Math Circles November 1, 2017 Probability I Intermediate Math Circles November 1, 2017 Probability I Probability is the study of uncertain events or outcomes. Games of chance that involve rolling dice or dealing cards are one obvious area of application.

More information

Mixed Counting Problems

Mixed Counting Problems We have studied a number of counting principles and techniques since the beginning of the course and when we tackle a counting problem, we may have to use one or a combination of these principles. The

More information

CHAPTER 7 Probability

CHAPTER 7 Probability CHAPTER 7 Probability 7.1. Sets A set is a well-defined collection of distinct objects. Welldefined means that we can determine whether an object is an element of a set or not. Distinct means that we can

More information

Mutually Exclusive Events

Mutually Exclusive Events 5.4 Mutually Exclusive Events YOU WILL NEED calculator EXPLORE Carlos drew a single card from a standard deck of 52 playing cards. What is the probability that the card he drew is either an 8 or a black

More information

SETS OBJECTIVES EXPECTED BACKGROUND KNOWLEDGE 1.1 SOME STANDARD NOTATIONS. Sets. MODULE - I Sets, Relations and Functions

SETS OBJECTIVES EXPECTED BACKGROUND KNOWLEDGE 1.1 SOME STANDARD NOTATIONS. Sets. MODULE - I Sets, Relations and Functions 1 SETS Let us consider the following situation : One day Mrs. and Mr. Mehta went to the market. Mr. Mehta purchased the following objects/items. "a toy, one kg sweets and a magazine". Where as Mrs. Mehta

More information

Grade 7/8 Math Circles February 21 st /22 nd, Sets

Grade 7/8 Math Circles February 21 st /22 nd, Sets Faculty of Mathematics Waterloo, Ontario N2L 3G1 Sets Grade 7/8 Math Circles February 21 st /22 nd, 2017 Sets Centre for Education in Mathematics and Computing A set is a collection of unique objects i.e.

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. MATH 1324 Review for Test 3 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Find the value(s) of the function on the given feasible region. 1) Find the

More information

Name: Exam 1. September 14, 2017

Name: Exam 1. September 14, 2017 Department of Mathematics University of Notre Dame Math 10120 Finite Math Fall 2017 Name: Instructors: Basit & Migliore Exam 1 September 14, 2017 This exam is in two parts on 9 pages and contains 14 problems

More information

Discrete Structures for Computer Science

Discrete Structures for Computer Science Discrete Structures for Computer Science William Garrison bill@cs.pitt.edu 6311 Sennott Square Lecture #23: Discrete Probability Based on materials developed by Dr. Adam Lee The study of probability is

More information

November 6, Chapter 8: Probability: The Mathematics of Chance

November 6, Chapter 8: Probability: The Mathematics of Chance Chapter 8: Probability: The Mathematics of Chance November 6, 2013 Last Time Crystallographic notation Groups Crystallographic notation The first symbol is always a p, which indicates that the pattern

More information

Compound Probability. Set Theory. Basic Definitions

Compound Probability. Set Theory. Basic Definitions Compound Probability Set Theory A probability measure P is a function that maps subsets of the state space Ω to numbers in the interval [0, 1]. In order to study these functions, we need to know some basic

More information

Probability and Statistics. Copyright Cengage Learning. All rights reserved.

Probability and Statistics. Copyright Cengage Learning. All rights reserved. Probability and Statistics Copyright Cengage Learning. All rights reserved. 14.2 Probability Copyright Cengage Learning. All rights reserved. Objectives What Is Probability? Calculating Probability by

More information

Permutations: The number of arrangements of n objects taken r at a time is. P (n, r) = n (n 1) (n r + 1) =

Permutations: The number of arrangements of n objects taken r at a time is. P (n, r) = n (n 1) (n r + 1) = Section 6.6: Mixed Counting Problems We have studied a number of counting principles and techniques since the beginning of the course and when we tackle a counting problem, we may have to use one or a

More information

DVA325 Formal Languages, Automata and Models of Computation (FABER)

DVA325 Formal Languages, Automata and Models of Computation (FABER) DVA325 Formal Languages, Automata and Models of Computation (FABER) Lecture 1 - Introduction School of Innovation, Design and Engineering Mälardalen University 11 November 2014 Abu Naser Masud FABER November

More information

CHAPTER 8 Additional Probability Topics

CHAPTER 8 Additional Probability Topics CHAPTER 8 Additional Probability Topics 8.1. Conditional Probability Conditional probability arises in probability experiments when the person performing the experiment is given some extra information

More information

MATH CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #1 - SPRING DR. DAVID BRIDGE

MATH CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #1 - SPRING DR. DAVID BRIDGE MATH 205 - CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #1 - SPRING 2009 - DR. DAVID BRIDGE TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. Tell whether the statement is

More information

It is important that you show your work. The total value of this test is 220 points.

It is important that you show your work. The total value of this test is 220 points. June 27, 2001 Your name It is important that you show your work. The total value of this test is 220 points. 1. (10 points) Use the Euclidean algorithm to solve the decanting problem for decanters of sizes

More information

Introduction to probability

Introduction to probability Introduction to probability Suppose an experiment has a finite set X = {x 1,x 2,...,x n } of n possible outcomes. Each time the experiment is performed exactly one on the n outcomes happens. Assign each

More information

Permutations and Combinations. MATH 107: Finite Mathematics University of Louisville. March 3, 2014

Permutations and Combinations. MATH 107: Finite Mathematics University of Louisville. March 3, 2014 Permutations and Combinations MATH 107: Finite Mathematics University of Louisville March 3, 2014 Multiplicative review Non-replacement counting questions 2 / 15 Building strings without repetition A familiar

More information

Basic Probability Models. Ping-Shou Zhong

Basic Probability Models. Ping-Shou Zhong asic Probability Models Ping-Shou Zhong 1 Deterministic model n experiment that results in the same outcome for a given set of conditions Examples: law of gravity 2 Probabilistic model The outcome of the

More information

Permutations and Combinations Section

Permutations and Combinations Section A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics Permutations and Combinations Section 13.3-13.4 Dr. John Ehrke Department of Mathematics Fall 2012 Permutations A permutation

More information

Math 1070 Sample Exam 1

Math 1070 Sample Exam 1 University of Connecticut Department of Mathematics Math 1070 Sample Exam 1 Exam 1 will cover sections 1.1, 1.2, 3.1, 3.2, 3.3, 4.1, 4.2, 4.3, 4.4, 4.5, 5.1 and 5.2. This sample exam is intended to be

More information

MATHEMATICS 152, FALL 2004 METHODS OF DISCRETE MATHEMATICS Outline #10 (Sets and Probability)

MATHEMATICS 152, FALL 2004 METHODS OF DISCRETE MATHEMATICS Outline #10 (Sets and Probability) MATHEMATICS 152, FALL 2004 METHODS OF DISCRETE MATHEMATICS Outline #10 (Sets and Probability) Last modified: November 10, 2004 This follows very closely Apostol, Chapter 13, the course pack. Attachments

More information

1 of 5 7/16/2009 6:57 AM Virtual Laboratories > 13. Games of Chance > 1 2 3 4 5 6 7 8 9 10 11 3. Simple Dice Games In this section, we will analyze several simple games played with dice--poker dice, chuck-a-luck,

More information

Name Date. Goal: Understand sets and set notation.

Name Date. Goal: Understand sets and set notation. F Math 12 3.1 Types of Sets and Set Notation p. 146 Name Date Goal: Understand sets and set notation. 1. set: A collection of distinguishable objects; for example, the set of whole numbers is W = {0, 1,

More information

Lecture 6 Probability

Lecture 6 Probability Lecture 6 Probability Example: When you toss a coin, there are only two possible outcomes, heads and tails. What if we toss a coin two times? Figure below shows the results of tossing a coin 5000 times

More information

4. Are events C and D independent? Verify your answer with a calculation.

4. Are events C and D independent? Verify your answer with a calculation. Honors Math 2 More Conditional Probability Name: Date: 1. A standard deck of cards has 52 cards: 26 Red cards, 26 black cards 4 suits: Hearts (red), Diamonds (red), Clubs (black), Spades (black); 13 of

More information

Chapter 5 - Elementary Probability Theory

Chapter 5 - Elementary Probability Theory Chapter 5 - Elementary Probability Theory Historical Background Much of the early work in probability concerned games and gambling. One of the first to apply probability to matters other than gambling

More information

MATH6 - Introduction to Finite Mathematics

MATH6 - Introduction to Finite Mathematics MATH6 - Introduction to Finite Mathematics Exam II ANSWERS May 19, 2007 1. (1 points) Under previous rules, the NCAA men s basketball tournament has 64 teams, paired off to play in 32 first round games.

More information

Theory of Probability - Brett Bernstein

Theory of Probability - Brett Bernstein Theory of Probability - Brett Bernstein Lecture 3 Finishing Basic Probability Review Exercises 1. Model flipping two fair coins using a sample space and a probability measure. Compute the probability of

More information

Exam 2 Review F09 O Brien. Finite Mathematics Exam 2 Review

Exam 2 Review F09 O Brien. Finite Mathematics Exam 2 Review Finite Mathematics Exam Review Approximately 5 0% of the questions on Exam will come from Chapters, 4, and 5. The remaining 70 75% will come from Chapter 7. To help you prepare for the first part of the

More information

Week 1: Probability models and counting

Week 1: Probability models and counting Week 1: Probability models and counting Part 1: Probability model Probability theory is the mathematical toolbox to describe phenomena or experiments where randomness occur. To have a probability model

More information

Chapter 2. Permutations and Combinations

Chapter 2. Permutations and Combinations 2. Permutations and Combinations Chapter 2. Permutations and Combinations In this chapter, we define sets and count the objects in them. Example Let S be the set of students in this classroom today. Find

More information

Strings. A string is a list of symbols in a particular order.

Strings. A string is a list of symbols in a particular order. Ihor Stasyuk Strings A string is a list of symbols in a particular order. Strings A string is a list of symbols in a particular order. Examples: 1 3 0 4 1-12 is a string of integers. X Q R A X P T is a

More information

There are three types of mathematicians. Those who can count and those who can t.

There are three types of mathematicians. Those who can count and those who can t. 1 Counting There are three types of mathematicians. Those who can count and those who can t. 1.1 Orderings The details of the question always matter. So always take a second look at what is being asked

More information

Principle of Inclusion-Exclusion Notes

Principle of Inclusion-Exclusion Notes Principle of Inclusion-Exclusion Notes The Principle of Inclusion-Exclusion (often abbreviated PIE is the following general formula used for finding the cardinality of a union of finite sets. Theorem 0.1.

More information

Lecture 2: Sum rule, partition method, difference method, bijection method, product rules

Lecture 2: Sum rule, partition method, difference method, bijection method, product rules Lecture 2: Sum rule, partition method, difference method, bijection method, product rules References: Relevant parts of chapter 15 of the Math for CS book. Discrete Structures II (Summer 2018) Rutgers

More information

Poker: Further Issues in Probability. Poker I 1/29

Poker: Further Issues in Probability. Poker I 1/29 Poker: Further Issues in Probability Poker I 1/29 How to Succeed at Poker (3 easy steps) 1 Learn how to calculate complex probabilities and/or memorize lots and lots of poker-related probabilities. 2 Take

More information

Math 227 Elementary Statistics. Bluman 5 th edition

Math 227 Elementary Statistics. Bluman 5 th edition Math 227 Elementary Statistics Bluman 5 th edition CHAPTER 4 Probability and Counting Rules 2 Objectives Determine sample spaces and find the probability of an event using classical probability or empirical

More information

CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch )

CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch ) CS1802 Discrete Structures Recitation Fall 2017 October 9-12, 2017 CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch 8.5-9.3) Sets i. Set Notation: Draw an arrow from the box on

More information

1 = 3 2 = 3 ( ) = = = 33( ) 98 = = =

1 = 3 2 = 3 ( ) = = = 33( ) 98 = = = Math 115 Discrete Math Final Exam December 13, 2000 Your name It is important that you show your work. 1. Use the Euclidean algorithm to solve the decanting problem for decanters of sizes 199 and 98. In

More information

Math 42, Discrete Mathematics

Math 42, Discrete Mathematics c Fall 2018 last updated 10/29/2018 at 18:22:13 For use by students in this class only; all rights reserved. Note: some prose & some tables are taken directly from Kenneth R. Rosen, and Its Applications,

More information

Counting integral solutions

Counting integral solutions Thought exercise 2.2 20 Counting integral solutions Question: How many non-negative integer solutions are there of x 1 +x 2 +x 3 +x 4 = 10? Thought exercise 2.2 20 Counting integral solutions Question:

More information

Probability. Engr. Jeffrey T. Dellosa.

Probability. Engr. Jeffrey T. Dellosa. Probability Engr. Jeffrey T. Dellosa Email: jtdellosa@gmail.com Outline Probability 2.1 Sample Space 2.2 Events 2.3 Counting Sample Points 2.4 Probability of an Event 2.5 Additive Rules 2.6 Conditional

More information

SALES AND MARKETING Department MATHEMATICS. Combinatorics and probabilities. Tutorials and exercises

SALES AND MARKETING Department MATHEMATICS. Combinatorics and probabilities. Tutorials and exercises SALES AND MARKETING Department MATHEMATICS 2 nd Semester Combinatorics and probabilities Tutorials and exercises Online document : http://jff-dut-tc.weebly.com section DUT Maths S2 IUT de Saint-Etienne

More information

2. Let E and F be two events of the same sample space. If P (E) =.55, P (F ) =.70, and

2. Let E and F be two events of the same sample space. If P (E) =.55, P (F ) =.70, and c Dr. Patrice Poage, August 23, 2017 1 1324 Exam 1 Review NOTE: This review in and of itself does NOT prepare you for the test. You should be doing this review in addition to all your suggested homework,

More information

3.3 Intersection and Union

3.3 Intersection and Union 3.3 Intersection and nion of Two Sets EXPLORE Given: n() 5 x, n() 5 y, n( and )r 5 { }, and n( ) 5 z, where 5 the universal set, and sets and are subsets of. How can you determine whether sets and are

More information

CHAPTER 2 PROBABILITY. 2.1 Sample Space. 2.2 Events

CHAPTER 2 PROBABILITY. 2.1 Sample Space. 2.2 Events CHAPTER 2 PROBABILITY 2.1 Sample Space A probability model consists of the sample space and the way to assign probabilities. Sample space & sample point The sample space S, is the set of all possible outcomes

More information

An art collector might own a collection of paintings, while a music lover might keep a collection of CDs. Any collection of items can form a set.

An art collector might own a collection of paintings, while a music lover might keep a collection of CDs. Any collection of items can form a set. Sets 319 Sets It is natural for us to classify items into groups, or sets, and consider how those sets overlap with each other. We can use these sets understand relationships between groups, and to analyze

More information

7.4 Permutations and Combinations

7.4 Permutations and Combinations 7.4 Permutations and Combinations The multiplication principle discussed in the preceding section can be used to develop two additional counting devices that are extremely useful in more complicated counting

More information

1) 1) 2) 2) 3) 3) 4) 4) 5) 5) 6) 6) 7) 7) 8) 8) 9) 9) 10) 10) 11) 11) 12) 12)

1) 1) 2) 2) 3) 3) 4) 4) 5) 5) 6) 6) 7) 7) 8) 8) 9) 9) 10) 10) 11) 11) 12) 12) Review Test 1 Math 1332 Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Write a word description of the set. 1) 1) {26, 28, 30, 32,..., 100} List

More information

Sample Spaces, Events, Probability

Sample Spaces, Events, Probability Sample Spaces, Events, Probability CS 3130/ECE 3530: Probability and Statistics for Engineers August 28, 2014 Sets A set is a collection of unique objects. Sets A set is a collection of unique objects.

More information

Chapter 1: Sets and Probability

Chapter 1: Sets and Probability Chapter 1: Sets and Probability Section 1.3-1.5 Recap: Sample Spaces and Events An is an activity that has observable results. An is the result of an experiment. Example 1 Examples of experiments: Flipping

More information

CIS 2033 Lecture 6, Spring 2017

CIS 2033 Lecture 6, Spring 2017 CIS 2033 Lecture 6, Spring 2017 Instructor: David Dobor February 2, 2017 In this lecture, we introduce the basic principle of counting, use it to count subsets, permutations, combinations, and partitions,

More information

The topic for the third and final major portion of the course is Probability. We will aim to make sense of statements such as the following:

The topic for the third and final major portion of the course is Probability. We will aim to make sense of statements such as the following: CS 70 Discrete Mathematics for CS Spring 2006 Vazirani Lecture 17 Introduction to Probability The topic for the third and final major portion of the course is Probability. We will aim to make sense of

More information

CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch )

CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch ) CS1802 Discrete Structures Recitation Fall 2017 October 9-12, 2017 CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch 8.5-9.3) Sets i. Set Notation: Draw an arrow from the box on

More information

Solutions for Exam I, Math 10120, Fall 2016

Solutions for Exam I, Math 10120, Fall 2016 Solutions for Exam I, Math 10120, Fall 2016 1. Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} A = {1, 2, 3} B = {2, 4, 6, 8, 10}. C = {4, 5, 6, 7, 8}. Which of the following sets is equal to (A B) C? {1, 2, 3,

More information

The next several lectures will be concerned with probability theory. We will aim to make sense of statements such as the following:

The next several lectures will be concerned with probability theory. We will aim to make sense of statements such as the following: CS 70 Discrete Mathematics for CS Fall 2004 Rao Lecture 14 Introduction to Probability The next several lectures will be concerned with probability theory. We will aim to make sense of statements such

More information

4. Let U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, X = {2, 3, 4}, Y = {1, 4, 5}, Z = {2, 5, 7}. Find a) (X Y) b) X Y c) X (Y Z) d) (X Y) Z

4. Let U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, X = {2, 3, 4}, Y = {1, 4, 5}, Z = {2, 5, 7}. Find a) (X Y) b) X Y c) X (Y Z) d) (X Y) Z Exercises 1. Write formal descriptions of the following sets. a) The set containing the numbers 1, 10, and 100 b) The set containing all integers that are greater than 5 c) The set containing all natural

More information

Probability (Devore Chapter Two)

Probability (Devore Chapter Two) Probability (Devore Chapter Two) 1016-351-01 Probability Winter 2011-2012 Contents 1 Axiomatic Probability 2 1.1 Outcomes and Events............................... 2 1.2 Rules of Probability................................

More information

MATH CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #1 - SPRING DR. DAVID BRIDGE

MATH CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #1 - SPRING DR. DAVID BRIDGE MATH 205 - CALCULUS & STATISTICS/BUSN - PRACTICE EXAM # - SPRING 2006 - DR. DAVID BRIDGE TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. Tell whether the statement is

More information