Sets. Definition A set is an unordered collection of objects called elements or members of the set.

Size: px
Start display at page:

Download "Sets. Definition A set is an unordered collection of objects called elements or members of the set."

Transcription

1 Sets Definition A set is an unordered collection of objects called elements or members of the set.

2 Sets Definition A set is an unordered collection of objects called elements or members of the set. Examples: S = {1, 2, 5} V = {a, e, i, o, u} X = {apple, 32, A, Z} Y = {2, 3, 4, 6, 22}

3 Sets Definition A set is an unordered collection of objects called elements or members of the set. Examples: S = {1, 2, 5} V = {a, e, i, o, u} X = {apple, 32, A, Z} Y = {2, 3, 4, 6, 22} Y = {2, 3, 3, 4, 3, 22, 2, 6} Y = {22, 4, 6, 22, 3}

4 Sets Definition A set is an unordered collection of objects called elements or members of the set. Examples: S = {1, 2, 5} V = {a, e, i, o, u} X = {apple, 32, A, Z} Y = {2, 3, 4, 6, 22} Y = {2, 3, 3, 4, 3, 22, 2, 6} Y = {22, 4, 6, 22, 3} Familiar sets: N, Z, R, Q, R +.

5 Sets Definition A set is an unordered collection of objects called elements or members of the set. Examples: S = {1, 2, 5} V = {a, e, i, o, u} X = {apple, 32, A, Z} Y = {2, 3, 4, 6, 22} Y = {2, 3, 3, 4, 3, 22, 2, 6} Y = {22, 4, 6, 22, 3} Familiar sets: N, Z, R, Q, R +. Two common questions does x S? is X = Y?

6 Sets Definition A set is an unordered collection of objects called elements or members of the set. Examples: S = {1, 2, 5} V = {a, e, i, o, u} X = {apple, 32, A, Z} Y = {2, 3, 4, 6, 22} Y = {2, 3, 3, 4, 3, 22, 2, 6} Y = {22, 4, 6, 22, 3} Familiar sets: N, Z, R, Q, R +. Two common questions does x S? is X = Y? Roster method vs set-builder method.

7 Equality and containment A = B Y = {2, 3, 4, 6, 22}

8 Equality and containment A = B Y = {2, 3, 4, 6, 22} Y = {2, 3, 4, 3, 22, 2, 6} Y = {22, 4, 6, 22, 3}

9 Equality and containment A = B Y = {2, 3, 4, 6, 22} Y = {2, 3, 4, 3, 22, 2, 6} Y = {22, 4, 6, 22, 3} Express equality using quantifiers.

10 Equality and containment A = B Y = {2, 3, 4, 6, 22} Y = {2, 3, 4, 3, 22, 2, 6} Y = {22, 4, 6, 22, 3} Express equality using quantifiers. x (x A x B)

11 Equality and containment A = B A B Y = {2, 3, 4, 6, 22} Y = {2, 3, 4, 3, 22, 2, 6} Y = {22, 4, 6, 22, 3} Express equality using quantifiers. A = {a, b, 22, 33} B = {a, b, 22, 33, N} x (x A x B)

12 Equality and containment A = B A B Y = {2, 3, 4, 6, 22} Y = {2, 3, 4, 3, 22, 2, 6} Y = {22, 4, 6, 22, 3} Express equality using quantifiers. A = {a, b, 22, 33} B = {a, b, 22, 33, N} B A Express not a subset of using quantifiers. x (x A x B)

13 Equality and containment A = B A B Y = {2, 3, 4, 6, 22} Y = {2, 3, 4, 3, 22, 2, 6} Y = {22, 4, 6, 22, 3} Express equality using quantifiers. x (x A x B) A = {a, b, 22, 33} B = {a, b, 22, 33, N} B A Express not a subset of using quantifiers. x (x B x / A)

14 Empty set Definition A set that has no elements is the empty set denoted by φ or {}.

15 Empty set Definition A set that has no elements is the empty set denoted by φ or {}. for any set S, φ S.

16 Empty set Definition A set that has no elements is the empty set denoted by φ or {}. for any set S, φ S. for any set S, φ S.

17 Empty set Definition A set that has no elements is the empty set denoted by φ or {}. for any set S, φ S. for any set S, φ S. proof?

18 Empty set Definition A set that has no elements is the empty set denoted by φ or {}. for any set S, φ S. for any set S, φ S. proof? x (x φ x S) for any x, x φ always evaluates to false. the conditional (x φ x S) evaluates to true.

19 Empty set Definition A set that has no elements is the empty set denoted by φ or {}. for any set S, φ S. for any set S, φ S. proof? x (x φ x S) for any x, x φ always evaluates to false. the conditional (x φ x S) evaluates to true. Example of a vacuous proof.

20 Empty set Definition A set that has no elements is the empty set denoted by φ or {}. for any set S, φ S. for any set S, φ S. proof? x (x φ x S) for any x, x φ always evaluates to false. the conditional (x φ x S) evaluates to true. Example of a vacuous proof. Important {φ} is not the same as φ.

21 Power set S = {32, 6, 41} subsets of S: {}, {32}, {6}, {41}, {32, 6}, {6, 41}, {32, 41}, {32, 6, 41}.

22 Power set S = {32, 6, 41} subsets of S: {}, {32}, {6}, {41}, {32, 6}, {6, 41}, {32, 41}, {32, 6, 41}. Definition The set of all subsets of S is called the power set of S, denoted as P(S).

23 Power set S = {32, 6, 41} subsets of S: {}, {32}, {6}, {41}, {32, 6}, {6, 41}, {32, 41}, {32, 6, 41}. Definition The set of all subsets of S is called the power set of S, denoted as P(S). The power set of a set with n elements has 2 n elements.

24 Size of a set Definition If there are exactly n distinct elements in a set S, where n is a non-negative integer, then we say S is finite and cardinality of S is n. S = {1, 17, a, b}; S = 4. S = {1, 2, 2, 6, 7, 7}; S = 4.

25 Size of a set Definition If there are exactly n distinct elements in a set S, where n is a non-negative integer, then we say S is finite and cardinality of S is n. S = {1, 17, a, b}; S = 4. S = {1, 2, 2, 6, 7, 7}; S = 4. φ = 0.

26 Size of a set Definition If there are exactly n distinct elements in a set S, where n is a non-negative integer, then we say S is finite and cardinality of S is n. S = {1, 17, a, b}; S = 4. S = {1, 2, 2, 6, 7, 7}; S = 4. φ = 0. A set that is not finite is said to be infinite

27 Set operations Union Intersection Set difference Exclusive OR Complement Set identities

28 Exercises 1. For each of the sets below determine if 2 belongs to the set. (a) {x R x is an integer greater than 1} (b) {x R x is the square of an integer} (c) {2, {2}} (d) {{2}, {2}} (e) {{2}, {2, {2}}} 2. Let A = {φ, b}. Construct the following sets: A φ {φ} A A P(A) A P(A) 3. Prove that P(A) P(B) iff A B. 4. Express A B using quantifiers. 5. Prove that A B = Ā B.

Class 8 - Sets (Lecture Notes)

Class 8 - Sets (Lecture Notes) Class 8 - Sets (Lecture Notes) What is a Set? A set is a well-defined collection of distinct objects. Example: A = {1, 2, 3, 4, 5} What is an element of a Set? The objects in a set are called its elements.

More information

Sets. Gazihan Alankuş (Based on original slides by Brahim Hnich et al.) August 6, Outline Sets Equality Subset Empty Set Cardinality Power Set

Sets. Gazihan Alankuş (Based on original slides by Brahim Hnich et al.) August 6, Outline Sets Equality Subset Empty Set Cardinality Power Set Gazihan Alankuş (Based on original slides by Brahim Hnich et al.) August 6, 2012 Gazihan Alankuş (Based on original slides by Brahim Hnich et al.) Gazihan Alankuş (Based on original slides by Brahim Hnich

More information

1. The empty set is a proper subset of every set. Not true because the empty set is not a proper subset of itself! is the power set of A.

1. The empty set is a proper subset of every set. Not true because the empty set is not a proper subset of itself! is the power set of A. MAT 101 Solutions to Sample Questions for Exam 1 True or False Questions Answers: 1F, 2F, 3F, 4T, 5T, 6T, 7T 1. The empty set is a proper subset of every set. Not true because the empty set is not a proper

More information

Slide 1 Math 1520, Lecture 13

Slide 1 Math 1520, Lecture 13 Slide 1 Math 1520, Lecture 13 In chapter 7, we discuss background leading up to probability. Probability is one of the most commonly used pieces of mathematics in the world. Understanding the basic concepts

More information

Sample Spaces, Events, Probability

Sample Spaces, Events, Probability Sample Spaces, Events, Probability CS 3130/ECE 3530: Probability and Statistics for Engineers August 28, 2014 Sets A set is a collection of unique objects. Sets A set is a collection of unique objects.

More information

4. Let U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, X = {2, 3, 4}, Y = {1, 4, 5}, Z = {2, 5, 7}. Find a) (X Y) b) X Y c) X (Y Z) d) (X Y) Z

4. Let U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, X = {2, 3, 4}, Y = {1, 4, 5}, Z = {2, 5, 7}. Find a) (X Y) b) X Y c) X (Y Z) d) (X Y) Z Exercises 1. Write formal descriptions of the following sets. a) The set containing the numbers 1, 10, and 100 b) The set containing all integers that are greater than 5 c) The set containing all natural

More information

8.2 Union, Intersection, and Complement of Events; Odds

8.2 Union, Intersection, and Complement of Events; Odds 8.2 Union, Intersection, and Complement of Events; Odds Since we defined an event as a subset of a sample space it is natural to consider set operations like union, intersection or complement in the context

More information

CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch )

CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch ) CS1802 Discrete Structures Recitation Fall 2017 October 9-12, 2017 CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch 8.5-9.3) Sets i. Set Notation: Draw an arrow from the box on

More information

DVA325 Formal Languages, Automata and Models of Computation (FABER)

DVA325 Formal Languages, Automata and Models of Computation (FABER) DVA325 Formal Languages, Automata and Models of Computation (FABER) Lecture 1 - Introduction School of Innovation, Design and Engineering Mälardalen University 11 November 2014 Abu Naser Masud FABER November

More information

( ) = A. 2. Write the following sets using the roster method. 3. Write the following sets using set-builder notation.

( ) = A. 2. Write the following sets using the roster method. 3. Write the following sets using set-builder notation. 2.6. EXERISES 1. True or False? a. The empty set has no subsets. b. No set has exactly 14 distinct subsets. c. For any two finite sets and,

More information

Chapter 1. Set Theory

Chapter 1. Set Theory Chapter 1 Set Theory 1 Section 1.1: Types of Sets and Set Notation Set: A collection or group of distinguishable objects. Ex. set of books, the letters of the alphabet, the set of whole numbers. You can

More information

In how many ways can we paint 6 rooms, choosing from 15 available colors? What if we want all rooms painted with different colors?

In how many ways can we paint 6 rooms, choosing from 15 available colors? What if we want all rooms painted with different colors? What can we count? In how many ways can we paint 6 rooms, choosing from 15 available colors? What if we want all rooms painted with different colors? In how many different ways 10 books can be arranged

More information

Grade 7/8 Math Circles February 21 st /22 nd, Sets

Grade 7/8 Math Circles February 21 st /22 nd, Sets Faculty of Mathematics Waterloo, Ontario N2L 3G1 Sets Grade 7/8 Math Circles February 21 st /22 nd, 2017 Sets Centre for Education in Mathematics and Computing A set is a collection of unique objects i.e.

More information

1) 1) 2) 2) 3) 3) 4) 4) 5) 5) 6) 6) 7) 7) 8) 8) 9) 9) 10) 10) 11) 11) 12) 12)

1) 1) 2) 2) 3) 3) 4) 4) 5) 5) 6) 6) 7) 7) 8) 8) 9) 9) 10) 10) 11) 11) 12) 12) Review Test 1 Math 1332 Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Write a word description of the set. 1) 1) {26, 28, 30, 32,..., 100} List

More information

Contents 2.1 Basic Concepts of Probability Methods of Assigning Probabilities Principle of Counting - Permutation and Combination 39

Contents 2.1 Basic Concepts of Probability Methods of Assigning Probabilities Principle of Counting - Permutation and Combination 39 CHAPTER 2 PROBABILITY Contents 2.1 Basic Concepts of Probability 38 2.2 Probability of an Event 39 2.3 Methods of Assigning Probabilities 39 2.4 Principle of Counting - Permutation and Combination 39 2.5

More information

SETS OBJECTIVES EXPECTED BACKGROUND KNOWLEDGE 1.1 SOME STANDARD NOTATIONS. Sets. MODULE - I Sets, Relations and Functions

SETS OBJECTIVES EXPECTED BACKGROUND KNOWLEDGE 1.1 SOME STANDARD NOTATIONS. Sets. MODULE - I Sets, Relations and Functions 1 SETS Let us consider the following situation : One day Mrs. and Mr. Mehta went to the market. Mr. Mehta purchased the following objects/items. "a toy, one kg sweets and a magazine". Where as Mrs. Mehta

More information

Block 1 - Sets and Basic Combinatorics. Main Topics in Block 1:

Block 1 - Sets and Basic Combinatorics. Main Topics in Block 1: Block 1 - Sets and Basic Combinatorics Main Topics in Block 1: A short revision of some set theory Sets and subsets. Venn diagrams to represent sets. Describing sets using rules of inclusion. Set operations.

More information

CSE 21 Mathematics for Algorithm and System Analysis

CSE 21 Mathematics for Algorithm and System Analysis CSE 21 Mathematics for Algorithm and System Analysis Unit 1: Basic Count and List Section 3: Set CSE21: Lecture 3 1 Reminder Piazza forum address: http://piazza.com/ucsd/summer2013/cse21/hom e Notes on

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Today's learning goals Define and compute the cardinality of a set. Use functions to compare the sizes of sets. Classify sets

More information

Section Introduction to Sets

Section Introduction to Sets Section 1.1 - Introduction to Sets Definition: A set is a well-defined collection of objects usually denoted by uppercase letters. Definition: The elements, or members, of a set are denoted by lowercase

More information

CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch )

CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch ) CS1802 Discrete Structures Recitation Fall 2017 October 9-12, 2017 CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch 8.5-9.3) Sets i. Set Notation: Draw an arrow from the box on

More information

ACHS Math Team Lecture: Introduction to Set Theory Peter S. Simon

ACHS Math Team Lecture: Introduction to Set Theory Peter S. Simon ACHS Math Team Lecture: Introduction to Set Theory Peter S. Simon Introduction to Set Theory A set is a collection of objects, called elements or members of the set. We will usually denote a set by a capital

More information

Compound Probability. Set Theory. Basic Definitions

Compound Probability. Set Theory. Basic Definitions Compound Probability Set Theory A probability measure P is a function that maps subsets of the state space Ω to numbers in the interval [0, 1]. In order to study these functions, we need to know some basic

More information

Chapter 1. Probability

Chapter 1. Probability Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.

More information

Week 3-4: Permutations and Combinations

Week 3-4: Permutations and Combinations Week 3-4: Permutations and Combinations February 20, 2017 1 Two Counting Principles Addition Principle. Let S 1, S 2,..., S m be disjoint subsets of a finite set S. If S = S 1 S 2 S m, then S = S 1 + S

More information

Cardinality of Accumulation Points of Infinite Sets

Cardinality of Accumulation Points of Infinite Sets International Mathematical Forum, Vol. 11, 2016, no. 11, 539-546 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2016.6224 Cardinality of Accumulation Points of Infinite Sets A. Kalapodi CTI

More information

The probability set-up

The probability set-up CHAPTER 2 The probability set-up 2.1. Introduction and basic theory We will have a sample space, denoted S (sometimes Ω) that consists of all possible outcomes. For example, if we roll two dice, the sample

More information

What is counting? (how many ways of doing things) how many possible ways to choose 4 people from 10?

What is counting? (how many ways of doing things) how many possible ways to choose 4 people from 10? Chapter 5. Counting 5.1 The Basic of Counting What is counting? (how many ways of doing things) combinations: how many possible ways to choose 4 people from 10? how many license plates that start with

More information

Probability. Ms. Weinstein Probability & Statistics

Probability. Ms. Weinstein Probability & Statistics Probability Ms. Weinstein Probability & Statistics Definitions Sample Space The sample space, S, of a random phenomenon is the set of all possible outcomes. Event An event is a set of outcomes of a random

More information

Probability. Dr. Zhang Fordham Univ.

Probability. Dr. Zhang Fordham Univ. Probability! Dr. Zhang Fordham Univ. 1 Probability: outline Introduction! Experiment, event, sample space! Probability of events! Calculate Probability! Through counting! Sum rule and general sum rule!

More information

The probability set-up

The probability set-up CHAPTER The probability set-up.1. Introduction and basic theory We will have a sample space, denoted S sometimes Ω that consists of all possible outcomes. For example, if we roll two dice, the sample space

More information

November 6, Chapter 8: Probability: The Mathematics of Chance

November 6, Chapter 8: Probability: The Mathematics of Chance Chapter 8: Probability: The Mathematics of Chance November 6, 2013 Last Time Crystallographic notation Groups Crystallographic notation The first symbol is always a p, which indicates that the pattern

More information

Cardinality revisited

Cardinality revisited Cardinality revisited A set is finite (has finite cardinality) if its cardinality is some (finite) integer n. Two sets A,B have the same cardinality iff there is a one-to-one correspondence from A to B

More information

Define and Diagram Outcomes (Subsets) of the Sample Space (Universal Set)

Define and Diagram Outcomes (Subsets) of the Sample Space (Universal Set) 12.3 and 12.4 Notes Geometry 1 Diagramming the Sample Space using Venn Diagrams A sample space represents all things that could occur for a given event. In set theory language this would be known as the

More information

Three Pile Nim with Move Blocking. Arthur Holshouser. Harold Reiter.

Three Pile Nim with Move Blocking. Arthur Holshouser. Harold Reiter. Three Pile Nim with Move Blocking Arthur Holshouser 3600 Bullard St Charlotte, NC, USA Harold Reiter Department of Mathematics, University of North Carolina Charlotte, Charlotte, NC 28223, USA hbreiter@emailunccedu

More information

Principle of Inclusion-Exclusion Notes

Principle of Inclusion-Exclusion Notes Principle of Inclusion-Exclusion Notes The Principle of Inclusion-Exclusion (often abbreviated PIE is the following general formula used for finding the cardinality of a union of finite sets. Theorem 0.1.

More information

Chapter 2. Permutations and Combinations

Chapter 2. Permutations and Combinations 2. Permutations and Combinations Chapter 2. Permutations and Combinations In this chapter, we define sets and count the objects in them. Example Let S be the set of students in this classroom today. Find

More information

Probability. Engr. Jeffrey T. Dellosa.

Probability. Engr. Jeffrey T. Dellosa. Probability Engr. Jeffrey T. Dellosa Email: jtdellosa@gmail.com Outline Probability 2.1 Sample Space 2.2 Events 2.3 Counting Sample Points 2.4 Probability of an Event 2.5 Additive Rules 2.6 Conditional

More information

Week 3 Classical Probability, Part I

Week 3 Classical Probability, Part I Week 3 Classical Probability, Part I Week 3 Objectives Proper understanding of common statistical practices such as confidence intervals and hypothesis testing requires some familiarity with probability

More information

CSE 312: Foundations of Computing II Quiz Section #2: Inclusion-Exclusion, Pigeonhole, Introduction to Probability

CSE 312: Foundations of Computing II Quiz Section #2: Inclusion-Exclusion, Pigeonhole, Introduction to Probability CSE 312: Foundations of Computing II Quiz Section #2: Inclusion-Exclusion, Pigeonhole, Introduction to Probability Review: Main Theorems and Concepts Binomial Theorem: Principle of Inclusion-Exclusion

More information

TOPOLOGY, LIMITS OF COMPLEX NUMBERS. Contents 1. Topology and limits of complex numbers 1

TOPOLOGY, LIMITS OF COMPLEX NUMBERS. Contents 1. Topology and limits of complex numbers 1 TOPOLOGY, LIMITS OF COMPLEX NUMBERS Contents 1. Topology and limits of complex numbers 1 1. Topology and limits of complex numbers Since we will be doing calculus on complex numbers, not only do we need

More information

Section Summary. Finite Probability Probabilities of Complements and Unions of Events Probabilistic Reasoning

Section Summary. Finite Probability Probabilities of Complements and Unions of Events Probabilistic Reasoning Section 7.1 Section Summary Finite Probability Probabilities of Complements and Unions of Events Probabilistic Reasoning Probability of an Event Pierre-Simon Laplace (1749-1827) We first study Pierre-Simon

More information

Chapter 1 Math Set: a collection of objects. For example, the set of whole numbers is W = {0, 1, 2, 3, }

Chapter 1 Math Set: a collection of objects. For example, the set of whole numbers is W = {0, 1, 2, 3, } Chapter 1 Math 3201 1 Chapter 1: Set Theory: Organizing information into sets and subsets Graphically illustrating the relationships between sets and subsets using Venn diagrams Solving problems by using

More information

It is important that you show your work. The total value of this test is 220 points.

It is important that you show your work. The total value of this test is 220 points. June 27, 2001 Your name It is important that you show your work. The total value of this test is 220 points. 1. (10 points) Use the Euclidean algorithm to solve the decanting problem for decanters of sizes

More information

CIS 2033 Lecture 6, Spring 2017

CIS 2033 Lecture 6, Spring 2017 CIS 2033 Lecture 6, Spring 2017 Instructor: David Dobor February 2, 2017 In this lecture, we introduce the basic principle of counting, use it to count subsets, permutations, combinations, and partitions,

More information

Mathematical Foundations of Computer Science Lecture Outline August 30, 2018

Mathematical Foundations of Computer Science Lecture Outline August 30, 2018 Mathematical Foundations of omputer Science Lecture Outline ugust 30, 2018 ounting ounting is a part of combinatorics, an area of mathematics which is concerned with the arrangement of objects of a set

More information

THE PIGEONHOLE PRINCIPLE. MARK FLANAGAN School of Electrical and Electronic Engineering University College Dublin

THE PIGEONHOLE PRINCIPLE. MARK FLANAGAN School of Electrical and Electronic Engineering University College Dublin THE PIGEONHOLE PRINCIPLE MARK FLANAGAN School of Electrical and Electronic Engineering University College Dublin The Pigeonhole Principle: If n + 1 objects are placed into n boxes, then some box contains

More information

There are three types of mathematicians. Those who can count and those who can t.

There are three types of mathematicians. Those who can count and those who can t. 1 Counting There are three types of mathematicians. Those who can count and those who can t. 1.1 Orderings The details of the question always matter. So always take a second look at what is being asked

More information

Counting and Probability Math 2320

Counting and Probability Math 2320 Counting and Probability Math 2320 For a finite set A, the number of elements of A is denoted by A. We have two important rules for counting. 1. Union rule: Let A and B be two finite sets. Then A B = A

More information

Theory of Probability - Brett Bernstein

Theory of Probability - Brett Bernstein Theory of Probability - Brett Bernstein Lecture 3 Finishing Basic Probability Review Exercises 1. Model flipping two fair coins using a sample space and a probability measure. Compute the probability of

More information

Multiple Choice Questions for Review

Multiple Choice Questions for Review Review Questions Multiple Choice Questions for Review 1. Suppose there are 12 students, among whom are three students, M, B, C (a Math Major, a Biology Major, a Computer Science Major. We want to send

More information

Chapter 5: Probability: What are the Chances? Section 5.2 Probability Rules

Chapter 5: Probability: What are the Chances? Section 5.2 Probability Rules + Chapter 5: Probability: What are the Chances? Section 5.2 + Two-Way Tables and Probability When finding probabilities involving two events, a two-way table can display the sample space in a way that

More information

Discrete Structures for Computer Science

Discrete Structures for Computer Science Discrete Structures for Computer Science William Garrison bill@cs.pitt.edu 6311 Sennott Square Lecture #23: Discrete Probability Based on materials developed by Dr. Adam Lee The study of probability is

More information

Strings. A string is a list of symbols in a particular order.

Strings. A string is a list of symbols in a particular order. Ihor Stasyuk Strings A string is a list of symbols in a particular order. Strings A string is a list of symbols in a particular order. Examples: 1 3 0 4 1-12 is a string of integers. X Q R A X P T is a

More information

CSE 312: Foundations of Computing II Quiz Section #2: Inclusion-Exclusion, Pigeonhole, Introduction to Probability (solutions)

CSE 312: Foundations of Computing II Quiz Section #2: Inclusion-Exclusion, Pigeonhole, Introduction to Probability (solutions) CSE 31: Foundations of Computing II Quiz Section #: Inclusion-Exclusion, Pigeonhole, Introduction to Probability (solutions) Review: Main Theorems and Concepts Binomial Theorem: x, y R, n N: (x + y) n

More information

The study of probability is concerned with the likelihood of events occurring. Many situations can be analyzed using a simplified model of probability

The study of probability is concerned with the likelihood of events occurring. Many situations can be analyzed using a simplified model of probability The study of probability is concerned with the likelihood of events occurring Like combinatorics, the origins of probability theory can be traced back to the study of gambling games Still a popular branch

More information

Formal Verification. Lecture 5: Computation Tree Logic (CTL)

Formal Verification. Lecture 5: Computation Tree Logic (CTL) Formal Verification Lecture 5: Computation Tree Logic (CTL) Jacques Fleuriot 1 jdf@inf.ac.uk 1 With thanks to Bob Atkey for some of the diagrams. Recap Previously: Linear-time Temporal Logic This time:

More information

Permutations. = f 1 f = I A

Permutations. = f 1 f = I A Permutations. 1. Definition (Permutation). A permutation of a set A is a bijective function f : A A. The set of all permutations of A is denoted by Perm(A). 2. If A has cardinality n, then Perm(A) has

More information

MATHEMATICS 152, FALL 2004 METHODS OF DISCRETE MATHEMATICS Outline #10 (Sets and Probability)

MATHEMATICS 152, FALL 2004 METHODS OF DISCRETE MATHEMATICS Outline #10 (Sets and Probability) MATHEMATICS 152, FALL 2004 METHODS OF DISCRETE MATHEMATICS Outline #10 (Sets and Probability) Last modified: November 10, 2004 This follows very closely Apostol, Chapter 13, the course pack. Attachments

More information

Permutations and Combinations

Permutations and Combinations Permutations and Combinations Introduction Permutations and combinations refer to number of ways of selecting a number of distinct objects from a set of distinct objects. Permutations are ordered selections;

More information

Statistics Intermediate Probability

Statistics Intermediate Probability Session 6 oscardavid.barrerarodriguez@sciencespo.fr April 3, 2018 and Sampling from a Population Outline 1 The Monty Hall Paradox Some Concepts: Event Algebra Axioms and Things About that are True Counting

More information

Introduction to Computational Manifolds and Applications

Introduction to Computational Manifolds and Applications IMPA - Instituto de Matemática Pura e Aplicada, Rio de Janeiro, RJ, Brazil Introduction to Computational Manifolds and Applications Part 1 - Foundations Prof. Jean Gallier jean@cis.upenn.edu Department

More information

29. Army Housing (a) (b) (c) (d) (e) (f ) Totals Totals (a) (b) (c) (d) (e) (f) Basketball Positions 32. Guard Forward Center

29. Army Housing (a) (b) (c) (d) (e) (f ) Totals Totals (a) (b) (c) (d) (e) (f) Basketball Positions 32. Guard Forward Center Infinite Sets and Their Cardinalities As mentioned at the beginning of this chapter, most of the early work in set theory was done by Georg Cantor He devoted much of his life to a study of the cardinal

More information

and problem sheet 7

and problem sheet 7 1-18 and 15-151 problem sheet 7 Solutions to the following five exercises and optional bonus problem are to be submitted through gradescope by 11:30PM on Friday nd November 018. Problem 1 Let A N + and

More information

PUTNAM PROBLEMS FINITE MATHEMATICS, COMBINATORICS

PUTNAM PROBLEMS FINITE MATHEMATICS, COMBINATORICS PUTNAM PROBLEMS FINITE MATHEMATICS, COMBINATORICS 2014-B-5. In the 75th Annual Putnam Games, participants compete at mathematical games. Patniss and Keeta play a game in which they take turns choosing

More information

Combinatorics: The Fine Art of Counting

Combinatorics: The Fine Art of Counting Combinatorics: The Fine Art of Counting Week 6 Lecture Notes Discrete Probability Note Binomial coefficients are written horizontally. The symbol ~ is used to mean approximately equal. Introduction and

More information

Finite and Infinite Sets

Finite and Infinite Sets Finite and Infinite Sets MATH 464/506, Real Analysis J. Robert Buchanan Department of Mathematics Summer 2007 Basic Definitions Definition The empty set has 0 elements. If n N, a set S is said to have

More information

November 11, Chapter 8: Probability: The Mathematics of Chance

November 11, Chapter 8: Probability: The Mathematics of Chance Chapter 8: Probability: The Mathematics of Chance November 11, 2013 Last Time Probability Models and Rules Discrete Probability Models Equally Likely Outcomes Probability Rules Probability Rules Rule 1.

More information

EDULABZ INTERNATIONAL SETS AND VENN DIAGRAMS

EDULABZ INTERNATIONAL SETS AND VENN DIAGRAMS 12 SETS ND VENN DIGRMS Section I : Sets 1. Describe the following sets in roster form : (i) 2 { x / x = n, n N, 2 n 5} (ii) {x / x is composite number and 11 < x < 25} (iii) {x / x W, x is divisible by

More information

UCSD CSE 21, Spring 2014 [Section B00] Mathematics for Algorithm and System Analysis

UCSD CSE 21, Spring 2014 [Section B00] Mathematics for Algorithm and System Analysis UCSD CSE 21, Spring 2014 [Section B00] Mathematics for Algorithm and System Analysis Lecture 3 Class URL: http://vlsicad.ucsd.edu/courses/cse21-s14/ Lecture 3 Notes Goal for today: CL Section 3 Subsets,

More information

Cardinality. Hebrew alphabet). We write S = ℵ 0 and say that S has cardinality aleph null.

Cardinality. Hebrew alphabet). We write S = ℵ 0 and say that S has cardinality aleph null. Section 2.5 1 Cardinality Definition: The cardinality of a set A is equal to the cardinality of a set B, denoted A = B, if and only if there is a one-to-one correspondence (i.e., a bijection) from A to

More information

Introduction to probability

Introduction to probability Introduction to probability Suppose an experiment has a finite set X = {x 1,x 2,...,x n } of n possible outcomes. Each time the experiment is performed exactly one on the n outcomes happens. Assign each

More information

Outline. Sets of Gluing Data. Constructing Manifolds. Lecture 3 - February 3, PM

Outline. Sets of Gluing Data. Constructing Manifolds. Lecture 3 - February 3, PM Constructing Manifolds Lecture 3 - February 3, 2009-1-2 PM Outline Sets of gluing data The cocycle condition Parametric pseudo-manifolds (PPM s) Conclusions 2 Let n and k be integers such that n 1 and

More information

CHAPTER 2 PROBABILITY. 2.1 Sample Space. 2.2 Events

CHAPTER 2 PROBABILITY. 2.1 Sample Space. 2.2 Events CHAPTER 2 PROBABILITY 2.1 Sample Space A probability model consists of the sample space and the way to assign probabilities. Sample space & sample point The sample space S, is the set of all possible outcomes

More information

Section Summary. Permutations Combinations Combinatorial Proofs

Section Summary. Permutations Combinations Combinatorial Proofs Section 6.3 Section Summary Permutations Combinations Combinatorial Proofs Permutations Definition: A permutation of a set of distinct objects is an ordered arrangement of these objects. An ordered arrangement

More information

Week 1: Probability models and counting

Week 1: Probability models and counting Week 1: Probability models and counting Part 1: Probability model Probability theory is the mathematical toolbox to describe phenomena or experiments where randomness occur. To have a probability model

More information

November 8, Chapter 8: Probability: The Mathematics of Chance

November 8, Chapter 8: Probability: The Mathematics of Chance Chapter 8: Probability: The Mathematics of Chance November 8, 2013 Last Time Probability Models and Rules Discrete Probability Models Equally Likely Outcomes Crystallographic notation The first symbol

More information

Discrete Structures Lecture Permutations and Combinations

Discrete Structures Lecture Permutations and Combinations Introduction Good morning. Many counting problems can be solved by finding the number of ways to arrange a specified number of distinct elements of a set of a particular size, where the order of these

More information

Such a description is the basis for a probability model. Here is the basic vocabulary we use.

Such a description is the basis for a probability model. Here is the basic vocabulary we use. 5.2.1 Probability Models When we toss a coin, we can t know the outcome in advance. What do we know? We are willing to say that the outcome will be either heads or tails. We believe that each of these

More information

Probability: Terminology and Examples Spring January 1, / 22

Probability: Terminology and Examples Spring January 1, / 22 Probability: Terminology and Examples 18.05 Spring 2014 January 1, 2017 1 / 22 Board Question Deck of 52 cards 13 ranks: 2, 3,..., 9, 10, J, Q, K, A 4 suits:,,,, Poker hands Consists of 5 cards A one-pair

More information

Name Date. Goal: Understand sets and set notation.

Name Date. Goal: Understand sets and set notation. F Math 12 3.1 Types of Sets and Set Notation p. 146 Name Date Goal: Understand sets and set notation. 1. set: A collection of distinguishable objects; for example, the set of whole numbers is W = {0, 1,

More information

Grade 7/8 Math Circles February 25/26, Probability

Grade 7/8 Math Circles February 25/26, Probability Faculty of Mathematics Waterloo, Ontario N2L 3G1 Probability Grade 7/8 Math Circles February 25/26, 2014 Probability Centre for Education in Mathematics and Computing Probability is the study of how likely

More information

Probability Models. Section 6.2

Probability Models. Section 6.2 Probability Models Section 6.2 The Language of Probability What is random? Empirical means that it is based on observation rather than theorizing. Probability describes what happens in MANY trials. Example

More information

4.3 Finding Probability Using Sets

4.3 Finding Probability Using Sets 4.3 Finding Probability Using ets When rolling a die with sides numbered from 1 to 20, if event A is the event that a number divisible by 5 is rolled: a) What is the sample space,? b) What is the event

More information

The Hex game and its mathematical side

The Hex game and its mathematical side The Hex game and its mathematical side Antonín Procházka Laboratoire de Mathématiques de Besançon Université Franche-Comté Lycée Jules Haag, 19 mars 2013 Brief history : HEX was invented in 1942

More information

Cardinality and Bijections

Cardinality and Bijections Countable and Cardinality and Bijections Gazihan Alankuş (Based on original slides by Brahim Hnich et al.) August 13, 2012 Countable and Countable and Countable and How to count elements in a set? How

More information

1. Functions and set sizes 2. Infinite set sizes. ! Let X,Y be finite sets, f:x!y a function. ! Theorem: If f is injective then X Y.

1. Functions and set sizes 2. Infinite set sizes. ! Let X,Y be finite sets, f:x!y a function. ! Theorem: If f is injective then X Y. 2 Today s Topics: CSE 20: Discrete Mathematics for Computer Science Prof. Miles Jones 1. Functions and set sizes 2. 3 4 1. Functions and set sizes! Theorem: If f is injective then Y.! Try and prove yourself

More information

Chapter 1. The alternating groups. 1.1 Introduction. 1.2 Permutations

Chapter 1. The alternating groups. 1.1 Introduction. 1.2 Permutations Chapter 1 The alternating groups 1.1 Introduction The most familiar of the finite (non-abelian) simple groups are the alternating groups A n, which are subgroups of index 2 in the symmetric groups S n.

More information

Math 127: Equivalence Relations

Math 127: Equivalence Relations Math 127: Equivalence Relations Mary Radcliffe 1 Equivalence Relations Relations can take many forms in mathematics. In these notes, we focus especially on equivalence relations, but there are many other

More information

Logic and the Sizes of Sets

Logic and the Sizes of Sets 1/25 Logic and the Sizes of Sets Larry Moss, Indiana University EASLLI 2014 2/25 Map of Some Natural Logics FOL FO 2 + trans Church-Turing first-order logic FO 2 + R is trans RC (tr,opp) Peano-Frege Aristotle

More information

Honors Precalculus Chapter 9 Summary Basic Combinatorics

Honors Precalculus Chapter 9 Summary Basic Combinatorics Honors Precalculus Chapter 9 Summary Basic Combinatorics A. Factorial: n! means 0! = Why? B. Counting principle: 1. How many different ways can a license plate be formed a) if 7 letters are used and each

More information

STOR 155 Introductory Statistics. Lecture 10: Randomness and Probability Model

STOR 155 Introductory Statistics. Lecture 10: Randomness and Probability Model The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL STOR 155 Introductory Statistics Lecture 10: Randomness and Probability Model 10/6/09 Lecture 10 1 The Monty Hall Problem Let s Make A Deal: a game show

More information

Sec$on Summary. Permutations Combinations Combinatorial Proofs

Sec$on Summary. Permutations Combinations Combinatorial Proofs Section 6.3 Sec$on Summary Permutations Combinations Combinatorial Proofs 2 Coun$ng ordered arrangements Ex: How many ways can we select 3 students from a group of 5 students to stand in line for a picture?

More information

Lecture 2: Sum rule, partition method, difference method, bijection method, product rules

Lecture 2: Sum rule, partition method, difference method, bijection method, product rules Lecture 2: Sum rule, partition method, difference method, bijection method, product rules References: Relevant parts of chapter 15 of the Math for CS book. Discrete Structures II (Summer 2018) Rutgers

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 11

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 11 EECS 70 Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 11 Counting As we saw in our discussion for uniform discrete probability, being able to count the number of elements of

More information

An art collector might own a collection of paintings, while a music lover might keep a collection of CDs. Any collection of items can form a set.

An art collector might own a collection of paintings, while a music lover might keep a collection of CDs. Any collection of items can form a set. Sets 319 Sets It is natural for us to classify items into groups, or sets, and consider how those sets overlap with each other. We can use these sets understand relationships between groups, and to analyze

More information

Advanced Automata Theory 4 Games

Advanced Automata Theory 4 Games Advanced Automata Theory 4 Games Frank Stephan Department of Computer Science Department of Mathematics National University of Singapore fstephan@comp.nus.edu.sg Advanced Automata Theory 4 Games p. 1 Repetition

More information

Probability I Sample spaces, outcomes, and events.

Probability I Sample spaces, outcomes, and events. Probability I Sample spaces, outcomes, and events. When we perform an experiment, the result is called the outcome. The set of possible outcomes is the sample space and any subset of the sample space is

More information

STAT 155 Introductory Statistics. Lecture 11: Randomness and Probability Model

STAT 155 Introductory Statistics. Lecture 11: Randomness and Probability Model The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL STAT 155 Introductory Statistics Lecture 11: Randomness and Probability Model 10/5/06 Lecture 11 1 The Monty Hall Problem Let s Make A Deal: a game show

More information

Applied Statistics I

Applied Statistics I Applied Statistics I Liang Zhang Department of Mathematics, University of Utah June 12, 2008 Liang Zhang (UofU) Applied Statistics I June 12, 2008 1 / 29 In Probability, our main focus is to determine

More information