Lecture 1 1 Light Rays, Images, and Shadows

Size: px
Start display at page:

Download "Lecture 1 1 Light Rays, Images, and Shadows"

Transcription

1 Lecture Light Rays, Images, and Shadows. History We will begin by considering how vision and light was understood in ancient times. For more details than provided below, please read the recommended text, Rediscovering Optics by N. Kipnis, and references therein. The first reading assignment is to read the Introduction, Sections I and II in Chapter I. I have paraphrased some of the material in Chapter I in the paragraph below. There were two popular theories. According to the Pythagorean school, the eye had an internal fire which it sends towards the object to determine its shape and color. Empedocles (492 B.C B.C) compared it to a lantern making things visible at night. The other theory, given by Democritus, in about 450 B.C. asserted that the object sent its image into the eye. Neither theory was successful and Plato (427 B.C. 347 B.C.) supposed that the solution was in the interaction between the internal fire and the external agent. Aristotle a little later (384 B.C 322 B.C.) rejected both theories and thought vision was due to changes in the medium between the eye and the object. These ideas eventually gave rise to the wave theory of light over the corpuscular theory. The main focus in optics was on the nature of vision and not on light until the seventeen century. The main discussion in antiquity was on whether vision is initiated within the eye or outside the eye. Euclid in 300 B.C. favored an emission theory in his book Optics and assumed that visual rays from the eye traveled in straight lines. With this axiom the study of optics and light became one of the most advanced sciences in antiquity. This theory of visual rays dominated optics for many centuries. In the Middles Ages the center of learning moved from Europe to the Muslim world. Two scientist known as Alhazen (83 A.D 866 A.D.) and Al-Kindi (965 A.D. 039 A.D.) wanted to show experimentally that the visual rays were rectilinear but ended up showing that light rays or luminous rays are rectilinear. Using flames and various light sources and pinholes they conducted experiments that were supported by the intromission theory of light and showed that light rays traveling in straight lines was consistent with experiment. In particular Al-Kindi showed that light rays or luminous rays are rectilinear by studying the shapes of shadows and images created by apertures. At that time Aristotle and others were quite puzzled by the fact that an image made by sunlight passing through an opening is similar to the sun or luminous body and not the opening. We begin our first home lab by investigating light rays, images and shadows and ultimately solve Aristotles problem on whether a square hole can produces a round image or square image of the sun. See photograph below of an image formed by a square hole illuminated by a light bulb at about meter away from the square hole.

2 ..2 Light Rays Travel in Straight Lines Our first laboratory investigation will be a study in how shadows and images are formed from apertures and objects. All you need to know to understand these phenomena is that light rays travel in straight lines and a little geometry and some simple experiments can be performed with household materials as you will see. It is quite interesting that so many simple light and optics experiments originally thought to be paradoxical were eventually explained by simply assuming that light rays travel in straight lines and using a little geometry. You will conduct some of these experiments in your optics lab at home and understand them in terms of this simple picture. But first here is our current understanding of how light rays propagate from a light source. We treat light as being made up of an infinite set of narrow beams of light, called light rays, or simply rays, traveling through vacuum or transparent media along straight-line paths. Where a ray of light encounters the surface of a mirror, or the interface between the transparent medium in which it (the light) is traveling and another transparent medium, the ray makes an abrupt change in direction, after which, it travels along a new straight-line path. We see light emitted by sources of light because the light enters our eyes. Consider for instance, a candle. Every point of the flame of the candle emits rays of light in every direction.

3 While the preceding diagram conveys the idea in the statement preceding the diagram, the diagram is not the complete picture. To get a more complete picture of what s going on, what I want you to do is to look at the diagram provided, form a picture of it in your mind, and, to the picture in your mind, add the following embellishments:. First off, I need you to imagine it to be a real candle extending in three dimensions. Our set of rays depicted as arrows whose tips are all on a circle becomes a set of rays depicted as arrows whose tips all end on a sphere. Thus, in addition to rays going (at various angles) upward, downward and to the sides, you ve got rays proceeding (at various angles) away from you and toward you. 2. Now I need you to add more rays to the picture in your mind. I included 6 rays in the diagram. In three dimensions, you should have about 20 rays in the picture in your mind. I need you to bump that up to infinity. 3. In the original diagram, I showed rays coming only from the tip of the flame. At this point, we have an infinite number of rays coming from the tip of the flame. I need you to picture that to be the case for each point of the flame, not just the tip of the flame. In the interest of simplicity, in the picture in your mind, let the flame of the candle be an opaque solid rather than gaseous, so that we can treat all our rays as coming from points on the surface of the flame. Neglect any rays that are in any way directed into the flame itself (don t include them in the picture in your mind). Upon completion of this step, you should have, in the picture in your mind, an infinite number of rays coming from each of the infinite number of points making up the surface of the flame. 4. For this next part, we need to establish the setting. I m concerned that you might be reading this in a room in which lit candles are forbidden. If so, please relocate the candle in the picture in your mind to the dining room table in your home, or, replace the candle with a fake electric-powered candle such as you might see in a home around Christmas time. Now I need you to extend each of the rays in the picture in your mind all the way out to the point where they bump into something. Please end each ray at the point where it bumps into something. (A ray that bumps into a nonshiny surface, bounces off in all directions [diffuse reflection]. Thus, each ray that bumps into a non-shiny surface creates an infinite set of rays coming from the point of impact. A ray bumping into perfectly shiny surfaces continues as a single ray in one particular, new, direction [specular reflection]. To avoid clutter, let s omit all the reflected rays from the picture in your mind.)

4 If you have carried out steps -4 above, then you have the picture, in your mind, of the geometric optics model of the light given off by a light-emitting object. When you are in a room with a candle such as the one we have been discussing, you can tell where it is (in what direction and how far away you might not be able to give very accurate values, but you can tell where it is) by looking at it. When you look at it, an infinite number of rays, from each part of the surface of the flame, are entering your eyes. What is amazing is how few rays you need to determine where, for instance, the tip of the flame is. Of the infinite number of rays available to you, you only need two! Consider what you can find out from a single ray entering your eye: From just one of the infinite number of rays, you can deduce the direction that the tip of the flame is in, relative to you. In other words, you can say that the tip of the flame lies somewhere on the line segment that both contains the ray that enters your eye, and, that ends at the location of your eye. From ray, you can 2 From one other ray, ray 2 in the diagram at right, you can deduce that the tip of the

5 flame must lie somewhere back along one other line. From ray, you can 2 From ray 2, you can There is only one point in space that is both somewhere back along line and somewhere back along line 2. That one point is, of course, the point where the two lines cross. The eye-brain system is an amazing system. When you look at something, your eye-brain system automatically carries out the trace back and find the intersection process to determine how far away that something is. Again, you might not be able to tell me how many centimeters away the candle, for instance, is, but you must know how far away it is because you would know about how hard to throw something to hit the candle. This business of tracing rays back to see where they come from is known as ray tracing and is what geometric optics is all about. At this point I want to return our attention to the candle to provide you with a little bit more insight into the practice of ray tracing. Suppose that when you were determining the location of the tip of the flame of the candle, you already had some additional information about the candle. For instance, assume: You know that the rays are coming from the upper extremity of the candle; you know that the bottom of the candle is on the plane of the surface of your dining room table; and you know that the candle is vertical. We ll also assume that the candle is so skinny that we are not interested in its horizontal extent in space, so, we can think of it as a skinny line segment with a top (the tip of the candle) and a bottom, the point on the candle that is at table level. The intersection of the plane of the table surface with the plane of the two rays is a line, and, based on the information we have, the bottom of the candle is on that line. Note: Throwing things at lit candles is a dangerous practice in which I urge you not to engage.

6 From ray, you can 2 Reliable, but undisclosed, sources tell us that the bottom of the candle is on this line, and that the candle is vertical. From ray 2, you can Taken together with the information gleaned from the rays, we can draw in the entire (skinny) candle, on our diagram, and from the diagram, determine such things as the candle s height, position, and orientation (whether it is upside down [inverted] or right side up [erect]). In adding the candle to the diagram, I am going to draw it as an arrow. Besides the fact that it is conventional to draw objects in ray tracing diagrams as arrows, we use an arrow to represent the candle to avoid conveying the impression that, from the limited facts we have at our disposal, we have been able to learn more about the candle (diameter, flame height, etc) than is possible. (We can only determine the height, position, and orientation.) 2

7 The trace-back method for locating the tip of the candle flame works for any two rays, from among the infinite number of rays emitted by the tip of the candle flame. All the rays come from the same point and they all travel along different straight line paths. As such, the rays are said to diverge from the tip of the candle flame. The trace-back method allows us to determine the point from which the rays are diverging. By means of lenses and mirrors, we can redirect rays of light, infinite numbers of them at a time, in such a manner as to fool the eye-brain system that is using the trace-back method into perceiving the point from which the rays are diverging as being someplace other than where the object is. To do so, one simply has to redirect the rays so that they are diverging from someplace other than their point of origin. The point, other than their point of origin, from which the rays diverge (because of the redirection of rays by mirrors and/or lenses), is called the image of the point on the object from which the light actually originates. In many of our labs that will follow, the main objective will be to locate the image as a result of the light reflecting off of mirrors and/or passing through lenses..3 Shadows and Images Our first home laboratory investigation will be a study in how shadows and images are formed from apertures and objects. All you need to know to understand these phenomena is that light rays travel in straight lines and a little geometry. These phenomena can be observed in simple experiments performed with household materials. To think about why shadows can sometimes look fuzzy and sometimes look very distinct maybe we should go back and think about what we know about lunar eclipses (when the Earth throws its shadow of the Sun s light across the moon. Figure. Since the Sun is not a point of light (but quite large), rays of light shining from both sides of the Sun cause two types of shadows during a lunar eclipse. Rays of light that are blocked almost parallel to the Earth and Sun axis form a darker shadow (in the umbra all rays are blocked by the Earth). Rays of light that shine to the opposite side of the Earth are also blocked but the light rays from the Sun that shine more parallel are not blocked thus there is a lighter shadow know as the penumbra in that region.

8 Figure.2 Projecting the shadow of a small ball onto a paper screen can create a similar pattern of shadows. In this first set of activities, we will closely observe the formation of shadows and determine how they have been constructed. The diagram at the left shows the relationship of the umbra and penumbra shadows and the appearance of the moon during a lunar eclipse. The stunning copper color of the moon at total eclipse is caused by sunlight being refracted through the Earth s atmosphere (much like we see at sunset). Its brightness depends on the amount of dust in Earth's upper atmosphere at the time.

9 A beautiful multiple exposure photograph of a total lunar eclipse in the U.S. on April 22, 2008, showing the different stages of the eclipse. References:. N. Kipnis, Rediscovering Optics, Bena Press, 993, ISBN X Chapter I, p. 2. Notes from the Internet.

E X P E R I M E N T 12

E X P E R I M E N T 12 E X P E R I M E N T 12 Mirrors and Lenses Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics II, Exp 12: Mirrors and Lenses

More information

Turn in your homework in the boxes at the back of the lecture hall on your right as you face the back of the hall.

Turn in your homework in the boxes at the back of the lecture hall on your right as you face the back of the hall. Turn in your homework in the boxes at the back of the lecture hall on your right as you face the back of the hall. Lectures from chapter 1 are on the website Clickers will be counted starting today, remember

More information

10.2 Images Formed by Lenses SUMMARY. Refraction in Lenses. Section 10.1 Questions

10.2 Images Formed by Lenses SUMMARY. Refraction in Lenses. Section 10.1 Questions 10.2 SUMMARY Refraction in Lenses Converging lenses bring parallel rays together after they are refracted. Diverging lenses cause parallel rays to move apart after they are refracted. Rays are refracted

More information

28 Thin Lenses: Ray Tracing

28 Thin Lenses: Ray Tracing 28 Thin Lenses: Ray Tracing A lens is a piece of transparent material whose surfaces have been shaped so that, when the lens is in another transparent material (call it medium 0), light traveling in medium

More information

ii) When light falls on objects, it reflects the light and when the reflected light reaches our eyes then we see the objects.

ii) When light falls on objects, it reflects the light and when the reflected light reaches our eyes then we see the objects. Light i) Light is a form of energy which helps us to see objects. ii) When light falls on objects, it reflects the light and when the reflected light reaches our eyes then we see the objects. iii) Light

More information

Unit 3 - Foundations of Waves

Unit 3 - Foundations of Waves Unit 3 - Foundations of Waves Chapter 6 - Light, Mirrors, and Lenses Mr. Palmarin Chapter 6 - Light, Mirrors, and Lenses 1 / 57 Section 6.1 - The Behaviour of Light History of Light Plato (428 BCE - 348

More information

Unit Two: Light Energy Lesson 1: Mirrors

Unit Two: Light Energy Lesson 1: Mirrors 1. Plane mirror: Unit Two: Light Energy Lesson 1: Mirrors Light reflection: It is rebounding (bouncing) light ray in same direction when meeting reflecting surface. The incident ray: The light ray falls

More information

Lenses- Worksheet. (Use a ray box to answer questions 3 to 7)

Lenses- Worksheet. (Use a ray box to answer questions 3 to 7) Lenses- Worksheet 1. Look at the lenses in front of you and try to distinguish the different types of lenses? Describe each type and record its characteristics. 2. Using the lenses in front of you, look

More information

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36 Light from distant things Chapter 36 We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can process. This chapter concerns

More information

Physics 2020 Lab 8 Lenses

Physics 2020 Lab 8 Lenses Physics 2020 Lab 8 Lenses Name Section Introduction. In this lab, you will study converging lenses. There are a number of different types of converging lenses, but all of them are thicker in the middle

More information

OPTICS I LENSES AND IMAGES

OPTICS I LENSES AND IMAGES APAS Laboratory Optics I OPTICS I LENSES AND IMAGES If at first you don t succeed try, try again. Then give up- there s no sense in being foolish about it. -W.C. Fields SYNOPSIS: In Optics I you will learn

More information

LAB 12 Reflection and Refraction

LAB 12 Reflection and Refraction Cabrillo College Physics 10L Name LAB 12 Reflection and Refraction Read Hewitt Chapters 28 and 29 What to learn and explore Please read this! When light rays reflect off a mirror surface or refract through

More information

Chapter 23. Mirrors and Lenses

Chapter 23. Mirrors and Lenses Chapter 23 Mirrors and Lenses Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to

More information

CH. 23 Mirrors and Lenses HW# 6, 7, 9, 11, 13, 21, 25, 31, 33, 35

CH. 23 Mirrors and Lenses HW# 6, 7, 9, 11, 13, 21, 25, 31, 33, 35 CH. 23 Mirrors and Lenses HW# 6, 7, 9, 11, 13, 21, 25, 31, 33, 35 Mirrors Rays of light reflect off of mirrors, and where the reflected rays either intersect or appear to originate from, will be the location

More information

Geometric Optics. Ray Model. assume light travels in straight line uses rays to understand and predict reflection & refraction

Geometric Optics. Ray Model. assume light travels in straight line uses rays to understand and predict reflection & refraction Geometric Optics Ray Model assume light travels in straight line uses rays to understand and predict reflection & refraction General Physics 2 Geometric Optics 1 Reflection Law of reflection the angle

More information

Spherical Mirrors. Concave Mirror, Notation. Spherical Aberration. Image Formed by a Concave Mirror. Image Formed by a Concave Mirror 4/11/2014

Spherical Mirrors. Concave Mirror, Notation. Spherical Aberration. Image Formed by a Concave Mirror. Image Formed by a Concave Mirror 4/11/2014 Notation for Mirrors and Lenses Chapter 23 Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to

More information

=, where f is focal length of a lens (positive for convex. Equations: Lens equation

=, where f is focal length of a lens (positive for convex. Equations: Lens equation Physics 1230 Light and Color : Exam #1 Your full name: Last First & middle General information: This exam will be worth 100 points. There are 10 multiple choice questions worth 5 points each (part 1 of

More information

PRINCIPLE PROCEDURE ACTIVITY. AIM To observe diffraction of light due to a thin slit.

PRINCIPLE PROCEDURE ACTIVITY. AIM To observe diffraction of light due to a thin slit. ACTIVITY 12 AIM To observe diffraction of light due to a thin slit. APPARATUS AND MATERIAL REQUIRED Two razor blades, one adhesive tape/cello-tape, source of light (electric bulb/ laser pencil), a piece

More information

Intorduction to light sources, pinhole cameras, and lenses

Intorduction to light sources, pinhole cameras, and lenses Intorduction to light sources, pinhole cameras, and lenses Erik G. Learned-Miller Department of Computer Science University of Massachusetts, Amherst Amherst, MA 01003 October 26, 2011 Abstract 1 1 Analyzing

More information

Test Review # 8. Physics R: Form TR8.17A. Primary colors of light

Test Review # 8. Physics R: Form TR8.17A. Primary colors of light Physics R: Form TR8.17A TEST 8 REVIEW Name Date Period Test Review # 8 Light and Color. Color comes from light, an electromagnetic wave that travels in straight lines in all directions from a light source

More information

We see so many objects around

We see so many objects around 11 Light, Shadows and Reflections We see so many objects around us, colourful and different. On the way to school we see things like buses, cars, cycles, trees, animals and sometimes flowers. How do you

More information

Chapter 18 Optical Elements

Chapter 18 Optical Elements Chapter 18 Optical Elements GOALS When you have mastered the content of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms and use it in an operational

More information

13. Optical Instruments*

13. Optical Instruments* 13. Optical Instruments* Objective: Here what you have been learning about thin lenses is applied to make a telescope. In the process you encounter general optical instrument design concepts. The learning

More information

AP Physics Problems -- Waves and Light

AP Physics Problems -- Waves and Light AP Physics Problems -- Waves and Light 1. 1974-3 (Geometric Optics) An object 1.0 cm high is placed 4 cm away from a converging lens having a focal length of 3 cm. a. Sketch a principal ray diagram for

More information

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge).

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge). Chapter 30: Lenses Types of Lenses Piece of glass or transparent material that bends parallel rays of light so they cross and form an image Two types: Converging Diverging Converging Lenses Parallel rays

More information

Optics: Lenses & Mirrors

Optics: Lenses & Mirrors Warm-Up 1. A light ray is passing through water (n=1.33) towards the boundary with a transparent solid at an angle of 56.4. The light refracts into the solid at an angle of refraction of 42.1. Determine

More information

Optics Laboratory Spring Semester 2017 University of Portland

Optics Laboratory Spring Semester 2017 University of Portland Optics Laboratory Spring Semester 2017 University of Portland Laser Safety Warning: The HeNe laser can cause permanent damage to your vision. Never look directly into the laser tube or at a reflection

More information

PHYS 219 Spring semester Lecture 17: Light Rays and the Reflection of Light. Ron Reifenberger Birck Nanotechnology Center Purdue University

PHYS 219 Spring semester Lecture 17: Light Rays and the Reflection of Light. Ron Reifenberger Birck Nanotechnology Center Purdue University PHYS 219 Spring semester 2016 Lecture 17: Light Rays and the Reflection of Light Ron Reifenberger Birck Nanotechnology Center Purdue University Lecture 17 1 A Few Issues What is the difference between

More information

LIGHT REFLECTION AND REFRACTION

LIGHT REFLECTION AND REFRACTION LIGHT REFLECTION AND REFRACTION 1. List four properties of the image formed by a plane mirror. Properties of image formed by a plane mirror: 1. It is always virtual and erect. 2. Its size is equal to that

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Image of Formation Images can result when light rays encounter flat or curved surfaces between two media. Images can be formed either by reflection or refraction due to these

More information

Reflection and Color

Reflection and Color CHAPTER 16 13 SECTION Sound and Light Reflection and Color KEY IDEAS As you read this section, keep these questions in mind: What happens to light when it hits an object? Why can you see an image in a?

More information

Test Review # 9. Physics R: Form TR9.15A. Primary colors of light

Test Review # 9. Physics R: Form TR9.15A. Primary colors of light Physics R: Form TR9.15A TEST 9 REVIEW Name Date Period Test Review # 9 Light and Color. Color comes from light, an electromagnetic wave that travels in straight lines in all directions from a light source

More information

REFLECTION THROUGH LENS

REFLECTION THROUGH LENS REFLECTION THROUGH LENS A lens is a piece of transparent optical material with one or two curved surfaces to refract light rays. It may converge or diverge light rays to form an image. Lenses are mostly

More information

The popular conception of physics

The popular conception of physics 54 Teaching Physics: Inquiry and the Ray Model of Light Fernand Brunschwig, M.A.T. Program, Hudson Valley Center My thinking about these matters was stimulated by my participation on a panel devoted to

More information

Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu

Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu 1. Principles of image formation by mirrors (1a) When all length scales of objects, gaps, and holes are much larger than the wavelength

More information

OPTICS LENSES AND TELESCOPES

OPTICS LENSES AND TELESCOPES ASTR 1030 Astronomy Lab 97 Optics - Lenses & Telescopes OPTICS LENSES AND TELESCOPES SYNOPSIS: In this lab you will explore the fundamental properties of a lens and investigate refracting and reflecting

More information

Chapter 23. Mirrors and Lenses

Chapter 23. Mirrors and Lenses Chapter 23 Mirrors and Lenses Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to

More information

Physics 345 Pre-lab 1

Physics 345 Pre-lab 1 Physics 345 Pre-lab 1 Suppose we have a circular aperture in a baffle and two light sources, a point source and a line source. 1. (a) Consider a small light bulb with an even tinier filament (point source).

More information

Chapter 3 Mirrors. The most common and familiar optical device

Chapter 3 Mirrors. The most common and familiar optical device Chapter 3 Mirrors The most common and familiar optical device Outline Plane mirrors Spherical mirrors Graphical image construction Two mirrors; The Cassegrain Telescope Plane mirrors Common household mirrors:

More information

Unit 6P.2: Light. What is Light? Shadows Reflection The colors of the rainbow. Science skills: Observing Classifying Predicting

Unit 6P.2: Light. What is Light? Shadows Reflection The colors of the rainbow. Science skills: Observing Classifying Predicting Unit 6P.2: What is? Shadows Reflection The colors of the rainbow Science skills: Observing Classifying Predicting By the end of this unit you should: Know that light moves in straight lines. Know how shadows

More information

Station # 1. Reflection off of a rough surface. The Law of reflection. Problem: How is light reflected off of a flat smooth surface?

Station # 1. Reflection off of a rough surface. The Law of reflection. Problem: How is light reflected off of a flat smooth surface? In your notes Station # 1 LABEL ME When a light ray strikes an object and bounces off Ex. Mirror Reflection off of a smooth surface Reflection off of a rough surface The Law of Reflection states that the

More information

Chapter 23. Mirrors and Lenses

Chapter 23. Mirrors and Lenses Chapter 23 Mirrors and Lenses Mirrors and Lenses The development of mirrors and lenses aided the progress of science. It led to the microscopes and telescopes. Allowed the study of objects from microbes

More information

Light sources can be natural or artificial (man-made)

Light sources can be natural or artificial (man-made) Light The Sun is our major source of light Light sources can be natural or artificial (man-made) People and insects do not see the same type of light - people see visible light - insects see ultraviolet

More information

Laboratory 7: Properties of Lenses and Mirrors

Laboratory 7: Properties of Lenses and Mirrors Laboratory 7: Properties of Lenses and Mirrors Converging and Diverging Lens Focal Lengths: A converging lens is thicker at the center than at the periphery and light from an object at infinity passes

More information

Image Formation by Lenses

Image Formation by Lenses Image Formation by Lenses Bởi: OpenStaxCollege Lenses are found in a huge array of optical instruments, ranging from a simple magnifying glass to the eye to a camera s zoom lens. In this section, we will

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to the

More information

Notation for Mirrors and Lenses. Chapter 23. Types of Images for Mirrors and Lenses. More About Images

Notation for Mirrors and Lenses. Chapter 23. Types of Images for Mirrors and Lenses. More About Images Notation for Mirrors and Lenses Chapter 23 Mirrors and Lenses Sections: 4, 6 Problems:, 8, 2, 25, 27, 32 The object distance is the distance from the object to the mirror or lens Denoted by p The image

More information

Table of Contents DSM II. Lenses and Mirrors (Grades 5 6) Place your order by calling us toll-free

Table of Contents DSM II. Lenses and Mirrors (Grades 5 6) Place your order by calling us toll-free DSM II Lenses and Mirrors (Grades 5 6) Table of Contents Actual page size: 8.5" x 11" Philosophy and Structure Overview 1 Overview Chart 2 Materials List 3 Schedule of Activities 4 Preparing for the Activities

More information

LIGHT-REFLECTION AND REFRACTION

LIGHT-REFLECTION AND REFRACTION LIGHT-REFLECTION AND REFRACTION Class: 10 (Boys) Sub: PHYSICS NOTES-Refraction Refraction: The bending of light when it goes from one medium to another obliquely is called refraction of light. Refraction

More information

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #8: Thin Lenses

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #8: Thin Lenses NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #8: Thin Lenses Lab Writeup Due: Mon/Wed/Thu/Fri, April 2/4/5/6, 2018 Background In the previous lab

More information

The Optics of Mirrors

The Optics of Mirrors Use with Text Pages 558 563 The Optics of Mirrors Use the terms in the list below to fill in the blanks in the paragraphs about mirrors. reversed smooth eyes concave focal smaller reflect behind ray convex

More information

Basic Optics System OS-8515C

Basic Optics System OS-8515C 40 50 30 60 20 70 10 80 0 90 80 10 20 70 T 30 60 40 50 50 40 60 30 70 20 80 90 90 80 BASIC OPTICS RAY TABLE 10 0 10 70 20 60 50 40 30 Instruction Manual with Experiment Guide and Teachers Notes 012-09900B

More information

GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS

GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS Equipment and accessories: an optical bench with a scale, an incandescent lamp, matte, a set of

More information

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66.

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66. Slide 1 / 66 Slide 2 / 66 Algebra Based Physics Geometric Optics 2015-12-01 www.njctl.org Slide 3 / 66 Slide 4 / 66 Table of ontents lick on the topic to go to that section Reflection Refraction and Snell's

More information

Assignment X Light. Reflection and refraction of light. (a) Angle of incidence (b) Angle of reflection (c) principle axis

Assignment X Light. Reflection and refraction of light. (a) Angle of incidence (b) Angle of reflection (c) principle axis Assignment X Light Reflection of Light: Reflection and refraction of light. 1. What is light and define the duality of light? 2. Write five characteristics of light. 3. Explain the following terms (a)

More information

Optics looks at the properties and behaviour of light!

Optics looks at the properties and behaviour of light! Optics looks at the properties and behaviour of light! Chapter 4: Wave Model of Light Past Theories Pythagoras believed that light consisted of beams made up of tiny particles that carried information

More information

Characteristic Primary Color Primary Pigment. Colors red, green, blue magenta, cyan, yellow

Characteristic Primary Color Primary Pigment. Colors red, green, blue magenta, cyan, yellow Light Energy Chapter 14 You can use a compare and contrast table to show how two or more items are alike and how they are different. Look at the example shown below for primary colors and primary pigments.

More information

Transmission of light - The Ray Model of Light

Transmission of light - The Ray Model of Light Goals : ** state the two laws of reflection ** use the First Law of reflection to locate any image observed in a plane mirror ** explain the difference between specular and diffuse reflection ** state

More information

Unit 3: Energy On the Move

Unit 3: Energy On the Move 14 14 Table of Contents Unit 3: Energy On the Move Chapter 14: Mirrors and Lenses 14.1: Mirrors 14.2: Lenses 14.3: Optical Instruments 14.1 Mirrors How do you use light to see? When light travels from

More information

Lab 11: Lenses and Ray Tracing

Lab 11: Lenses and Ray Tracing Name: Lab 11: Lenses and Ray Tracing Group Members: Date: TA s Name: Materials: Ray box, two different converging lenses, one diverging lens, screen, lighted object, three stands, meter stick, two letter

More information

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses Chapter 29/30 Refraction and Lenses Refraction Refraction the bending of waves as they pass from one medium into another. Caused by a change in the average speed of light. Analogy A car that drives off

More information

To verify the laws of reflection of light using a plane mirror.

To verify the laws of reflection of light using a plane mirror. To verify the laws of reflection of light using a plane mirror. When light falls on a smooth polished surface, it gets reflected in a definite direction. Fig. 34.1 shows a ray of light PO, incident on

More information

How do we see? 1.2 Observe and explain - light rays Observe the laser pointer and the spot that it projects on the wall.

How do we see? 1.2 Observe and explain - light rays Observe the laser pointer and the spot that it projects on the wall. How do we see? 1.1 Observe and explain Go to a room that is isolated from all external light sources natural and artificial. Turn off the internal lights and wait in the dark room for several minutes.

More information

Wonderlab The Statoil Gallery

Wonderlab The Statoil Gallery Wonderlab The Statoil Gallery and maths s Age (s) Topic 7 11 LIGHT INFORMATION 11-14 Location WONDERLAB: THE STATOIL GALLERY LEVEL 3, SCIENCE MUSEUM LONDON 1 What s the science? What more will you wonder?

More information

Geometric Optics. Objective: To study the basics of geometric optics and to observe the function of some simple and compound optical devices.

Geometric Optics. Objective: To study the basics of geometric optics and to observe the function of some simple and compound optical devices. Geometric Optics Objective: To study the basics of geometric optics and to observe the function of some simple and compound optical devices. Apparatus: Pasco optical bench, mounted lenses (f= +100mm, +200mm,

More information

Light: Reflection and Refraction Light Reflection of Light by Plane Mirror Reflection of Light by Spherical Mirror Formation of Image by Mirror Sign Convention & Mirror Formula Refraction of light Through

More information

LIGHT REFLECTION AND REFRACTION

LIGHT REFLECTION AND REFRACTION LIGHT REFLECTION AND REFRACTION REFLECTION OF LIGHT A highly polished surface, such as a mirror, reflects most of the light falling on it. Laws of Reflection: (i) The angle of incidence is equal to the

More information

Using Mirrors to Form Images. Reflections of Reflections. Key Terms. Find Out ACTIVITY

Using Mirrors to Form Images. Reflections of Reflections. Key Terms. Find Out ACTIVITY 5.2 Using Mirrors to Form Images All mirrors reflect light according to the law of reflection. Plane mirrors form an image that is upright and appears to be as far behind the mirror as the is in front

More information

Subtractive because upon reflection from a surface, some wavelengths are absorbed from the white light and subtracted from it.

Subtractive because upon reflection from a surface, some wavelengths are absorbed from the white light and subtracted from it. 4/21 Chapter 27 Color Each wavelength in the visible part of the spectrum produces a different color. Additive color scheme RGB Red Green Blue Any color can be produced by adding the appropriate amounts

More information

always positive for virtual image

always positive for virtual image Point to be remembered: sign convention for Spherical mirror Object height, h = always positive Always +ve for virtual image Image height h = Always ve for real image. Object distance from pole (u) = always

More information

HUYGENS PRINCIPLE AND INTERFERENCE

HUYGENS PRINCIPLE AND INTERFERENCE HUYGENS PRINCIPLE AND INTERFERENCE VERY SHORT ANSWER QUESTIONS Q-1. Can we perform Double slit experiment with ultraviolet light? Q-2. If no particular colour of light or wavelength is specified, then

More information

The grade 6 English science unit, Lenses, meets the academic content standards set in the Korean curriculum, which state students should:

The grade 6 English science unit, Lenses, meets the academic content standards set in the Korean curriculum, which state students should: This area covers the phenomena created by lenses. A lens is a tool of daily use that can concentrate light by creating refraction or make things appear larger, sparking interest and curiosity in students.

More information

The Indian Academy Nehrugram DEHRADUN Question Bank Subject - Physics Class - X

The Indian Academy Nehrugram DEHRADUN Question Bank Subject - Physics Class - X The Indian Academy Nehrugram DEHRADUN Question Bank - 2013-14 Subject - Physics Class - X Section A A- One mark questions:- Q1. Chair, Table are the example of which object? Q2. In which medium does the

More information

APPLICATIONS FOR TELECENTRIC LIGHTING

APPLICATIONS FOR TELECENTRIC LIGHTING APPLICATIONS FOR TELECENTRIC LIGHTING Telecentric lenses used in combination with telecentric lighting provide the most accurate results for measurement of object shapes and geometries. They make attributes

More information

Physics 3340 Spring Fourier Optics

Physics 3340 Spring Fourier Optics Physics 3340 Spring 011 Purpose Fourier Optics In this experiment we will show how the Fraunhofer diffraction pattern or spatial Fourier transform of an object can be observed within an optical system.

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 13: LIGHT WAVES This lecture will help you understand: Electromagnetic Spectrum Transparent and Opaque Materials Color Why the Sky is Blue, Sunsets are Red, and

More information

GIST OF THE UNIT BASED ON DIFFERENT CONCEPTS IN THE UNIT (BRIEFLY AS POINT WISE). RAY OPTICS

GIST OF THE UNIT BASED ON DIFFERENT CONCEPTS IN THE UNIT (BRIEFLY AS POINT WISE). RAY OPTICS 209 GIST OF THE UNIT BASED ON DIFFERENT CONCEPTS IN THE UNIT (BRIEFLY AS POINT WISE). RAY OPTICS Reflection of light: - The bouncing of light back into the same medium from a surface is called reflection

More information

Refraction is the when a ray changes mediums. Examples of mediums:

Refraction is the when a ray changes mediums. Examples of mediums: Refraction and Lenses Refraction is the when a ray changes mediums. Examples of mediums: Lenses are optical devices which take advantage of the refraction of light to 1. produces images real and 2. change

More information

Chapter 23. Light Geometric Optics

Chapter 23. Light Geometric Optics Chapter 23. Light Geometric Optics There are 3 basic ways to gather light and focus it to make an image. Pinhole - Simple geometry Mirror - Reflection Lens - Refraction Pinhole Camera Image Formation (the

More information

Chapter 34 Geometric Optics

Chapter 34 Geometric Optics Chapter 34 Geometric Optics Lecture by Dr. Hebin Li Goals of Chapter 34 To see how plane and curved mirrors form images To learn how lenses form images To understand how a simple image system works Reflection

More information

Light and Applications of Optics

Light and Applications of Optics UNIT 4 Light and Applications of Optics Topic 4.1: What is light and how is it produced? Topic 4.6: What are lenses and what are some of their applications? Topic 4.2 : How does light interact with objects

More information

Chapter 19 Lenses (Sample)

Chapter 19 Lenses (Sample) Chapter 19 Lenses (Sample) A. Key Examples of Exam-type Questions Problem-solving strategy How lenses produce images: Steps 1. principal axis 2. convex or concave lens 3. scale, object size and distance

More information

Mirrors and Lenses. Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses.

Mirrors and Lenses. Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses. Mirrors and Lenses Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses. Notation for Mirrors and Lenses The object distance is the distance from the object

More information

Person s Optics Test KEY SSSS

Person s Optics Test KEY SSSS Person s Optics Test KEY SSSS 2017-18 Competitors Names: School Name: All questions are worth one point unless otherwise stated. Show ALL WORK or you may not receive credit. Include correct units whenever

More information

Chapter 23. Geometrical Optics: Mirrors and Lenses and other Instruments

Chapter 23. Geometrical Optics: Mirrors and Lenses and other Instruments Chapter 23 Geometrical Optics: Mirrors and Lenses and other Instruments HITT 1 You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft b. 3.0 ft c. 4.0 ft d. 5.0 ft

More information

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66.

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66. Slide 1 / 66 Slide 2 / 66 lgebra ased Physics Geometric Optics 2015-12-01 www.njctl.org Slide 3 / 66 Slide 4 / 66 Table of ontents lick on the topic to go to that section Reflection Refraction and Snell's

More information

Class XII - Physics Wave Optics Chapter-wise Problems

Class XII - Physics Wave Optics Chapter-wise Problems Class XII - hysics Wave Optics Chapter-wise roblems Multiple Choice Question :- 10.1 Consider a light beam incident from air to a glass slab at Brewster s angle as shown in Fig. 10.1. A polaroid is placed

More information

Light Energy. Lana Tiernan Mrs. Branin 2016

Light Energy. Lana Tiernan Mrs. Branin 2016 Light Energy Lana Tiernan Mrs. Branin 2016 What is Light? Light is something very important that is in our everyday lives. We usually don't realize how much we need it. Light is something that allows you

More information

<Chap. 2 Optics> 1.Light directivity. Light directivity can be seen using smoke and milky water in a plastic bottle

<Chap. 2 Optics> 1.Light directivity. Light directivity can be seen using smoke and milky water in a plastic bottle 1.Light directivity Light directivity can be seen using smoke and milky water in a plastic bottle Laser 3 cm Principle of pinhole camera (γray camera) Object Dark image Eye Ground glass

More information

Human Retina. Sharp Spot: Fovea Blind Spot: Optic Nerve

Human Retina. Sharp Spot: Fovea Blind Spot: Optic Nerve I am Watching YOU!! Human Retina Sharp Spot: Fovea Blind Spot: Optic Nerve Human Vision Optical Antennae: Rods & Cones Rods: Intensity Cones: Color Energy of Light 6 10 ev 10 ev 4 1 2eV 40eV KeV MeV Energy

More information

REFRACTION OF LIGHT VERY SHORT ANSWER QUESTIONS

REFRACTION OF LIGHT VERY SHORT ANSWER QUESTIONS REFRACTION OF LIGHT VERY SHORT ANSWER QUESTIONS Q-1. The earth takes 24 h to rotate once about its axis. How much time does the sun take to shift by 1 0 when viewed from the earth? Q-2. What is the maximum

More information

Light Bounces! Light Bounces!

Light Bounces! Light Bounces! Light Bounces! Light Bounces! Take a look around. What do you see? All of the objects that surround you a book, a plant, a pen, a door and even your own body can only be seen thanks to light. Light is

More information

INVESTIGATING AERIAL IMAGE. E d wa rd P. Wy re m b e c k a n d J e f f rey S. E l m e r

INVESTIGATING AERIAL IMAGE. E d wa rd P. Wy re m b e c k a n d J e f f rey S. E l m e r INVESTIGATING AN AERIAL IMAGE 1 ST A new approach for introducing optics concepts E d wa rd P. Wy re m b e c k a n d J e f f rey S. E l m e r W hile attending a modeling workshop on optics, I became keenly

More information

Home Lab 3 Pinhole Viewer Box Continued and Measuring the Diameter of the Sun

Home Lab 3 Pinhole Viewer Box Continued and Measuring the Diameter of the Sun 1 Home Lab 3 Pinhole Viewer Box Continued and Measuring the Diameter of the Sun Activity 3-1: Effect of the distance between the viewing screen and the pinhole on the image size. Objective: To investigate

More information

Tuesday, Nov. 9 Chapter 12: Wave Optics

Tuesday, Nov. 9 Chapter 12: Wave Optics Tuesday, Nov. 9 Chapter 12: Wave Optics We are here Geometric optics compared to wave optics Phase Interference Coherence Huygens principle & diffraction Slits and gratings Diffraction patterns & spectra

More information

Phenomena. How do we proceed? THEME 6 Natural ACTIVITY 47. Study how shadows are formed. What we have to do? What do we need?

Phenomena. How do we proceed? THEME 6 Natural ACTIVITY 47. Study how shadows are formed. What we have to do? What do we need? THEME 6 Natural Phenomena ACTIVITY 47 What we have to do? Study how shadows are formed. What do we need? A torch (source of light), a circular piece of wood, a sheet of butter paper/tracing paper, a transparent

More information

Physics 197 Lab 7: Thin Lenses and Optics

Physics 197 Lab 7: Thin Lenses and Optics Physics 197 Lab 7: Thin Lenses and Optics Equipment: Item Part # Qty per Team # of Teams Basic Optics Light Source PASCO OS-8517 1 12 12 Power Cord for Light Source 1 12 12 Ray Optics Set (Concave Lens)

More information

Condition Mirror Refractive Lens Concave Focal Length Positive Focal Length Negative. Image distance positive

Condition Mirror Refractive Lens Concave Focal Length Positive Focal Length Negative. Image distance positive Comparison between mirror lenses and refractive lenses Condition Mirror Refractive Lens Concave Focal Length Positive Focal Length Negative Convex Focal Length Negative Focal Length Positive Image location

More information

Chapter 23. Light: Geometric Optics

Chapter 23. Light: Geometric Optics Ch-23-1 Chapter 23 Light: Geometric Optics Questions 1. Archimedes is said to have burned the whole Roman fleet in the harbor of Syracuse, Italy, by focusing the rays of the Sun with a huge spherical mirror.

More information

LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points

LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points WRITE ON SCANTRON WITH NUMBER 2 PENCIL DO NOT WRITE ON THIS TEST LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points Multiple Choice Identify the choice that best completes the statement or

More information