GIST OF THE UNIT BASED ON DIFFERENT CONCEPTS IN THE UNIT (BRIEFLY AS POINT WISE). RAY OPTICS

Size: px
Start display at page:

Download "GIST OF THE UNIT BASED ON DIFFERENT CONCEPTS IN THE UNIT (BRIEFLY AS POINT WISE). RAY OPTICS"

Transcription

1 209 GIST OF THE UNIT BASED ON DIFFERENT CONCEPTS IN THE UNIT (BRIEFLY AS POINT WISE). RAY OPTICS Reflection of light: - The bouncing of light back into the same medium from a surface is called reflection of light. Laws of reflection: - i) Angle of incidence is equal to the angle of incidence. ii) The incidence ray, the reflected ray and normal to the surface at the point of incidence all lie in the same plane. Types of spherical mirrors: Concave and Convex. The relation between object distance, image distance and the focal length of a mirror is called mirror formula. The ratio of size of image to the size of object is called the magnification produced by the mirror. Refraction of light: - The change in speed and direction of the ray of light in when it travels from one transparent medium into another is called refraction of light. Laws of refraction:- i) The incident ray, the refracted ray and normal to the surface, separating the two media, all lie in the same plane. ii) Snell s law: For two media, the ratio of sine of angle of incidence to the sine of the angle of refraction is constant for a beam of light of particular wavelength. The absolute Refractive index (n) of a medium is defined as the ratio of speed of light in vacuum to the speed of light in medium. The refractive index of a medium (2) with respect to any other medium (1) is defined as the ratio of speed of light in medium (1) to the speed of light in medium (2). Refractive index (n) = Phenomenon associated with the refraction of light through atmosphere:- The sun is visible a little before the actual sunrise and until a little after the actual sunset due to refraction of light through the atmosphere. The apparent flattening of the sun at sunset and sunrise is also due to refraction of light through the atmosphere. Principle of reversibility of light: - If a ray of light, undergoing reflection and refraction, is reflected at 180, it travels back along the same path in the opposite direction. Critical angle (C): - The angle of incidence in denser medium for which the angle of refraction in rarer medium is 90 is called the critical angle. Total internal reflection: - When angle of incidence of the ray incident on rarer medium from denser medium is greater than the critical angle, the incident ray does not refract into rarer medium but is reflected back into denser medium. This phenomenon is called total internal reflection. Applications of Total internal reflection: Totally reflecting prisms: An isosceles right angled prism can be used to reflect the light at 90 and 180. These prisms are also called porro prisms. Formation of mirage. 209

2 210 Optical fibers: The optical fibers consist of thousands of strands of fine quality glass or quartz of refractive index about 1.7. Thickness of a strand is The strands are coated with a layer of same material of lower refractive index (1.5). It works on the principle of total internal reflection. Brilliance in diamonds: - The refractive index of diamond is 2.47 and the critical angle for diamond-air interface is 24.4 only. When diamond is cut so as to have large number of faces, such that when a ray of light enters it, the light suffers multiple internal reflections, producing brilliance in diamond. Thin lens formula: - The relation between object distance, image distance and the focal length of a lens is called thin lens formula. The ratio of size of image to the size of object is called the magnification produced by the lens. The power (P) of a lens is its ability to deviate the rays towards its principal axis. It is defined as the reciprocal of focal length in metres. Its S.I. unit is diopter (D). The relation between the focal length of a lens, refractive index of the material of lens and radii of curvature of first & second refracting surfaces is called lens maker s formula. If two or more lenses are placed in contact, then the reciprocal of their equivalent focal length is equal to the sum of reciprocals of focal lengths of the individual lenses. The resultant power of the combination of lenses is equal to the algebraic sum of individual power of lenses. Refraction through a prism:- The angle between the directions of incident ray and the emergent ray is called angle of deviation (δ). If the angle of incidence is changed, the angle of deviation also changes. For a particular angle of incidence, the deviation is minimum and is called angle of minimum deviation ( Dispersion of light:- The splitting of white light into its constituent colours while passing through a dispersive medium is called dispersion. Cause of dispersion: - Different colours of light suffer different refraction due to their different wavelength. According to Cauchy s formula, smaller the wavelength, greater will be the refractive index. The refractive index of violet colour is greater than that of red light. Prism causes deviation as well as dispersion. The violet colour gets deviated more and the red least in visible region. For small angled prisms, the difference between the angles of deviations of violet and red colours is known as angular dispersion. The ratio of angular dispersion to the mean deviation is called dispersive power of the medium. Scattering of light:- The light is scattered by air molecules. According to Lord Rayleigh, the intensity of light for a given wavelength in the scattered light varies inversely as the fourth power of a wavelength. Applications of scattering: The blue colour of sky: - As the wavelength of blue colour is less than that of red, blue colour is scattered most and red least. So sky appears blue. 210

3 211 Sun looks reddish at sunrise and sunset: - At the time of sunrise and sunset, light travels maximum distance. So, blue colour is scattered most and red colour enters our eyes. Hence, at sunrise & sunset, sun looks reddish. The clouds are generally white: - Large particles like dust and water droplets do not scatter light according to Rayleigh criteria and all colours are scattered equally. Hence, cloud appears white. OPTICAL INSTRUMENTS Simple Microscope:- It is a converging lens of small focal length. The lens is held near the object, one focal length less, and the eye is positioned close to the lens on the other side to get an erect, magnified and virtual image of the object at least distance of distinct vision ( 25cm ). It has a limited maximum magnification. Compound microscope:- It consists of objective lens and eye lens. The objective lens is of small aperture and small focal length whereas the eye lens is of large aperture and large focal length. The object is kept close to the objective lens. The image formed due to the objective lens acts as the object for the eye lens. The object is kept in such a way that the final image is formed at the least distance of distinct vision (D). The magnifying power (M) or angular magnification produced by a compound microscope is defined as the ratio of the angle subtended by the final image at the eye to the angle subtended by the object seen directly, when both are placed at the least distance of distinct vision. The resolving power of microscope is the reciprocal of limit of resolution or separation between two points such that the two points are distinct. The resolving power is inversely proportional to the wavelength of light used. Astronomical telescope:- In this, the objective lens has large aperture and focal length and eye lens has small one. In normal adjustment (or far point adjustment), the final image is formed at infinity. The magnifying power of a telescope in normal adjustment is defined as the ratio of the angle subtended by the image formed to that subtended by the object when both the object and image lie at infinity. Its value is negative as the final image is inverted and real. In near point adjustment, the final image is formed at least distance of distinct vision (D). The magnifying power of a telescope, when final image is formed at D, is defined as the ratio of the angle subtended at the eye by the image formed at D to the angle subtended by the object lying at infinity when seen directly. The resolving power of a telescope is defined as the reciprocal of angular limit of resolution or angle subtended between two points such that they are distinct. The resolving power is inversely proportional to the wavelength of light used. Newtonian (reflecting type) telescope:- In this type of telescope, a concave mirror of large aperture is used as objective instead of a convex lens. Human eye:-light enters the eye through cornea. Passing through aqueous humour, it passes through the pupil, having a hole in the middle called Iris. The size of the pupil gets controlled by ciliary muscles. The light is further focused by the eye lens on the retina. The retina is a film made up of nerve fibers having rod cells (responsible for brightness sensation) and cone cells (responsible for colour sensation). These cells then transmit electrical signals via optical nerve to the brain. 211

4 212 A normal human eye can see up to a minimum distance of 25cm. This distance is known as least distance of distinct vision (D) or near point. The ability of human eye to adjust its focus depending upon the distance of the object is known as the power of accommodation. Defects of vision:- Myopia: - Also called nearsightedness. It is a visual defect in when the resting eye focuses the image of a distant object at a point in front of the retina. Myopic eyes are longer than normal from front to rear. Myopia is corrected by concave lens. Hypermetropia: - Also called far sightedness. It occurs when the image of the object is formed behind the retina. Hypermetropia frequently occurs when an eye is shorter than normal eyeball. It is corrected by convex lens. Presbyopia: - Loss of ability to focus the eye sharply on near objects as a result of the decreasing elasticity of the lens of the eye. Hence, the lenses of the eyes are left with little or no focusing ability. It is corrected by the use of convex lens for reading. Astigmatism: - It occurs when cornea is not spherical in shape. Due to this defect, the person is unable to focus on both the horizontal as well as vertical lines. This defect can be corrected by the use of cylindrical lens. WAVE OPTICS Wavefront: - It is defined as a surface of constant phase. These are three types: Spherical wavefront (obtained from point source). Cylindrical wavefront (obtained from linear source). Plane wavefront (obtained from very large source of light). Huygen s Principle:- 1) Every point on a primary wavefront acts as a source of secondary wavelets. The secondary wavelets send out disturbances in all directions just as the primary source of light. 2) The new position of the secondary wavefronts is the envelope of the primary wavefront. Coherent and incoherent sources of light: - Two sources giving light waves of same frequency and constant initial phase difference are called coherent sources. For example, when two sources are produced from a single source, the amplitude, wavelength of the sources is same and they are in constant phase difference. By division of wavefront (example: Young s double slit) or amplitude (example: by successive reflections), coherent sources can be produced. The sources of light emitting waves with random phase difference are called incoherent sources. For example, two independent bulbs emit light waves having random phase difference. INTERFERENCE OF LIGHT The phenomenon of redistribution of light energy in the medium due to superposition of two light waves (from coherent sources) is called interference of light. It is based on conservation of energy. 212

5 213 Young s double slit experiment: - In this experiment, light from a single source is split into two components using two slits. At a distance D, a screen is placed on which the interference pattern is obtained. Conditions for sustained interference:- The two sources of light should emit light continuously. The light waves should be of same wavelength (monochromatic). The light waves should be of same or comparable amplitude. The two waves must be in same phase or bear a constant phase difference. The two sources of light must lie close to each other. The two sources must be very narrow. In sustained interference, the positions of maximum and minimum brightness remain fixed. Condition for constructive interference: The phase difference between the two interfering waves must be even multiple of π or path difference between them is integral multiple of λ. Condition for destructive interference: The phase difference between the two interfering waves must be odd multiple of π or path difference between them is odd multiple of λ/2. Fringe width (β):- The distance between any two consecutive bright fringes or any two consecutive dark fringes is called the fringe width. In an interference pattern, all the maxima have same intensity. When white light is used to illuminate the slit, we obtain an interference pattern consisting of a central white fringe having on both sides symmetrically a few coloured fringes and then uniform illumination. DIFFRACTION OF LIGHT The phenomenon of bending of light around the sharp corners of the obstacle and spreading into the regions of geometrical shadow is called diffraction. For diffraction of light to take place, the size of obstacle must be of the same order as that of incident light. Young s single slit experiment: - When a monochromatic light is made incident on a single slit, we get diffraction pattern on a screen placed behind the slit. The diffraction pattern contains bright and dark bands. The intensity of central band is maximum and goes on decreasing on both sides. The condition for the central maximum is that the path difference between the waves starting from edges of the slit and arriving at a central point on the screen must be equal to zero. The general condition for the secondary minima is that the path difference between the waves arriving at a point on the screen from the edges of the slit should be equal to λ. The general condition for the secondary maxima is that the path difference between the waves arriving at a point on the screen from the edges of the slit should be equal to 3λ/2. The width of central maximum is the separation between the first minimum on either side. POLARISATION The phenomenon of restricting the oscillations of a light wave (electric vector) in a particular direction is called polarization of light. 213

6 214 Only transverse waves can be polarized. Unpolarised light: - The light having vibrations of electric field vector in all possible directions perpendicular to the direction of wave propagation is called the ordinary or unpolarised light. Plane or linearly polarized light: - The light having vibrations of electric field vector in only one direction perpendicular to the direction of propagation of light is called plane or linearly polarized light. The plane containing the direction of vibration and the direction of wave propagation is called the plane of vibration. The plane passing through the direction of wave propagation and perpendicular to the plane of vibration is called the plane of polarization. No vibrations occur in the plane of polarization. Polarization by reflection: - If unpolarised light falls on a transparent surface of refractive index (n) at a certain angle θ p, called polarizing angle, then reflected light is plane polarized. Brewster s law: - The tangent of the polarizing angle of incidence of a transparent medium is equal to its refractive index. i.e., n = tan θ p Under this condition, the reflected and refracted rays are mutually perpendicular. Polarisation by scattering: - If we look at the blue portion of the sky through a Polaroid and rotate the Polaroid, the transmitted light shows rise and fall of intensity. This shows that the light from the blue portion of the sky is plane polarized. This is because sunlight gets scatted when encounters the molecules of the atmosphere. The scattered light seen in a direction perpendicular to the direction of incidence is found to be plane polarized. Malus law: - It states that, if polarized light is passed through an analyser, the intensity of light transmitted is directly proportional to cos 2 θ, where θ is the angle between planes of transmission of polarizer and analyser. Polaroid is a device to produce and detect plane polarized light. 214

Section A Conceptual and application type questions. 1 Which is more observable diffraction of light or sound? Justify. (1)

Section A Conceptual and application type questions. 1 Which is more observable diffraction of light or sound? Justify. (1) INDIAN SCHOOL MUSCAT Department of Physics Class : XII Physics Worksheet - 6 (2017-2018) Chapter 9 and 10 : Ray Optics and wave Optics Section A Conceptual and application type questions 1 Which is more

More information

6. OPTICS RAY OPTICS GIST. Reflection by convex and concave mirrors. a. Mirror formula, where u is the object distance, v is the image distance and f is v u f the focal length. v f v f b. Magnification

More information

SUBJECT: PHYSICS. Use and Succeed.

SUBJECT: PHYSICS. Use and Succeed. SUBJECT: PHYSICS I hope this collection of questions will help to test your preparation level and useful to recall the concepts in different areas of all the chapters. Use and Succeed. Navaneethakrishnan.V

More information

CHAPTER 11 The Hyman Eye and the Colourful World In this chapter we will study Human eye that uses the light and enable us to see the objects. We will also use the idea of refraction of light in some optical

More information

The Hyman Eye and the Colourful World

The Hyman Eye and the Colourful World The Hyman Eye and the Colourful World In this chapter we will study Human eye that uses the light and enable us to see the objects. We will also use the idea of refraction of light in some optical phenomena

More information

HOLIDAY HOME WORK PHYSICS CLASS-12B AUTUMN BREAK 2018

HOLIDAY HOME WORK PHYSICS CLASS-12B AUTUMN BREAK 2018 HOLIDAY HOME WK PHYSICS CLASS-12B AUTUMN BREAK 2018 NOTE: 1. THESE QUESTIONS ARE FROM PREVIOUS YEAR BOARD PAPERS FROM 2009-2018 CHAPTERS EMI,AC,OPTICS(BUT TRY TO SOLVE ONLY NON-REPEATED QUESTION) QUESTION

More information

25 cm. 60 cm. 50 cm. 40 cm.

25 cm. 60 cm. 50 cm. 40 cm. Geometrical Optics 7. The image formed by a plane mirror is: (a) Real. (b) Virtual. (c) Erect and of equal size. (d) Laterally inverted. (e) B, c, and d. (f) A, b and c. 8. A real image is that: (a) Which

More information

Chapter Ray and Wave Optics

Chapter Ray and Wave Optics 109 Chapter Ray and Wave Optics 1. An astronomical telescope has a large aperture to [2002] reduce spherical aberration have high resolution increase span of observation have low dispersion. 2. If two

More information

3. Study the diagram given below and answer the questions that follow it:

3. Study the diagram given below and answer the questions that follow it: CH- Human Eye and Colourful World 1. A 14-year old student is not able to see clearly the questions written on the blackboard placed at a distance of 5 m from him. (a) Name the defect of vision he is suffering

More information

Class 10 Science NCERT Exemplar Solutions Human Eye and Colourful World

Class 10 Science NCERT Exemplar Solutions Human Eye and Colourful World Class 10 Science NCERT Exemplar Solutions Human Eye and Colourful World Short Answer Questions Question 1. A student sitting at the back of the classroom cannot read clearly the letters written on the

More information

Chapter 25. Optical Instruments

Chapter 25. Optical Instruments Chapter 25 Optical Instruments Optical Instruments Analysis generally involves the laws of reflection and refraction Analysis uses the procedures of geometric optics To explain certain phenomena, the wave

More information

Chapter 9 - Ray Optics and Optical Instruments. The image distance can be obtained using the mirror formula:

Chapter 9 - Ray Optics and Optical Instruments. The image distance can be obtained using the mirror formula: Question 9.1: A small candle, 2.5 cm in size is placed at 27 cm in front of a concave mirror of radius of curvature 36 cm. At what distance from the mirror should a screen be placed in order to obtain

More information

HUMAN EYE AND COLOURFUL WORLD

HUMAN EYE AND COLOURFUL WORLD HUMAN EYE AND COLOURFUL WORLD VERY SHORT ANSWER TYPE QUESTIONS [1 Mark] 1. Which phenomenon is responsible for making the path of light visible? Answer. Tyndall effect. 2. State one function of iris in

More information

WHS-CH-23 Light: Geometric Optics Show all your work, equations used, and box in your answers!

WHS-CH-23 Light: Geometric Optics Show all your work, equations used, and box in your answers! WHS-CH-23 Light: Geometric Optics Show all your work, equations used, and box in your answers! Willebrord Snell (1591-1626) Snell developed methods for measuring the Earth. He proposed the method of triangulation

More information

Human Eye and Colourful World Science. Intext Exercise 1

Human Eye and Colourful World Science. Intext Exercise 1 Intext Exercise 1 Question 1: What is meant by power of accommodation of the eye? Solution 1: When the ciliary muscles are relaxed, the eye lens becomes thin, the focal length increases, and the distant

More information

Class XII - Physics Wave Optics Chapter-wise Problems

Class XII - Physics Wave Optics Chapter-wise Problems Class XII - hysics Wave Optics Chapter-wise roblems Multiple Choice Question :- 10.1 Consider a light beam incident from air to a glass slab at Brewster s angle as shown in Fig. 10.1. A polaroid is placed

More information

The Indian Academy Nehrugram DEHRADUN Question Bank Subject - Physics Class - X

The Indian Academy Nehrugram DEHRADUN Question Bank Subject - Physics Class - X The Indian Academy Nehrugram DEHRADUN Question Bank - 2013-14 Subject - Physics Class - X Section A A- One mark questions:- Q1. Chair, Table are the example of which object? Q2. In which medium does the

More information

PHYSICS. Chapter 35 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 35 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 35 Lecture RANDALL D. KNIGHT Chapter 35 Optical Instruments IN THIS CHAPTER, you will learn about some common optical instruments and

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Image of Formation Images can result when light rays encounter flat or curved surfaces between two media. Images can be formed either by reflection or refraction due to these

More information

EDULABZ INTERNATIONAL. Light ASSIGNMENT

EDULABZ INTERNATIONAL. Light ASSIGNMENT Light ASSIGNMENT 1. Fill in the blank spaces by choosing the correct words from the list given below : List : compound microscope, yellow, telescope, alter, vitreous humour, time, photographic camera,

More information

Chapter 11 Human Eye and Colourful World Question 1: What is meant by power of accommodation of the eye? When the ciliary muscles are relaxed, the eye lens becomes thin, the focal length increases, and

More information

Physics Chapter Review Chapter 25- The Eye and Optical Instruments Ethan Blitstein

Physics Chapter Review Chapter 25- The Eye and Optical Instruments Ethan Blitstein Physics Chapter Review Chapter 25- The Eye and Optical Instruments Ethan Blitstein The Human Eye As light enters through the human eye it first passes through the cornea (a thin transparent membrane of

More information

Lenses- Worksheet. (Use a ray box to answer questions 3 to 7)

Lenses- Worksheet. (Use a ray box to answer questions 3 to 7) Lenses- Worksheet 1. Look at the lenses in front of you and try to distinguish the different types of lenses? Describe each type and record its characteristics. 2. Using the lenses in front of you, look

More information

Downloaded from

Downloaded from QUESTION BANK SCIENCE STD-X PHYSICS REFLECTION & REFRACTION OF LIGHT (REVISION QUESTIONS) VERY SHORT ANSWER TYPE (1 MARK) 1. Out of red and blue lights, for which is the refractive index of glass greater?

More information

LIGHT-REFLECTION AND REFRACTION

LIGHT-REFLECTION AND REFRACTION LIGHT-REFLECTION AND REFRACTION Class: 10 (Boys) Sub: PHYSICS NOTES-Refraction Refraction: The bending of light when it goes from one medium to another obliquely is called refraction of light. Refraction

More information

Vision. The eye. Image formation. Eye defects & corrective lenses. Visual acuity. Colour vision. Lecture 3.5

Vision. The eye. Image formation. Eye defects & corrective lenses. Visual acuity. Colour vision. Lecture 3.5 Lecture 3.5 Vision The eye Image formation Eye defects & corrective lenses Visual acuity Colour vision Vision http://www.wired.com/wiredscience/2009/04/schizoillusion/ Perception of light--- eye-brain

More information

REFRACTION OF LIGHT VERY SHORT ANSWER QUESTIONS

REFRACTION OF LIGHT VERY SHORT ANSWER QUESTIONS REFRACTION OF LIGHT VERY SHORT ANSWER QUESTIONS Q-1. The earth takes 24 h to rotate once about its axis. How much time does the sun take to shift by 1 0 when viewed from the earth? Q-2. What is the maximum

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to the

More information

HUYGENS PRINCIPLE AND INTERFERENCE

HUYGENS PRINCIPLE AND INTERFERENCE HUYGENS PRINCIPLE AND INTERFERENCE VERY SHORT ANSWER QUESTIONS Q-1. Can we perform Double slit experiment with ultraviolet light? Q-2. If no particular colour of light or wavelength is specified, then

More information

HUMAN EYE AND COLOURFUL WORLD Notes Physics - Grade 10

HUMAN EYE AND COLOURFUL WORLD Notes Physics - Grade 10 HUMAN EYE AND COLOURFUL WORLD Notes Physics - Grade 10 Human Eye Eye is one of the most sensitive sense organs in the human body. Our eye enables us to see this beautiful world. It consists of a lens,

More information

Assignment X Light. Reflection and refraction of light. (a) Angle of incidence (b) Angle of reflection (c) principle axis

Assignment X Light. Reflection and refraction of light. (a) Angle of incidence (b) Angle of reflection (c) principle axis Assignment X Light Reflection of Light: Reflection and refraction of light. 1. What is light and define the duality of light? 2. Write five characteristics of light. 3. Explain the following terms (a)

More information

Light sources can be natural or artificial (man-made)

Light sources can be natural or artificial (man-made) Light The Sun is our major source of light Light sources can be natural or artificial (man-made) People and insects do not see the same type of light - people see visible light - insects see ultraviolet

More information

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses Chapter 29/30 Refraction and Lenses Refraction Refraction the bending of waves as they pass from one medium into another. Caused by a change in the average speed of light. Analogy A car that drives off

More information

OPTICAL SYSTEMS OBJECTIVES

OPTICAL SYSTEMS OBJECTIVES 101 L7 OPTICAL SYSTEMS OBJECTIVES Aims Your aim here should be to acquire a working knowledge of the basic components of optical systems and understand their purpose, function and limitations in terms

More information

L. R. & S. M. VISSANJI ACADEMY SECONDARY SECTION PHYSICS-GRADE: VIII OPTICAL INSTRUMENTS

L. R. & S. M. VISSANJI ACADEMY SECONDARY SECTION PHYSICS-GRADE: VIII OPTICAL INSTRUMENTS L. R. & S. M. VISSANJI ACADEMY SECONDARY SECTION - 2016-17 PHYSICS-GRADE: VIII OPTICAL INSTRUMENTS SIMPLE MICROSCOPE A simple microscope consists of a single convex lens of a short focal length. The object

More information

BASANT S PHYSICS STUDY MATERIAL SUB- HUMAN EYE AND COLOURFUL WORLD =================================================== ============

BASANT S PHYSICS STUDY MATERIAL SUB- HUMAN EYE AND COLOURFUL WORLD =================================================== ============ BASANT S PHYSICS Mob: 9777702608 STUDY MATERIAL SUB- HUMAN EYE AND COLOURFUL WORLD =================================================== ============ Very Short Answer Type Questions 1. What is the least

More information

Mirrors and Lenses. Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses.

Mirrors and Lenses. Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses. Mirrors and Lenses Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses. Notation for Mirrors and Lenses The object distance is the distance from the object

More information

30 Lenses. Lenses change the paths of light.

30 Lenses. Lenses change the paths of light. Lenses change the paths of light. A light ray bends as it enters glass and bends again as it leaves. Light passing through glass of a certain shape can form an image that appears larger, smaller, closer,

More information

PRINCIPLE PROCEDURE ACTIVITY. AIM To observe diffraction of light due to a thin slit.

PRINCIPLE PROCEDURE ACTIVITY. AIM To observe diffraction of light due to a thin slit. ACTIVITY 12 AIM To observe diffraction of light due to a thin slit. APPARATUS AND MATERIAL REQUIRED Two razor blades, one adhesive tape/cello-tape, source of light (electric bulb/ laser pencil), a piece

More information

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad.

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. DEPARTMENT OF PHYSICS QUESTION BANK FOR SEMESTER III PAPER III OPTICS UNIT I: 1. MATRIX METHODS IN PARAXIAL OPTICS 2. ABERATIONS UNIT II

More information

Physics. Light Waves & Physical Optics

Physics. Light Waves & Physical Optics Physics Light Waves & Physical Optics Physical Optics Physical optics or wave optics, involves the effects of light waves that are not related to the geometric ray optics covered previously. We will use

More information

Optics: Lenses & Mirrors

Optics: Lenses & Mirrors Warm-Up 1. A light ray is passing through water (n=1.33) towards the boundary with a transparent solid at an angle of 56.4. The light refracts into the solid at an angle of refraction of 42.1. Determine

More information

Physics 11. Unit 8 Geometric Optics Part 2

Physics 11. Unit 8 Geometric Optics Part 2 Physics 11 Unit 8 Geometric Optics Part 2 (c) Refraction (i) Introduction: Snell s law Like water waves, when light is traveling from one medium to another, not only does its wavelength, and in turn the

More information

Refraction of Light. Refraction of Light

Refraction of Light. Refraction of Light 1 Refraction of Light Activity: Disappearing coin Place an empty cup on the table and drop a penny in it. Look down into the cup so that you can see the coin. Move back away from the cup slowly until the

More information

LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points

LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points WRITE ON SCANTRON WITH NUMBER 2 PENCIL DO NOT WRITE ON THIS TEST LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points Multiple Choice Identify the choice that best completes the statement or

More information

Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu

Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu 1. Principles of image formation by mirrors (1a) When all length scales of objects, gaps, and holes are much larger than the wavelength

More information

PHYSICS FOR THE IB DIPLOMA CAMBRIDGE UNIVERSITY PRESS

PHYSICS FOR THE IB DIPLOMA CAMBRIDGE UNIVERSITY PRESS Option C Imaging C Introduction to imaging Learning objectives In this section we discuss the formation of images by lenses and mirrors. We will learn how to construct images graphically as well as algebraically.

More information

Practice Problems for Chapter 25-26

Practice Problems for Chapter 25-26 Practice Problems for Chapter 25-26 1. What are coherent waves? 2. Describe diffraction grating 3. What are interference fringes? 4. What does monochromatic light mean? 5. What does the Rayleigh Criterion

More information

Light: Reflection and Refraction Light Reflection of Light by Plane Mirror Reflection of Light by Spherical Mirror Formation of Image by Mirror Sign Convention & Mirror Formula Refraction of light Through

More information

Chapter 34 The Wave Nature of Light; Interference. Copyright 2009 Pearson Education, Inc.

Chapter 34 The Wave Nature of Light; Interference. Copyright 2009 Pearson Education, Inc. Chapter 34 The Wave Nature of Light; Interference 34-7 Luminous Intensity The intensity of light as perceived depends not only on the actual intensity but also on the sensitivity of the eye at different

More information

Material after quiz and still on everyone s Unit 11 test.

Material after quiz and still on everyone s Unit 11 test. Material after quiz and still on everyone s Unit 11 test. When light travels from a fast material like air into a slow material like glass, Snell s Law always works. Material from here on out though is

More information

Lecture 21. Physics 1202: Lecture 21 Today s Agenda

Lecture 21. Physics 1202: Lecture 21 Today s Agenda Physics 1202: Lecture 21 Today s Agenda Announcements: Team problems today Team 14: Gregory Desautels, Benjamin Hallisey, Kyle Mcginnis Team 15: Austin Dion, Nicholas Gandza, Paul Macgillis-Falcon Homework

More information

ii) When light falls on objects, it reflects the light and when the reflected light reaches our eyes then we see the objects.

ii) When light falls on objects, it reflects the light and when the reflected light reaches our eyes then we see the objects. Light i) Light is a form of energy which helps us to see objects. ii) When light falls on objects, it reflects the light and when the reflected light reaches our eyes then we see the objects. iii) Light

More information

Phys214 Fall 2004 Midterm Form A

Phys214 Fall 2004 Midterm Form A 1. A clear sheet of polaroid is placed on top of a similar sheet so that their polarizing axes make an angle of 30 with each other. The ratio of the intensity of emerging light to incident unpolarized

More information

REFLECTION THROUGH LENS

REFLECTION THROUGH LENS REFLECTION THROUGH LENS A lens is a piece of transparent optical material with one or two curved surfaces to refract light rays. It may converge or diverge light rays to form an image. Lenses are mostly

More information

12:40-2:40 3:00-4:00 PM

12:40-2:40 3:00-4:00 PM Physics 294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 hand-written problem per week) Help-room hours: 12:40-2:40

More information

11 Human Eye & colourful world IMPORTANT NOTES ANIL TUTORIALS

11 Human Eye & colourful world IMPORTANT NOTES ANIL TUTORIALS 11 Human Eye & colourful world IMPORTANT NOTES 1. Parts of the Human Eye : (i) Sclerotic is the outermost white fibrous covering of the eye. (ii) Cornea is the transparent front bulging portion of the

More information

7 = <» _1_. The Language of Physics. Summary of Important Equations. J_ Pi. \j?i rj

7 = <» _1_. The Language of Physics. Summary of Important Equations. J_ Pi. \j?i rj The Language of Physics Refraction The bending of light as it travels from one medium into another. It occurs because of the difference in the speed of light in the different mediums. Whenever a ray of

More information

Lenses. A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved.

Lenses. A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved. PHYSICS NOTES ON A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved. Types of There are two types of basic lenses. (1.)

More information

DELHI PUBLIC SCHOOL JALANDHAR. (a) Assignment will be discussed and solved in the Class. ( In Physics Notebook)

DELHI PUBLIC SCHOOL JALANDHAR. (a) Assignment will be discussed and solved in the Class. ( In Physics Notebook) DELHI PUBLIC SCHOOL JALANDHAR DELHI REVISION ASSIGNMENT NO. 3 Instructions: SUBJECT: PHYSICS CLASS:10 Previous Year Questions (Miscellaneous ) (a) Assignment will be discussed and solved in the Class.

More information

Unit 3 - Foundations of Waves

Unit 3 - Foundations of Waves Unit 3 - Foundations of Waves Chapter 6 - Light, Mirrors, and Lenses Mr. Palmarin Chapter 6 - Light, Mirrors, and Lenses 1 / 57 Section 6.1 - The Behaviour of Light History of Light Plato (428 BCE - 348

More information

Person s Optics Test KEY SSSS

Person s Optics Test KEY SSSS Person s Optics Test KEY SSSS 2017-18 Competitors Names: School Name: All questions are worth one point unless otherwise stated. Show ALL WORK or you may not receive credit. Include correct units whenever

More information

Downloaded from

Downloaded from CHAPTER 11-HUMAN EYE AND COLOURFUL WORLD Power of accommodation: Ability of the eye lens to adjust its focal length. Relaxation of ciliary muscles lens becomes thin increase in focal length. Contraction

More information

Lenses. Images. Difference between Real and Virtual Images

Lenses. Images. Difference between Real and Virtual Images Linear Magnification (m) This is the factor by which the size of the object has been magnified by the lens in a direction which is perpendicular to the axis of the lens. Linear magnification can be calculated

More information

Introduction. Strand F Unit 3: Optics. Learning Objectives. Introduction. At the end of this unit you should be able to;

Introduction. Strand F Unit 3: Optics. Learning Objectives. Introduction. At the end of this unit you should be able to; Learning Objectives At the end of this unit you should be able to; Identify converging and diverging lenses from their curvature Construct ray diagrams for converging and diverging lenses in order to locate

More information

Lecture Outline Chapter 27. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 27. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 27 Physics, 4 th Edition James S. Walker Chapter 27 Optical Instruments Units of Chapter 27 The Human Eye and the Camera Lenses in Combination and Corrective Optics The Magnifying

More information

Downloaded from

Downloaded from HUMAN EYE AND COLOURFUL WORLD IMPORTANT QUESTIONS 1 Mark Questions Q.l. Q.2. Q.3. Q.4. Q.5. Q.6. What is the defect from which the eye shown in the figure suffers? The image of an object near the eye is

More information

Chapter 18 Optical Elements

Chapter 18 Optical Elements Chapter 18 Optical Elements GOALS When you have mastered the content of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms and use it in an operational

More information

Life Science Chapter 2 Study Guide

Life Science Chapter 2 Study Guide Key concepts and definitions Waves and the Electromagnetic Spectrum Wave Energy Medium Mechanical waves Amplitude Wavelength Frequency Speed Properties of Waves (pages 40-41) Trough Crest Hertz Electromagnetic

More information

always positive for virtual image

always positive for virtual image Point to be remembered: sign convention for Spherical mirror Object height, h = always positive Always +ve for virtual image Image height h = Always ve for real image. Object distance from pole (u) = always

More information

Wonders of Light - Part I

Wonders of Light - Part I 6. Wonders of Light - Part I Light : The fastest physical quantity, which is an electromagnetic radiation travelling with the speed of 3 0 8 m/s. SCHOOL SECTION 25 SCIENCE & TECHNOLOGY MT EDUCARE LTD.

More information

Chapter Wave Optics. MockTime.com. Ans: (d)

Chapter Wave Optics. MockTime.com. Ans: (d) Chapter Wave Optics Q1. Which one of the following phenomena is not explained by Huygen s construction of wave front? [1988] (a) Refraction Reflection Diffraction Origin of spectra Q2. Which of the following

More information

7 Human Eye and Colourful world

7 Human Eye and Colourful world Chapter 7 Human Eye and Colourful world You have studied refraction of light through lenses in the previous chapter. You have learnt about nature, position and relative size of image formed by lenses for

More information

Section 1: Sound. Sound and Light Section 1

Section 1: Sound. Sound and Light Section 1 Sound and Light Section 1 Section 1: Sound Preview Key Ideas Bellringer Properties of Sound Sound Intensity and Decibel Level Musical Instruments Hearing and the Ear The Ear Ultrasound and Sonar Sound

More information

Science 8 Unit 2 Pack:

Science 8 Unit 2 Pack: Science 8 Unit 2 Pack: Name Page 0 Section 4.1 : The Properties of Waves Pages By the end of section 4.1 you should be able to understand the following: Waves are disturbances that transmit energy from

More information

General Physics II. Optical Instruments

General Physics II. Optical Instruments General Physics II Optical Instruments 1 The Thin-Lens Equation 2 The Thin-Lens Equation Using geometry, one can show that 1 1 1 s+ =. s' f The magnification of the lens is defined by For a thin lens,

More information

Average: Standard Deviation: Max: 99 Min: 40

Average: Standard Deviation: Max: 99 Min: 40 1 st Midterm Exam Average: 83.1 Standard Deviation: 12.0 Max: 99 Min: 40 Please contact me to fix an appointment, if you took less than 65. Chapter 33 Lenses and Op/cal Instruments Units of Chapter 33

More information

LIGHT REFLECTION AND REFRACTION

LIGHT REFLECTION AND REFRACTION LIGHT REFLECTION AND REFRACTION REFLECTION OF LIGHT A highly polished surface, such as a mirror, reflects most of the light falling on it. Laws of Reflection: (i) The angle of incidence is equal to the

More information

POLARISATION OF LIGHT. Polarisation: It is the phenomenon by which the vibrations in a transverse wave are confined to one particular direction only.

POLARISATION OF LIGHT. Polarisation: It is the phenomenon by which the vibrations in a transverse wave are confined to one particular direction only. POLARISATION OF LIGHT Polarisation: It is the phenomenon by which the vibrations in a transverse wave are confined to one particular direction only. Polarisation is a phenomenon exhibited only by transverse

More information

SECTION 1 QUESTIONS NKB.CO.IN

SECTION 1 QUESTIONS NKB.CO.IN OPTICS SECTION 1 QUESTIONS 1. A diverging beam of light falls on a plane mirror. The image formed by the mirror is a) real, erect b) virtual, inverted c) virtual, erect d) real, inverted. In a pond water

More information

PHY 431 Homework Set #5 Due Nov. 20 at the start of class

PHY 431 Homework Set #5 Due Nov. 20 at the start of class PHY 431 Homework Set #5 Due Nov. 0 at the start of class 1) Newton s rings (10%) The radius of curvature of the convex surface of a plano-convex lens is 30 cm. The lens is placed with its convex side down

More information

Solution. Class 10 - Science. Revision Test. Section A

Solution. Class 10 - Science. Revision Test. Section A Solution Class 10 - Science Revision Test Section A 1. (a) since resistances are in parallel R (b) Total current I 4.8 A (c) If I 1, I 2 and I 3 be the current through 2 respectively. Therefore, I 1 3

More information

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36 Light from distant things Chapter 36 We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can process. This chapter concerns

More information

Chapter 24 Geometrical Optics. Copyright 2010 Pearson Education, Inc.

Chapter 24 Geometrical Optics. Copyright 2010 Pearson Education, Inc. Chapter 24 Geometrical Optics Lenses convex (converging) concave (diverging) Mirrors Ray Tracing for Mirrors We use three principal rays in finding the image produced by a curved mirror. The parallel ray

More information

Human Eye and Colourful World

Human Eye and Colourful World CHAPTER 2 Human Eye and Colourful World The Human Eye Human eye is the most delicate and complicated natural optical instrument. It is used to see the beautiful nature and the natural phenomena. It is

More information

INTRODUCTION THIN LENSES. Introduction. given by the paraxial refraction equation derived last lecture: Thin lenses (19.1) = 1. Double-lens systems

INTRODUCTION THIN LENSES. Introduction. given by the paraxial refraction equation derived last lecture: Thin lenses (19.1) = 1. Double-lens systems Chapter 9 OPTICAL INSTRUMENTS Introduction Thin lenses Double-lens systems Aberrations Camera Human eye Compound microscope Summary INTRODUCTION Knowledge of geometrical optics, diffraction and interference,

More information

GRADE 11-LESSON 2 PHENOMENA RELATED TO OPTICS

GRADE 11-LESSON 2 PHENOMENA RELATED TO OPTICS REFLECTION OF LIGHT GRADE 11-LESSON 2 PHENOMENA RELATED TO OPTICS 1.i. What is reflection of light?.. ii. What are the laws of reflection? a...... b.... iii. Consider the diagram at the right. Which one

More information

Vision 1. Physical Properties of Light. Overview of Topics. Light, Optics, & The Eye Chaudhuri, Chapter 8

Vision 1. Physical Properties of Light. Overview of Topics. Light, Optics, & The Eye Chaudhuri, Chapter 8 Vision 1 Light, Optics, & The Eye Chaudhuri, Chapter 8 1 1 Overview of Topics Physical Properties of Light Physical properties of light Interaction of light with objects Anatomy of the eye 2 3 Light A

More information

PHYS 202 OUTLINE FOR PART III LIGHT & OPTICS

PHYS 202 OUTLINE FOR PART III LIGHT & OPTICS PHYS 202 OUTLINE FOR PART III LIGHT & OPTICS Electromagnetic Waves A. Electromagnetic waves S-23,24 1. speed of waves = 1/( o o ) ½ = 3 x 10 8 m/s = c 2. waves and frequency: the spectrum (a) radio red

More information

L 32 Light and Optics [2] The rainbow. Why is it a rain BOW? Atmospheric scattering. Different colors are refracted (bent) by different amounts

L 32 Light and Optics [2] The rainbow. Why is it a rain BOW? Atmospheric scattering. Different colors are refracted (bent) by different amounts L 32 Light and Optics [2] Measurements of the speed of light The bending of light refraction Total internal reflection Dispersion Dispersion Rainbows Atmospheric scattering Blue sky and red sunsets Mirrors

More information

OPTICS DIVISION B. School/#: Names:

OPTICS DIVISION B. School/#: Names: OPTICS DIVISION B School/#: Names: Directions: Fill in your response for each question in the space provided. All questions are worth two points. Multiple Choice (2 points each question) 1. Which of the

More information

Unit Test Strand: The Wave Nature of Light

Unit Test Strand: The Wave Nature of Light 22K 11T 2A 3C Unit Test Strand: The Wave Nature of Light Expectations: E1. analyse technologies that use the wave nature of light, and assess their impact on society and the environment; E2. investigate,

More information

Chapter 23 Study Questions Name: Class:

Chapter 23 Study Questions Name: Class: Chapter 23 Study Questions Name: Class: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. When you look at yourself in a plane mirror, you

More information

Human Eye and Colourful World

Human Eye and Colourful World Human Eye and Colourful World Question 1: What is meant by power of accommodation of the eye? Answer: When the ciliary muscles are relaxed, the eye lens becomes thin, the focal length increases, and the

More information

3. Butter paper is an example for object. (A) a transparent (B) a translucent (C) an opaque (D) a luminous

3. Butter paper is an example for object. (A) a transparent (B) a translucent (C) an opaque (D) a luminous SETH ANANDRAM JAIPURIA SCHOOL VASUNDHARA, GHAZIABAD SESSION :2017-18 OLYMPIAD WORKSHEET CLASS VIII PHYSICS TOPIC : LIGHT 1. We are able to see objects around us because : (A) the objects absorb all the

More information

Marketed and Distributed by FaaDoOEngineers.com

Marketed and Distributed by FaaDoOEngineers.com REFRACTION OF LIGHT GUPTA CLASSES For any help contact: 995368795, 968789880 Nishant Gupta, D-, Prashant vihar, Rohini, Delhi-85 Contact: 995368795, 968789880 Reraction o light:. The ratio o the sine o

More information

Exam 3--PHYS 2021M-Spring 2009

Exam 3--PHYS 2021M-Spring 2009 Name: Class: Date: Exam 3--PHYS 2021M-Spring 2009 Multiple Choice Identify the choice that best completes the statement or answers the question Each question is worth 2 points 1 Images made by mirrors

More information

Topic 1 - What is Light? 1. Radiation is the type of energy transfer which does not require... A matter B heat C waves D light

Topic 1 - What is Light? 1. Radiation is the type of energy transfer which does not require... A matter B heat C waves D light Grade 8 Unit 1 Test Student Class Topic 1 - What is Light? 1. Radiation is the type of energy transfer which does not require... A matter B heat C waves D light 2. Light-producing technologies, such as

More information

Chapter 2 - Geometric Optics

Chapter 2 - Geometric Optics David J. Starling Penn State Hazleton PHYS 214 The human eye is a visual system that collects light and forms an image on the retina. The human eye is a visual system that collects light and forms an image

More information

Types of lenses. Shown below are various types of lenses, both converging and diverging.

Types of lenses. Shown below are various types of lenses, both converging and diverging. Types of lenses Shown below are various types of lenses, both converging and diverging. Any lens that is thicker at its center than at its edges is a converging lens with positive f; and any lens that

More information