SAMPLING DISTRIBUTION MODELS TODAY YOU WILL NEED: PENCIL SCRATCH PAPER A PARTNER (YOUR CHOICE) ONE THUMBTACK PER GROUP Z-SCORE CHART

Size: px
Start display at page:

Download "SAMPLING DISTRIBUTION MODELS TODAY YOU WILL NEED: PENCIL SCRATCH PAPER A PARTNER (YOUR CHOICE) ONE THUMBTACK PER GROUP Z-SCORE CHART"

Transcription

1 SAMPLING DISTRIBUTION MODELS TODAY YOU WILL NEED: PENCIL SCRATCH PAPER A PARTNER (YOUR CHOICE) ONE THUMBTACK PER GROUP Z-SCORE CHART

2 FLIPPING THUMBTACKS PART 1 I want to know the probability that, when you flip a thumbtack, it lands point up. 1. Assign jobs - one person is the tosser and one person is the recorder. 2. Flip the thumb tack five times and record the sample proportion of ups. (i.e. 0.20, 0.80 etc.). 3. Record your data on the board (only one proportion per group) 4. Sketch a histogram (or dotplot) of the class results. 5. Describe the distribution (CUSS).

3 FLIPPING THUMBTACKS PART 2 I want to know the probability that, when you flip a thumbtack, it lands point up. 1. Flip the thumb tack twenty more times and record the sample proportion of ups (out of 25 total). 2. Record your data on the board (only one proportion per group) 3. Sketch a histogram (or dotplot) of the class results. 4. Describe the distribution (CUSS).

4 FLIPPING THUMBTACKS PART 3 I want to know the probability that, when you flip a thumbtack, it lands point up. 1. Flip the thumb tack 75 more times and record the sample proportion of ups (out of 100 total). 2. Record your data on the board (only one proportion per group) 3. Sketch a histogram (or dotplot) of the class results. 4. Describe the distribution (CUSS).

5 FLIPPING THUMBTACKS CONCLUSIONS On your paper, answer the following questions: 1. What changes occurred to your histogram as the number of tosses increased? 2. Are your thumbtack flips considered Bernoulli trials? 3. Does the standard deviation become larger or smaller as the sample sizes increase? What about the mean? 4. Could you use a binomial model to predict the number of ups we would get in proportions of 200 tosses? How? 5. Why could you not use a binomial model to predict the number of ups we would get in proportions of 10,000 tosses? What would be a better way to predict this?

6 SKETCH THE NORMAL MODEL OF ALL CARS ON THE INTERSTATE, 80% EXCEED THE SPEED LIMIT. WHAT PROPORTION OF SPEEDERS MIGHT WE SEE AMONG THE NEXT 50 CARS? Check the conditions to make sure we re allowed to use a Normal model: 10% condition Success / failure condition What s the mean? What s the standard deviation?

7 SKETCH THE NORMAL MODEL WE DON T KNOW IT, BUT 52% OF VOTERS PLAN TO VOTE YES ON THE UPCOMING SCHOOL BUDGET. WE POLL A RANDOM SAMPLE OF 300 VOTERS. WHAT MIGHT THE PERCENTAGE OF YES-VOTERS APPEAR TO BE IN OUR POLL? Check the conditions to make sure we re allowed to use a Normal model: What s the mean? 10% condition Success / failure condition What s the standard deviation?

8 CALCULATING PROBABILITIES GROOVY M&M S ARE SUPPOSED TO MAKE UP 30% OF THE CANDIES SOLD. IN A LARGE BAG OF 250 M&M S, WHAT IS THE PROBABILITY WE GET AT LEAST 25% GROOVY CANDIES? Check the conditions to make sure we re allowed to use a Normal model: What s the mean? 10% condition Success / failure condition What s the standard deviation?

9 CALCULATING PROBABILITIES In the previous problem, we used the mean and standard deviation of a sample to predict the mean and standard deviation of the population. What if we already know the mean and standard deviation of the population, and we want to find the mean and standard deviation of a sample?

10 SKETCH THE NORMAL MODEL SAT SCORES SHOULD HAVE A MEAN OF 500 AND A STANDARD DEVIATION OF 100. WHAT ABOUT THE MEAN OF RANDOM SAMPLES OF 20 STUDENTS? Check the conditions to make sure we re allowed to use a Normal model: What s the mean? What s the standard deviation? Random sampling condition. Independence assumption. 10% condition

11 SKETCH THE NORMAL MODEL SPEEDS OF CARS ON A HIGHWAY HAVE MEAN 52 MPH AND A STANDARD DEVIATION OF 6 MPH, AND ARE LIKELY TO BE SKEWED TO THE RIGHT (A FEW VERY FAST DRIVERS). DESCRIBE WHAT WE MIGHT SEE IN RANDOM SAMPLES OF 50 CARS? Check the conditions to make sure we re allowed to use a Normal model: What s the mean? What s the standard deviation? Random sampling condition. Independence assumption. 10% condition

12 CALCULATING PROBABILITIES AT BIRTH, BABIES AVERAGE 7.8 POUNDS, WITH A STANDARD DEVIATION OF 2.1 POUNDS. A RANDOM SAMPLE OF 34 BABIES BORN TO MOTHERS LIVING NEAR A LARGE FACTORY THAT MAY BE POLLUTING THE AIR AND WATER SHOWS A MEAN BIRTHWEIGHT OF ONLY 7.2 POUNDS. IS THAT UNUSUALLY LOW? Check the conditions to make sure we re allowed to use a Normal model: What s the mean? What s the standard deviation? Random sampling condition. Independence assumption. 10% condition

13 ACTIVITY-BASED STATISTICS Spinning Pennies

Moore, IPS 6e Chapter 05

Moore, IPS 6e Chapter 05 Page 1 of 9 Moore, IPS 6e Chapter 05 Quizzes prepared by Dr. Patricia Humphrey, Georgia Southern University Suppose that you are a student worker in the Statistics Department and they agree to pay you

More information

Math 58. Rumbos Fall Solutions to Exam Give thorough answers to the following questions:

Math 58. Rumbos Fall Solutions to Exam Give thorough answers to the following questions: Math 58. Rumbos Fall 2008 1 Solutions to Exam 2 1. Give thorough answers to the following questions: (a) Define a Bernoulli trial. Answer: A Bernoulli trial is a random experiment with two possible, mutually

More information

The point value of each problem is in the left-hand margin. You must show your work to receive any credit, except on problems 1 & 2. Work neatly.

The point value of each problem is in the left-hand margin. You must show your work to receive any credit, except on problems 1 & 2. Work neatly. Introduction to Statistics Math 1040 Sample Exam II Chapters 5-7 4 Problem Pages 4 Formula/Table Pages Time Limit: 90 Minutes 1 No Scratch Paper Calculator Allowed: Scientific Name: The point value of

More information

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5.

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Math 166 Fall 2008 c Heather Ramsey Page 1 Math 166 - Exam 2 Review NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Section 3.2 - Measures of Central Tendency

More information

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5.

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Math 166 Fall 2008 c Heather Ramsey Page 1 Math 166 - Exam 2 Review NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Section 3.2 - Measures of Central Tendency

More information

Question 1. The following set of data gives exam scores in a class of 12 students. a) Sketch a box and whisker plot of the data.

Question 1. The following set of data gives exam scores in a class of 12 students. a) Sketch a box and whisker plot of the data. Question 1 The following set of data gives exam scores in a class of 12 students 25, 67, 86, 72, 97, 80, 86, 55, 68, 70, 81, 12 a) Sketch a box and whisker plot of the data. b) Determine the Interquartile

More information

Notes: Displaying Quantitative Data

Notes: Displaying Quantitative Data Notes: Displaying Quantitative Data Stats: Modeling the World Chapter 4 A or is often used to display categorical data. These types of displays, however, are not appropriate for quantitative data. Quantitative

More information

Unit 8, Activity 1, Vocabulary Self-Awareness Chart

Unit 8, Activity 1, Vocabulary Self-Awareness Chart Unit 8, Activity 1, Vocabulary Self-Awareness Chart Vocabulary Self-Awareness Chart WORD +? EXAMPLE DEFINITION Central Tendency Mean Median Mode Range Quartile Interquartile Range Standard deviation Stem

More information

If a fair coin is tossed 10 times, what will we see? 24.61% 20.51% 20.51% 11.72% 11.72% 4.39% 4.39% 0.98% 0.98% 0.098% 0.098%

If a fair coin is tossed 10 times, what will we see? 24.61% 20.51% 20.51% 11.72% 11.72% 4.39% 4.39% 0.98% 0.98% 0.098% 0.098% Coin tosses If a fair coin is tossed 10 times, what will we see? 30% 25% 24.61% 20% 15% 10% Probability 20.51% 20.51% 11.72% 11.72% 5% 4.39% 4.39% 0.98% 0.98% 0.098% 0.098% 0 1 2 3 4 5 6 7 8 9 10 Number

More information

Math 141 Exam 3 Review with Key. 1. P(E)=0.5, P(F)=0.6 P(E F)=0.9 Find ) b) P( E F ) c) P( E F )

Math 141 Exam 3 Review with Key. 1. P(E)=0.5, P(F)=0.6 P(E F)=0.9 Find ) b) P( E F ) c) P( E F ) Math 141 Exam 3 Review with Key 1. P(E)=0.5, P(F)=0.6 P(E F)=0.9 Find C C C a) P( E F) ) b) P( E F ) c) P( E F ) 2. A fair coin is tossed times and the sequence of heads and tails is recorded. Find a)

More information

Name Class Date. Introducing Probability Distributions

Name Class Date. Introducing Probability Distributions Name Class Date Binomial Distributions Extension: Distributions Essential question: What is a probability distribution and how is it displayed? 8-6 CC.9 2.S.MD.5(+) ENGAGE Introducing Distributions Video

More information

**Gettysburg Address Spotlight Task

**Gettysburg Address Spotlight Task **Gettysburg Address Spotlight Task Authorship of literary works is often a topic for debate. One method researchers use to decide who was the author is to look at word patterns from known writing of the

More information

Lesson Sampling Distribution of Differences of Two Proportions

Lesson Sampling Distribution of Differences of Two Proportions STATWAY STUDENT HANDOUT STUDENT NAME DATE INTRODUCTION The GPS software company, TeleNav, recently commissioned a study on proportions of people who text while they drive. The study suggests that there

More information

Math 247: Continuous Random Variables: The Uniform Distribution (Section 6.1) and The Normal Distribution (Section 6.2)

Math 247: Continuous Random Variables: The Uniform Distribution (Section 6.1) and The Normal Distribution (Section 6.2) Math 247: Continuous Random Variables: The Uniform Distribution (Section 6.1) and The Normal Distribution (Section 6.2) The Uniform Distribution Example: If you are asked to pick a number from 1 to 10

More information

If a fair coin is tossed 10 times, what will we see? 24.61% 20.51% 20.51% 11.72% 11.72% 4.39% 4.39% 0.98% 0.98% 0.098% 0.098%

If a fair coin is tossed 10 times, what will we see? 24.61% 20.51% 20.51% 11.72% 11.72% 4.39% 4.39% 0.98% 0.98% 0.098% 0.098% Coin tosses If a fair coin is tossed 10 times, what will we see? 30% 25% 24.61% 20% 15% 10% Probability 20.51% 20.51% 11.72% 11.72% 5% 4.39% 4.39% 0.98% 0.98% 0.098% 0.098% 0 1 2 3 4 5 6 7 8 9 10 Number

More information

Mini-Unit. Data & Statistics. Investigation 1: Correlations and Probability in Data

Mini-Unit. Data & Statistics. Investigation 1: Correlations and Probability in Data Mini-Unit Data & Statistics Investigation 1: Correlations and Probability in Data I can Measure Variation in Data and Strength of Association in Two-Variable Data Lesson 3: Probability Probability is a

More information

3.6 Theoretical and Experimental Coin Tosses

3.6 Theoretical and Experimental Coin Tosses wwwck12org Chapter 3 Introduction to Discrete Random Variables 36 Theoretical and Experimental Coin Tosses Here you ll simulate coin tosses using technology to calculate experimental probability Then you

More information

Test 2 SOLUTIONS (Chapters 5 7)

Test 2 SOLUTIONS (Chapters 5 7) Test 2 SOLUTIONS (Chapters 5 7) 10 1. I have been sitting at my desk rolling a six-sided die (singular of dice), and counting how many times I rolled a 6. For example, after my first roll, I had rolled

More information

Probabilities and Probability Distributions

Probabilities and Probability Distributions Probabilities and Probability Distributions George H Olson, PhD Doctoral Program in Educational Leadership Appalachian State University May 2012 Contents Basic Probability Theory Independent vs. Dependent

More information

Lesson 3: Chance Experiments with Equally Likely Outcomes

Lesson 3: Chance Experiments with Equally Likely Outcomes Lesson : Chance Experiments with Equally Likely Outcomes Classwork Example 1 Jamal, a 7 th grader, wants to design a game that involves tossing paper cups. Jamal tosses a paper cup five times and records

More information

1) What is the total area under the curve? 1) 2) What is the mean of the distribution? 2)

1) What is the total area under the curve? 1) 2) What is the mean of the distribution? 2) Math 1090 Test 2 Review Worksheet Ch5 and Ch 6 Name Use the following distribution to answer the question. 1) What is the total area under the curve? 1) 2) What is the mean of the distribution? 2) 3) Estimate

More information

NAME DATE PERIOD. Study Guide and Intervention

NAME DATE PERIOD. Study Guide and Intervention 9-1 Section Title The probability of a simple event is a ratio that compares the number of favorable outcomes to the number of possible outcomes. Outcomes occur at random if each outcome occurs by chance.

More information

Section 6.1 #16. Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Section 6.1 #16. Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? Section 6.1 #16 What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? page 1 Section 6.1 #38 Two events E 1 and E 2 are called independent if p(e 1

More information

Unit 8: Sample Surveys

Unit 8: Sample Surveys Unit 8: Sample Surveys Marius Ionescu 10/27/2011 Marius Ionescu () Unit 8: Sample Surveys 10/27/2011 1 / 13 Chapter 19: Surveys Why take a survey? Marius Ionescu () Unit 8: Sample Surveys 10/27/2011 2

More information

Geometric Distribution

Geometric Distribution Geometric Distribution Review Binomial Distribution Properties The experiment consists of n repeated trials. Each trial can result in just two possible outcomes. The probability of success is the same

More information

Math 147 Lecture Notes: Lecture 21

Math 147 Lecture Notes: Lecture 21 Math 147 Lecture Notes: Lecture 21 Walter Carlip March, 2018 The Probability of an Event is greater or less, according to the number of Chances by which it may happen, compared with the whole number of

More information

11-1 Practice. Designing a Study

11-1 Practice. Designing a Study 11-1 Practice Designing a Study Determine whether each situation calls for a survey, an experiment, or an observational study. Explain your reasoning. 1. You want to compare the health of students who

More information

Introduction to Inferential Statistics

Introduction to Inferential Statistics Introduction to Inferential Statistics Can Dolphins Communicate? (Source: Tintle et al.; 2012, John Wiley and Sons) A famous study from the 1960 s explored whether two dolphins (Doris and Buzz) could communicate

More information

AP Statistics Composition Book Review Chapters 1 2

AP Statistics Composition Book Review Chapters 1 2 AP Statistics Composition Book Review Chapters 1 2 Terms/vocabulary: Explain each term with in the STATISTICAL context. Bar Graph Bimodal Categorical Variable Density Curve Deviation Distribution Dotplot

More information

green, green, green, green, green The favorable outcomes of the event are blue and red.

green, green, green, green, green The favorable outcomes of the event are blue and red. 5 Chapter Review Review Key Vocabulary experiment, p. 6 outcomes, p. 6 event, p. 6 favorable outcomes, p. 6 probability, p. 60 relative frequency, p. 6 Review Examples and Exercises experimental probability,

More information

Independence Is The Word

Independence Is The Word Problem 1 Simulating Independent Events Describe two different events that are independent. Describe two different events that are not independent. The probability of obtaining a tail with a coin toss

More information

a) Getting 10 +/- 2 head in 20 tosses is the same probability as getting +/- heads in 320 tosses

a) Getting 10 +/- 2 head in 20 tosses is the same probability as getting +/- heads in 320 tosses Question 1 pertains to tossing a fair coin (8 pts.) Fill in the blanks with the correct numbers to make the 2 scenarios equally likely: a) Getting 10 +/- 2 head in 20 tosses is the same probability as

More information

Normal Distribution Lecture Notes Continued

Normal Distribution Lecture Notes Continued Normal Distribution Lecture Notes Continued 1. Two Outcome Situations Situation: Two outcomes (for against; heads tails; yes no) p = percent in favor q = percent opposed Written as decimals p + q = 1 Why?

More information

Assignment 4: Permutations and Combinations

Assignment 4: Permutations and Combinations Assignment 4: Permutations and Combinations CS244-Randomness and Computation Assigned February 18 Due February 27 March 10, 2015 Note: Python doesn t have a nice built-in function to compute binomial coeffiecients,

More information

MATH , Summer I Homework - 05

MATH , Summer I Homework - 05 MATH 2300-02, Summer I - 200 Homework - 05 Name... TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. Due on Tuesday, October 26th ) True or False: If p remains constant

More information

Chapter 4 Displaying and Describing Quantitative Data

Chapter 4 Displaying and Describing Quantitative Data Chapter 4 Displaying and Describing Quantitative Data Overview Key Concepts Be able to identify an appropriate display for any quantitative variable. Be able to guess the shape of the distribution of a

More information

Probability WS 1 Counting , , , a)625 b)1050c) a)20358,520 b) 1716 c) 55,770

Probability WS 1 Counting , , , a)625 b)1050c) a)20358,520 b) 1716 c) 55,770 Probability WS 1 Counting 1.28 2.13,800 3.5832 4.30 5.. 15 7.72 8.33, 5 11. 15,504 12. a)25 b)1050c)2275 13. a)20358,520 b) 171 c) 55,770 d) 12,271,512e) 1128 f) 17 14. 438 15. 2,000 1. 11,700 17. 220,

More information

Probability. March 06, J. Boulton MDM 4U1. P(A) = n(a) n(s) Introductory Probability

Probability. March 06, J. Boulton MDM 4U1. P(A) = n(a) n(s) Introductory Probability Most people think they understand odds and probability. Do you? Decision 1: Pick a card Decision 2: Switch or don't Outcomes: Make a tree diagram Do you think you understand probability? Probability Write

More information

Symmetric (Mean and Standard Deviation)

Symmetric (Mean and Standard Deviation) Summary: Unit 2 & 3 Distributions for Quantitative Data Topics covered in Module 2: How to calculate the Mean, Median, IQR Shapes of Histograms, Dotplots, Boxplots Know the difference between categorical

More information

Grade 8 Math Assignment: Probability

Grade 8 Math Assignment: Probability Grade 8 Math Assignment: Probability Part 1: Rock, Paper, Scissors - The Study of Chance Purpose An introduction of the basic information on probability and statistics Materials: Two sets of hands Paper

More information

Unit 11 Probability. Round 1 Round 2 Round 3 Round 4

Unit 11 Probability. Round 1 Round 2 Round 3 Round 4 Study Notes 11.1 Intro to Probability Unit 11 Probability Many events can t be predicted with total certainty. The best thing we can do is say how likely they are to happen, using the idea of probability.

More information

or More Events Activities D2.1 Open and Shut Case D2.2 Fruit Machines D2.3 Birthdays Notes for Solutions (1 page)

or More Events Activities D2.1 Open and Shut Case D2.2 Fruit Machines D2.3 Birthdays Notes for Solutions (1 page) D2 Probability of Two or More Events Activities Activities D2.1 Open and Shut Case D2.2 Fruit Machines D2.3 Birthdays Notes for Solutions (1 page) ACTIVITY D2.1 Open and Shut Case In a Game Show in America,

More information

MA 180/418 Midterm Test 1, Version B Fall 2011

MA 180/418 Midterm Test 1, Version B Fall 2011 MA 80/48 Midterm Test, Version B Fall 20 Student Name (PRINT):............................................. Student Signature:................................................... The test consists of 0

More information

Module 4 Project Maths Development Team Draft (Version 2)

Module 4 Project Maths Development Team Draft (Version 2) 5 Week Modular Course in Statistics & Probability Strand 1 Module 4 Set Theory and Probability It is often said that the three basic rules of probability are: 1. Draw a picture 2. Draw a picture 3. Draw

More information

Unit 6: Probability Summative Assessment. 2. The probability of a given event can be represented as a ratio between what two numbers?

Unit 6: Probability Summative Assessment. 2. The probability of a given event can be represented as a ratio between what two numbers? Math 7 Unit 6: Probability Summative Assessment Name Date Knowledge and Understanding 1. Explain the difference between theoretical and experimental probability. 2. The probability of a given event can

More information

There is no class tomorrow! Have a good weekend! Scores will be posted in Compass early Friday morning J

There is no class tomorrow! Have a good weekend! Scores will be posted in Compass early Friday morning J STATISTICS 100 EXAM 3 Fall 2016 PRINT NAME (Last name) (First name) *NETID CIRCLE SECTION: L1 12:30pm L2 3:30pm Online MWF 12pm Write answers in appropriate blanks. When no blanks are provided CIRCLE your

More information

Math 113-All Sections Final Exam May 6, 2013

Math 113-All Sections Final Exam May 6, 2013 Name Math 3-All Sections Final Exam May 6, 23 Answer questions on the scantron provided. The scantron should be the same color as this page. Be sure to encode your name, student number and SECTION NUMBER

More information

3. Data and sampling. Plan for today

3. Data and sampling. Plan for today 3. Data and sampling Business Statistics Plan for today Reminders and introduction Data: qualitative and quantitative Quantitative data: discrete and continuous Qualitative data discussion Samples and

More information

Compute P(X 4) = Chapter 8 Homework Problems Compiled by Joe Kahlig

Compute P(X 4) = Chapter 8 Homework Problems Compiled by Joe Kahlig 141H homework problems, 10C-copyright Joe Kahlig Chapter 8, Page 1 Chapter 8 Homework Problems Compiled by Joe Kahlig Section 8.1 1. Classify the random variable as finite discrete, infinite discrete,

More information

Stat 20: Intro to Probability and Statistics

Stat 20: Intro to Probability and Statistics Stat 20: Intro to Probability and Statistics Lecture 17: Using the Normal Curve with Box Models Tessa L. Childers-Day UC Berkeley 23 July 2014 By the end of this lecture... You will be able to: Draw and

More information

This page intentionally left blank

This page intentionally left blank Appendix E Labs This page intentionally left blank Dice Lab (Worksheet) Objectives: 1. Learn how to calculate basic probabilities of dice. 2. Understand how theoretical probabilities explain experimental

More information

STAT 311 (Spring 2016) Worksheet W8W: Bernoulli, Binomial due: 3/21

STAT 311 (Spring 2016) Worksheet W8W: Bernoulli, Binomial due: 3/21 Name: Group 1) For each of the following situations, determine i) Is the distribution a Bernoulli, why or why not? If it is a Bernoulli distribution then ii) What is a failure and what is a success? iii)

More information

Sampling distributions and the Central Limit Theorem

Sampling distributions and the Central Limit Theorem Sampling distributions and the Central Limit Theorem Johan A. Elkink University College Dublin 14 October 2013 Johan A. Elkink (UCD) Central Limit Theorem 14 October 2013 1 / 29 Outline 1 Sampling 2 Statistical

More information

Spring 2017 Math 54 Test #2 Name:

Spring 2017 Math 54 Test #2 Name: Spring 2017 Math 54 Test #2 Name: You may use a TI calculator and formula sheets from the textbook. Show your work neatly and systematically for full credit. Total points: 101 1. (6) Suppose P(E) = 0.37

More information

Lesson 1: Chance Experiments

Lesson 1: Chance Experiments Student Outcomes Students understand that a probability is a number between and that represents the likelihood that an event will occur. Students interpret a probability as the proportion of the time that

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) Blood type Frequency

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) Blood type Frequency MATH 1342 Final Exam Review Name Construct a frequency distribution for the given qualitative data. 1) The blood types for 40 people who agreed to participate in a medical study were as follows. 1) O A

More information

MAT Midterm Review

MAT Midterm Review MAT 120 - Midterm Review Name Identify the population and the sample. 1) When 1094 American households were surveyed, it was found that 67% of them owned two cars. Identify whether the statement describes

More information

Chapter 5 Probability

Chapter 5 Probability Chapter 5 Probability Math150 What s the likelihood of something occurring? Can we answer questions about probabilities using data or experiments? For instance: 1) If my parking meter expires, I will probably

More information

out one marble and then a second marble without replacing the first. What is the probability that both marbles will be white?

out one marble and then a second marble without replacing the first. What is the probability that both marbles will be white? Example: Leah places four white marbles and two black marbles in a bag She plans to draw out one marble and then a second marble without replacing the first What is the probability that both marbles will

More information

Chapter 4. September 08, appstats 4B.notebook. Displaying Quantitative Data. Aug 4 9:13 AM. Aug 4 9:13 AM. Aug 27 10:16 PM.

Chapter 4. September 08, appstats 4B.notebook. Displaying Quantitative Data. Aug 4 9:13 AM. Aug 4 9:13 AM. Aug 27 10:16 PM. Objectives: Students will: Chapter 4 1. Be able to identify an appropriate display for any quantitative variable: stem leaf plot, time plot, histogram and dotplot given a set of quantitative data. 2. Be

More information

Section The Multiplication Principle and Permutations

Section The Multiplication Principle and Permutations Section 2.1 - The Multiplication Principle and Permutations Example 1: A yogurt shop has 4 flavors (chocolate, vanilla, strawberry, and blueberry) and three sizes (small, medium, and large). How many different

More information

Probability. The Bag Model

Probability. The Bag Model Probability The Bag Model Imagine a bag (or box) containing balls of various kinds having various colors for example. Assume that a certain fraction p of these balls are of type A. This means N = total

More information

Class XII Chapter 13 Probability Maths. Exercise 13.1

Class XII Chapter 13 Probability Maths. Exercise 13.1 Exercise 13.1 Question 1: Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E F) = 0.2, find P (E F) and P(F E). It is given that P(E) = 0.6, P(F) = 0.3, and P(E F) = 0.2 Question 2:

More information

This Probability Packet Belongs to:

This Probability Packet Belongs to: This Probability Packet Belongs to: 1 2 Station #1: M & M s 1. What is the sample space of your bag of M&M s? 2. Find the theoretical probability of the M&M s in your bag. Then, place the candy back into

More information

Chapter 11. Sampling Distributions. BPS - 5th Ed. Chapter 11 1

Chapter 11. Sampling Distributions. BPS - 5th Ed. Chapter 11 1 Chapter 11 Sampling Distributions BPS - 5th Ed. Chapter 11 1 Sampling Terminology Parameter fixed, unknown number that describes the population Statistic known value calculated from a sample a statistic

More information

Statistics and Data Long-Term Memory Review Review 1

Statistics and Data Long-Term Memory Review Review 1 Review 1 1. Choose from the words below to complete the sentence: When collecting data using a survey, you can choose to ask everyone in your target group, which is called a census, or you can choose a,

More information

MATH CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #2 - FALL DR. DAVID BRIDGE

MATH CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #2 - FALL DR. DAVID BRIDGE MATH 2053 - CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #2 - FALL 2009 - DR. DAVID BRIDGE MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the

More information

CHAPTER 6 PROBABILITY. Chapter 5 introduced the concepts of z scores and the normal curve. This chapter takes

CHAPTER 6 PROBABILITY. Chapter 5 introduced the concepts of z scores and the normal curve. This chapter takes CHAPTER 6 PROBABILITY Chapter 5 introduced the concepts of z scores and the normal curve. This chapter takes these two concepts a step further and explains their relationship with another statistical concept

More information

Algebra 2- Statistics and Probability Chapter Review

Algebra 2- Statistics and Probability Chapter Review Name Block Date Algebra 2- Statistics and Probability Chapter Review Statistics- Calculator Allowed with Applicable Work For exercises 1-4, tell whether the data that can be gathered about each variable

More information

KS3 Questions Probability. Level 3 to 5.

KS3 Questions Probability. Level 3 to 5. KS3 Questions Probability. Level 3 to 5. 1. A survey was carried out on the shoe size of 25 men. The results of the survey were as follows: 5 Complete the tally chart and frequency table for this data.

More information

Introduction to Chi Square

Introduction to Chi Square Introduction to Chi Square The formula χ 2 = Σ = O = E = Degrees of freedom Chi Square Table P = 0.05 P = 0.01 P = 0.001 1 3.84 6.64 10.83 2 5.99 9.21 13.82 3 7.82 11.35 16.27 4 9.49 13.28 18.47 5 11.07

More information

10-4 Theoretical Probability

10-4 Theoretical Probability Problem of the Day A spinner is divided into 4 different colored sections. It is designed so that the probability of spinning red is twice the probability of spinning green, the probability of spinning

More information

Find the probability of an event by using the definition of probability

Find the probability of an event by using the definition of probability LESSON 10-1 Probability Lesson Objectives Find the probability of an event by using the definition of probability Vocabulary experiment (p. 522) trial (p. 522) outcome (p. 522) sample space (p. 522) event

More information

Math 1342 Exam 2 Review

Math 1342 Exam 2 Review Math 1342 Exam 2 Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) If a sportscaster makes an educated guess as to how well a team will do this

More information

HOMEWORK 3 Due: next class 2/3

HOMEWORK 3 Due: next class 2/3 HOMEWORK 3 Due: next class 2/3 1. Suppose the scores on an achievement test follow an approximately symmetric mound-shaped distribution with mean 500, min = 350, and max = 650. Which of the following is

More information

9. If 35% of all people have blue eyes, what is the probability that out of 4 randomly selected people, only 1 person has blue eyes?

9. If 35% of all people have blue eyes, what is the probability that out of 4 randomly selected people, only 1 person has blue eyes? G/SP focus Name 1. Tonya wants to have a raised flower bed in her backyard. She measures the area of the flower bed to be 10 square feet. The actual measurement of the flower bed is 10.6 square feet. Approximately

More information

x y

x y 1. Find the mean of the following numbers: ans: 26.25 3, 8, 15, 23, 35, 37, 41, 48 2. Find the median of the following numbers: ans: 24 8, 15, 2, 23, 41, 83, 91, 112, 17, 25 3. Find the sample standard

More information

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text.

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text. TEST #1 STA 5326 September 25, 2008 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. (You will have access

More information

Name: Partners: Statistics. Review 2 Version A

Name: Partners: Statistics. Review 2 Version A Name: Partners: Statistics Date: Review 2 Version A [A] Circle whether each statement is true or false. 1. Home prices in Scotts Valley are skewed right. 2. A circle graph can always be remade into a bar

More information

Chapter 17: The Expected Value and Standard Error

Chapter 17: The Expected Value and Standard Error Chapter 17: The Expected Value and Standard Error Think about drawing 25 times, with replacement, from the box: 0 2 3 4 6 Here s one set of 25 draws: 6 0 4 3 0 2 2 2 0 0 3 2 4 2 2 6 0 6 3 6 3 4 0 6 0,

More information

Section Theoretical and Experimental Probability...Wks 3

Section Theoretical and Experimental Probability...Wks 3 Name: Class: Date: Section 6.8......Theoretical and Experimental Probability...Wks 3. Eight balls numbered from to 8 are placed in a basket. One ball is selected at random. Find the probability that it

More information

Chapter 0: Preparing for Advanced Algebra

Chapter 0: Preparing for Advanced Algebra Lesson 0-1: Representing Functions Date: Example 1: Locate Coordinates Name the quadrant in which the point is located. Example 2: Identify Domain and Range State the domain and range of each relation.

More information

Confidence Intervals. Class 23. November 29, 2011

Confidence Intervals. Class 23. November 29, 2011 Confidence Intervals Class 23 November 29, 2011 Last Time When sampling from a population in which 30% of individuals share a certain characteristic, we identified the reasonably likely values for the

More information

AP Statistics Ch In-Class Practice (Probability)

AP Statistics Ch In-Class Practice (Probability) AP Statistics Ch 14-15 In-Class Practice (Probability) #1a) A batter who had failed to get a hit in seven consecutive times at bat then hits a game-winning home run. When talking to reporters afterward,

More information

Page 1 of 22. Website: Mobile:

Page 1 of 22. Website:    Mobile: Exercise 15.1 Question 1: Complete the following statements: (i) Probability of an event E + Probability of the event not E =. (ii) The probability of an event that cannot happen is. Such as event is called.

More information

Statistics 101: Section L Laboratory 10

Statistics 101: Section L Laboratory 10 Statistics 101: Section L Laboratory 10 This lab looks at the sampling distribution of the sample proportion pˆ and probabilities associated with sampling from a population with a categorical variable.

More information

Ismor Fischer, 5/26/

Ismor Fischer, 5/26/ Ismor Fischer, 5/6/06.5-.5 Problems. Follow the instructions in the posted R code folder (http://www.stat.wisc.edu/~ifischer/intro_stat/lecture_notes/rcode/) for this problem, to reproduce the results

More information

FSA 7 th Grade Math. MAFS.7.SP.1.1 & MAFS.7.SP.1.2 Level 2. MAFS.7.SP.1.1 & MAFS.7.SP.1.2 Level 2. MAFS.7.SP.1.1 & MAFS.7.SP.1.

FSA 7 th Grade Math. MAFS.7.SP.1.1 & MAFS.7.SP.1.2 Level 2. MAFS.7.SP.1.1 & MAFS.7.SP.1.2 Level 2. MAFS.7.SP.1.1 & MAFS.7.SP.1. FSA 7 th Grade Math Statistics and Probability Two students are taking surveys to find out if people will vote to fund the building of a new city park on election day. Levonia asks 20 parents of her friends.

More information

Sections Descriptive Statistics for Numerical Variables

Sections Descriptive Statistics for Numerical Variables Math 243 Sections 2.1.2-2.2.5 Descriptive Statistics for Numerical Variables A framework to describe quantitative data: Describe the Shape, Center and Spread, and Unusual Features Shape How is the data

More information

MEI Conference Short Open-Ended Investigations for KS3

MEI Conference Short Open-Ended Investigations for KS3 MEI Conference 2012 Short Open-Ended Investigations for KS3 Kevin Lord Kevin.lord@mei.org.uk 10 Ideas for Short Investigations These are some of the investigations that I have used many times with a variety

More information

Algebra II Journal. Module 4: Inferences. Predicting the Future

Algebra II Journal. Module 4: Inferences. Predicting the Future Algebra II Journal Predicting the Future This journal belongs to: 1 Algebra II Journal: Reflection 1 Let s perform a simulation to answer the question Can lightning strike the same place twice? Storm chaser

More information

1. Describe the sample space and all 16 events for a trial in which two coins are thrown and each shows either a head or a tail.

1. Describe the sample space and all 16 events for a trial in which two coins are thrown and each shows either a head or a tail. Single Maths B Probability & Statistics: Exercises 1. Describe the sample space and all 16 events for a trial in which two coins are thrown and each shows either a head or a tail. 2. A fair coin is tossed,

More information

Probability and Counting Techniques

Probability and Counting Techniques Probability and Counting Techniques Diana Pell (Multiplication Principle) Suppose that a task consists of t choices performed consecutively. Suppose that choice 1 can be performed in m 1 ways; for each

More information

2.2 More on Normal Distributions and Standard Normal Calculations

2.2 More on Normal Distributions and Standard Normal Calculations The distribution of heights of adult American men is approximately normal with mean 69 inches and standard deviation 2.5 inches. Use the 68-95-99.7 rule to answer the following questions: What percent

More information

Probability Paradoxes

Probability Paradoxes Probability Paradoxes Washington University Math Circle February 20, 2011 1 Introduction We re all familiar with the idea of probability, even if we haven t studied it. That is what makes probability so

More information

November 6, Chapter 8: Probability: The Mathematics of Chance

November 6, Chapter 8: Probability: The Mathematics of Chance Chapter 8: Probability: The Mathematics of Chance November 6, 2013 Last Time Crystallographic notation Groups Crystallographic notation The first symbol is always a p, which indicates that the pattern

More information

UNIT 5: RATIO, PROPORTION, AND PERCENT WEEK 20: Student Packet

UNIT 5: RATIO, PROPORTION, AND PERCENT WEEK 20: Student Packet Name Period Date UNIT 5: RATIO, PROPORTION, AND PERCENT WEEK 20: Student Packet 20.1 Solving Proportions 1 Add, subtract, multiply, and divide rational numbers. Use rates and proportions to solve problems.

More information

Chapter 6: Probability and Simulation. The study of randomness

Chapter 6: Probability and Simulation. The study of randomness Chapter 6: Probability and Simulation The study of randomness Introduction Probability is the study of chance. 6.1 focuses on simulation since actual observations are often not feasible. When we produce

More information

Hypergeometric Probability Distribution

Hypergeometric Probability Distribution Hypergeometric Probability Distribution Example problem: Suppose 30 people have been summoned for jury selection, and that 12 people will be chosen entirely at random (not how the real process works!).

More information

Waiting Times. Lesson1. Unit UNIT 7 PATTERNS IN CHANCE

Waiting Times. Lesson1. Unit UNIT 7 PATTERNS IN CHANCE Lesson1 Waiting Times Monopoly is a board game that can be played by several players. Movement around the board is determined by rolling a pair of dice. Winning is based on a combination of chance and

More information