MAKER: Development of Smart Mobile Robot System to Help Middle School Students Learn about Robot Perception

Size: px
Start display at page:

Download "MAKER: Development of Smart Mobile Robot System to Help Middle School Students Learn about Robot Perception"

Transcription

1 Paper ID #14537 MAKER: Development of Smart Mobile Robot System to Help Middle School Students Learn about Robot Perception Dr. Sheng-Jen Tony Hsieh, Texas A&M University Dr. Sheng-Jen ( Tony ) Hsieh is a Professor in the Dwight Look College of Engineering at Texas A&M University. He holds a joint appointment with the Department of Engineering Technology and the Department of Mechanical Engineering. His research interests include engineering education, cognitive task analysis, automation, robotics and control, intelligent manufacturing system design, and micro/nano manufacturing. He is Director of the Rockwell Automation laboratory at Texas A&M University, a stateof-the-art facility for education and research in the areas of automation, control, and automated system integration. He also serves as Director of an NSF Research Experiences for Teachers (RET) program in the area of Mechatronics, Robotics, and Industrial Automation. Mrs. Vania Willms, c American Society for Engineering Education, 2016

2 Teaching Robot Perception in Middle School Abstract Robots are key to manufacturing, healthcare, entertainment, and aerospace exploration feature. The industry is in great need of qualified professionals that can meet the demand of the everchanging technologies and latest innovation. Robot perception is greatly researched and in demand on most fields in this industry. Blending these subjects in the classroom can be expended to motivate students to pursue careers in Science, Technology, Engineering, and Math (STEM). Image and video capture using a cell phone camera and VEX sensors can be explored into more depth in the middle school classroom. This study examined the use of VEX sensors and an iphone 6 camera as an introduction to robot perception to middle school students. VEX line followers, ultrasonic rangefinders, and an iphone camera were used to perform object recognition and conduct robot navigation within a classroom robotics competition field setting. Overview Computer science drives innovation and is one of the fastest growing fields in our economy, opening doors to high paying jobs. In addition, programming is an important skill regardless of career choice. When students learn to program, they also learn important problem-solving, creative thinking, and computational thinking skills. Robots provide a hands-on activity that directly involves students in the learning process and allows them to take ownership of their STEM learning. Robots bring code to life and allow students to see how what they re learning has a direct impact in the real world, and how individual math and engineering elements come together to form a solution to a real problem. RobotC uses the industry standard C-programming language. Students learn and practice the same type of programming that is used in advanced education and professional applications. By engaging students in programming robots, their interest in programming can be fostered, allowing them to transition to more advanced programming such as object recognition. This study examined the use of VEX sensors and an iphone 6 camera as an introduction to robot perception to middle school students. VEX line followers, ultrasonic rangefinders, and an iphone camera were used to perform object recognition and conduct robot navigation within a classroom robotics competition field setting. Learning materials were created to help middle school students learn to build a robot and train it to perceive objects in 6 weeks. Lesson Design Engineering Connection Part of the engineering design process is to design effective solutions. In order to develop curious critical thinkers, it's important to teach them that learning possibilities are endless, and failure is a natural part of the process. Engineers and Scientists design, test, and redesign solutions until

3 their objective is achieved, or a new discovery is made. In this lesson, students will learn how to calculate thresholds and program line tracking and sonar sensors that will be used to design solutions for an exciting challenge. Introduction/Motivation Show student Machine vision capabilities enable autonomous navigation, human robots the Autonomous Robot Soccer video: Activities Students were given a task to research computer and machine vision. Second, they designed and built their robot utilizing ultrasonic range finder sensors to enable autonomous mode. Third, they used an iphone application to send images to the computer. Finally, they used simple algorithms to process the images learning how computer vision works. The programming for the robot autonomous mode was done on RobotC. The programming for image Processing was done on XCode using OpenCV libraries. Materials Item Quantity Cost VEX Clawbot Kit 1 $ Ultrasonic Range Finder 4 $29.99 Line Tracker 1 $39.99 iphone 6 1 $ TOTAL $ Student Groups The class was divided into four groups. One team did research on streaming video; as second team worked on designing and building the robot; a third worked on the literature review, presentation, and media; and the fourth did research on object recognition. Hardware VEX Clawbot Kit The VEX Clawbot Kit includes the basic robot for the VEX EDR robots. The kits included all parts necessary for assembling the robot as it will work with the object perception robot: 300+ parts including 4 motors, structural metal, fasteners, wheels, and gears. Ultrasonic Range Finder An ultrasonic range finder sensor enables a robot to detect obstacles in its path by utilizing the propagation of high-frequency sound waves. The sensor emits a 40kHz sound wave, which

4 bounces off a reflective surface and returns to the sensor. Then, using the amount of time it takes for the wave to return to the sensor, the distance to the object can be computed. The ultrasonic range finder emits a high-frequency sound wave that alerts the robot to things in its path. A Programming Kit is needed to change the program in the VEX Controller. These are specific behaviors achieved by the ultrasonic range finder: measure distances from 1.5in to 115in; detect obstacles using high frequency sound waves; create more autonomous functions. The sensor can be used to determine distances to objects. It can be used as a tool to determine if any objects are in the robot s path at all. To increase the sensing range, the sensor can be mounted to a servo to allow it to rotate. The sensitivity of the sensor depends on the objects surfaces that are detected by the emitted sound waves. For example, a reflective surface may produce a different reading than a nonreflective surface. The resolution of the sensor also depends on the sound waves. However, sound waves can reflect or be absorbed and possibly not return with enough power. Sensitivity: Detect a 3cm diameter pole at greater than 2m. Usable Range: 3.0 centimeters meter / 1.5 inches inches Frequency: 40 KHz Resolution: 1 inch

5 Figure 1 - Beam pattern/angle Line Tracker The line tracker allows the robot to follow a black line over a white surface. This kit provides more design flexibility-. It can also be used to program the robot for light sensing. A Programming Kit is needed to change the program in the VEX Controller. These are specific behaviors a liner tracker enables a robot to perform: navigate down a marked path; use for light sensing; more autonomous functions. Sensor Type

6 Infrared light sensor and infrared LED Line width: 0.25in minimum; optimal line width is 0.5in Response Frequency: 50Hz Light Source: GaAs infrared LED with a peak wavelength of 940nm Receiver: Si phototransistor with a sensing wavelength of 850nm (max) The range for the Line Tracker is approximately 0.02 to 0.25in (from the ground) with optimum sensitivity at 3 mm (about 1/8 inch). The minimum line width it can detect is 0.25in. Input/Output Port Assignments Line Tracker Figure 2. Three sets of three VEX line follower sensors mounted together illustrating how sensors work with examples of different readings Inputs Type: Light reflected from dark lines and a bright floor Outputs 3-Wire Cable Connect to three analog inputs Black: ground Red: +5V White: control signal The Line Tracker is an analog sensor, meaning that it can output many more values within its range of potential values (in this case, from 0-5V) than a digital sensor, which would output only a handful of discrete values in the range (e.g., 1, 2, 3, 4, and 5V), as is the case for a digital sensor. This range of output from 0-5V is sent to the microcontroller, which translates it into a corresponding range of integer values from 0 to full scale. Full scale is 1023 for 10-bit Analogto-Digital values such as with easyc or ROBOTC for PIC, 4095 for 12-bit values such as with ROBOTC for Cortex and 255 for 8-bit values such as with MPLAB. When using the VEX

7 ARM Cortex -based Microcontroller, typical white/black/"away from everything values" will be 38/662/770 for easyc, 153/2650/3076 for ROBOTC and 9/166/192 for 8-bit values. When using the PIC Microcontroller, typical white/black/"away from everything values" will be 38/882/1012 for both easyc and ROBOTC and 9/220/253 for 8-bit values. For this particular sensor, the output will be low when the surface is pale or highly reflective and high when the surface is dark and absorbs infrared energy. Ultrasonic Rangefinder Figure 2.VEX Utrasonic Rangefinder Sensor Inputs Start signal to the ultrasonic sensor. Connect to a interrupt port. Outputs 3-Wire Cable Connect to a interrupt port Echo response from the ultrasonic sensor. Black: Ground Red: +5V Orange/Yellow: Control Signal System

8 Figure 3. The developed line tracking robot. Line trackers are mounted to the back of the robot. Ultrasonic range finder is mounted on the front of the robot. iphone streams video to a computer. Lessons Learned Students are currently working on the project. Students think that this is a very interesting and challenging project. They report that they have never done something like this and are very excited about how their robot turned out and also how the robot interacted with them as a team. The streaming portion of the project was one of the highlights for the students. They used this skill for other project such as our Black History Program to stream live image of our guests and speakers from Washington D.C. Outreach activities

9 Our robotics team participates in the district UIL robotics competition with High Schools. Being part of a robotics class, instigate students to follow the STEM career pathway. Students used the streaming skills learned in this lesson for other projects such as our Black History Program to stream live speeches of our guests from Washington D.C. who spoke about the importance of being college and career oriented started in middle school. Lessons Learned The research topic sparked the interest in students making them willing to work extra hard to achieve the high expectations set by the teacher in this class. However, six weeks do not allow enough time to conduct a project of this magnitude to middle school students. The pacing works for designing the robot, building it, and programming the sensors. While working on the object recognition portion of the problem, students struggled with programming due to its complexity. The recommendation is that the robot perception part of the project be a second layer of instruction incorporating two extra six weeks into the curriculum. The first six weeks would be dedicated to research and the second six weeks dedicated to development and testing of software. Summary Students programmed the VEX sensors, which passed tests at first trial. Sensors provided robot mobility according to programmed goals. The integration of sensors as an aid to capture images and video using a cell phone camera mounted on a robot was successfully tested by students. Students were also successfully able to stream video using the iphone 6 and android cell phones. The object recognition research engaged students in learning new skills. When learning how to program using XCode and using OpenCV library students faced a greater challenge and need a greater support from the teacher. Learning how to design, build, and program robots will provide students with advanced technical professional building skills and may motivate them to pursue careers in the STEM field. Future Directions Camera programming and video processing require SDK, a system that manages the build process in an operating system, and supporting library integration knowledge. This requires computer science skills and a timeline that is beyond the scope of middle school curriculum. The development of the vision portion of robot perception research should be implemented at senior high school or college level. This process requires more than 6 weeks of research work in a K-12 classroom scenario. Acknowledgements This material is based upon work supported by the Research Experiences for Teachers Program under National Science Foundation Grant No Any opinions, finding, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of National Science Foundation.

10 Bibliography 1. Dunbar, Brian. "Machine Vision for Robotics." NASA. NASA, 09 Mar Retreived on 28 June 2015 from 2. Robot with Line Follower Sensors- Vex.YouTube. YouTube, n.d. Retrieved on 30 June 2015 from 3. ROBOTC.net. Home of the Best Robot Programming Language for Educational Robotics. Made for NXT Programming and VEX Programming. Retreived 29 June 2015 from 4. VEX Robotics. Retrieved on 29 June 2015 from

VEX Robotics Platform and ROBOTC Software. Introduction

VEX Robotics Platform and ROBOTC Software. Introduction VEX Robotics Platform and ROBOTC Software Introduction VEX Robotics Platform: Testbed for Learning Programming VEX Structure Subsystem VEX Structure Subsystem forms the base of every robot Contains square

More information

Introduction to the VEX Robotics Platform and ROBOTC Software

Introduction to the VEX Robotics Platform and ROBOTC Software Introduction to the VEX Robotics Platform and ROBOTC Software Computer Integrated Manufacturing 2013 Project Lead The Way, Inc. VEX Robotics Platform: Testbed for Learning Programming VEX Structure Subsystem

More information

Medb ot. Medbot. Learn about robot behaviors as you transport medicine in a hospital with Medbot!

Medb ot. Medbot. Learn about robot behaviors as you transport medicine in a hospital with Medbot! Medb ot Medbot Learn about robot behaviors as you transport medicine in a hospital with Medbot! Seek Discover new hands-on builds and programming opportunities to further your understanding of a subject

More information

TETRIX PULSE Workshop Guide

TETRIX PULSE Workshop Guide TETRIX PULSE Workshop Guide 44512 1 Who Are We and Why Are We Here? Who is Pitsco? Pitsco s unwavering focus on innovative educational solutions and unparalleled customer service began when the company

More information

Autonomous Robotic Vehicle Design

Autonomous Robotic Vehicle Design Autonomous Robotic Vehicle Design Kevin R. Anderson, Chris Jones Department of Mechanical Engineering California State Polytechnic University at Pomona 3801 West Temple Ave Pomona, CA 91768 Introduction

More information

Overview for VEX educational Platform and Competition. (All you need to know to start)

Overview for VEX educational Platform and Competition. (All you need to know to start) Overview for VEX educational Platform and Competition (All you need to know to start) Contents Topic page Innovation First International.. 3 What is VEX?.. 4 Class room and Competition Kit with extras.

More information

Undefined Obstacle Avoidance and Path Planning

Undefined Obstacle Avoidance and Path Planning Paper ID #6116 Undefined Obstacle Avoidance and Path Planning Prof. Akram Hossain, Purdue University, Calumet (Tech) Akram Hossain is a professor in the department of Engineering Technology and director

More information

OBSTACLE EVADING ULTRASONIC ROBOT. Aaron Hunter Eric Whitestone Joel Chenette Anne-Marie Cressin

OBSTACLE EVADING ULTRASONIC ROBOT. Aaron Hunter Eric Whitestone Joel Chenette Anne-Marie Cressin OBSTACLE EVADING ULTRASONIC ROBOT Aaron Hunter Eric Whitestone Joel Chenette Anne-Marie Cressin ECE 511 - Fall 2011 1 Abstract The purpose of this project is to demonstrate how simple algorithms can produce

More information

INTRODUCTION OF SOME APPROACHES FOR EDUCATIONS OF ROBOT DESIGN AND MANUFACTURING

INTRODUCTION OF SOME APPROACHES FOR EDUCATIONS OF ROBOT DESIGN AND MANUFACTURING INTRODUCTION OF SOME APPROACHES FOR EDUCATIONS OF ROBOT DESIGN AND MANUFACTURING T. Matsuo *,a, M. Tatsuguchi a, T. Higaki a, S. Kuchii a, M. Shimazu a and H. Terai a a Department of Creative Engineering,

More information

A Lego-Based Soccer-Playing Robot Competition For Teaching Design

A Lego-Based Soccer-Playing Robot Competition For Teaching Design Session 2620 A Lego-Based Soccer-Playing Robot Competition For Teaching Design Ronald A. Lessard Norwich University Abstract Course Objectives in the ME382 Instrumentation Laboratory at Norwich University

More information

Program.

Program. Program Introduction S TE AM www.kiditech.org About Kiditech In Kiditech's mighty world, we coach, play and celebrate an innovative technology program: K-12 STEAM. We gather at Kiditech to learn and have

More information

University of Florida Department of Electrical and Computer Engineering Intelligent Machine Design Laboratory EEL 4665 Spring 2013 LOSAT

University of Florida Department of Electrical and Computer Engineering Intelligent Machine Design Laboratory EEL 4665 Spring 2013 LOSAT University of Florida Department of Electrical and Computer Engineering Intelligent Machine Design Laboratory EEL 4665 Spring 2013 LOSAT Brandon J. Patton Instructors: Drs. Antonio Arroyo and Eric Schwartz

More information

School of Engineering SUMMER CAMPS PROGRAMMING : STEP BY STEP ROBOTICS & BASICS OF PROGRAMMING. INTERNET OF THINGS IoT, SMARTPHONE APPLICATIONS

School of Engineering SUMMER CAMPS PROGRAMMING : STEP BY STEP ROBOTICS & BASICS OF PROGRAMMING. INTERNET OF THINGS IoT, SMARTPHONE APPLICATIONS School of Engineering SUMMER CAMPS 20 18 PROGRAMMING : STEP BY STEP June 4 - July 24 ROBOTICS & BASICS OF PROGRAMMING INTERNET OF THINGS IoT, SMARTPHONE APPLICATIONS PROGRAMMING & BIOMEDICAL APPLICATIONS

More information

THE ARDUINO ENGINEERING KIT INFORMATION GUIDE ARDUINO.CC/EDUCATION

THE ARDUINO ENGINEERING KIT INFORMATION GUIDE ARDUINO.CC/EDUCATION THE ARDUINO ENGINEERING KIT INFORMATION GUIDE ARDUINO.CC/EDUCATION Includes 1-year individual user license of: In collaboration with: INSPIRING TEACHING & EMPOWERING TABLE OF CONTENTS ARDUINO EDUCATION

More information

Measuring Distance Using Sound

Measuring Distance Using Sound Measuring Distance Using Sound Distance can be measured in various ways: directly, using a ruler or measuring tape, or indirectly, using radio or sound waves. The indirect method measures another variable

More information

MRS: an Autonomous and Remote-Controlled Robotics Platform for STEM Education

MRS: an Autonomous and Remote-Controlled Robotics Platform for STEM Education Association for Information Systems AIS Electronic Library (AISeL) SAIS 2015 Proceedings Southern (SAIS) 2015 MRS: an Autonomous and Remote-Controlled Robotics Platform for STEM Education Timothy Locke

More information

Robots are similar to humans if you consider that both use inputs and outputs to sense and react to the world.

Robots are similar to humans if you consider that both use inputs and outputs to sense and react to the world. Activity 3.1.1 Inputs and Outputs for CT Introduction Robots are similar to humans if you consider that both use inputs and outputs to sense and react to the world. Most humans use five senses to perceive

More information

ECE 477 Digital Systems Senior Design Project Rev 8/09. Homework 5: Theory of Operation and Hardware Design Narrative

ECE 477 Digital Systems Senior Design Project Rev 8/09. Homework 5: Theory of Operation and Hardware Design Narrative ECE 477 Digital Systems Senior Design Project Rev 8/09 Homework 5: Theory of Operation and Hardware Design Narrative Team Code Name: _ATV Group No. 3 Team Member Completing This Homework: Sebastian Hening

More information

Instructors. Manual GEARED. After-School Robotics Program By Haley Hanson

Instructors. Manual GEARED. After-School Robotics Program By Haley Hanson Instructors GEARED UP Manual After-School Robotics Program By Haley Hanson Table of Contents Introduction 3 Before you Start 4 Program Overview 5 Proposed Timeline 6 Itemized Materials List and Sample

More information

Vision Ques t. Vision Quest. Use the Vision Sensor to drive your robot in Vision Quest!

Vision Ques t. Vision Quest. Use the Vision Sensor to drive your robot in Vision Quest! Vision Ques t Vision Quest Use the Vision Sensor to drive your robot in Vision Quest! Seek Discover new hands-on builds and programming opportunities to further your understanding of a subject matter.

More information

I.1 Smart Machines. Unit Overview:

I.1 Smart Machines. Unit Overview: I Smart Machines I.1 Smart Machines Unit Overview: This unit introduces students to Sensors and Programming with VEX IQ. VEX IQ Sensors allow for autonomous and hybrid control of VEX IQ robots and other

More information

Essential Understandings with Guiding Questions Robotics Engineering

Essential Understandings with Guiding Questions Robotics Engineering Essential Understandings with Guiding Questions Robotics Engineering 1 st Quarter Theme: Orientation to a Successful Laboratory Experience Student Expectations Safety Emergency MSDS Organizational Systems

More information

Marine Debris Cleaner Phase 1 Navigation

Marine Debris Cleaner Phase 1 Navigation Southeastern Louisiana University Marine Debris Cleaner Phase 1 Navigation Submitted as partial fulfillment for the senior design project By Ryan Fabre & Brock Dickinson ET 494 Advisor: Dr. Ahmad Fayed

More information

Sensors & Systems for Human Safety Assurance in Collaborative Exploration

Sensors & Systems for Human Safety Assurance in Collaborative Exploration Sensing and Sensors CMU SCS RI 16-722 S09 Ned Fox nfox@andrew.cmu.edu Outline What is collaborative exploration? Humans sensing robots Robots sensing humans Overseers sensing both Inherently safe systems

More information

Hardware Implementation of an Explorer Bot Using XBEE & GSM Technology

Hardware Implementation of an Explorer Bot Using XBEE & GSM Technology Volume 118 No. 20 2018, 4337-4342 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Hardware Implementation of an Explorer Bot Using XBEE & GSM Technology M. V. Sai Srinivas, K. Yeswanth,

More information

Space Research expeditions and open space work. Education & Research Teaching and laboratory facilities. Medical Assistance for people

Space Research expeditions and open space work. Education & Research Teaching and laboratory facilities. Medical Assistance for people Space Research expeditions and open space work Education & Research Teaching and laboratory facilities. Medical Assistance for people Safety Life saving activity, guarding Military Use to execute missions

More information

After Performance Report Of the Robot

After Performance Report Of the Robot After Performance Report Of the Robot Engineering 112 Spring 2007 Instructor: Dr. Ghada Salama By Mahmudul Alam Tareq Al Maaita Ismail El Ebiary Section- 502 Date: May 2, 2007 Introduction: The report

More information

Distance Measurement of an Object by using Ultrasonic Sensors with Arduino and GSM Module

Distance Measurement of an Object by using Ultrasonic Sensors with Arduino and GSM Module IJSTE - International Journal of Science Technology & Engineering Volume 4 Issue 11 May 2018 ISSN (online): 2349-784X Distance Measurement of an Object by using Ultrasonic Sensors with Arduino and GSM

More information

Activity Template. Subject Area(s): Science and Technology Activity Title: Header. Grade Level: 9-12 Time Required: Group Size:

Activity Template. Subject Area(s): Science and Technology Activity Title: Header. Grade Level: 9-12 Time Required: Group Size: Activity Template Subject Area(s): Science and Technology Activity Title: What s In a Name? Header Image 1 ADA Description: Picture of a rover with attached pen for writing while performing program. Caption:

More information

Program Your Robot to Perform a Task

Program Your Robot to Perform a Task Youth Explore Trades Skills Description In this activity, students gain hands-on experience with programming a robot to perform tasks. This activity includes seven task challenges. Students will work in

More information

Sensing. Autonomous systems. Properties. Classification. Key requirement of autonomous systems. An AS should be connected to the outside world.

Sensing. Autonomous systems. Properties. Classification. Key requirement of autonomous systems. An AS should be connected to the outside world. Sensing Key requirement of autonomous systems. An AS should be connected to the outside world. Autonomous systems Convert a physical value to an electrical value. From temperature, humidity, light, to

More information

Abstract. 1. Introduction

Abstract. 1. Introduction Trans Am: An Experiment in Autonomous Navigation Jason W. Grzywna, Dr. A. Antonio Arroyo Machine Intelligence Laboratory Dept. of Electrical Engineering University of Florida, USA Tel. (352) 392-6605 Email:

More information

ES 492: SCIENCE IN THE MOVIES

ES 492: SCIENCE IN THE MOVIES UNIVERSITY OF SOUTH ALABAMA ES 492: SCIENCE IN THE MOVIES LECTURE 5: ROBOTICS AND AI PRESENTER: HANNAH BECTON TODAY'S AGENDA 1. Robotics and Real-Time Systems 2. Reacting to the environment around them

More information

Robotics Workshop. for Parents and Teachers. September 27, 2014 Wichita State University College of Engineering. Karen Reynolds

Robotics Workshop. for Parents and Teachers. September 27, 2014 Wichita State University College of Engineering. Karen Reynolds Robotics Workshop for Parents and Teachers September 27, 2014 Wichita State University College of Engineering Steve Smith Christa McAuliffe Academy ssmith3@usd259.net Karen Reynolds Wichita State University

More information

ROBOTC: Programming for All Ages

ROBOTC: Programming for All Ages z ROBOTC: Programming for All Ages ROBOTC: Programming for All Ages ROBOTC is a C-based, robot-agnostic programming IDEA IN BRIEF language with a Windows environment for writing and debugging programs.

More information

Issues in Information Systems Volume 13, Issue 2, pp , 2012

Issues in Information Systems Volume 13, Issue 2, pp , 2012 131 A STUDY ON SMART CURRICULUM UTILIZING INTELLIGENT ROBOT SIMULATION SeonYong Hong, Korea Advanced Institute of Science and Technology, gosyhong@kaist.ac.kr YongHyun Hwang, University of California Irvine,

More information

Developing a Computer Vision System for Autonomous Rover Navigation

Developing a Computer Vision System for Autonomous Rover Navigation University of Hawaii at Hilo Fall 2016 Developing a Computer Vision System for Autonomous Rover Navigation ASTR 432 FINAL REPORT FALL 2016 DARYL ALBANO Page 1 of 6 Table of Contents Abstract... 2 Introduction...

More information

Saturday Academy Program

Saturday Academy Program Lesson Plans High School Courses Donald L. McCoy K-to-College STEM Education Consultant thempitman@gmail.com Last Update: October 17, 2018 Virtual Reality Coding using PlayCanvas RobotC Coding Applications

More information

Note to the Teacher. Description of the investigation. Time Required. Additional Materials VEX KITS AND PARTS NEEDED

Note to the Teacher. Description of the investigation. Time Required. Additional Materials VEX KITS AND PARTS NEEDED In this investigation students will identify a relationship between the size of the wheel and the distance traveled when the number of rotations of the motor axles remains constant. Students are required

More information

Devastator Tank Mobile Platform with Edison SKU:ROB0125

Devastator Tank Mobile Platform with Edison SKU:ROB0125 Devastator Tank Mobile Platform with Edison SKU:ROB0125 From Robot Wiki Contents 1 Introduction 2 Tutorial 2.1 Chapter 2: Run! Devastator! 2.2 Chapter 3: Expansion Modules 2.3 Chapter 4: Build The Devastator

More information

Service Robots in an Intelligent House

Service Robots in an Intelligent House Service Robots in an Intelligent House Jesus Savage Bio-Robotics Laboratory biorobotics.fi-p.unam.mx School of Engineering Autonomous National University of Mexico UNAM 2017 OUTLINE Introduction A System

More information

Part of: Inquiry Science with Dartmouth

Part of: Inquiry Science with Dartmouth Curriculum Guide Part of: Inquiry Science with Dartmouth Developed by: David Qian, MD/PhD Candidate Department of Biomedical Data Science Overview Using existing knowledge of computer science, students

More information

Formation and Cooperation for SWARMed Intelligent Robots

Formation and Cooperation for SWARMed Intelligent Robots Formation and Cooperation for SWARMed Intelligent Robots Wei Cao 1 Yanqing Gao 2 Jason Robert Mace 3 (West Virginia University 1 University of Arizona 2 Energy Corp. of America 3 ) Abstract This article

More information

Introduction to Programming. June 4 June 8, and July 9 July 13 Mo-Fr., 8:30AM - 3:30PM

Introduction to Programming. June 4 June 8, and July 9 July 13 Mo-Fr., 8:30AM - 3:30PM Introduction to Programming June 4 June 8, and July 9 July 13 This hands-on training will teach basics of computer programming. Campers will learn how computers work, how to control devices and components

More information

Robotics II Curriculum

Robotics II Curriculum Randolph Township Schools Randolph Middle School Curriculum Department of Science, Technology, Engineering, and Math Anne Vitale Richardson Supervisor Curriculum Committee Ned Sheehy Nick Lavender Curriculum

More information

STEM Outreach Activities to Inspire Future Engineers and Scientists

STEM Outreach Activities to Inspire Future Engineers and Scientists STEM Outreach Activities to Inspire Future Engineers and Scientists Lockheed Martin Advanced Technology Laboratories Samantha Kupersmith Mike Kopack Russ Johnson Lockheed Martin Advanced Technology Laboratories

More information

Solar Powered Obstacle Avoiding Robot

Solar Powered Obstacle Avoiding Robot Solar Powered Obstacle Avoiding Robot S.S. Subashka Ramesh 1, Tarun Keshri 2, Sakshi Singh 3, Aastha Sharma 4 1 Asst. professor, SRM University, Chennai, Tamil Nadu, India. 2, 3, 4 B.Tech Student, SRM

More information

ICTCM 28th International Conference on Technology in Collegiate Mathematics

ICTCM 28th International Conference on Technology in Collegiate Mathematics ARDUINO IN THE CLASSROOM: CLASSROOM READY MODULES FOR UNDERGRADUATE MATHEMATICS Michael D. Seminelli 1 Department of Mathematical Sciences United States Military Academy West Point, NY 10996 Michael.Seminelli@usma.edu

More information

FU-Fighters. The Soccer Robots of Freie Universität Berlin. Why RoboCup? What is RoboCup?

FU-Fighters. The Soccer Robots of Freie Universität Berlin. Why RoboCup? What is RoboCup? The Soccer Robots of Freie Universität Berlin We have been building autonomous mobile robots since 1998. Our team, composed of students and researchers from the Mathematics and Computer Science Department,

More information

Competitive VEX Robot Designer. Terminal Objective 1.4: program and operate the Tumbler

Competitive VEX Robot Designer. Terminal Objective 1.4: program and operate the Tumbler Skill Set 1: Driver/Operator Competitive VEX Robot Designer Terminal Objective 1.4: program and operate the Tumbler Performance Objective: Program and operate the Tumbler in Tank (stick), Arcade, and Tank

More information

Critical Design Review

Critical Design Review 1 Critical Design Review 2 Table Of Contents 1.0 Introduction 3 1.2 Purpose 4 1.3 Scope 5 1.4 Definitions and Acronyms 6 1.5 References 7 2.0 Overall Description 8 2.1 Product Perspective 9 2.2 Product

More information

YDLIDAR G4 DATASHEET. Doc#: 文档编码 :

YDLIDAR G4 DATASHEET. Doc#: 文档编码 : YDLIDAR G4 DATASHEET Doc#:01.13.000007 文档编码 :01.13.000008 CONTENTS overview... 2 Product Features... 2 Applications... 2 Installation and dimensions... 2 Specifications... 3 Product parameters... 3 Electrical

More information

Introduction to Robotics Rubrics

Introduction to Robotics Rubrics Introduction to Robotics Rubrics Students can evaluate their project work according to the learning goals. Each rubric includes four levels: Bronze, Silver, Gold, and Platinum. The intention is to help

More information

Building a FIRST Robotics team Utilizing the VEX System and Recognized Team Building Methods

Building a FIRST Robotics team Utilizing the VEX System and Recognized Team Building Methods Building a FIRST Robotics team Utilizing the VEX System and Recognized Team Building Methods Written and Presented by: Ken and Donna Rillings TEAM BLITZ 2007 DENVER REGIONAL ROOKIE ALL STAR WINNER 2007

More information

3D ULTRASONIC STICK FOR BLIND

3D ULTRASONIC STICK FOR BLIND 3D ULTRASONIC STICK FOR BLIND Osama Bader AL-Barrm Department of Electronics and Computer Engineering Caledonian College of Engineering, Muscat, Sultanate of Oman Email: Osama09232@cceoman.net Abstract.

More information

Nebraska 4-H Robotics and GPS/GIS and SPIRIT Robotics Projects

Nebraska 4-H Robotics and GPS/GIS and SPIRIT Robotics Projects Name: Club or School: Robots Knowledge Survey (Pre) Multiple Choice: For each of the following questions, circle the letter of the answer that best answers the question. 1. A robot must be in order to

More information

Major Project SSAD. Mentor : Raghudeep SSAD Mentor :Manish Jha Group : Group20 Members : Harshit Daga ( ) Aman Saxena ( )

Major Project SSAD. Mentor : Raghudeep SSAD Mentor :Manish Jha Group : Group20 Members : Harshit Daga ( ) Aman Saxena ( ) Major Project SSAD Advisor : Dr. Kamalakar Karlapalem Mentor : Raghudeep SSAD Mentor :Manish Jha Group : Group20 Members : Harshit Daga (200801028) Aman Saxena (200801010) We were supposed to calculate

More information

Chapter 1. Robots and Programs

Chapter 1. Robots and Programs Chapter 1 Robots and Programs 1 2 Chapter 1 Robots and Programs Introduction Without a program, a robot is just an assembly of electronic and mechanical components. This book shows you how to give it a

More information

Table of Contents. Sample Pages - get the whole book at

Table of Contents. Sample Pages - get the whole book at Table of Contents Chapter 1: Introduction... 1 Chapter 2: minivex Basics... 4 Chapter 3: What is a Robot?... 20 Chapter 4: Flowcharting... 25 Chapter 5: How Far?... 28 Chapter 6: How Fast?... 32 Chapter

More information

Embedded Systems & Robotics (Winter Training Program) 6 Weeks/45 Days

Embedded Systems & Robotics (Winter Training Program) 6 Weeks/45 Days Embedded Systems & Robotics (Winter Training Program) 6 Weeks/45 Days PRESENTED BY RoboSpecies Technologies Pvt. Ltd. Office: W-53G, Sector-11, Noida-201301, U.P. Contact us: Email: stp@robospecies.com

More information

GE423 Laboratory Assignment 6 Robot Sensors and Wall-Following

GE423 Laboratory Assignment 6 Robot Sensors and Wall-Following GE423 Laboratory Assignment 6 Robot Sensors and Wall-Following Goals for this Lab Assignment: 1. Learn about the sensors available on the robot for environment sensing. 2. Learn about classical wall-following

More information

Mechatronics Project Report

Mechatronics Project Report Mechatronics Project Report Introduction Robotic fish are utilized in the Dynamic Systems Laboratory in order to study and model schooling in fish populations, with the goal of being able to manage aquatic

More information

NCCT IEEE PROJECTS ADVANCED ROBOTICS SOLUTIONS. Latest Projects, in various Domains. Promise for the Best Projects

NCCT IEEE PROJECTS ADVANCED ROBOTICS SOLUTIONS. Latest Projects, in various Domains. Promise for the Best Projects NCCT Promise for the Best Projects IEEE PROJECTS in various Domains Latest Projects, 2009-2010 ADVANCED ROBOTICS SOLUTIONS EMBEDDED SYSTEM PROJECTS Microcontrollers VLSI DSP Matlab Robotics ADVANCED ROBOTICS

More information

2013 RESEARCH EXPERIENCE FOR TEACHERS - ROBOTICS

2013 RESEARCH EXPERIENCE FOR TEACHERS - ROBOTICS 2013 RESEARCH EXPERIENCE FOR TEACHERS - ROBOTICS ELIZABETH FREEMAN JESSE BELL RET (Research Experiences for Teachers) Site on Networks, Electrical Engineering Department, and Institute of Applied Sciences,

More information

Where C= circumference, π = 3.14, and D = diameter EV3 Distance. Developed by Joanna M. Skluzacek Wisconsin 4-H 2016 Page 1

Where C= circumference, π = 3.14, and D = diameter EV3 Distance. Developed by Joanna M. Skluzacek Wisconsin 4-H 2016 Page 1 Instructor Guide Title: Distance the robot will travel based on wheel size Introduction Calculating the distance the robot will travel for each of the duration variables (rotations, degrees, seconds) can

More information

LDOR: Laser Directed Object Retrieving Robot. Final Report

LDOR: Laser Directed Object Retrieving Robot. Final Report University of Florida Department of Electrical and Computer Engineering EEL 5666 Intelligent Machines Design Laboratory LDOR: Laser Directed Object Retrieving Robot Final Report 4/22/08 Mike Arms TA: Mike

More information

Programming and Multi-Robot Communications

Programming and Multi-Robot Communications Programming and Multi-Robot Communications A pioneering group forges a path to affordable multi-agent robotics R obotic technologies are ubiquitous and are integrated into many modern devices yet most

More information

EGG 101L INTRODUCTION TO ENGINEERING EXPERIENCE

EGG 101L INTRODUCTION TO ENGINEERING EXPERIENCE EGG 101L INTRODUCTION TO ENGINEERING EXPERIENCE LABORATORY 7: IR SENSORS AND DISTANCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS GOAL: This section will introduce

More information

Devantech SRF04 Ultra-Sonic Ranger Finder Cornerstone Electronics Technology and Robotics II

Devantech SRF04 Ultra-Sonic Ranger Finder Cornerstone Electronics Technology and Robotics II Devantech SRF04 Ultra-Sonic Ranger Finder Cornerstone Electronics Technology and Robotics II Administration: o Prayer PicBasic Pro Programs Used in This Lesson: o General PicBasic Pro Program Listing:

More information

University of Toronto. Companion Robot Security. ECE1778 Winter Wei Hao Chang Apper Alexander Hong Programmer

University of Toronto. Companion Robot Security. ECE1778 Winter Wei Hao Chang Apper Alexander Hong Programmer University of Toronto Companion ECE1778 Winter 2015 Creative Applications for Mobile Devices Wei Hao Chang Apper Alexander Hong Programmer April 9, 2015 Contents 1 Introduction 3 1.1 Problem......................................

More information

Robotics Initiative at IIT IPRO 316. Fall 2003

Robotics Initiative at IIT IPRO 316. Fall 2003 Robotics Initiative at IIT IPRO 316 Fall 2003 Faculty and Team Members Faculty Lead Prof. Peter Lykos Student Members Scorpion Group Jacqueline Wegscheid (Scorpion Team Leader) Yuan Chen Ankur Sharma (IPRO

More information

Autonomous Obstacle Avoiding and Path Following Rover

Autonomous Obstacle Avoiding and Path Following Rover Volume 114 No. 9 2017, 271-281 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu Autonomous Obstacle Avoiding and Path Following Rover ijpam.eu Sandeep Polina

More information

A Day in the Life CTE Enrichment Grades 3-5 mblock Programs Using the Sensors

A Day in the Life CTE Enrichment Grades 3-5 mblock Programs Using the Sensors Activity 1 - Reading Sensors A Day in the Life CTE Enrichment Grades 3-5 mblock Programs Using the Sensors Computer Science Unit This tutorial teaches how to read values from sensors in the mblock IDE.

More information

INTRODUCTION TO ROBOTICS

INTRODUCTION TO ROBOTICS INTRODUCTION TO ROBOTICS ROBOTICS CLUB SCIENCE AND TECHNOLOGY COUNCIL, IIT-KANPUR AUGUST 6 TH, 2016 OUTLINE What is a robot? Classifications of Robots What goes behind making a robot? Mechanical Electrical

More information

EEL5666 Intelligent Machines Design Lab. Project Report

EEL5666 Intelligent Machines Design Lab. Project Report EEL5666 Intelligent Machines Design Lab Project Report Instructor Dr. Arroyo & Dr. Schwartz TAs Adam & Sara 04/25/2006 Sharan Asundi Graduate Student Department of Mechanical and Aerospace Engineering

More information

Implement a Robot for the Trinity College Fire Fighting Robot Competition.

Implement a Robot for the Trinity College Fire Fighting Robot Competition. Alan Kilian Fall 2011 Implement a Robot for the Trinity College Fire Fighting Robot Competition. Page 1 Introduction: The successful completion of an individualized degree in Mechatronics requires an understanding

More information

Incorporating a Software System for Robotics Control and Coordination in Mechatronics Curriculum and Research

Incorporating a Software System for Robotics Control and Coordination in Mechatronics Curriculum and Research Paper ID #15300 Incorporating a Software System for Robotics Control and Coordination in Mechatronics Curriculum and Research Dr. Maged Mikhail, Purdue University - Calumet Dr. Maged B. Mikhail, Assistant

More information

Welcome to. NXT Basics. Presenter: Wael Hajj Ali With assistance of: Ammar Shehadeh - Souhaib Alzanki - Samer Abuthaher

Welcome to. NXT Basics. Presenter: Wael Hajj Ali With assistance of: Ammar Shehadeh - Souhaib Alzanki - Samer Abuthaher Welcome to NXT Basics Presenter: Wael Hajj Ali With assistance of: Ammar Shehadeh - Souhaib Alzanki - Samer Abuthaher Outline Have you met the Lizard? Introducing the Platform Lego Parts Motors Sensors

More information

understanding sensors

understanding sensors The LEGO MINDSTORMS EV3 set includes three types of sensors: Touch, Color, and Infrared. You can use these sensors to make your robot respond to its environment. For example, you can program your robot

More information

Robotics & Embedded Systems (Summer Training Program) 4 Weeks/30 Days

Robotics & Embedded Systems (Summer Training Program) 4 Weeks/30 Days (Summer Training Program) 4 Weeks/30 Days PRESENTED BY RoboSpecies Technologies Pvt. Ltd. Office: D-66, First Floor, Sector- 07, Noida, UP Contact us: Email: stp@robospecies.com Website: www.robospecies.com

More information

Mindstorms NXT. mindstorms.lego.com

Mindstorms NXT. mindstorms.lego.com Mindstorms NXT mindstorms.lego.com A3B99RO Robots: course organization At the beginning of the semester the students are divided into small teams (2 to 3 students). Each team uses the basic set of the

More information

The Texas 4-H Roundup Robotics Challenge Invitational

The Texas 4-H Roundup Robotics Challenge Invitational LAST REVISION 9/15 The Texas 4-H Roundup Robotics Challenge Invitational Robots are all around us. From the food we eat to the cars we drive, robots help make our lives easier and more efficient. The field

More information

Robot Navigation System with RFID and Ultrasonic Sensors A.Seshanka Venkatesh 1, K.Vamsi Krishna 2, N.K.R.Swamy 3, P.Simhachalam 4

Robot Navigation System with RFID and Ultrasonic Sensors A.Seshanka Venkatesh 1, K.Vamsi Krishna 2, N.K.R.Swamy 3, P.Simhachalam 4 Robot Navigation System with RFID and Ultrasonic Sensors A.Seshanka Venkatesh 1, K.Vamsi Krishna 2, N.K.R.Swamy 3, P.Simhachalam 4 B.Tech., Student, Dept. Of EEE, Pragati Engineering College,Surampalem,

More information

Mechatronics Engineering and Automation Faculty of Engineering, Ain Shams University MCT-151, Spring 2015 Lab-4: Electric Actuators

Mechatronics Engineering and Automation Faculty of Engineering, Ain Shams University MCT-151, Spring 2015 Lab-4: Electric Actuators Mechatronics Engineering and Automation Faculty of Engineering, Ain Shams University MCT-151, Spring 2015 Lab-4: Electric Actuators Ahmed Okasha, Assistant Lecturer okasha1st@gmail.com Objective Have a

More information

Design Project Introduction DE2-based SecurityBot

Design Project Introduction DE2-based SecurityBot Design Project Introduction DE2-based SecurityBot ECE2031 Fall 2017 1 Design Project Motivation ECE 2031 includes the sophomore-level team design experience You are developing a useful set of tools eventually

More information

Students will design, program, and build a robot vehicle to traverse a maze in 30 seconds without touching any sidewalls or going out of bounds.

Students will design, program, and build a robot vehicle to traverse a maze in 30 seconds without touching any sidewalls or going out of bounds. Overview Challenge Students will design, program, and build a robot vehicle to traverse a maze in 30 seconds without touching any sidewalls or going out of bounds. Materials Needed One of these sets: TETRIX

More information

The Future of Robotics in STEM Education

The Future of Robotics in STEM Education The Future of Robotics in STEM Education Presenter: Robert Grover CEO PCS Edventures, Inc. Using robotics to engage student learning since 1988! Robert Grover PCS Edventures: What do we do? We make children

More information

Australian Journal of Basic and Applied Sciences

Australian Journal of Basic and Applied Sciences AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com An Improved Low Cost Automated Mobile Robot 1 J. Hossen, 2 S. Sayeed, 3 M. Saleh, 4 P.

More information

Arduino Based Robot for Pick and Place Application

Arduino Based Robot for Pick and Place Application Arduino Based Robot for Pick and Place Application Priya H. Pande Pallavi V. Saklecha Prof. Pragati D. Pawar Prof. Atul N. Shire Abstract Here, the project is designed to develop a system in which robot

More information

Course: STEM Robotics Engineering Total Framework Hours up to: 600 CIP Code: Exploratory Preparatory

Course: STEM Robotics Engineering Total Framework Hours up to: 600 CIP Code: Exploratory Preparatory Camas School District Framework: Introductory Robotics Course: STEM Robotics Engineering Total Framework Hours up to: 600 CIP Code: 150405 Exploratory Preparatory Date Last Modified: 01/20/2013 Career

More information

Autonomous Following RObot Initial Design Review

Autonomous Following RObot Initial Design Review Autonomous Following RObot Initial Design Review James Tse (Leader) Wei Dai Travis Frecker Peter Verlangieri Professor John Johnson ECE 189A Fall 2012 Initial Design Review: Project Description Original

More information

Performance Analysis of Ultrasonic Mapping Device and Radar

Performance Analysis of Ultrasonic Mapping Device and Radar Volume 118 No. 17 2018, 987-997 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Performance Analysis of Ultrasonic Mapping Device and Radar Abhishek

More information

Collaborative Robotic Navigation Using EZ-Robots

Collaborative Robotic Navigation Using EZ-Robots , October 19-21, 2016, San Francisco, USA Collaborative Robotic Navigation Using EZ-Robots G. Huang, R. Childers, J. Hilton and Y. Sun Abstract - Robots and their applications are becoming more and more

More information

Programming Design ROBOTC Software

Programming Design ROBOTC Software Programming Design ROBOTC Software Computer Integrated Manufacturing 2013 Project Lead The Way, Inc. Behavior-Based Programming A behavior is anything your robot does Example: Turn on a single motor or

More information

S B Patil Public School, Pune

S B Patil Public School, Pune LS Creative Learnings Pvt Ltd., STEM-Robotics Education Report for Jan 2018 S B Patil Public School, Pune 1 Grade: III Jan 2017 Simple machine Inclined plane Lesson To understand about types of simple

More information

Today s Menu. Near Infrared Sensors

Today s Menu. Near Infrared Sensors Today s Menu Near Infrared Sensors CdS Cells Programming Simple Behaviors 1 Near-Infrared Sensors Infrared (IR) Sensors > Near-infrared proximity sensors are called IRs for short. These devices are insensitive

More information

Mobile Robot Navigation Contest for Undergraduate Design and K-12 Outreach

Mobile Robot Navigation Contest for Undergraduate Design and K-12 Outreach Session 1520 Mobile Robot Navigation Contest for Undergraduate Design and K-12 Outreach Robert Avanzato Penn State Abington Abstract Penn State Abington has developed an autonomous mobile robotics competition

More information

1 Lab + Hwk 4: Introduction to the e-puck Robot

1 Lab + Hwk 4: Introduction to the e-puck Robot 1 Lab + Hwk 4: Introduction to the e-puck Robot This laboratory requires the following: (The development tools are already installed on the DISAL virtual machine (Ubuntu Linux) in GR B0 01): C development

More information

Available online Journal of Scientific and Engineering Research, 2018, 5(4): Research Article

Available online   Journal of Scientific and Engineering Research, 2018, 5(4): Research Article Available online www.jsaer.com, 2018, 5(4):341-349 Research Article ISSN: 2394-2630 CODEN(USA): JSERBR Arduino Based door Automation System Using Ultrasonic Sensor and Servo Motor Orji EZ*, Oleka CV, Nduanya

More information

Development of a Laboratory Kit for Robotics Engineering Education

Development of a Laboratory Kit for Robotics Engineering Education Development of a Laboratory Kit for Robotics Engineering Education Taskin Padir, William Michalson, Greg Fischer, Gary Pollice Worcester Polytechnic Institute Robotics Engineering Program tpadir@wpi.edu

More information