Autonomous Obstacle Avoiding and Path Following Rover

Size: px
Start display at page:

Download "Autonomous Obstacle Avoiding and Path Following Rover"

Transcription

1 Volume 114 No , ISSN: (printed version); ISSN: (on-line version) url: Autonomous Obstacle Avoiding and Path Following Rover ijpam.eu Sandeep Polina 1, Pavan Kumar Barathula 2 and K P Prasad Rao 3 Department of Electrical and Electronics Engineering K L University, Vaddeswaram , Andhra Pradesh, India. sandeep.polina@gmail.com Abstract. With the advancement of automation technology, the industries are adopting automated robots in workplace instead of humans. This paper deals with designing and implementing the basic prototype of line follower robot with obstacle avoiding capabilities. The basic line follower robot follows the path either black or white colour in inverted surface but having an obstacle in its path becomes a reasonable issue effects its utilization in workplaces. This prototype of the robot follows line, detects obstacle and take necessary actions to avoid it. The 3 sets of IR transmitter-receiver and ultra-sonic sensors are implemented in this prototype to detect path and obstacles respectively. The Arduino Uno board is the control system of this robot. The design includes two modules- line following and obstacle detection, both modules and its algorithm are implemented individually and at final both are combined in such a way that the robot performs specified task. Arduino motor shield and sensors are connected to control system and power is taken from 12V battery. Keywords: Robot, obstacle, sensors, ultra-sonic, IR transmitterreceiver. 1 Introduction Robot is usually a machine controlled by a computer program or electronic circuitry. These are designed mainly to reduce the work of a human. In most of the situations where humans are under risks. So, to reduce the risk factors as well as to increase the comfort these are developed. And by using it we can achieve more efficient outputs with in a low span of time. In olden days machines are only used to reduce the human effort they don t have any capability of making decisions. But now, the world is moving towards the autonomous in every aspect. By incorporating a little amount 271

2 of knowledge to the robots they can take a bounded decision on its own without any human involvement. We have designed a robot that performs additional tasks along with following a path. It avoids an obstacle in its path and continuous to follow its path after the obstacle been avoided. We can set the gap between the robot and intrusion at that point which the robot take its deviation from the path. Our robot follows the black line if it was removed from the black line it stops and while following the line if any obstacle was present in its path it detects the object from a distance which we set in programme. When the distance between obstacle and robot is reduced to minimum value the robot control instructions transfers from line following module to the obstacle avoiding module. When the robot avoids the obstacle, and detects the black line again the control sent back to the line follower module. Our robot contains single ultra-sonic sensor mounted on the servo motor helps to detect obstacles around in front of robot 2. BLOCK DIAGRAM This is the block diagram of line follower. The direction of the arrow indicates the signal flow. The connection between Arduino board and Arduino motor shield is bi directional. Since we are using three motors (2 dc and 1 servo) it is easy and comfortable to use the motor shield in controlling the speed of the motors and if we want the four-wheel drive we can increase the number of dc motor to four for heavy loads with the help of motor shield. Fig1. Block Diagram of Specimen model The signal from IR sensors are the input to the Arduino board. This signal helps in determining the position of the robot with respect to the black line and Arduino gives the necessary commands to the motor shield to adjust the motors speeds in controlling the robots position. This loop continuous unless any obstacle was detected. The ultra-sonic sensor detects the obstacle and sent the data to the Arduino, based on the data the Arduino calculates the distance between the obstacle and robot. 272

3 The servo motor helps in rotating the head of the robot (ultra-sonic sensor) through to find the obstacles is present in other direction. 3. LINE FOLLOWER MODULE The IR sensors mounted under the robot near the caster wheel helps in the detecting the black line. The line following strategy can be achieved by minimum two sets of IR transmitter and receiver to increase preciseness and smoothness in operation we use three sets of them. Line follower works on the principle that light reflects on white surface and doesn t reflect on black. IR transmitter transmits IR waves on to the surface receiver sends the information about the presence of black line to the Arduino board based on the reflection of the IR wave, based on the information Arduino sends signal to the motor shield to control the speed of the motors to take turning. The direction of the robot making a turn depends of the individual speed of left and right motors. If the speed of the left motor was more than the speed of the right motor the robot takes right turn and vice versa. To move the robot in straight forward both motors should be in same speed. 3.1 FLOW CHART OF LINE FOLLOWER This flow-chart explains how the robot movement related to the sensor inputs. Fig 2. Flow chart for Line Follower Number 0 and 1 under respective sensor indicates the logical high or low value. When the wave is reflected that means surface is white so, sensor output is logical high (1) value and if the surface is black then the wave will not be reflected so the sensor output is logical low (0) value. 273

4 F indicates the label hence the robot should continuously check for the black line and calibrate its position per path the process should continuously run in the loop. 3.2 PSUEDO CODE FOR LINE FOLLOWER Following code is used to explain how the coding is done on Arduino to make the robot to follow the line. Include AFMotor library Define left sensor to A0 Define middle sensor to A1 Define right sensor to A2 Assign right motor to the 3 rd motor slot of Arduino motor shield. Assign left motor to the 4 th motor slot of Arduino motor shield. Firstly: Set left sensor(a0) as input. Set middle sensor(a1) as input Set right sensor (A2) as input to the Arduino. Set the speed of left motor and right motor Initially make the both motors stop. Here loop starts: If left sensor and right sensor is on white and middle sensor is in black (case 1) Make both motors to run forward //it makes motor to move forward.. If middle sensor and right sensor is on white and left sensor is on black (case 2) Stop left motor and make the right motor to run //this makes robot to turn left If middle sensor and left sensor is on white and right sensor is on black (case 3) Stop the right motor and make left motor to run //this makes robot to turn right If all the sensors is on the black (case 4) Stop the both motors //this indicates the robot is at finish point. If all the sensors is on white (case 5) Stop the both motors //this indicates robot is out of track. If left sensor is on white and right sensor and middle sensor is on black (case 6) Stop right motor and run the left motor //it makes robot to turn right If right sensor is on white and left sensor and middle sensor is on back (case 7) Stop left motor and run the right motor //it makes robot to turn left If left sensor and right sensor is on black and middle sensor is on white (case 8) Stop both the motors //it indicates invalid path Go back to the loop. The entire loop executes repeatedly until the robot stops Even we use the analog pins of Arduino board we read the sensor inputs as digitally. 274

5 4. OBSTACLE AVOIDING MODULE In this module, we make the circuit and explain the strategy followed by robot to avoid the obstacle present in its path and continue following the path. The robot head turns 180 degrees to check the obstacle in three directions. Arduino is the brain of this robot it takes the data from the ultra-sonic sensor and calculate the distance between obstacle and robot. From the angle of the servo motor Arduino gets the direction of obstacle. By knowing the speed of the wave and time delay between triggered wave and echo the distance is calculated by formula. Distance =(speed*time)/2 When obstacle is present it path it check the distance in both directions and prefer the direction where there is a large gap. It travels in that direction leaving the path and travels through the boundary of an obstacle until it finds a black line. After finding the black line it continues its path. The threshold distance is set in the program when the gap between the object and the robot is below the threshold distance then the obstacle avoiding module gets activated. 4.1 FLOW-CHART OF OBSTACLE AVOIDING MODULE 275

6 Fig 3. Flow chart of obstacle avoiding module. The above flow chart repeats continuously in a loop measures the distances and take its course. 4.2 PSUEDO CODE FOR OBSTACLE AVOIDING MODULE Following code is for the obstacle avoiding module and shows the connection between the line follower module and this module by calling the line follower functions (discussed under 5 th heading) at certain constraints. Include servo library Include AFMotor library Set servo to pin 9 Set trig pin to A3 Set echo pin to A4 Initially make the robot stop. Check weather left distance is greater than right distance. If left distance is greater than right Make robot to turn left Step 1: make robot to move forward delay for some time check right greater than max distance. If right greater than max distance Make Robot to turn right. Step 2: Make robot to move 276 forward

7 Check right greater than max distance If right greater than max distance Make robot to turn right Step 3: Make robot to move forward. Check for black line If black line is present Make robot to turn left. Go to line follower module Go to step 3 Go to step 2 Go to step 1 Make robot to turn right Step 4: Make robot to move forward Check for left greater than max distance If left is greater than max distance Make robot to turn left Step 5: Make robot to move forward. Check for left greater than max distance If left greater than max distance Make robot to turn left Step 6: Make robot to move forward. Check for black line If black line is present make robot to turn right delay for some time go to line follower module Go to step 6 Go to step 5 Go to step 4 This loop continuous Check:// this function is used to check the left distance is greater than right distance. Turns servo to 0 degrees calculate distance Store the value in left Turn servo to 180 degrees calculate distance Store the value in right Turn servo to 90 degree Compare left and right distances If left is greater Return Boolean true Return Boolean false Distance:// this function is used to calculate distance make trig pin low delay for 2 micro seconds make trig pin high delay for 10 micro seconds 277

8 make trig pin low calculate delay between triggered wave to reflected echo wave calculate distance = duration/58.2; return distance CheckLGM and CheckRGM is the functions works same as check function but compare left distance to threshold and right distance to threshold value respectively. The robot stops controlling is in the line follower module. In line follower module while following the black line the robot check the presence of object in its path once in loop when distance is below set distance then the control is back to the obstacle avoiding module. 5. CIRCUIT Fig 4. Circuit connections of robot. 6. WORKING OF ROBOT Robot follows the black line as per the code of line follower module while following it continuously check for presence of an obstacle in its path. When an obstacle is detected it shifts the robot control to the obstacle avoiding module. After the avoiding obstacle, it sent back control to line follower module. Several functions are used in code to reduce complexity and increase preciseness of robot. The complete function of robot as per the pseudo code that explained above. X. RESULTS Following figures are the results of specimen. It was working fine by detecting obstacles while following the path 278

9 CONCLUSION Fig 5. Working of specimen snapshots The robot that designed has different functionality than other line followers and obstacle avoidance robots. By using servo motor we reduced number of ultra-sonic sensors from 3 to 1 and cover all the three directions by rotation of robot head and we can know in which direction the robot was looking by observing its head. By making some changes in the programming of the robot we can detect the obstacle at each degree around the robot and get the position of the obstacle. By replacing ultrasonic sensor with camera, it can capture the obstacles and take a necessary action. By incorporating some logical commands the robot it can be used for multipurpose. the preciseness of the robot in following line can be increased by increasing number of IR sensors. This robot can be used in industries, hospitals and army applications. This robot can replace conventional conveyor belts. REFERENCES 1. K.H. Ng, C.F. Yeong, E.L.M. Su, T.Y. Lim, Y. Subramaniam, and R.S. Teng, Adaptive Phototransistor Sensor for Line Finding, International Symposium on Robotics and Intelligent Sensors 2012 (IRIS 2012), vol. 41, pp , F.H. Jen and B.T. Mai, Building an autonomous line tracing car, IEEE Intelligent Control and Automation (WCICA), th World Congress on, pp , July M. Engin and D. Engin, Path planning of line follower robot, IEEE Education and Research Conference (EDERC), th European DSP, pp. 1-5, September N.M. Arshad, M.F. Misnan, and N.A. Razak, Single InfraRed Sensor Technique for Line- Tracking Autonomous Mobile Vehicle, Signal Processing and its Applications (CSPA), 2011 IEEE 7th International Colloquium on, pp , March Y. Li, X. Wu, D. Shin, W. Wang, J. Bai1, Q. He1, F. Luo, and W. Zheng, An Improved Line Following Optimization Algorithm for Mobile Robot, IEEE Computing and Convergence Technology (ICCCT), th International Conference on, pp , December

10 280

11 281

12 282

Hardware Implementation of an Explorer Bot Using XBEE & GSM Technology

Hardware Implementation of an Explorer Bot Using XBEE & GSM Technology Volume 118 No. 20 2018, 4337-4342 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Hardware Implementation of an Explorer Bot Using XBEE & GSM Technology M. V. Sai Srinivas, K. Yeswanth,

More information

Distance Measurement of an Object by using Ultrasonic Sensors with Arduino and GSM Module

Distance Measurement of an Object by using Ultrasonic Sensors with Arduino and GSM Module IJSTE - International Journal of Science Technology & Engineering Volume 4 Issue 11 May 2018 ISSN (online): 2349-784X Distance Measurement of an Object by using Ultrasonic Sensors with Arduino and GSM

More information

Performance Analysis of Ultrasonic Mapping Device and Radar

Performance Analysis of Ultrasonic Mapping Device and Radar Volume 118 No. 17 2018, 987-997 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Performance Analysis of Ultrasonic Mapping Device and Radar Abhishek

More information

INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) DESIGN OF A LINE FOLLOWING SENSOR FOR VARIOUS LINE SPECIFICATIONS

INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) DESIGN OF A LINE FOLLOWING SENSOR FOR VARIOUS LINE SPECIFICATIONS INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print), ISSN 0976 6367(Print) ISSN 0976 6375(Online)

More information

Advanced Mechatronics 1 st Mini Project. Remote Control Car. Jose Antonio De Gracia Gómez, Amartya Barua March, 25 th 2014

Advanced Mechatronics 1 st Mini Project. Remote Control Car. Jose Antonio De Gracia Gómez, Amartya Barua March, 25 th 2014 Advanced Mechatronics 1 st Mini Project Remote Control Car Jose Antonio De Gracia Gómez, Amartya Barua March, 25 th 2014 Remote Control Car Manual Control with the remote and direction buttons Automatic

More information

Solar Powered Obstacle Avoiding Robot

Solar Powered Obstacle Avoiding Robot Solar Powered Obstacle Avoiding Robot S.S. Subashka Ramesh 1, Tarun Keshri 2, Sakshi Singh 3, Aastha Sharma 4 1 Asst. professor, SRM University, Chennai, Tamil Nadu, India. 2, 3, 4 B.Tech Student, SRM

More information

Object Detection for Collision Avoidance in ITS

Object Detection for Collision Avoidance in ITS Available online www.ejaet.com European Journal of Advances in Engineering and Technology, 2016, 3(5): 29-35 Research Article ISSN: 2394-658X Object Detection for Collision Avoidance in ITS Rupojyoti Kar

More information

Voice Guided Military Robot for Defence Application

Voice Guided Military Robot for Defence Application IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 11 April 2016 ISSN (online): 2349-6010 Voice Guided Military Robot for Defence Application Palak N. Patel Minal

More information

Automobile Prototype Servo Control

Automobile Prototype Servo Control IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 10 March 2016 ISSN (online): 2349-6010 Automobile Prototype Servo Control Mr. Linford William Fernandes Don Bosco

More information

MULTI ROBOT COMMUNICATION AND TARGET TRACKING SYSTEM AND IMPLEMENTATION OF ROBOT USING ARDUINO

MULTI ROBOT COMMUNICATION AND TARGET TRACKING SYSTEM AND IMPLEMENTATION OF ROBOT USING ARDUINO MULTI ROBOT COMMUNICATION AND TARGET TRACKING SYSTEM AND IMPLEMENTATION OF ROBOT USING ARDUINO K. Sindhuja 1, CH. Lavanya 2 1Student, Department of ECE, GIST College, Andhra Pradesh, INDIA 2Assistant Professor,

More information

HAND GESTURE CONTROLLED ROBOT USING ARDUINO

HAND GESTURE CONTROLLED ROBOT USING ARDUINO HAND GESTURE CONTROLLED ROBOT USING ARDUINO Vrushab Sakpal 1, Omkar Patil 2, Sagar Bhagat 3, Badar Shaikh 4, Prof.Poonam Patil 5 1,2,3,4,5 Department of Instrumentation Bharati Vidyapeeth C.O.E,Kharghar,Navi

More information

INTELLIGENT LANDING TECHNIQUE USING ULTRASONIC SENSOR FOR MAV APPLICATIONS

INTELLIGENT LANDING TECHNIQUE USING ULTRASONIC SENSOR FOR MAV APPLICATIONS Volume 114 No. 12 2017, 429-436 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu INTELLIGENT LANDING TECHNIQUE USING ULTRASONIC SENSOR FOR MAV APPLICATIONS

More information

AUTOMATIC RAILWAY CROSSING SYSTEM

AUTOMATIC RAILWAY CROSSING SYSTEM International Journal of Electrical and Electronics Engineering (IJEEE) ISSN(P): 2278-9944; ISSN(E): 2278-9952 Vol. 3, Issue 4, July 2014, 17-22 IASET AUTOMATIC RAILWAY CROSSING SYSTEM AKRITI & UPENDRA

More information

OPEN CV BASED AUTONOMOUS RC-CAR

OPEN CV BASED AUTONOMOUS RC-CAR OPEN CV BASED AUTONOMOUS RC-CAR B. Sabitha 1, K. Akila 2, S.Krishna Kumar 3, D.Mohan 4, P.Nisanth 5 1,2 Faculty, Department of Mechatronics Engineering, Kumaraguru College of Technology, Coimbatore, India

More information

A Simple Design of Clean Robot

A Simple Design of Clean Robot Journal of Computing and Electronic Information Management ISSN: 2413-1660 A Simple Design of Clean Robot Huichao Wu 1, a, Daofang Chen 2, Yunpeng Yin 3 1 College of Optoelectronic Engineering, Chongqing

More information

VOICE CONTROLLED ROBOT WITH REAL TIME BARRIER DETECTION AND AVERTING

VOICE CONTROLLED ROBOT WITH REAL TIME BARRIER DETECTION AND AVERTING VOICE CONTROLLED ROBOT WITH REAL TIME BARRIER DETECTION AND AVERTING P.NARENDRA ILAYA PALLAVAN 1, S.HARISH 2, C.DHACHINAMOORTHI 3 1Assistant Professor, EIE Department, Bannari Amman Institute of Technology,

More information

Park Ranger. Li Yang April 21, 2014

Park Ranger. Li Yang April 21, 2014 Park Ranger Li Yang April 21, 2014 University of Florida Department of Electrical and Computer Engineering EEL 5666C IMDL Written Report Instructors: A. Antonio Arroyo, Eric M. Schwartz TAs: Andy Gray,

More information

Automatic Docking System with Recharging and Battery Replacement for Surveillance Robot

Automatic Docking System with Recharging and Battery Replacement for Surveillance Robot International Journal of Electronics and Computer Science Engineering 1148 Available Online at www.ijecse.org ISSN- 2277-1956 Automatic Docking System with Recharging and Battery Replacement for Surveillance

More information

Wheeled Mobile Robot Obstacle Avoidance Using Compass and Ultrasonic

Wheeled Mobile Robot Obstacle Avoidance Using Compass and Ultrasonic Universal Journal of Control and Automation 6(1): 13-18, 2018 DOI: 10.13189/ujca.2018.060102 http://www.hrpub.org Wheeled Mobile Robot Obstacle Avoidance Using Compass and Ultrasonic Yousef Moh. Abueejela

More information

RF Controlled Smart Hover Board

RF Controlled Smart Hover Board RF Controlled Smart Hover Board Ravi Teja Ch.V Assistant professor, Department of Electronics and Communication Engineering Anurag college of engineering, Hyderabad, Telangana, India C.G.Apuroopa B.Tech.

More information

III. MATERIAL AND COMPONENTS USED

III. MATERIAL AND COMPONENTS USED Prototype Development of a Smartphone- Controlled Robotic Vehicle with Pick- Place Capability Dheeraj Sharma Electronics and communication department Gian Jyoti Institute Of Engineering And Technology,

More information

Robot Navigation System with RFID and Ultrasonic Sensors A.Seshanka Venkatesh 1, K.Vamsi Krishna 2, N.K.R.Swamy 3, P.Simhachalam 4

Robot Navigation System with RFID and Ultrasonic Sensors A.Seshanka Venkatesh 1, K.Vamsi Krishna 2, N.K.R.Swamy 3, P.Simhachalam 4 Robot Navigation System with RFID and Ultrasonic Sensors A.Seshanka Venkatesh 1, K.Vamsi Krishna 2, N.K.R.Swamy 3, P.Simhachalam 4 B.Tech., Student, Dept. Of EEE, Pragati Engineering College,Surampalem,

More information

MRS: an Autonomous and Remote-Controlled Robotics Platform for STEM Education

MRS: an Autonomous and Remote-Controlled Robotics Platform for STEM Education Association for Information Systems AIS Electronic Library (AISeL) SAIS 2015 Proceedings Southern (SAIS) 2015 MRS: an Autonomous and Remote-Controlled Robotics Platform for STEM Education Timothy Locke

More information

POKER BOT. Justin McIntire EEL5666 IMDL. Dr. Schwartz and Dr. Arroyo

POKER BOT. Justin McIntire EEL5666 IMDL. Dr. Schwartz and Dr. Arroyo POKER BOT Justin McIntire EEL5666 IMDL Dr. Schwartz and Dr. Arroyo Table of Contents: Introduction.page 3 Platform...page 4 Function...page 4 Sensors... page 6 Circuits....page 8 Behaviors...page 9 Problems

More information

Smart eye using Ultrasonic sensor in Electrical vehicles for Differently Able.

Smart eye using Ultrasonic sensor in Electrical vehicles for Differently Able. IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 2 Ver. V (Mar Apr. 2014), PP 01-06 Smart eye using Ultrasonic sensor in Electrical

More information

A Model Based Approach for Human Recognition and Reception by Robot

A Model Based Approach for Human Recognition and Reception by Robot 16 MHz ARDUINO A Model Based Approach for Human Recognition and Reception by Robot Prof. R. Sunitha Department Of ECE, N.R.I Institute Of Technology, J.N.T University, Kakinada, India. V. Sai Krishna,

More information

I. INTRODUCTION MAIN BLOCKS OF ROBOT

I. INTRODUCTION MAIN BLOCKS OF ROBOT Stair-Climbing Robot for Rescue Applications Prof. Pragati.D.Pawar 1, Prof. Ragini.D.Patmase 2, Mr. Swapnil.A.Kondekar 3, Mr. Nikhil.D.Andhare 4 1,2 Department of EXTC, 3,4 Final year EXTC, J.D.I.E.T Yavatmal,Maharashtra,

More information

Obstacle Avoiding Robot

Obstacle Avoiding Robot Obstacle Avoiding Robot Trinayan Saharia 1, Jyotika Bauri 2, Mrs. Chayanika Bhagabati 3 1,2 Student, 3 Asst. Prof., ECE, Assam down town University, Assam Abstract: An obstacle avoiding robot is an intelligent

More information

Path Planning for Mobile Robots Based on Hybrid Architecture Platform

Path Planning for Mobile Robots Based on Hybrid Architecture Platform Path Planning for Mobile Robots Based on Hybrid Architecture Platform Ting Zhou, Xiaoping Fan & Shengyue Yang Laboratory of Networked Systems, Central South University, Changsha 410075, China Zhihua Qu

More information

Available online Journal of Scientific and Engineering Research, 2018, 5(4): Research Article

Available online   Journal of Scientific and Engineering Research, 2018, 5(4): Research Article Available online www.jsaer.com, 2018, 5(4):341-349 Research Article ISSN: 2394-2630 CODEN(USA): JSERBR Arduino Based door Automation System Using Ultrasonic Sensor and Servo Motor Orji EZ*, Oleka CV, Nduanya

More information

International Journal of Modern Trends in Engineering and Research e-issn No.: , Date: April, 2016

International Journal of Modern Trends in Engineering and Research   e-issn No.: , Date: April, 2016 International Journal of Modern Trends in Engineering and Research www.ijmter.com e-issn No.:2349-9745, Date: 28-30 April, 2016 MATLAB CONTROLLING COLOUR SENSING ROBOT Dhiraj S.Dhondage 1,Kiran N.Nikam

More information

ILR #1: Sensors and Motor Control Lab. Zihao (Theo) Zhang- Team A October 14, 2016 Teammates: Amit Agarwal, Harry Golash, Yihao Qian, Menghan Zhang

ILR #1: Sensors and Motor Control Lab. Zihao (Theo) Zhang- Team A October 14, 2016 Teammates: Amit Agarwal, Harry Golash, Yihao Qian, Menghan Zhang ILR #1: Sensors and Motor Control Lab Zihao (Theo) Zhang- Team A October 14, 2016 Teammates: Amit Agarwal, Harry Golash, Yihao Qian, Menghan Zhang Individual Progress For my team s sensors and motor control

More information

Total Hours Registration through Website or for further details please visit (Refer Upcoming Events Section)

Total Hours Registration through Website or for further details please visit   (Refer Upcoming Events Section) Total Hours 110-150 Registration Q R Code Registration through Website or for further details please visit http://www.rknec.edu/ (Refer Upcoming Events Section) Module 1: Basics of Microprocessor & Microcontroller

More information

Devastator Tank Mobile Platform with Edison SKU:ROB0125

Devastator Tank Mobile Platform with Edison SKU:ROB0125 Devastator Tank Mobile Platform with Edison SKU:ROB0125 From Robot Wiki Contents 1 Introduction 2 Tutorial 2.1 Chapter 2: Run! Devastator! 2.2 Chapter 3: Expansion Modules 2.3 Chapter 4: Build The Devastator

More information

II. MAIN BLOCKS OF ROBOT

II. MAIN BLOCKS OF ROBOT AVR Microcontroller Based Wireless Robot For Uneven Surface Prof. S.A.Mishra 1, Mr. S.V.Chinchole 2, Ms. S.R.Bhagat 3 1 Department of EXTC J.D.I.E.T Yavatmal, Maharashtra, India. 2 Final year EXTC J.D.I.E.T

More information

The Design of Intelligent Wheelchair Based on MSP430

The Design of Intelligent Wheelchair Based on MSP430 The Design of Intelligent Wheelchair Based on MSP430 Peifen Jin 1, a *, ujie Chen 1,b, Peixue Liu 1,c 1 Department of Mechanical and electrical engineering,qingdao HuangHai College, Qingdao, 266427, China

More information

Robotics Challenge. Team Members Tyler Quintana Tyler Gus Josh Cogdill Raul Davila John Augustine Kelty Tobin

Robotics Challenge. Team Members Tyler Quintana Tyler Gus Josh Cogdill Raul Davila John Augustine Kelty Tobin Robotics Challenge Team Members Tyler Quintana Tyler Gus Josh Cogdill Raul Davila John Augustine Kelty Tobin 1 Robotics Challenge: Team Multidisciplinary: Computer, Electrical, Mechanical Currently split

More information

Two Hour Robot. Lets build a Robot.

Two Hour Robot. Lets build a Robot. Lets build a Robot. Our robot will use an ultrasonic sensor and servos to navigate it s way around a maze. We will be making 2 voltage circuits : A 5 Volt for our ultrasonic sensor, sound and lights powered

More information

Available online at ScienceDirect. Procedia Computer Science 76 (2015 )

Available online at   ScienceDirect. Procedia Computer Science 76 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 76 (2015 ) 474 479 2015 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS 2015) Sensor Based Mobile

More information

Safe Landing of Autonomous Amphibious Unmanned Aerial Vehicle on Water

Safe Landing of Autonomous Amphibious Unmanned Aerial Vehicle on Water Safe Landing of Autonomous Amphibious Unmanned Aerial Vehicle on Water Pandya Garvit Kalpesh 1, Dr. Balasubramanian E. 2, Parvez Alam 3, Sabarish C. 4 1M.Tech Student, Vel Tech Dr. RR & Dr. SR University,

More information

ECE 477 Digital Systems Senior Design Project Rev 8/09. Homework 5: Theory of Operation and Hardware Design Narrative

ECE 477 Digital Systems Senior Design Project Rev 8/09. Homework 5: Theory of Operation and Hardware Design Narrative ECE 477 Digital Systems Senior Design Project Rev 8/09 Homework 5: Theory of Operation and Hardware Design Narrative Team Code Name: _ATV Group No. 3 Team Member Completing This Homework: Sebastian Hening

More information

The Marauder Map Final Report 12/19/2014 The combined information of these four sensors is sufficient to

The Marauder Map Final Report 12/19/2014 The combined information of these four sensors is sufficient to The combined information of these four sensors is sufficient to Final Project Report determine if a person has left or entered the room via the doorway. EE 249 Fall 2014 LongXiang Cui, Ying Ou, Jordan

More information

MOBILE ROBOT LOCALIZATION with POSITION CONTROL

MOBILE ROBOT LOCALIZATION with POSITION CONTROL T.C. DOKUZ EYLÜL UNIVERSITY ENGINEERING FACULTY ELECTRICAL & ELECTRONICS ENGINEERING DEPARTMENT MOBILE ROBOT LOCALIZATION with POSITION CONTROL Project Report by Ayhan ŞAVKLIYILDIZ - 2011502093 Burcu YELİS

More information

Boe-Bot robot manual

Boe-Bot robot manual Tallinn University of Technology Department of Computer Engineering Chair of Digital Systems Design Boe-Bot robot manual Priit Ruberg Erko Peterson Keijo Lass Tallinn 2016 Contents 1 Robot hardware description...3

More information

Embedded Systems & Robotics (Winter Training Program) 6 Weeks/45 Days

Embedded Systems & Robotics (Winter Training Program) 6 Weeks/45 Days Embedded Systems & Robotics (Winter Training Program) 6 Weeks/45 Days PRESENTED BY RoboSpecies Technologies Pvt. Ltd. Office: W-53G, Sector-11, Noida-201301, U.P. Contact us: Email: stp@robospecies.com

More information

Artificial Intelligence Planning and Decision Making

Artificial Intelligence Planning and Decision Making Artificial Intelligence Planning and Decision Making NXT robots co-operating in problem solving authors: Lior Russo, Nir Schwartz, Yakov Levy Introduction: On today s reality the subject of artificial

More information

ARDUINO BASED GREETING CONTROLLED ROBOT

ARDUINO BASED GREETING CONTROLLED ROBOT ARDUINO BASED GREETING CONTROLLED ROBOT 1 Patil Tushar R, 2 Goad Prashant M., 3 Patil Jagdish B, 4 Bari Jayesh P 1,3,4 Students, 2 Professor Abstract: This paper introduces a service robot which performs

More information

Devantech SRF04 Ultra-Sonic Ranger Finder Cornerstone Electronics Technology and Robotics II

Devantech SRF04 Ultra-Sonic Ranger Finder Cornerstone Electronics Technology and Robotics II Devantech SRF04 Ultra-Sonic Ranger Finder Cornerstone Electronics Technology and Robotics II Administration: o Prayer PicBasic Pro Programs Used in This Lesson: o General PicBasic Pro Program Listing:

More information

Implementation of a Self-Driven Robot for Remote Surveillance

Implementation of a Self-Driven Robot for Remote Surveillance International Journal of Research Studies in Science, Engineering and Technology Volume 2, Issue 11, November 2015, PP 35-39 ISSN 2349-4751 (Print) & ISSN 2349-476X (Online) Implementation of a Self-Driven

More information

Lab 2: Blinkie Lab. Objectives. Materials. Theory

Lab 2: Blinkie Lab. Objectives. Materials. Theory Lab 2: Blinkie Lab Objectives This lab introduces the Arduino Uno as students will need to use the Arduino to control their final robot. Students will build a basic circuit on their prototyping board and

More information

Automatic Fan Speed Control using Temperature and Humidity Sensor and Arduino

Automatic Fan Speed Control using Temperature and Humidity Sensor and Arduino ISSN: 2454-132X Impact factor: 4.295 (Volume 4, Issue 2) Available online at: www.ijariit.com Automatic Fan Speed Control using Temperature and Humidity Sensor and Arduino Suraj Kaushik kaushiksuraj1102@gmail.com

More information

CHAPTER 4 ANALYSIS AND DESIGN

CHAPTER 4 ANALYSIS AND DESIGN 9 CHAPTER 4 ANALYSIS AND DESIGN 4.1 Analysis In this project, the sorting activity of the item or packet delivery is done automatically with the computer (integrated with Arduino microcontroller). The

More information

Robotics & Embedded Systems (Summer Training Program) 4 Weeks/30 Days

Robotics & Embedded Systems (Summer Training Program) 4 Weeks/30 Days (Summer Training Program) 4 Weeks/30 Days PRESENTED BY RoboSpecies Technologies Pvt. Ltd. Office: D-66, First Floor, Sector- 07, Noida, UP Contact us: Email: stp@robospecies.com Website: www.robospecies.com

More information

NAMASKAR ROBOT-WHICH PROVIDES SERVICE

NAMASKAR ROBOT-WHICH PROVIDES SERVICE Int. J. Elec&Electr.Eng&Telecoms. 2014 V Sai Krishna and R Sunitha, 2014 Research Paper ISSN 2319 2518 www.ijeetc.com Vol. 3, No. 1, January 2014 2014 IJEETC. All Rights Reserved NAMASKAR ROBOT-WHICH PROVIDES

More information

Mechatronics Engineering and Automation Faculty of Engineering, Ain Shams University MCT-151, Spring 2015 Lab-4: Electric Actuators

Mechatronics Engineering and Automation Faculty of Engineering, Ain Shams University MCT-151, Spring 2015 Lab-4: Electric Actuators Mechatronics Engineering and Automation Faculty of Engineering, Ain Shams University MCT-151, Spring 2015 Lab-4: Electric Actuators Ahmed Okasha, Assistant Lecturer okasha1st@gmail.com Objective Have a

More information

MICROCONTROLLER BASED SPEED SYNCHRONIZATION OF MULTIPLE DC MOTORS IN TEXTILE APPLICATIONS

MICROCONTROLLER BASED SPEED SYNCHRONIZATION OF MULTIPLE DC MOTORS IN TEXTILE APPLICATIONS MICROCONTROLLER BASED SPEED SYNCHRONIZATION OF MULTIPLE DC MOTORS IN TEXTILE APPLICATIONS 1 RAKSHA A R, 2 KAVYA B, 3 PRAVEENA ANAJI, 4 NANDESH K N 1,2 UG student, 3,4 Assistant Professor Department of

More information

Controlling Obstacle Avoiding And Live Streaming Robot Using Chronos Watch

Controlling Obstacle Avoiding And Live Streaming Robot Using Chronos Watch Controlling Obstacle Avoiding And Live Streaming Robot Using Chronos Watch Mr. T. P. Kausalya Nandan, S. N. Anvesh Kumar, M. Bhargava, P. Chandrakanth, M. Sairani Abstract In today s world working on robots

More information

Design of Tracked Robot with Remote Control for Surveillance

Design of Tracked Robot with Remote Control for Surveillance Proceedings of the 2014 International Conference on Advanced Mechatronic Systems, Kumamoto, Japan, August 10-12, 2014 Design of Tracked Robot with Remote Control for Surveillance Widodo Budiharto School

More information

An Autonomous Self- Propelled Robot Designed for Obstacle Avoidance and Fire Fighting

An Autonomous Self- Propelled Robot Designed for Obstacle Avoidance and Fire Fighting An Autonomous Self- Propelled Robot Designed for Obstacle Avoidance and Fire Fighting K. Prathyusha Assistant professor, Department of ECE, NRI Institute of Technology, Agiripalli Mandal, Krishna District,

More information

SPEED SYNCHRONIZATION OF MASTER SLAVE D.C. MOTORS USING MICROCONTROLLER, FOR TEXTILE APPLICATIONS

SPEED SYNCHRONIZATION OF MASTER SLAVE D.C. MOTORS USING MICROCONTROLLER, FOR TEXTILE APPLICATIONS e-issn: 2349-9745 p-issn: 2393-8161 Scientific Journal Impact Factor (SJIF): 1.711 International Journal of Modern Trends in Engineering and Research www.ijmter.com SPEED SYNCHRONIZATION OF MASTER SLAVE

More information

Arduino Based Intelligent Parking Assistance System

Arduino Based Intelligent Parking Assistance System International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.11 No.04, pp 101-106, 2018 Arduino Based Intelligent Parking Assistance System S.Baskaran 1 *,

More information

DC motor control using arduino

DC motor control using arduino DC motor control using arduino 1) Introduction: First we need to differentiate between DC motor and DC generator and where we can use it in this experiment. What is the main different between the DC-motor,

More information

WELCOME TO THE SEMINAR ON INTRODUCTION TO ROBOTICS

WELCOME TO THE SEMINAR ON INTRODUCTION TO ROBOTICS WELCOME TO THE SEMINAR ON INTRODUCTION TO ROBOTICS Introduction to ROBOTICS Get started with working with Electronic circuits. Helping in building a basic line follower Understanding more about sensors

More information

Mapping device with wireless communication

Mapping device with wireless communication University of Arkansas, Fayetteville ScholarWorks@UARK Electrical Engineering Undergraduate Honors Theses Electrical Engineering 12-2011 Mapping device with wireless communication Xiangyu Liu University

More information

UNIVERSIDAD CARLOS III DE MADRID ESCUELA POLITÉCNICA SUPERIOR

UNIVERSIDAD CARLOS III DE MADRID ESCUELA POLITÉCNICA SUPERIOR UNIVERSIDAD CARLOS III DE MADRID ESCUELA POLITÉCNICA SUPERIOR TRABAJO DE FIN DE GRADO GRADO EN INGENIERÍA DE SISTEMAS DE COMUNICACIONES CONTROL CENTRALIZADO DE FLOTAS DE ROBOTS CENTRALIZED CONTROL FOR

More information

Mobile Robots (Wheeled) (Take class notes)

Mobile Robots (Wheeled) (Take class notes) Mobile Robots (Wheeled) (Take class notes) Wheeled mobile robots Wheeled mobile platform controlled by a computer is called mobile robot in a broader sense Wheeled robots have a large scope of types and

More information

Gesture Controlled Car

Gesture Controlled Car Gesture Controlled Car Chirag Gupta Department of ECE ITM University Nitin Garg Department of ECE ITM University ABSTRACT Gesture Controlled Car is a robot which can be controlled by simple human gestures.

More information

International Journal for Research in Applied Science & Engineering Technology (IJRASET) DTMF Based Robot for Security Applications

International Journal for Research in Applied Science & Engineering Technology (IJRASET) DTMF Based Robot for Security Applications DTMF Based Robot for Security Applications N. Mohan Raju 1, M. Naga Praveen 2, A. Mansoor Vali 3, M. Amrutha 4, K. Jaya Theertha 5 1,2,3,4,5 Department of ECE, JNTUA Abstract: The main idea is to implement

More information

Lesson4 Obstacle avoidance car

Lesson4 Obstacle avoidance car Lesson4 Obstacle avoidance car 1 Points of this section The joy of learning, is not just know how to control your car, but also know how to protect your car. So, make you car far away from collision. Learning

More information

RoboJunior is a Certified Robotics Summer Camp conceptualised by ARK Technosystems to promote robotics amongst the youth right from grass roots.

RoboJunior is a Certified Robotics Summer Camp conceptualised by ARK Technosystems to promote robotics amongst the youth right from grass roots. What is RoboJunior? RoboJunior is a Certified Robotics Summer Camp conceptualised by ARK Technosystems to promote robotics amongst the youth right from grass roots. This workshop aims to provide a technical

More information

INTRODUCTION TO ROBOTICS

INTRODUCTION TO ROBOTICS INTRODUCTION TO ROBOTICS ROBOTICS CLUB SCIENCE AND TECHNOLOGY COUNCIL, IIT-KANPUR AUGUST 6 TH, 2016 OUTLINE What is a robot? Classifications of Robots What goes behind making a robot? Mechanical Electrical

More information

Agent-based/Robotics Programming Lab II

Agent-based/Robotics Programming Lab II cis3.5, spring 2009, lab IV.3 / prof sklar. Agent-based/Robotics Programming Lab II For this lab, you will need a LEGO robot kit, a USB communications tower and a LEGO light sensor. 1 start up RoboLab

More information

Megamark Arduino Library Documentation

Megamark Arduino Library Documentation Megamark Arduino Library Documentation The Choitek Megamark is an advanced full-size multipurpose mobile manipulator robotics platform for students, artists, educators and researchers alike. In our mission

More information

Lesson 13. The Big Idea: Lesson 13: Infrared Transmitters

Lesson 13. The Big Idea: Lesson 13: Infrared Transmitters Lesson Lesson : Infrared Transmitters The Big Idea: In Lesson 12 the ability to detect infrared radiation modulated at 38,000 Hertz was added to the Arduino. This lesson brings the ability to generate

More information

SMART SECURITY SURVEILLANCE ROVER

SMART SECURITY SURVEILLANCE ROVER Volume 116 No. 12 2017, 67-75 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.12732/ijpam.v116i12.8 ijpam.eu SMART SECURITY SURVEILLANCE ROVER N.Suganthi

More information

GetTutorialized Workshops Brochure-2017

GetTutorialized Workshops Brochure-2017 GetTutorialized Workshops Brochure-2017 Internet of Things with Arduino Workshop course Content: 1. Introduction to Internet of Things 2. Introduction to Microcontrollers and Microprocessors 3. Microcontrollers

More information

Simulation Of Radar With Ultrasonic Sensors

Simulation Of Radar With Ultrasonic Sensors Simulation Of Radar With Ultrasonic Sensors Mr.R.S.AGARWAL Associate Professor Dept. Of Electronics & Ms.V.THIRUMALA Btech Final Year Student Dept. Of Electronics & Mr.D.VINOD KUMAR B.Tech Final Year Student

More information

Intelligent Tactical Robotics

Intelligent Tactical Robotics Intelligent Tactical Robotics Samana Jafri 1,Abbas Zair Naqvi 2, Manish Singh 3, Akhilesh Thorat 4 1 Dept. Of Electronics and telecommunication, M.H. Saboo Siddik College Of Engineering, Mumbai University

More information

WifiBotics. An Arduino Based Robotics Workshop

WifiBotics. An Arduino Based Robotics Workshop WifiBotics An Arduino Based Robotics Workshop WifiBotics is the workshop designed by RoboKart group pioneers in this field way back in 2014 and copied by many competitors. This workshop is based on the

More information

RoboSAR Written Report 1

RoboSAR Written Report 1 Date: 4/21/15 Student Name: Lukas Christensen E-Mail: lukaschristensen@ufl.edu TAs: Andy Gray Nick Cox Instructors: Dr. A. Antonio Arroyo Dr. Eric M. Schwartz University of Florida Department of Electrical

More information

International Journal of Applied Sciences, Engineering and Management ISSN , Vol. 06, No. 02, March 2017, pp

International Journal of Applied Sciences, Engineering and Management ISSN , Vol. 06, No. 02, March 2017, pp Intelligent Street Lighting System S. Jagan Mohan Rao 1, N. Kundana 2, N. Prasanti 2, U. Bhargav Teja 2, Y. Mukhesh 2 1 Professor, Vice Principal, Ramachandra College of Engineering, Eluru, Andhra Pradesh,

More information

DEMONSTRATION OF AUTOMATIC WHEELCHAIR CONTROL BY TRACKING EYE MOVEMENT AND USING IR SENSORS

DEMONSTRATION OF AUTOMATIC WHEELCHAIR CONTROL BY TRACKING EYE MOVEMENT AND USING IR SENSORS DEMONSTRATION OF AUTOMATIC WHEELCHAIR CONTROL BY TRACKING EYE MOVEMENT AND USING IR SENSORS Devansh Mittal, S. Rajalakshmi and T. Shankar Department of Electronics and Communication Engineering, SENSE

More information

JEPPIAAR SRR Engineering College Padur, Ch

JEPPIAAR SRR Engineering College Padur, Ch An Automated Non-Invasive Blood Glucose Estimator and Infiltrator M. Florence Silvia 1, K. Saran 2, G. Venkata Prasad 3, John Fermin 4 1 Asst. Prof, 2, 3, 4 Student, Department of Electronics and Communication

More information

Autonomous Machine To Manufacture PCB and 3-D Design

Autonomous Machine To Manufacture PCB and 3-D Design Volume 119 No. 15 2018, 961-966 ISSN: 1314-3395 (on-line version) url: http://www.acadpubl.eu/hub/ http://www.acadpubl.eu/hub/ 1 Autonomous Machine To Manufacture PCB and 3-D Design Mrs. Archana Prasanthi.

More information

Pick and Place Robotic Arm Using Arduino

Pick and Place Robotic Arm Using Arduino Pick and Place Robotic Arm Using Arduino Harish K 1, Megha D 2, Shuklambari M 3, Amit K 4, Chaitanya K Jambotkar 5 1,2,3,4 5 th SEM Students in Department of Electrical and Electronics Engineering, KLE.I.T,

More information

3D ULTRASONIC STICK FOR BLIND

3D ULTRASONIC STICK FOR BLIND 3D ULTRASONIC STICK FOR BLIND Osama Bader AL-Barrm Department of Electronics and Computer Engineering Caledonian College of Engineering, Muscat, Sultanate of Oman Email: Osama09232@cceoman.net Abstract.

More information

MASTER SHIFU. STUDENT NAME: Vikramadityan. M ROBOT NAME: Master Shifu COURSE NAME: Intelligent Machine Design Lab

MASTER SHIFU. STUDENT NAME: Vikramadityan. M ROBOT NAME: Master Shifu COURSE NAME: Intelligent Machine Design Lab MASTER SHIFU STUDENT NAME: Vikramadityan. M ROBOT NAME: Master Shifu COURSE NAME: Intelligent Machine Design Lab COURSE NUMBER: EEL 5666C TA: Andy Gray, Nick Cox INSTRUCTORS: Dr. A. Antonio Arroyo, Dr.

More information

EEL5666C IMDL Spring 2006 Student: Andrew Joseph. *Alarm-o-bot*

EEL5666C IMDL Spring 2006 Student: Andrew Joseph. *Alarm-o-bot* EEL5666C IMDL Spring 2006 Student: Andrew Joseph *Alarm-o-bot* TAs: Adam Barnett, Sara Keen Instructor: A.A. Arroyo Final Report April 25, 2006 Table of Contents Abstract 3 Executive Summary 3 Introduction

More information

DC Motor Control using Fuzzy Logic Controller for Input to Five Bar Planar Mechanism

DC Motor Control using Fuzzy Logic Controller for Input to Five Bar Planar Mechanism DC Motor Control using Fuzzy Logic Controller for Input to Five Bar Planar Mechanism Aditi A. Abhyankar #1, S. M. Chaudhari *2 # Department of Electrical Engineering, AISSMS s Institute of Information

More information

Students will design, program, and build a robot vehicle to traverse a maze in 30 seconds without touching any sidewalls or going out of bounds.

Students will design, program, and build a robot vehicle to traverse a maze in 30 seconds without touching any sidewalls or going out of bounds. Overview Challenge Students will design, program, and build a robot vehicle to traverse a maze in 30 seconds without touching any sidewalls or going out of bounds. Materials Needed One of these sets: TETRIX

More information

Real Time Traffic Light Control System Using Image Processing

Real Time Traffic Light Control System Using Image Processing Real Time Traffic Light Control System Using Image Processing Darshan J #1, Siddhesh L. #2, Hitesh B. #3, Pratik S.#4 Department of Electronics and Telecommunications Student of KC College Of Engineering

More information

AUTOMATIC RESISTOR COLOUR CODING DETECTION & ALLOCATION

AUTOMATIC RESISTOR COLOUR CODING DETECTION & ALLOCATION AUTOMATIC RESISTOR COLOUR CODING DETECTION & ALLOCATION Abin Thomas 1, Arun Babu 2, Prof. Raji A 3 Electronics Engineering, College of Engineering Adoor (India) ABSTRACT In this modern world, the use of

More information

Mobile Robots Exploration and Mapping in 2D

Mobile Robots Exploration and Mapping in 2D ASEE 2014 Zone I Conference, April 3-5, 2014, University of Bridgeport, Bridgpeort, CT, USA. Mobile Robots Exploration and Mapping in 2D Sithisone Kalaya Robotics, Intelligent Sensing & Control (RISC)

More information

Sensor and. Motor Control Lab. Abhishek Bhatia. Individual Lab Report #1

Sensor and. Motor Control Lab. Abhishek Bhatia. Individual Lab Report #1 Sensor and 10/16/2015 Motor Control Lab Individual Lab Report #1 Abhishek Bhatia Team D: Team HARP (Human Assistive Robotic Picker) Teammates: Alex Brinkman, Feroze Naina, Lekha Mohan, Rick Shanor I. Individual

More information

Arduino Based Robot for Pick and Place Application

Arduino Based Robot for Pick and Place Application Arduino Based Robot for Pick and Place Application Priya H. Pande Pallavi V. Saklecha Prof. Pragati D. Pawar Prof. Atul N. Shire Abstract Here, the project is designed to develop a system in which robot

More information

Introduction. Theory of Operation

Introduction. Theory of Operation Mohan Rokkam Page 1 12/15/2004 Introduction The goal of our project is to design and build an automated shopping cart that follows a shopper around. Ultrasonic waves are used due to the slower speed of

More information

PCB & Circuit Designing (Summer Training Program) 6 Weeks/ 45 Days PRESENTED BY

PCB & Circuit Designing (Summer Training Program) 6 Weeks/ 45 Days PRESENTED BY PCB & Circuit Designing (Summer Training Program) 6 Weeks/ 45 Days PRESENTED BY RoboSpecies Technologies Pvt. Ltd. Office: D-66, First Floor, Sector- 07, Noida, UP Contact us: Email: stp@robospecies.com

More information

INTELLIGENT HUMANOID LEGS

INTELLIGENT HUMANOID LEGS INTELLIGENT HUMANOID LEGS GUNJAN KADU, SANKET ZADE Gunjan Kadu, Electronics and Telecommunication Engineering, SVPCET, Nagpur Maharashtra, India Sanket Zade, Electronics and Telecommunication Engineering,

More information

Moving Object Follower

Moving Object Follower Moving Object Follower Kishan K Department of Electronics and Communnication, The National Institute of Engineering, Mysore Pramod G Kamath Department of Electronics and Communnication, The National Institute

More information

AUTOMATIC NUMBER PLATE DETECTION USING IMAGE PROCESSING AND PAYMENT AT TOLL PLAZA

AUTOMATIC NUMBER PLATE DETECTION USING IMAGE PROCESSING AND PAYMENT AT TOLL PLAZA Reg. No.:20151213 DOI:V4I3P13 AUTOMATIC NUMBER PLATE DETECTION USING IMAGE PROCESSING AND PAYMENT AT TOLL PLAZA Meet Shah, meet.rs@somaiya.edu Information Technology, KJSCE Mumbai, India. Akshaykumar Timbadia,

More information