Energy Efficient Scheduling Techniques For Real-Time Embedded Systems

Size: px
Start display at page:

Download "Energy Efficient Scheduling Techniques For Real-Time Embedded Systems"

Transcription

1 Energy Efficient Scheduling Techniques For Real-Time Embedded Systems Rabi Mahapatra & Wei Zhao This work was done by Rajesh Prathipati as part of his MS Thesis here. The work has been update by Subrata Acharya & Nitesh Goyal Copyright: A&M 3/9/2004 1

2 Outline Introduction Motivation Related Work Single Processor Systems Distributed Multiprocessor Systems Experiments & Results Summary 3/9/2004 2

3 Sample Embedded Systems Introduction PDA audio/video entertainment devices robots Handheld computer Mobile Phone Network Camera Wireless presentation Gateway Cerfcube 3/9/2004 3

4 Application Specification for Embedded Systems Periodic Task graphs Each task characterized by: Period Execution time Deadline Sporadic Tasks Invoked at any time Hard deadline Soft Aperiodic Invoked at any time No deadline t2 t1 t4 t3 Period =90, Deadline =90 t5 Sporadic Task, Deadline =30 Typical Input Specification of Embedded Systems 3/9/2004 4

5 Why Low Power? High Power dissipation causes Chip failures Expensive Cooling & Packaging overheads High Manufacturing Costs Portable Systems, User convenience limited by: Battery Size Recharging Interval 3/9/2004 5

6 Power Management Processor power dissipation is a function of α. C l. V 2 dd. f Various Low-Power Techniques System-Level Architecture-Level Circuit-Level System-Level power reduction techniques: Dynamic Voltage Scaling Dynamic Power Management 3/9/2004 6

7 System Level Power Management Taxonomy SLPM DPM LPS (DVS) Fixed Tasks Variable Tasks Fixed Task set Variable Task set Single Processor Single processor Single Processor Single Processor Multiprocessors Multiprocessors D P (contd..) Multiprocessors No Restrictions Multiprocessors SLPM System Level Power Management DPM Dynamic Power Management LPS Low power Scheduling Tolerance DL Hard Realtime 3/9/2004 7

8 System Level Power Management Taxonomy (contd( ) D P Tolerance DL Hard Real time No Precedence With Precedence Periodic Periodic Periodic + Sporadic Periodic + Sporadic 3/9/2004 8

9 Our Objective Given Embedded system and its application task graphs with library functions (i.e. period, execution time, Deadline etc.), our goal is to Reduce the system wide power consumption while guaranteeing the deadlines 3/9/2004 9

10 Related Work Multi-Processor J.Luo and N.K.Jha,, 2001 Battery-Aware static scheduling Global shifting scheme & local schedule transformations More suitable to small scale systems R.Mishra, N.Rastogi,, and D.Zhu,, 2003 Energy aware scheduling for distributed Greedy and gap-filling dynamic power management techniques Limited to task graphs with equal deadline D. Zhu, R. Melhem,, and B. Childers, 2003 Scheduling with Dynamic Voltage/Speed Slack sharing among processors, global queue Limited homogenous systems with shared memory Single Processor: G.Quan,, and X. HU, 2001 Minimum constant voltage for each interval Assumes deadline less than or equal to period. V.Swaminathan,, and K.Chakrabarty,, 2000 Low-energy earliest deadline first heuristic No guarantee on required maximum processor speed 3/9/

11 Contributions Provides a framework for single processor that consider tasks Whose response time is greater than the period. With Precedence constraints Introduced chain of task set based execution approach to model low-power in distributed embedded systems. 3/9/

12 Energy Efficient Scheduling Techniques for Single Processor 3/9/

13 Proposed Approach Proposal: A 3-step approach to reduce power in single processor embedded systems with arbitrary response times and precedence constraints. Step1: Task priority assignment that guarantees precedence constraints. Step 2: Determination of task speed that guarantees deadlines. reduces power consumption. Step 3: Dynamic power management Idle Intervals. Run-time variations in task execution time. 3/9/

14 Task Modeling Periodic task graphs Scheduled according to their priorities Sporadic task Invoked at any time Hard deadline Execution slot is needed Let µ be the worst-case execution time and d be the deadline Execution Slots are defined with Period : d -µ Deadline: d -µ 3/9/

15 STEP 1 : Priority Assignment Arrange the task graphs & EX. Slots in increasing order Of their period Remove the task graph with smallest period no no Remove the node with no Predecessor and least slack time If all nodes in the Graph are Assigned priorities Assign the node next highest priority yes List is empty yes END 3/9/

16 STEP 2 : Task Speed Determination Arrange tasks in decreasing order of priority Find the task with largest speed, s. For each task in the list, determine the speed at which the task and all high priority tasks in the list can be run Mark the speed for this task and all other high priority tasks as s Remove all these tasks from the list no List is empty yes END 3/9/

17 Task Schedulability Let I = {T 1,T 2,,T N } be the task set arranged in decreasing order of priorities. Characteristics of T i : {P i, e i, D i }. A task set is feasible if the deadline of all tasks are always met. Critical Instant Theorem (Liu( and Layland, 1973) Scheduling algorithms for multiprogramming if a task meets its deadline whenever the task is requested simultaneously with all the high priority tasks, then the deadline will always be met for all task phasing. 3/9/

18 Task Schedulability (Contd ) In other words, the task set I = {T 1,T 2,,T N } is schedulable if and only t i D i i =1,..n, where i 1 k = 1 t i e Pk k + e i t i if P i D i.. (1) otherwise t i,j D i,j i =1,..n, and j instances of t i, where t i,j = R(t i,j + (j-1)p i ) (j-1)p i, where i 1 k = 1 t i R(t i,j ) = ek + j*e i (2) P k 3/9/

19 STEP 2 : Task Speed Determination Arrange tasks in decreasing order of priority Find the task with largest speed, s. For each task in the list, determine the speed at which the task and all high priority tasks in the list can be run Mark the speed for this task and all other high priority tasks as s Remove all these tasks from the list no List is empty yes END 3/9/

20 Step 3: Dynamic Power Management During System operation, idle intervals arise when: Actual task execution time is less than the worst-case execution time. (that is assumed at the time of fixed priority scheduling). Since these Idle intervals can not be exploited by off-line methods. An on-line method that adapts the clock speed to take advantage of idle intervals is needed. 3/9/

21 DPM (Contd(..) Schedule the tasks according to their pre- determined speeds in a preemptive manner. If the current task has finished and the queue of ready tasks is empty, then: Determine the length of idle interval If feasible, put the processor in the power down mode. 3/9/

22 Experimental Setup Event driven simulator Intel Strong Arm SA-1100 Embedded Processor Specifications Real-world test cases (CNC controller, INS, avionics, ) 3/9/

23 Benchmarks Test cases # Periodic # sporadic # tasks Utilization task graphs tasks with D > P Synthetic I Synthetic II Synthetic III CNC [1] INS [2] Avionics [3] Characteristics of various test cases 3/9/

24 % Energy savings VLPS [5] proposed technique Various low power techniques Comparison of % Energy savings with various Low power techniques CNC INS 3/9/

25 100.00% % Energy Savings 90.00% 80.00% 70.00% 60.00% 50.00% 40.00% 30.00% 20.00% % %Energy Savings 0.00% Syntheti c I Syntheti c II Syntheti c III CNC INS Avi oni cs various test cases % Energy Savings with the proposed technique on various test cases 3/9/

26 Energy Efficient Scheduling Techniques for Multi-Processor Embedded Systems 3/9/

27 Overview Preliminaries System model Slack distribution heuristic Periodical determination of service rate Experiments & Results 3/9/

28 Preliminaries Command and control systems that comprise of hard real-time applications in a distributed environment. An application comprises of: Chain(s) ) of tasks Hard deadlines Exchange of messages during execution Admitting task set (Connection establishment) : Key Issues Traffic descriptor [6] Worst-case delay analysis Power Reduction approaches slack distribution Clock speed adaptation during system run-time 3/9/

29 System Model A task set is described by a vector triplet ( P, C, i i ) where C,.. i D P i i ( C i 1 C i n ) ({ D i 1 / },... D in) P i1,,... D i PE1 PE2 PE3 M 1 M 2 A distributed system with 3 nodes & 2 task sets 3/9/

30 Connection Establishment Task set admission: Key Phases Setting up task set Reply task set Setting up task set : Key Issues local worst-case delay < local deadline end-to to-end worst-case delay < end-to to-end deadline Reply task set : Key Issues Slack distribution Service rate < 1 (periodic service rate determination) 3/9/

31 Observations Processing of messages at a node can be extended up to their delay bounds. This slack can be utilized to increase the worst-case delay tolerable at the computational nodes involved in processing the task set. The actual processing time demanded by the messages of a task set during the run-time varies and is less than the worst-case specification. A technique to adapt the clock speed periodically is introduced to take advantage of run-time variations 3/9/

32 Slack Distribution The slack in a task set is the difference between the end- to-end deadline and the sum of the worst-case delays suffered at each node. This slack can be distributed among the nodes serving task set to reduce the system energy consumption. The slack is distributed among the nodes according to the service rate of the nodes. 3/9/

33 Service Rate Determination Key Issues: Monitoring the traffic pattern Feedback incorporation while determining service rate. Periodical service rate determination guarantees processing of messages of outstanding intervals by their delay bounds guarantees processing of messages of upcoming interval by their delay bounds Scheduling policies considered: FCFS & WRR 3/9/

34 FCFS Scheduling Policy The new service rate at the beginning of every interval is determined according to S and the corresponding queue is determined according to Q t t = = k j= 1 k j = 1 j Q t S j t + Γ d ( ) t FCFS where k = { t max( s, t ( n 1) ) }/ t The service rate S t j should be such that it must process the outstanding messages that arrived during the interval (t-j,t-(j-1) ) by their remaining delay bound. i.e., (d fcfs -j ).. ( j ) j FCFS j S t d Q t 3/9/

35 WRR Scheduling Policy The new service rate at the beginning of every interval is determined according to S i t k = j = 1 S i, t j + Γ Ξ i t i ( ) ( ) d and the corresponding queue is determined according to k i Q t = Q j = 1 i, j t S i t, j i The service rate and the corresponding processing time demanded by the outstanding messages that arrived during the interval (t-j,t-(j-1) ) are given by S. ( - j ) Q i, j t i d i, j t 3/9/

36 Experimental Setup Event driven simulator Socket interface for communication Intel PXA250 XScale Embedded Processor Real-life life test cases (DSP, Multimedia,..) 3/9/

37 Benchmarks Test Cases Number Of Nodes Number Of Connections Number Of Modes Synthetic I Synthetic II Synthetic III Multimedia DSP [4] Characteristics of various test cases 3/9/

38 Benchmarks (Contd ) Test Cases Mode 1 (nodes, connections) Mode 2 (nodes,connecti ons) Mode 3 (nodes,connectio ns) Synthetic (10,30) (9,20) (9,25) (10,30) Multimedia( 4,4) (3,2) (3,3) (4,4) Mode configurations for Multimedia and Synthetic test cases 3/9/

39 Energy Saving versus Slack distributation System Energy Savings % FCFS (3,10) (5,20) (10,30) MM(4,4) DSP(16,31) Srate Equal Wcet Greedy Slack Distribution Schemes System Energy Savings % WRR Srate Equal Wcet Greedy Slack Distribution Schemes 3/9/

40 Energy Saving at different Modes System Energy Savings% Synthetic 1 Synthetic 0.8 Multimedia 1 Multimedia 0.8 Normalised Peak Power Mode 1 Mode 2 Mode 3 3/9/

41 Service rate at intervals Norm alised Service Rate (10,30) at one node Intervals /9/

42 Service rate vs MI (3,10) at one node Normalised Service Rate MI (Monitoring Interval) 3/9/

43 Overhead due to number of task sets on service Overhead(usecs) (10,30) at one node Number of connections 3/9/

44 Summary Energy Efficient Scheduling technique for Single Processor that: handles Sporadic and periodic task graphs with precedence constraints takes into account tasks with arbitrary response times determines minimum speed for each task adapts clock speed to take advantage of idle intervals. A connection based task execution approach for distributed embedded systems that: effectively distributes the slack available in the connection to reduce system wide power consumption. periodically adjusts the clock speed to take advantage of run-time variations. Experimental results indicate that the proposed techniques yield significant energy savings. 3/9/

45 References 1. N. Kim, M. Ryu, S. Hong, M. Saksena, C. Choi, and H. Shin, Visual assessment of a real time system design: A case study on a CNC controller, in Proc. IEEE Real-Time Systems Symposium, December A. Burns, K. Tindell, and A. Wellings, Effective analysis for engineering real-time fixed priority schedulers, IEEE Trans. on Software Eng., vol. 21, no. 5, pp , May C. Locke, D. Vogel, and T. Mesler, Building a predictable avionics platform in Ada: A casestudy, in Proc. IEEE Real-Time Systems Symposium, December C. M. Woodside and G. G. Monforton, Fast allocation of processes in distributed and parallel systems, Proc. IEEE Trans. Parallel & Distr. Systems., vol. 4, no. 2, pp , Feb /9/

46 References (Contd(..) 5. G.Quan,, and X.Hu,, Energy efficient fixed priority scheduling for real-time systems on variable voltage processors, In Proc. Design Automation Conference, June A.Raha, N.Malcom,, and W.Zhao,, Guaranteeing end-to to-end deadlines in ATM networks, In Proc. International conference on Distributed Computing Systems, May /9/

47 THANK YOU 3/9/

Event-Driven Scheduling. (closely following Jane Liu s Book)

Event-Driven Scheduling. (closely following Jane Liu s Book) Event-Driven Scheduling (closely following Jane Liu s Book) Real-Time Systems, 2009 Event-Driven Systems, 1 Principles Admission: Assign priorities to Jobs At events, jobs are scheduled according to their

More information

Power Conscious Fixed Priority Scheduling for Hard Real-Time Systems

Power Conscious Fixed Priority Scheduling for Hard Real-Time Systems _ Power Conscious Fixed Priority Scheduling for Hard Real-Time Systems Youngsoo Shin and Kiyoung Choi School of Electrical Engineering Seoul National University Seoul 151-742, Korea Abstract Power efficient

More information

CIS 480/899 Embedded and Cyber Physical Systems Spring 2009 Introduction to Real-Time Scheduling. Examples of real-time applications

CIS 480/899 Embedded and Cyber Physical Systems Spring 2009 Introduction to Real-Time Scheduling. Examples of real-time applications CIS 480/899 Embedded and Cyber Physical Systems Spring 2009 Introduction to Real-Time Scheduling Insup Lee Department of Computer and Information Science University of Pennsylvania lee@cis.upenn.edu www.cis.upenn.edu/~lee

More information

Scheduling and Communication Synthesis for Distributed Real-Time Systems

Scheduling and Communication Synthesis for Distributed Real-Time Systems Scheduling and Communication Synthesis for Distributed Real-Time Systems Department of Computer and Information Science Linköpings universitet 1 of 30 Outline Motivation System Model and Architecture Scheduling

More information

Applying pinwheel scheduling and compiler profiling for power-aware real-time scheduling

Applying pinwheel scheduling and compiler profiling for power-aware real-time scheduling Real-Time Syst (2006) 34:37 51 DOI 10.1007/s11241-006-6738-6 Applying pinwheel scheduling and compiler profiling for power-aware real-time scheduling Hsin-hung Lin Chih-Wen Hsueh Published online: 3 May

More information

A Dynamic Voltage Scaling Algorithm for Dynamic Workloads

A Dynamic Voltage Scaling Algorithm for Dynamic Workloads A Dynamic Voltage Scaling Algorithm for Dynamic Workloads Albert Mo Kim Cheng and Yan Wang Real-Time Systems Laboratory Department of Computer Science University of Houston Houston, TX, 77204, USA http://www.cs.uh.edu

More information

3.5: Multimedia Operating Systems Resource Management. Resource Management Synchronization. Process Management Multimedia

3.5: Multimedia Operating Systems Resource Management. Resource Management Synchronization. Process Management Multimedia Chapter 2: Basics Chapter 3: Multimedia Systems Communication Aspects and Services Multimedia Applications and Communication Multimedia Transfer and Control Protocols Quality of Service and 3.5: Multimedia

More information

Contents. Basic Concepts. Histogram of CPU-burst Times. Diagram of Process State CHAPTER 5 CPU SCHEDULING. Alternating Sequence of CPU And I/O Bursts

Contents. Basic Concepts. Histogram of CPU-burst Times. Diagram of Process State CHAPTER 5 CPU SCHEDULING. Alternating Sequence of CPU And I/O Bursts Contents CHAPTER 5 CPU SCHEDULING Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling Basic Concepts Maximum CPU utilization obtained with multiprogramming

More information

Real-Time Task Scheduling for a Variable Voltage Processor

Real-Time Task Scheduling for a Variable Voltage Processor Real-Time Task Scheduling for a Variable Voltage Processor Takanori Okuma Tohru Ishihara Hiroto Yasuura Department of Computer Science and Communication Engineering Graduate School of Information Science

More information

A Realistic Variable Voltage Scheduling Model for Real-Time Applications

A Realistic Variable Voltage Scheduling Model for Real-Time Applications A Realistic Variable Voltage Scheduling Model for Real- Applications Bren Mochocki Xiaobo Sharon Hu Department of CSE University of Notre Dame Notre Dame, IN 46556, USA {bmochock,shu}@cse.nd.edu Gang Quan

More information

Optimality and Improvement of Dynamic Voltage Scaling Algorithms for Multimedia Applications

Optimality and Improvement of Dynamic Voltage Scaling Algorithms for Multimedia Applications Optimality and Improvement of Dynamic Voltage Scaling Algorithms for Multimedia Applications Zhen Cao, Brian Foo, Lei He and Mihaela van der Schaar Electronic Engineering Department, UCLA Los Angeles,

More information

Joint Sleep Scheduling and Mode Assignment in Wireless Cyber-Physical Systems

Joint Sleep Scheduling and Mode Assignment in Wireless Cyber-Physical Systems Joint Sleep Scheduling and Mode ssignment in Wireless Cyber-Physical Systems Chun Jason Xue, Guoliang Xing, Zhaohui Yuan, Zili Shao and Edwin Sha City University of Hong Kong, Email: jasonxue, yzhaohui2@cityueduhk

More information

Tiago Reimann Cliff Sze Ricardo Reis. Gate Sizing and Threshold Voltage Assignment for High Performance Microprocessor Designs

Tiago Reimann Cliff Sze Ricardo Reis. Gate Sizing and Threshold Voltage Assignment for High Performance Microprocessor Designs Tiago Reimann Cliff Sze Ricardo Reis Gate Sizing and Threshold Voltage Assignment for High Performance Microprocessor Designs A grain of rice has the price of more than a 100 thousand transistors Source:

More information

Exploiting Synchronous and Asynchronous DVS

Exploiting Synchronous and Asynchronous DVS Exploiting Synchronous and Asynchronous DVS for Feedback EDF Scheduling on an Embedded Platform YIFAN ZHU and FRANK MUELLER, North Carolina State University Contemporary processors support dynamic voltage

More information

Battery Aware Dynamic Scheduling For Periodic Task Graphs

Battery Aware Dynamic Scheduling For Periodic Task Graphs Battery Aware Dynamic Scheduling For Periodic Task Graphs Venkat Rao 1, Nicolas Navet 1, Gaurav Singhal 2, Anshul Kumar 3, and G.S Visweswaran 4 1 LORIA-INRIA 2 University of Texas, Austin TRIO TEAM Dept.

More information

Utilization Based Duty Cycle Tuning MAC Protocol for Wireless Sensor Networks

Utilization Based Duty Cycle Tuning MAC Protocol for Wireless Sensor Networks Utilization Based Duty Cycle Tuning MAC Protocol for Wireless Sensor Networks Shih-Hsien Yang, Hung-Wei Tseng, Eric Hsiao-Kuang Wu, and Gen-Huey Chen Dept. of Computer Science and Information Engineering,

More information

Energy Efficient Soft Real-Time Computing through Cross-Layer Predictive Control

Energy Efficient Soft Real-Time Computing through Cross-Layer Predictive Control Energy Efficient Soft Real-Time Computing through Cross-Layer Predictive Control Guangyi Cao and Arun Ravindran Department of Electrical and Computer Engineering University of North Carolina at Charlotte

More information

Scheduling. Radek Mařík. April 28, 2015 FEE CTU, K Radek Mařík Scheduling April 28, / 48

Scheduling. Radek Mařík. April 28, 2015 FEE CTU, K Radek Mařík Scheduling April 28, / 48 Scheduling Radek Mařík FEE CTU, K13132 April 28, 2015 Radek Mařík (marikr@fel.cvut.cz) Scheduling April 28, 2015 1 / 48 Outline 1 Introduction to Scheduling Methodology Overview 2 Classification of Scheduling

More information

VLSI System Testing. Outline

VLSI System Testing. Outline ECE 538 VLSI System Testing Krish Chakrabarty System-on-Chip (SOC) Testing ECE 538 Krish Chakrabarty 1 Outline Motivation for modular testing of SOCs Wrapper design IEEE 1500 Standard Optimization Test

More information

DYNAMIC VOLTAGE FREQUENCY SCALING (DVFS) FOR MICROPROCESSORS POWER AND ENERGY REDUCTION

DYNAMIC VOLTAGE FREQUENCY SCALING (DVFS) FOR MICROPROCESSORS POWER AND ENERGY REDUCTION DYNAMIC VOLTAGE FREQUENCY SCALING (DVFS) FOR MICROPROCESSORS POWER AND ENERGY REDUCTION Diary R. Suleiman Muhammed A. Ibrahim Ibrahim I. Hamarash e-mail: diariy@engineer.com e-mail: ibrahimm@itu.edu.tr

More information

EMBEDDED computing systems need to be energy efficient,

EMBEDDED computing systems need to be energy efficient, 262 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 3, MARCH 2007 Energy Optimization of Multiprocessor Systems on Chip by Voltage Selection Alexandru Andrei, Student Member,

More information

ENERGY EFFICIENT SENSOR NODE DESIGN IN WIRELESS SENSOR NETWORKS

ENERGY EFFICIENT SENSOR NODE DESIGN IN WIRELESS SENSOR NETWORKS Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 4, April 2014,

More information

How (Information Theoretically) Optimal Are Distributed Decisions?

How (Information Theoretically) Optimal Are Distributed Decisions? How (Information Theoretically) Optimal Are Distributed Decisions? Vaneet Aggarwal Department of Electrical Engineering, Princeton University, Princeton, NJ 08544. vaggarwa@princeton.edu Salman Avestimehr

More information

Low Power System Scheduling and Synthesis. Niraj K. Jha. Princeton University. open problems and conclude in Section 4. exploit DVS rst.

Low Power System Scheduling and Synthesis. Niraj K. Jha. Princeton University. open problems and conclude in Section 4. exploit DVS rst. Low Power System Scheduling and Synthesis Niraj K. Jha Department of Electrical Engineering Princeton University Princeton, NJ 08544 Abstract Many scheduling techniques have been presented recently which

More information

Dynamic Power Management in Embedded Systems

Dynamic Power Management in Embedded Systems Fakultät Informatik Institut für Systemarchitektur Professur Rechnernetze Dynamic Power Management in Embedded Systems Waltenegus Dargie Waltenegus Dargie TU Dresden Chair of Computer Networks Motivation

More information

Greedy algorithms for time frequency allocation in in a SDMA satellite communications system. Erwan CORBEL (Thales)

Greedy algorithms for time frequency allocation in in a SDMA satellite communications system. Erwan CORBEL (Thales) Greedy algorithms for time frequency allocation in in a SDMA satellite communications system Kata KIATMANAROJ, Christian ARTIGUES, Laurent HOUSSIN (LAAS), Erwan CORBEL (Thales) 1 Contents Problem definition

More information

FIFO WITH OFFSETS HIGH SCHEDULABILITY WITH LOW OVERHEADS. RTAS 18 April 13, Björn Brandenburg

FIFO WITH OFFSETS HIGH SCHEDULABILITY WITH LOW OVERHEADS. RTAS 18 April 13, Björn Brandenburg FIFO WITH OFFSETS HIGH SCHEDULABILITY WITH LOW OVERHEADS RTAS 18 April 13, 2018 Mitra Nasri Rob Davis Björn Brandenburg FIFO SCHEDULING First-In-First-Out (FIFO) scheduling extremely simple very low overheads

More information

Deadline scheduling: can your mobile device last longer?

Deadline scheduling: can your mobile device last longer? Deadline scheduling: can your mobile device last longer? Juri Lelli, Mario Bambagini, Giuseppe Lipari Linux Plumbers Conference 202 San Diego (CA), USA, August 3 TeCIP Insitute, Scuola Superiore Sant'Anna

More information

Routing Messages in a Network

Routing Messages in a Network Routing Messages in a Network Reference : J. Leung, T. Tam and G. Young, 'On-Line Routing of Real-Time Messages,' Journal of Parallel and Distributed Computing, 34, pp. 211-217, 1996. J. Leung, T. Tam,

More information

5. Process and thread scheduling

5. Process and thread scheduling 5. Process and thread scheduling 5.1 Organization of Schedulers Embedded and Autonomous Schedulers Priority Scheduling 5.2 Scheduling Methods A Framework for Scheduling Common Scheduling Algorithms Comparison

More information

Run-time Power Control Scheme Using Software Feedback Loop for Low-Power Real-time Applications

Run-time Power Control Scheme Using Software Feedback Loop for Low-Power Real-time Applications Run-time Power Control Scheme Using Software Feedback Loop for Low-Power Real-time Applications Seongsoo Lee Takayasu Sakurai Center for Collaborative Research and Institute of Industrial Science, University

More information

Dependable Communication Synthesis for Distributed Embedded Systems *

Dependable Communication Synthesis for Distributed Embedded Systems * Dependable Communication Synthesis for Distributed Embedded Systems * Nagarajan Kandasamy 1, John P. Hayes 2, and Brian T. Murray 3 1 Institute for Software Integrated Systems, Vanderbilt University, Nashville,

More information

Dynamic MIPS Rate Stabilization in Out-of-Order Processors

Dynamic MIPS Rate Stabilization in Out-of-Order Processors Dynamic Rate Stabilization in Out-of-Order Processors Jinho Suh and Michel Dubois Ming Hsieh Dept of EE University of Southern California Outline Motivation Performance Variability of an Out-of-Order Processor

More information

T. Yoo, E. Setton, X. Zhu, Pr. Goldsmith and Pr. Girod Department of Electrical Engineering Stanford University

T. Yoo, E. Setton, X. Zhu, Pr. Goldsmith and Pr. Girod Department of Electrical Engineering Stanford University Cross-layer design for video streaming over wireless ad hoc networks T. Yoo, E. Setton, X. Zhu, Pr. Goldsmith and Pr. Girod Department of Electrical Engineering Stanford University Outline Cross-layer

More information

Multiuser Scheduling and Power Sharing for CDMA Packet Data Systems

Multiuser Scheduling and Power Sharing for CDMA Packet Data Systems Multiuser Scheduling and Power Sharing for CDMA Packet Data Systems Sandeep Vangipuram NVIDIA Graphics Pvt. Ltd. No. 10, M.G. Road, Bangalore 560001. sandeep84@gmail.com Srikrishna Bhashyam Department

More information

Compositional Analysis Framework using EDP Resource Models

Compositional Analysis Framework using EDP Resource Models University of Pennsylvania ScholarlyCommons Departmental Papers (CIS) Department of Computer & Information Science December 2007 Compositional Analysis Framework using EDP Resource Models Arvind Easwaran

More information

Communication-Aware Task Scheduling and Voltage Selection for Total Systems Energy Minimization

Communication-Aware Task Scheduling and Voltage Selection for Total Systems Energy Minimization Communication-Aware Task Scheduling and Voltage Selection for Total Systems Energy Minimization Girish Varatkar Radu Marculescu Department of Electrical and Computer Engineering Carnegie Mellon University

More information

Embedded Systems Design

Embedded Systems Design VLSI DESIGN 2001, Vol. 12, No. 2, pp. 139-150 Reprints available directly from the publisher Photocopying permitted by license only (C) 2001 OPA (Overseas Publishers Association) N.V. Published by license

More information

ON THE CONCEPT OF DISTRIBUTED DIGITAL SIGNAL PROCESSING IN WIRELESS SENSOR NETWORKS

ON THE CONCEPT OF DISTRIBUTED DIGITAL SIGNAL PROCESSING IN WIRELESS SENSOR NETWORKS ON THE CONCEPT OF DISTRIBUTED DIGITAL SIGNAL PROCESSING IN WIRELESS SENSOR NETWORKS Carla F. Chiasserini Dipartimento di Elettronica, Politecnico di Torino Torino, Italy Ramesh R. Rao California Institute

More information

Embedded Systems. 9. Power and Energy. Lothar Thiele. Computer Engineering and Networks Laboratory

Embedded Systems. 9. Power and Energy. Lothar Thiele. Computer Engineering and Networks Laboratory Embedded Systems 9. Power and Energy Lothar Thiele Computer Engineering and Networks Laboratory General Remarks 9 2 Power and Energy Consumption Statements that are true since a decade or longer: Power

More information

Energy-Efficient Data Management for Sensor Networks

Energy-Efficient Data Management for Sensor Networks Energy-Efficient Data Management for Sensor Networks Al Demers, Cornell University ademers@cs.cornell.edu Johannes Gehrke, Cornell University Rajmohan Rajaraman, Northeastern University Niki Trigoni, Cornell

More information

Power-Efficient Scheduling for Heterogeneous Distributed Real-Time Embedded Systems

Power-Efficient Scheduling for Heterogeneous Distributed Real-Time Embedded Systems IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 6, JUNE 2007 1161 [15] S. P. Lin and Y. W. Chang, MR: A new framework for multilevel fullchip routing, IEEE Trans.

More information

SCHEDULING Giovanni De Micheli Stanford University

SCHEDULING Giovanni De Micheli Stanford University SCHEDULING Giovanni De Micheli Stanford University Outline The scheduling problem. Scheduling without constraints. Scheduling under timing constraints. Relative scheduling. Scheduling under resource constraints.

More information

Relay Placement in Sensor Networks

Relay Placement in Sensor Networks Relay Placement in Sensor Networks Jukka Suomela 14 October 2005 Contents: Wireless Sensor Networks? Relay Placement? Problem Classes Computational Complexity Approximation Algorithms HIIT BRU, Adaptive

More information

Scheduling and Optimization of Fault-Tolerant Embedded Systems

Scheduling and Optimization of Fault-Tolerant Embedded Systems Scheduling and Optimization of Fault-Tolerant Embedded Systems, Viacheslav Izosimov, Paul Pop *, Zebo Peng Department of Computer and Information Science (IDA) Linköping University http://www.ida.liu.se/~eslab/

More information

Reduce Power Consumption for Digital Cmos Circuits Using Dvts Algoritham

Reduce Power Consumption for Digital Cmos Circuits Using Dvts Algoritham IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 5 Ver. II (Sep Oct. 2015), PP 109-115 www.iosrjournals.org Reduce Power Consumption

More information

Low-Power CMOS VLSI Design

Low-Power CMOS VLSI Design Low-Power CMOS VLSI Design ( 范倫達 ), Ph. D. Department of Computer Science, National Chiao Tung University, Taiwan, R.O.C. Fall, 2017 ldvan@cs.nctu.edu.tw http://www.cs.nctu.tw/~ldvan/ Outline Introduction

More information

Transportation Timetabling

Transportation Timetabling Outline DM87 SCHEDULING, TIMETABLING AND ROUTING 1. Sports Timetabling Lecture 16 Transportation Timetabling Marco Chiarandini 2. Transportation Timetabling Tanker Scheduling Air Transport Train Timetabling

More information

Data Word Length Reduction for Low-Power DSP Software

Data Word Length Reduction for Low-Power DSP Software EE382C: LITERATURE SURVEY, APRIL 2, 2004 1 Data Word Length Reduction for Low-Power DSP Software Kyungtae Han Abstract The increasing demand for portable computing accelerates the study of minimizing power

More information

Energy-aware Scheduling of Real-Time Tasks in WirelessNetworkedEmbeddedSystems

Energy-aware Scheduling of Real-Time Tasks in WirelessNetworkedEmbeddedSystems 28th IEEE International Real-Time Systems Symposium Energy-aware Scheduling of Real-Time Tasks in WirelessNetworkedEmbeddedSystems G. Sudha Anil Kumar, G. Manimaran and Z. Wang Real-Time Computing and

More information

Resource Management in QoS-Aware Wireless Cellular Networks

Resource Management in QoS-Aware Wireless Cellular Networks Resource Management in QoS-Aware Wireless Cellular Networks Zhi Zhang Dept. of Electrical and Computer Engineering Colorado State University April 24, 2009 Zhi Zhang (ECE CSU) Resource Management in Wireless

More information

Adaptation of MAC Layer for QoS in WSN

Adaptation of MAC Layer for QoS in WSN Adaptation of MAC Layer for QoS in WSN Sukumar Nandi and Aditya Yadav IIT Guwahati Abstract. In this paper, we propose QoS aware MAC protocol for Wireless Sensor Networks. In WSNs, there can be two types

More information

ISSN:

ISSN: 1061 Area Leakage Power and delay Optimization BY Switched High V TH Logic UDAY PANWAR 1, KAVITA KHARE 2 12 Department of Electronics and Communication Engineering, MANIT, Bhopal 1 panwaruday1@gmail.com,

More information

Rearrangement task realization by multiple mobile robots with efficient calculation of task constraints

Rearrangement task realization by multiple mobile robots with efficient calculation of task constraints 2007 IEEE International Conference on Robotics and Automation Roma, Italy, 10-14 April 2007 WeA1.2 Rearrangement task realization by multiple mobile robots with efficient calculation of task constraints

More information

Task Allocation: Motivation-Based. Dr. Daisy Tang

Task Allocation: Motivation-Based. Dr. Daisy Tang Task Allocation: Motivation-Based Dr. Daisy Tang Outline Motivation-based task allocation (modeling) Formal analysis of task allocation Motivations vs. Negotiation in MRTA Motivations(ALLIANCE): Pro: Enables

More information

Service Differentiation in Multi-Rate Wireless Networks with Weighted Round-Robin Scheduling and ARQ-Based Error Control

Service Differentiation in Multi-Rate Wireless Networks with Weighted Round-Robin Scheduling and ARQ-Based Error Control IEEE TRANSACTIONS ON COMMUNICATIONS, VOL, NO, FEBRUARY 00 1 Service Differentiation in Multi-Rate Wireless Networks with Weighted Round-Robin Scheduling and ARQ-Based Error Control Long B Le, Student Member,

More information

Fairness and Delay in Heterogeneous Half- and Full-Duplex Wireless Networks

Fairness and Delay in Heterogeneous Half- and Full-Duplex Wireless Networks Fairness and Delay in Heterogeneous Half- and Full-Duplex Wireless Networks Tingjun Chen *, Jelena Diakonikolas, Javad Ghaderi *, and Gil Zussman * * Electrical Engineering, Columbia University Simons

More information

Energy Minimization of Real-time Tasks on Variable Voltage. Processors with Transition Energy Overhead. Yumin Zhang Xiaobo Sharon Hu Danny Z.

Energy Minimization of Real-time Tasks on Variable Voltage. Processors with Transition Energy Overhead. Yumin Zhang Xiaobo Sharon Hu Danny Z. Energy Minimization of Real-time Tasks on Variable Voltage Processors with Transition Energy Overhead Yumin Zhang Xiaobo Sharon Hu Danny Z. Chen Synopsys Inc. Department of Computer Science and Engineering

More information

Arda Gumusalan CS788Term Project 2

Arda Gumusalan CS788Term Project 2 Arda Gumusalan CS788Term Project 2 1 2 Logical topology formation. Effective utilization of communication channels. Effective utilization of energy. 3 4 Exploits the tradeoff between CPU speed and time.

More information

Dependable Wireless Control

Dependable Wireless Control Dependable Wireless Control through Cyber-Physical Co-Design Chenyang Lu Cyber-Physical Systems Laboratory Department of Computer Science and Engineering Wireless for Process Automa1on Emerson 5.9+ billion

More information

Low Power Design for Systems on a Chip. Tutorial Outline

Low Power Design for Systems on a Chip. Tutorial Outline Low Power Design for Systems on a Chip Mary Jane Irwin Dept of CSE Penn State University (www.cse.psu.edu/~mji) Low Power Design for SoCs ASIC Tutorial Intro.1 Tutorial Outline Introduction and motivation

More information

Energy Saving Scheduling for Embedded Real-Time Linux Applications

Energy Saving Scheduling for Embedded Real-Time Linux Applications Energy Saving Scheduling for Embedded Real-Time Linux Applications Claudio Scordino and Giuseppe Lipari Scuola Superiore Sant Anna Viale Rinaldo Piaggio, 34-56025 Pontedera - Pisa, Italy {scordino@gandalf.sssup.it,lipari@sssup.it}

More information

Optimal Utility-Based Resource Allocation for OFDM Networks with Multiple Types of Traffic

Optimal Utility-Based Resource Allocation for OFDM Networks with Multiple Types of Traffic Optimal Utility-Based Resource Allocation for OFDM Networks with Multiple Types of Traffic Mohammad Katoozian, Keivan Navaie Electrical and Computer Engineering Department Tarbiat Modares University, Tehran,

More information

IJPSS Volume 2, Issue 9 ISSN:

IJPSS Volume 2, Issue 9 ISSN: INVESTIGATION OF HANDOVER IN WCDMA Kuldeep Sharma* Gagandeep** Virender Mehla** _ ABSTRACT Third generation wireless system is based on the WCDMA access technique. In this technique, all users share the

More information

Dynamic Voltage Scaling for Multitasking Real-Time Systems with Uncertain Execution Time

Dynamic Voltage Scaling for Multitasking Real-Time Systems with Uncertain Execution Time Dynamic Voltage Scaling for Multitasking Real-Time Systems with Uncertain Execution Time ABSTRACT Changjiu Xian Department of Computer Science urdue University West Lafayette, IN cjx@cs.purdue.edu Dynamic

More information

Intelligent Handoff in Cellular Data Networks Based on Mobile Positioning

Intelligent Handoff in Cellular Data Networks Based on Mobile Positioning Intelligent Handoff in Cellular Data Networks Based on Mobile Positioning Prasannakumar J.M. 4 th semester MTech (CSE) National Institute Of Technology Karnataka Surathkal 575025 INDIA Dr. K.C.Shet Professor,

More information

Towards PVT-Tolerant Glitch-Free Operation in FPGAs

Towards PVT-Tolerant Glitch-Free Operation in FPGAs Towards PVT-Tolerant Glitch-Free Operation in FPGAs Safeen Huda and Jason H. Anderson ECE Department, University of Toronto, Canada 24 th ACM/SIGDA International Symposium on FPGAs February 22, 2016 Motivation

More information

Handoff Algorithms in Dynamic Spreading WCDMA System Supporting Multimedia Traffic

Handoff Algorithms in Dynamic Spreading WCDMA System Supporting Multimedia Traffic Handoff Algorithms in Dynamic Spreading WCDMA System Supporting Multimedia Traffic Ju Wang, Jonathan C.L. Kavalan PRESENTED BY: KUNWARDEEP SINGH GAYATRI BEHERA Introduction Multimedia data traffic is more

More information

Minimization of Dynamic and Static Power Through Joint Assignment of Threshold Voltages and Sizing Optimization

Minimization of Dynamic and Static Power Through Joint Assignment of Threshold Voltages and Sizing Optimization Minimization of Dynamic and Static Power Through Joint Assignment of Threshold Voltages and Sizing Optimization David Nguyen, Abhijit Davare, Michael Orshansky, David Chinnery, Brandon Thompson, and Kurt

More information

Low-Power Digital CMOS Design: A Survey

Low-Power Digital CMOS Design: A Survey Low-Power Digital CMOS Design: A Survey Krister Landernäs June 4, 2005 Department of Computer Science and Electronics, Mälardalen University Abstract The aim of this document is to provide the reader with

More information

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 1

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 1 Design Of Low Power Approximate Mirror Adder Sasikala.M 1, Dr.G.K.D.Prasanna Venkatesan 2 ME VLSI student 1, Vice Principal, Professor and Head/ECE 2 PGP college of Engineering and Technology Nammakkal,

More information

Cherry Picking: Exploiting Process Variations in the Dark Silicon Era

Cherry Picking: Exploiting Process Variations in the Dark Silicon Era Cherry Picking: Exploiting Process Variations in the Dark Silicon Era Siddharth Garg University of Waterloo Co-authors: Bharathwaj Raghunathan, Yatish Turakhia and Diana Marculescu # Transistors Power/Dark

More information

Low Power Approach for Fir Filter Using Modified Booth Multiprecision Multiplier

Low Power Approach for Fir Filter Using Modified Booth Multiprecision Multiplier Low Power Approach for Fir Filter Using Modified Booth Multiprecision Multiplier Gowridevi.B 1, Swamynathan.S.M 2, Gangadevi.B 3 1,2 Department of ECE, Kathir College of Engineering 3 Department of ECE,

More information

Dynamic Fair Channel Allocation for Wideband Systems

Dynamic Fair Channel Allocation for Wideband Systems Outlines Introduction and Motivation Dynamic Fair Channel Allocation for Wideband Systems Department of Mobile Communications Eurecom Institute Sophia Antipolis 19/10/2006 Outline of Part I Outlines Introduction

More information

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 3, MARCH

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 3, MARCH IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 3, MARCH 2009 427 Power Management of Voltage/Frequency Island-Based Systems Using Hardware-Based Methods Puru Choudhary,

More information

Exact Response Time of FlexRay Communication Protocol

Exact Response Time of FlexRay Communication Protocol Exact Response Time of FlexRay Communication Protocol Lucien Ouedraogo and Ratnesh Kumar Dept. of Elect. & Comp. Eng., Iowa State University, Ames, IA, 501, USA Emails: (olucien, rkumar)@iastate.edu Abstract

More information

Framework for Performance Analysis of Channel-aware Wireless Schedulers

Framework for Performance Analysis of Channel-aware Wireless Schedulers Framework for Performance Analysis of Channel-aware Wireless Schedulers Raphael Rom and Hwee Pink Tan Department of Electrical Engineering Technion, Israel Institute of Technology Technion City, Haifa

More information

What is a Simulation? Simulation & Modeling. Why Do Simulations? Emulators versus Simulators. Why Do Simulations? Why Do Simulations?

What is a Simulation? Simulation & Modeling. Why Do Simulations? Emulators versus Simulators. Why Do Simulations? Why Do Simulations? What is a Simulation? Simulation & Modeling Introduction and Motivation A system that represents or emulates the behavior of another system over time; a computer simulation is one where the system doing

More information

Introduction to Real-Time Systems

Introduction to Real-Time Systems Introduction to Real-Time Systems Real-Time Systems, Lecture 1 Martina Maggio and Karl-Erik Årzén 16 January 2018 Lund University, Department of Automatic Control Content [Real-Time Control System: Chapter

More information

COMET DISTRIBUTED ELEVATOR CONTROLLER CASE STUDY

COMET DISTRIBUTED ELEVATOR CONTROLLER CASE STUDY COMET DISTRIBUTED ELEVATOR CONTROLLER CASE STUDY System Description: The distributed system has multiple nodes interconnected via LAN and all communications between nodes are via loosely coupled message

More information

Optimal Module and Voltage Assignment for Low-Power

Optimal Module and Voltage Assignment for Low-Power Optimal Module and Voltage Assignment for Low-Power Deming Chen +, Jason Cong +, Junjuan Xu *+ + Computer Science Department, University of California, Los Angeles, USA * Computer Science and Technology

More information

Reduction. CSCE 6730 Advanced VLSI Systems. Instructor: Saraju P. Mohanty, Ph. D. NOTE: The figures, text etc included in slides are

Reduction. CSCE 6730 Advanced VLSI Systems. Instructor: Saraju P. Mohanty, Ph. D. NOTE: The figures, text etc included in slides are Lecture e 8: Peak Power Reduction CSCE 6730 Advanced VLSI Systems Instructor: Saraju P. Mohanty, Ph. D. NOTE: The figures, text etc included in slides are borrowed from various books, websites, authors

More information

A Virtual Deadline Scheduler for Window-Constrained Service Guarantees

A Virtual Deadline Scheduler for Window-Constrained Service Guarantees Boston University OpenBU Computer Science http://open.bu.edu CAS: Computer Science: Technical Reports 2004-03-23 A Virtual Deadline Scheduler for Window-Constrained Service Guarantees Zhang, Yuting Boston

More information

Optimal Simultaneous Module and Multivoltage Assignment for Low Power

Optimal Simultaneous Module and Multivoltage Assignment for Low Power Optimal Simultaneous Module and Multivoltage Assignment for Low Power DEMING CHEN University of Illinois, Urbana-Champaign JASON CONG University of California, Los Angeles and JUNJUAN XU Synopsys, Inc.

More information

Utilization-Aware Adaptive Back-Pressure Traffic Signal Control

Utilization-Aware Adaptive Back-Pressure Traffic Signal Control Utilization-Aware Adaptive Back-Pressure Traffic Signal Control Wanli Chang, Samarjit Chakraborty and Anuradha Annaswamy Abstract Back-pressure control of traffic signal, which computes the control phase

More information

Energy Consumption and Latency Analysis for Wireless Multimedia Sensor Networks

Energy Consumption and Latency Analysis for Wireless Multimedia Sensor Networks Energy Consumption and Latency Analysis for Wireless Multimedia Sensor Networks Alvaro Pinto, Zhe Zhang, Xin Dong, Senem Velipasalar, M. Can Vuran, M. Cenk Gursoy Electrical Engineering Department, University

More information

Low-Power Multipliers with Data Wordlength Reduction

Low-Power Multipliers with Data Wordlength Reduction Low-Power Multipliers with Data Wordlength Reduction Kyungtae Han, Brian L. Evans, and Earl E. Swartzlander, Jr. Dept. of Electrical and Computer Engineering The University of Texas at Austin Austin, TX

More information

Exploiting Regularity for Low-Power Design

Exploiting Regularity for Low-Power Design Reprint from Proceedings of the International Conference on Computer-Aided Design, 996 Exploiting Regularity for Low-Power Design Renu Mehra and Jan Rabaey Department of Electrical Engineering and Computer

More information

Distributed Power Control in Cellular and Wireless Networks - A Comparative Study

Distributed Power Control in Cellular and Wireless Networks - A Comparative Study Distributed Power Control in Cellular and Wireless Networks - A Comparative Study Vijay Raman, ECE, UIUC 1 Why power control? Interference in communication systems restrains system capacity In cellular

More information

Adaptive Touch Sampling for Energy-Efficient Mobile Platforms

Adaptive Touch Sampling for Energy-Efficient Mobile Platforms Adaptive Touch Sampling for Energy-Efficient Mobile Platforms Kyungtae Han Intel Labs, USA Alexander W. Min, Dongho Hong, Yong-joon Park Intel Corporation, USA April 16, 2015 Touch Interface in Today s

More information

Dynamic Voltage Scaling and Power Management for Portable Systems

Dynamic Voltage Scaling and Power Management for Portable Systems Dynamic Voltage Scaling and Power Management for Portable Systems Tajana Simunic Luca Benini Andrea Acquaviva Peter Glynn Giovanni De Micheli Computer Systems Management Science and Laboratory Engineering

More information

MOBILE COMPUTING NIT Agartala, Dept of CSE Jan-May,2012

MOBILE COMPUTING NIT Agartala, Dept of CSE Jan-May,2012 Location Management for Mobile Cellular Systems MOBILE COMPUTING NIT Agartala, Dept of CSE Jan-May,2012 ALAK ROY. Assistant Professor Dept. of CSE NIT Agartala Email-alakroy.nerist@gmail.com Cellular System

More information

802.11a Hardware Implementation of an a Transmitter

802.11a Hardware Implementation of an a Transmitter 802a Hardware Implementation of an 802a Transmitter IEEE Standard for wireless communication Frequency of Operation: 5Ghz band Modulation: Orthogonal Frequency Division Multiplexing Elizabeth Basha, Steve

More information

Simultaneous Peak and Average Power Minimization during Datapath Scheduling for DSP Processors

Simultaneous Peak and Average Power Minimization during Datapath Scheduling for DSP Processors Simultaneous Peak and Average Power Minimization during Datapath Scheduling for DSP Processors Saraju P. Mohanty,. Ranganathan and Sunil K. Chappidi Department of Computer Science and Engineering anomaterial

More information

Cognitive Radio Technology using Multi Armed Bandit Access Scheme in WSN

Cognitive Radio Technology using Multi Armed Bandit Access Scheme in WSN IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p-ISSN: 2278-8735 PP 41-46 www.iosrjournals.org Cognitive Radio Technology using Multi Armed Bandit Access Scheme

More information

A Location-Aware Routing Metric (ALARM) for Multi-Hop, Multi-Channel Wireless Mesh Networks

A Location-Aware Routing Metric (ALARM) for Multi-Hop, Multi-Channel Wireless Mesh Networks A Location-Aware Routing Metric (ALARM) for Multi-Hop, Multi-Channel Wireless Mesh Networks Eiman Alotaibi, Sumit Roy Dept. of Electrical Engineering U. Washington Box 352500 Seattle, WA 98195 eman76,roy@ee.washington.edu

More information

Timing Analysis of the FlexRay Communication Protocol

Timing Analysis of the FlexRay Communication Protocol Downloaded from orbit.dtu.dk on: May 09, 2018 Timing Analysis of the FlexRay Communication Protocol Pop, Traian; Pop, Paul; Eles, Petru; Peng, Zebo Published in: Euromicro Conference on Real-Time Systems

More information

Efficiency of Dynamic Arbitration in TDMA Protocols

Efficiency of Dynamic Arbitration in TDMA Protocols Efficiency of Dynamic Arbitration in TDMA Protocols April 22, 2005 Jens Chr. Lisner Introduction Arbitration methods in TDMA-based protocols Static arbitration C1 C1 C2 C2 fixed length of slots fixed schedule

More information

Dual Threshold Voltage Design for Low Power VLSI Circuits

Dual Threshold Voltage Design for Low Power VLSI Circuits Dual Threshold Voltage Design for Low Power VLSI Circuits Sampangi Venkata Suresh M.Tech, Santhiram Engineering College, Nandyal. ABSTRACT: The high growth of the semiconductor trade over the past twenty

More information

Interconnect-Power Dissipation in a Microprocessor

Interconnect-Power Dissipation in a Microprocessor 4/2/2004 Interconnect-Power Dissipation in a Microprocessor N. Magen, A. Kolodny, U. Weiser, N. Shamir Intel corporation Technion - Israel Institute of Technology 4/2/2004 2 Interconnect-Power Definition

More information