Functional Integration of Parallel Counters Based on Quantum-Effect Devices

Size: px
Start display at page:

Download "Functional Integration of Parallel Counters Based on Quantum-Effect Devices"

Transcription

1 Proceedings of the th IMACS World Congress (ol. ), Berlin, August 997, Special Session on Computer Arithmetic, pp Functional Integration of Parallel Counters Based on Quantum-Effect Devices Christian Pacha, Karl F. Goser Universität Dortmund, Lehrstuhl Bauelemente der Elektrotechnik Keywords: quantum-effect devices, hybrid integration, linear threshold logic, parallel counters ABSTRACT This paper describes the design of depth- parallel counters with a novel circuit architecture basing on quantum-effect devices. The elementary components of the counters are linear threshold gates with fixed integer weights. To obtain a compact implementation each threshold gate consists of two serially connected resonant tunneling diodes which are integrated in a hybrid way together with multiple heterostructure field effect transistors. A potential application is the computation of arithmetic functions with a reduced logic depth in high performance digital signal processing systems. I. INTRODUCTION Parallel counter networks are a well-known approach to implement arithmetic functions with a reduced logic depth for high performance computing. In the past, various parallel addition and multiplication schemes based on linear threshold logic have been developed [,,8]. In spite of the increased parallelism at the bit level, threshold logic is of less practical significance in LSI-design because the present technologies are optimized for Boolean logic gates. With the appearance of nanoelectronics as a potential future technology the prospect is that novel quantum-effect devices could enable an area efficient implementation of multiple terminal threshold gates []. One promising approach is the novel design principle of functional integration. Here the key idea is to decrease the circuit complexity (number of active components) and the wiring by directly exploiting the internal physical phenomena of quantum-effect devices. In detail, Section II describes the functional integration of linear threshold gates with resonant tunneling diodes (RTD) and heterostructure field effect transistors (HFET). Section III analyzes the operating principle of the proposed circuit. In Section I we discuss the design of generalized parallel counters with depth- linear threshold networks (LTN). II. IMPLEMENTATION OF LINEAR THRESHOLD GATES A linear threshold gate (LTG) is a multiple terminal device that calculates the weighted sum χ of the digital inputs x i, i=..n, and converts this sum afterwards into a digital output y by comparing with a given threshold value Θ. Using different sets of weights {w i } and adapting the threshold value LTGs are capable to compute any linear separable Boolean function of the n inputs [7]. Thus, LTGs combine an internal analog computation of the weighted sum with digital input and output states. The output y of a LTG with fixed integer weights is given by n χ = wi x i= i, { } χ = = if Θ, if χ < Θ y( χ) sgn ( χ Θ ) x i,, w {, ±, L, ± w }, Θ {, ±, L, ± Θ max }. i max ()

2 Proceedings of the th IMACS World Congress (ol. ), Berlin, August 997, Special Session on Computer Arithmetic, pp a) dd b) I RTD I HFET GS, GS, Positive Weights + G out I Θ GS, GS, Negative Weights and Threshold C L = G Fig. Threshold Gate consisting of two RTDs and multiple HFETs (a) and modulation of the RTD-current by the drain source current of the HFETs (b). Recently, a hybrid integrated gate consisting of two RTDs and multiple parallel HFETs has been presented [] (Fig.). It performs the three basic functions of a LTG: An oscillating bias voltage on top of the RTD-pair causes a monostable-bistable transition and enables a clocking of the LTG, being important in multilayer networks. The weighting of the digital inputs is done by using HFETs with different widths. After a comparison of the HFET-current sums in the upper and lower branch the RTD-pair generates a digital output. The RTDs and related devices are the most approved quantum-effect devices. Their typical feature is a peak in the current-voltage characteristics that results from quantum mechanical tunneling of electrons through the energy levels of a quantum well in semiconductor heterostructures. The peak in the current- voltage characteristics occurs if the energy of the electrons before the double barrier coincides with the quantisized energy level inside the quantum well. The hybrid integration of RTDs and HFETs offers the possibility to combine the field effect and resonant tunneling, two classical phenomena of semiconductor physics and quantum mechanics, in one circuit. The field effect guarantees an isolation of the input and output and the negative differential resistance of the two serially connected RTDs causes the increased functionality of the circuit. The drain to source current of the HFETs modulates the peak current of the corresponding RTD (Fig.b). Since this drain to source current depends linearly on the transistor width, a weighting of the input signals is obtained by varying the transistor geometry. The HFETs connected in parallel to the top RTD perform a positive weighting of the inputs whereas HFETs in parallel to the bottom RTD are negative weighted inputs. The threshold value of the gate is an additional negative weight controlled by the gate voltage Θ. Together with an oscillating bias voltage the peak-like RTD current generates a time dependent monostable-bistable transition (bifurcation). The increasing bias voltage changes the number, the location and the stability of the equilibrium points. Thus, the output of the circuit is either monostable or bistable. During the transition from monostability to bistability the output becomes unstable and is very sensitive to a small difference in the modulation currents of the positive and negative weighted inputs. To achieve a bistability the bias voltage has to be larger than twice the peak voltage of a single RTD. In contrast, monostability occurs at bias voltages below twice the peak voltage. According to this switching principle, the circuit is known as MOnostable- BIstable transition Logic Element (MOBILE) []. At present, three terminal LTGs based on In - xga x As/InAs double barrier RTDs with a peak to valley ratio of PR=. at room temperature have been fabricated and tested successfully.

3 Proceedings of the th IMACS World Congress (ol. ), Berlin, August 997, Special Session on Computer Arithmetic, pp Current [ma] Current [ma] Current [ma] Monostable... Fig. Bistable Tristable dd=.6 dd=.... dd=.6 Bifurcation Bifurcation Monostable dd=.8... dd=.... dd= Output out [] Output out [] Equilibrium points and bifurcations of a RTD-pair with a peak voltage of p =. Output out [] Fig. p p p p High p Low p Bias oltage dd [] p Bias voltage dependency of the stable (solid lines) and unstable (dashed lines) equilibrium related to the peak voltage p. III. OPERATING PRINCIPLE AND TRANSIENT ANALYSIS Since RTDs are highly nonlinear devices we analyze the transient behavior of the output voltage out with dynamical systems theory. Taking into consideration a load capacitance C L, one obtains following first order differential equation: C d L dt out ( ) ( ) = I ( t) I + I. () RTD dd out RTD out The load capacitance C L includes the input capacitance of following gates, the wire capacitance and the diode capacitance produced by the charge accumulation at the barriers. In a LTG with N HFETs for positive weighted inputs and M HFETs for in negative weighted inputs, the total modulation current is the current sum N M = i Θ Θ i= l= ( GS, i dd out ) l ( GS, l out ) ( out ) I w I, w I, w I,. () Here I is the drain to source current of a HFET with minimum width. The weight factors w i, w l and w Θ denote the width ratios between the HFETs with weighted inputs and the HFET with minimum width. As mentioned above, the threshold value is a negative weight with a fixed gate voltage. We assume that the total modulation current I in () is small compared to the peak current of the RTDs. Then the interconnection among several LTGs can be regarded as a weakly connected nonlinear network [6]. In a first approximation this allows to neglect the modulation current I. The equilibrium points of the circuit are the zeros of () and equivalent to the intersection points of the upper and the lower RTD-current (Fig.). In the following, these equilibrium points are the logic states of the LTG. Fig. illustrates the nonlinear behavior for two RTDs with a peak voltage of p =., a peak current of I p = ma and a peak to valley ratio of PR=.. The two logic states of the circuit appear at a bias voltage below the monostable-bistable transition at dd =.8 where the central equilibrium point becomes unstable. At a larger bias voltage there is a small region with three stable equilibrium points and two unstable equilibrium points. If the bias voltage exceeds five

4 Proceedings of the th IMACS World Congress (ol. ), Berlin, August 997, Special Session on Computer Arithmetic, pp times the peak voltage the circuit will become monostable again. From the viewpoint of dynamical systems theory the bias voltage dd is a bifurcation parameter or critical parameter. A common feature of many nonlinear systems is a sensitive reaction on small quantitative variations of certain parameters near the bifurcation points. The small variations will influence the stability and number of the equilibrium points []. In the proposed circuit we apply this sensitivity to implement the comparison function of the weighted sum and the threshold value in a compact way. To investigate the influence of different bias voltages more exactly, the bifurcation plot in Fig. shows the location of all equilibrium points as well as the change of their stability at the six bifurcation points. For a given set of RTD-parameters this allows to maximize the noise margin, that is the difference between the high and low state, by adapting the bias voltage. In larger circuits with a multilayer architecture the noise margin and the location of the logic states are important to switch the gates of the HFETs in the subsequent layer. If we choose the RTD-parameters mentioned above an appropriate bias voltage has to be about three times the peak voltage to obtain a noise margin of about. To explain whether the final logic state of the gate is high or low, one has to consider the modulation current again because the sign of I determines the final output The logic state high (low) corresponds to a positive (negative) sign of the modulation current. Thus, the circuit converts the small difference between the current modulation in the upper (positive weighted inputs) and in the lower branch (negative weighted inputs) into a digital output voltage. I. DESIGN AND APPLICATION OF PARALLEL COUNTERS The implementation of arithmetic functions with parallel counters is one promising application of RTD-based LTNs with fixed weights. Counters with different input and output configurations are key components in parallel multiplication schemes and in δ-bit pipelined serial addition [,9]. In both cases the objective is to avoid time consuming carry propagation during multi-operand addition or even to speed up the carry propagation by adding two digital numbers in blocks. When developing a circuit architecture for threshold logic, important features are the magnitude of the weights and the required fan-in of a single LTG. The total number of gates, especially the number of gates in the first layer of the LTN, are related to the output of the previous stage. While the depth of the network primarily affects the time delay, a reliable switching of a gate depends on the magnitude of the weights and the fan-in. Consequently, one has to make a compromise between purely theoretical aspects of LTNs, for example networks with a large number of terminals per gate, and the boundary conditions of small weights. Since the area of a device will decrease in nanoelectronics, the demand for minimizing the number of LTGs in a counter is not as critical as a limitation of the fan-in and the maximum threshold value. Therefore, we focus on designing a depth- generalized counter with three-valued weights w i {,±} between the two layers. Other counter implementations, such as the Kautz-network [] or Telescopic Sums [] are not regarded here. Both types of LTNs are including weight connections between the layers with an absolute value larger than one and are more difficult to implement within the proposed circuit. The most simple type of a counter is a counter, equivalent to a full adder. Concerning the notation, a k r-,..,k m generalized counter receives r columns of k l, l=..r-, digital inputs and computes a digital output of word length m (Fig.) [8]. Each input k l is weighted by l. Then the maximum fanin or the capacity χ max of a counter is given by χ max r = l= l k l. () Fig. shows that the output bit s j, j=..m-, are periodic Boolean functions of the weighted input sum χ. This simplifies the design of the depth- LTN because the network has only to detect those periodic sequences of high and low intervals. For the output s j the intervals are of length j [9]. The connection array between the first and the second layer of the LTN reflects the periodicity of the

5 Proceedings of the th IMACS World Congress (ol. ), Berlin, August 997, Special Session on Computer Arithmetic, pp s s s a) Counter b) 7 Counter c), Counter d),, Counter s χ Fig. Different types of parallel counters. Fig. Periodicity of the sum bits χ χ 6 8 S S S S dd Weights W=+ W= - Threshold Gate Θ st layer t nd layer t S [] S [] S [].... t [ ns ] Fig.6, counter and clocking scheme. Fig.7 Simulation results of a, counter S [] weighted sum χ (Fig.6). The boundaries of the high intervals are defined by a corresponding LTG of the first layer. In the case of a, counter the first layer comprises eight LTGs. Both, the maximum threshold value and the capacity are θ max =χ max =. The second layer detects whether the χ lies within one of the high intervals or not. This is achieved by means of the connection array performing a kind of OR function for each high interval. The clocking scheme for the two layers is overlapping and transfers the valid output of the first layer to the second one before dd decreases to ground. The SPICE simulation of a, counter, based on a semi-empirical device modeling of the RTDs, reveals the expected results. In Fig.7 the weighted sum χ increases from to by applying different input patterns to the counter. During the switching to the low state a short voltage peak appears because the output voltage at the transition point (. ) is larger than this final low state (. ). The occurrences of the voltage peaks agree with the experimental investigations in []. The amplitude of the bias voltage is. and the duration of a single clocking period takes. ns corresponding to a clocking frequency of GHz. A comprehensive evaluation of the proposed RTD-based counters, especially a comparison with a Boolean implementation, at the moment is difficult because of the current state of research on the field of nanoelectronic circuits. As a kind of first estimation Table I classifies different counter configurations concerning the number of LTGs, the capacity χ max, the maximum threshold value θ max in the first layer and the number of avoided carry propagations. The number of HFETs is the overall sum of the inputs in the first and second layer. Inputs with weight w i are equal to w i HFETs in parallel. To evaluate the increase of performance, Table I contains the difference in delay between a counter implementation with conventional full adders (delay n) and the depth- LTN-counters. We assume first that the full adders only include two terminal gates and second that multi-operand addi-

6 Proceedings of the th IMACS World Congress (ol. ), Berlin, August 997, Special Session on Computer Arithmetic, pp Table I Comparison of different parallel counter implementations. Type # LTGs Capacity χ max Θ max # HFETs (st. Layer) # HFETs # Full Adders Delay Delay Difference n n n n-, 6n 6n-,, 6 n n-,,, 77 n n- tion is done successively by parallel adding of two or three digital numbers. The carry bits in this Boolean implementation are pipelined to the following stage (ripple carry adder). The delay n of a single full adder varies for different technologies. Our estimation bases on a high speed direct coupled HFET/MESFET logic (DCFL) technology (only NOR and NOT gates) causing a delay of n=6 per full adder. The shaded columns of Table I display the number of required full adders and the resulting delay for a conventional counter implementation. Even the simple counter is an improvement compared to a DCFL full adder with a delay of n=6. Due to this estimations and simulation results the upper boundaries for an implementation within the proposed circuit are a counter capacity of χ max = for the LTGs in the first layer and a threshold value of Θ max =. Regarding an application of 7 and, counters to multi-operand reduction schemes in parallel multipliers one should prefer 7 counters because of the smaller maximum threshold and fan-in. Summarizing our approach towards threshold logic based counters the functional integration of quantum-effect devices offers a novel prospect to implement complex arithmetic operations with a reduced number of devices and reduced logic depth. To obtain more precise results concerning the maximum clocking frequency, the power dissipation and the limitations of the fan-in and fan-out, an experimental realization is intended. From the algorithmic point of view it is reasonable to consider the boundary conditions of a potential technology when searching for novel computational schemes. REFERENCES [] K. Chen, et al., InP-Based High Performance Monostable-Bistable Transition Logic Elements (MOBILE s) using Integrated Multiple-Input Resonant-Tunneling Devices, IEEE Electron Device Letters, ol. 7, No., March 996, pp [] S. Cotofana, S. assiliadis, Serial Binary Addition with Polynomial Bounded Weights, Proc. of the Int. Conf. on Artificial Neural Networks, Bochum, July 996, pp [] L. Dadda, Some Schemes for Parallel Multipliers, Alta Frequenza,, (96), pp [] K. Goser, C. Pacha, M.L. Rossmann, A. Kanstein, Circuit and System Aspects of Nanoelectronics, to be published in: Proc. IEEE, Special Issue on Nanoelectronics, April 997. [] H. Haken, Advanced Synergetics, Springer Series in Synergetics, ol., Springer, 98, pp [6] C. Pacha, K. Goser, Application of Terminal Dynamics in Cellular Neural Networks, Proc. of the 6th MIRCONEURO Conf., Lausanne, Feb. 996, IEEE Comp. Soc. Press, pp. -. [7] K. Siu, J. Bruck, Neural Computation of Arithmetic Functions, Proc. IEEE, 78 (9), Oct. 99, pp [8] W.J. Stenzel et al., A Compact High-Speed Parallel Multiplication Scheme, IEEE Transactions on Computers, C-6, 977, pp [9] S. assiliadis et al., Block Save Addition with Telescopic Sums, Proc. of the st EUROMICRO Conf., Como, Italy, Sept. -7, 99, IEEE Comp. Soc. Press, pp

A New network multiplier using modified high order encoder and optimized hybrid adder in CMOS technology

A New network multiplier using modified high order encoder and optimized hybrid adder in CMOS technology Inf. Sci. Lett. 2, No. 3, 159-164 (2013) 159 Information Sciences Letters An International Journal http://dx.doi.org/10.12785/isl/020305 A New network multiplier using modified high order encoder and optimized

More information

Flash Analog-to-Digital Converter Using Resonant-Tunneling Multiple-valued Circuits

Flash Analog-to-Digital Converter Using Resonant-Tunneling Multiple-valued Circuits Flash Analog-to-Digital Converter Using Resonant-Tunneling Multiple-valued Circuits Takao Waho, Kazufumi Hattori, and Yuuji Takamatsu Department of Electrical and Electronics Engineering Sophia University

More information

ISSN (PRINT): , (ONLINE): , VOLUME-3, ISSUE-8,

ISSN (PRINT): , (ONLINE): , VOLUME-3, ISSUE-8, DESIGN OF SEQUENTIAL CIRCUITS USING MULTI-VALUED LOGIC BASED ON QDGFET Chetan T. Bulbule 1, S. S. Narkhede 2 Department of E&TC PICT Pune India chetanbulbule7@gmail.com 1, ssn_pict@yahoo.com 2 Abstract

More information

An Optimized Wallace Tree Multiplier using Parallel Prefix Han-Carlson Adder for DSP Processors

An Optimized Wallace Tree Multiplier using Parallel Prefix Han-Carlson Adder for DSP Processors An Optimized Wallace Tree Multiplier using Parallel Prefix Han-Carlson Adder for DSP Processors T.N.Priyatharshne Prof. L. Raja, M.E, (Ph.D) A. Vinodhini ME VLSI DESIGN Professor, ECE DEPT ME VLSI DESIGN

More information

Output Waveform Evaluation of Basic Pass Transistor Structure*

Output Waveform Evaluation of Basic Pass Transistor Structure* Output Waveform Evaluation of Basic Pass Transistor Structure* S. Nikolaidis, H. Pournara, and A. Chatzigeorgiou Department of Physics, Aristotle University of Thessaloniki Department of Applied Informatics,

More information

ENHANCING SPEED AND REDUCING POWER OF SHIFT AND ADD MULTIPLIER

ENHANCING SPEED AND REDUCING POWER OF SHIFT AND ADD MULTIPLIER ENHANCING SPEED AND REDUCING POWER OF SHIFT AND ADD MULTIPLIER 1 ZUBER M. PATEL 1 S V National Institute of Technology, Surat, Gujarat, Inida E-mail: zuber_patel@rediffmail.com Abstract- This paper presents

More information

High-speed Multiplier Design Using Multi-Operand Multipliers

High-speed Multiplier Design Using Multi-Operand Multipliers Volume 1, Issue, April 01 www.ijcsn.org ISSN 77-50 High-speed Multiplier Design Using Multi-Operand Multipliers 1,Mohammad Reza Reshadi Nezhad, 3 Kaivan Navi 1 Department of Electrical and Computer engineering,

More information

Electronic Circuits EE359A

Electronic Circuits EE359A Electronic Circuits EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 1 Memory and Advanced Digital Circuits - 2 Chapter 11 2 Figure 11.1 (a) Basic latch. (b) The latch with the feedback loop opened.

More information

Design of an optimized multiplier based on approximation logic

Design of an optimized multiplier based on approximation logic ISSN:2348-2079 Volume-6 Issue-1 International Journal of Intellectual Advancements and Research in Engineering Computations Design of an optimized multiplier based on approximation logic Dhivya Bharathi

More information

Design & Analysis of Low Power Full Adder

Design & Analysis of Low Power Full Adder 1174 Design & Analysis of Low Power Full Adder Sana Fazal 1, Mohd Ahmer 2 1 Electronics & communication Engineering Integral University, Lucknow 2 Electronics & communication Engineering Integral University,

More information

FOR HIGH SPEED LOW POWER APPLICATIONS USING RADIX-4 MODIFIED BOOTH ENCODER

FOR HIGH SPEED LOW POWER APPLICATIONS USING RADIX-4 MODIFIED BOOTH ENCODER International Journal of Advancements in Research & Technology, Volume 4, Issue 6, June -2015 31 A SPST BASED 16x16 MULTIPLIER FOR HIGH SPEED LOW POWER APPLICATIONS USING RADIX-4 MODIFIED BOOTH ENCODER

More information

DIGITAL INTEGRATED CIRCUITS A DESIGN PERSPECTIVE 2 N D E D I T I O N

DIGITAL INTEGRATED CIRCUITS A DESIGN PERSPECTIVE 2 N D E D I T I O N DIGITAL INTEGRATED CIRCUITS A DESIGN PERSPECTIVE 2 N D E D I T I O N Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic CONTENTS PART I: THE FABRICS Chapter 1: Introduction (32 pages) 1.1 A Historical

More information

Design and Analysis of Row Bypass Multiplier using various logic Full Adders

Design and Analysis of Row Bypass Multiplier using various logic Full Adders Design and Analysis of Row Bypass Multiplier using various logic Full Adders Dr.R.Naveen 1, S.A.Sivakumar 2, K.U.Abhinaya 3, N.Akilandeeswari 4, S.Anushya 5, M.A.Asuvanti 6 1 Associate Professor, 2 Assistant

More information

High Performance Low-Power Signed Multiplier

High Performance Low-Power Signed Multiplier High Performance Low-Power Signed Multiplier Amir R. Attarha Mehrdad Nourani VLSI Circuits & Systems Laboratory Department of Electrical and Computer Engineering University of Tehran, IRAN Email: attarha@khorshid.ece.ut.ac.ir

More information

A Novel High Performance 64-bit MAC Unit with Modified Wallace Tree Multiplier

A Novel High Performance 64-bit MAC Unit with Modified Wallace Tree Multiplier Proceedings of International Conference on Emerging Trends in Engineering & Technology (ICETET) 29th - 30 th September, 2014 Warangal, Telangana, India (SF0EC024) ISSN (online): 2349-0020 A Novel High

More information

B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics

B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics Sr. No. Date TITLE To From Marks Sign 1 To verify the application of op-amp as an Inverting Amplifier 2 To

More information

Mahendra Engineering College, Namakkal, Tamilnadu, India.

Mahendra Engineering College, Namakkal, Tamilnadu, India. Implementation of Modified Booth Algorithm for Parallel MAC Stephen 1, Ravikumar. M 2 1 PG Scholar, ME (VLSI DESIGN), 2 Assistant Professor, Department ECE Mahendra Engineering College, Namakkal, Tamilnadu,

More information

Threshold Logic Parallel Counters for 32-bit Multipliers

Threshold Logic Parallel Counters for 32-bit Multipliers Threshold Logic Parallel Counters for 32-bit Multipliers Peter Celinskia, Sorin D. Cotofanab and Derek Abbotta acentre for High Performance Integrated Technologies & Systems (CHiPTec) and Centre for Biomedical

More information

SIGNED PIPELINED MULTIPLIER USING HIGH SPEED COMPRESSORS

SIGNED PIPELINED MULTIPLIER USING HIGH SPEED COMPRESSORS INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN 2320-7345 SIGNED PIPELINED MULTIPLIER USING HIGH SPEED COMPRESSORS 1 T.Thomas Leonid, 2 M.Mary Grace Neela, and 3 Jose Anand

More information

Design of Parallel Prefix Tree Based High Speed Scalable CMOS Comparator for converters

Design of Parallel Prefix Tree Based High Speed Scalable CMOS Comparator for converters Design of Parallel Prefix Tree Based High Speed Scalable CMOS Comparator for converters 1 M. Gokilavani PG Scholar, Department of ECE, Indus College of Engineering, Coimbatore, India. 2 P. Niranjana Devi

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.1 Project Background High speed multiplication is another critical function in a range of very large scale integration (VLSI) applications. Multiplications are expensive and slow

More information

Quasi-adiabatic Switching for Metal-Island Quantum-dot Cellular Automata Tóth and Lent 1

Quasi-adiabatic Switching for Metal-Island Quantum-dot Cellular Automata Tóth and Lent 1 Quasi-adiabatic Switching for Metal-Island Quantum-dot Cellular Automata Géza Tóth and Craig S. Lent Department of Electrical Engineering University of Notre Dame Notre Dame, IN 46556 submitted to the

More information

Modified Booth Encoding Multiplier for both Signed and Unsigned Radix Based Multi-Modulus Multiplier

Modified Booth Encoding Multiplier for both Signed and Unsigned Radix Based Multi-Modulus Multiplier Modified Booth Encoding Multiplier for both Signed and Unsigned Radix Based Multi-Modulus Multiplier M.Shiva Krushna M.Tech, VLSI Design, Holy Mary Institute of Technology And Science, Hyderabad, T.S,

More information

Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates

Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates Objectives In this chapter, you will learn about The binary numbering system Boolean logic and gates Building computer circuits

More information

Wallace and Dadda Multipliers. Implemented Using Carry Lookahead. Adders

Wallace and Dadda Multipliers. Implemented Using Carry Lookahead. Adders The report committee for Wesley Donald Chu Certifies that this is the approved version of the following report: Wallace and Dadda Multipliers Implemented Using Carry Lookahead Adders APPROVED BY SUPERVISING

More information

IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 03, 2014 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 03, 2014 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 03, 2014 ISSN (online): 2321-0613 Implementation of Ternary Logic Gates using CNTFET Rahul A. Kashyap 1 1 Department of

More information

Investigation on Performance of high speed CMOS Full adder Circuits

Investigation on Performance of high speed CMOS Full adder Circuits ISSN (O): 2349-7084 International Journal of Computer Engineering In Research Trends Available online at: www.ijcert.org Investigation on Performance of high speed CMOS Full adder Circuits 1 KATTUPALLI

More information

Reduction of Peak Input Currents during Charge Pump Boosting in Monolithically Integrated High-Voltage Generators

Reduction of Peak Input Currents during Charge Pump Boosting in Monolithically Integrated High-Voltage Generators Reduction of Peak Input Currents during Charge Pump Boosting in Monolithically Integrated High-Voltage Generators Jan Doutreloigne Abstract This paper describes two methods for the reduction of the peak

More information

BIDIRECTIONAL SOFT-SWITCHING SERIES AC-LINK INVERTER WITH PI CONTROLLER

BIDIRECTIONAL SOFT-SWITCHING SERIES AC-LINK INVERTER WITH PI CONTROLLER BIDIRECTIONAL SOFT-SWITCHING SERIES AC-LINK INVERTER WITH PI CONTROLLER PUTTA SABARINATH M.Tech (PE&D) K.O.R.M Engineering College, Kadapa Affiliated to JNTUA, Anantapur. ABSTRACT This paper proposes a

More information

A New High Speed Low Power Performance of 8- Bit Parallel Multiplier-Accumulator Using Modified Radix-2 Booth Encoded Algorithm

A New High Speed Low Power Performance of 8- Bit Parallel Multiplier-Accumulator Using Modified Radix-2 Booth Encoded Algorithm A New High Speed Low Power Performance of 8- Bit Parallel Multiplier-Accumulator Using Modified Radix-2 Booth Encoded Algorithm V.Sandeep Kumar Assistant Professor, Indur Institute Of Engineering & Technology,Siddipet

More information

THE TREND toward implementing systems with low

THE TREND toward implementing systems with low 724 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 30, NO. 7, JULY 1995 Design of a 100-MHz 10-mW 3-V Sample-and-Hold Amplifier in Digital Bipolar Technology Behzad Razavi, Member, IEEE Abstract This paper

More information

Binary Adder- Subtracter in QCA

Binary Adder- Subtracter in QCA Binary Adder- Subtracter in QCA Kalahasti. Tanmaya Krishna Electronics and communication Engineering Sri Vishnu Engineering College for Women Bhimavaram, India Abstract: In VLSI fabrication, the chip size

More information

Design and Implementation of Truncated Multipliers for Precision Improvement and Its Application to a Filter Structure

Design and Implementation of Truncated Multipliers for Precision Improvement and Its Application to a Filter Structure Vol. 2, Issue. 6, Nov.-Dec. 2012 pp-4736-4742 ISSN: 2249-6645 Design and Implementation of Truncated Multipliers for Precision Improvement and Its Application to a Filter Structure R. Devarani, 1 Mr. C.S.

More information

Sensors & Transducers 2014 by IFSA Publishing, S. L.

Sensors & Transducers 2014 by IFSA Publishing, S. L. Sensors & Transducers 2014 by IFSA Publishing, S. L. http://www.sensorsportal.com Neural Circuitry Based on Single Electron Transistors and Single Electron Memories Aïmen BOUBAKER and Adel KALBOUSSI Faculty

More information

Chapter 2 Direct-Sequence Systems

Chapter 2 Direct-Sequence Systems Chapter 2 Direct-Sequence Systems A spread-spectrum signal is one with an extra modulation that expands the signal bandwidth greatly beyond what is required by the underlying coded-data modulation. Spread-spectrum

More information

DESIGN OF LOW POWER REVERSIBLE COMPRESSORS USING SINGLE ELECTRON TRANSISTOR

DESIGN OF LOW POWER REVERSIBLE COMPRESSORS USING SINGLE ELECTRON TRANSISTOR OL. 11, NO. 1, JANUARY 216 ISSN 1819-668 26-216 Asian Research Publishing Network (ARPN). All rights reserved. DESIGN OF LOW POWER REERSIBLE COMPRESSORS USING SINGLE ELECTRON TRANSISTOR Amirthalakshmi

More information

CMOS Digital Integrated Circuits Analysis and Design

CMOS Digital Integrated Circuits Analysis and Design CMOS Digital Integrated Circuits Analysis and Design Chapter 8 Sequential MOS Logic Circuits 1 Introduction Combinational logic circuit Lack the capability of storing any previous events Non-regenerative

More information

JDT LOW POWER FIR FILTER ARCHITECTURE USING ACCUMULATOR BASED RADIX-2 MULTIPLIER

JDT LOW POWER FIR FILTER ARCHITECTURE USING ACCUMULATOR BASED RADIX-2 MULTIPLIER JDT-003-2013 LOW POWER FIR FILTER ARCHITECTURE USING ACCUMULATOR BASED RADIX-2 MULTIPLIER 1 Geetha.R, II M Tech, 2 Mrs.P.Thamarai, 3 Dr.T.V.Kirankumar 1 Dept of ECE, Bharath Institute of Science and Technology

More information

Design and simulation of a QCA 2 to 1 multiplexer

Design and simulation of a QCA 2 to 1 multiplexer Design and simulation of a QCA 2 to 1 multiplexer V. MARDIRIS, Ch. MIZAS, L. FRAGIDIS and V. CHATZIS Information Management Department Technological Educational Institute of Kavala GR-65404 Kavala GREECE

More information

Separation and Extraction of Short-Circuit Power Consumption in Digital CMOS VLSI Circuits

Separation and Extraction of Short-Circuit Power Consumption in Digital CMOS VLSI Circuits Separation and Extraction of Short-Circuit Power Consumption in Digital CMOS VLSI Circuits Atila Alvandpour, Per Larsson-Edefors, and Christer Svensson Div of Electronic Devices, Dept of Physics, Linköping

More information

A Matlab / Simulink Based Tool for Power Electronic Circuits

A Matlab / Simulink Based Tool for Power Electronic Circuits A Matlab / Simulink Based Tool for Power Electronic Circuits Abdulatif A M Shaban International Science Index, Electrical and Computer Engineering wasetorg/publication/2520 Abstract Transient simulation

More information

An Optimized Implementation of CSLA and CLLA for 32-bit Unsigned Multiplier Using Verilog

An Optimized Implementation of CSLA and CLLA for 32-bit Unsigned Multiplier Using Verilog An Optimized Implementation of CSLA and CLLA for 32-bit Unsigned Multiplier Using Verilog 1 P.Sanjeeva Krishna Reddy, PG Scholar in VLSI Design, 2 A.M.Guna Sekhar Assoc.Professor 1 appireddigarichaitanya@gmail.com,

More information

CMOS Digital Integrated Circuits Lec 11 Sequential CMOS Logic Circuits

CMOS Digital Integrated Circuits Lec 11 Sequential CMOS Logic Circuits Lec Sequential CMOS Logic Circuits Sequential Logic In Combinational Logic circuit Out Memory Sequential The output is determined by Current inputs Previous inputs Output = f(in, Previous In) The regenerative

More information

SIMULATION STUDIES OF HALF-BRIDGE ISOLATED DC/DC BOOST CONVERTER

SIMULATION STUDIES OF HALF-BRIDGE ISOLATED DC/DC BOOST CONVERTER POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Adam KRUPA* SIMULATION STUDIES OF HALF-BRIDGE ISOLATED DC/DC BOOST CONVERTER In order to utilize energy from low voltage

More information

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier Chapter 5 Operational Amplifiers and Source Followers 5.1 Operational Amplifier In single ended operation the output is measured with respect to a fixed potential, usually ground, whereas in double-ended

More information

Digital Controller Chip Set for Isolated DC Power Supplies

Digital Controller Chip Set for Isolated DC Power Supplies Digital Controller Chip Set for Isolated DC Power Supplies Aleksandar Prodic, Dragan Maksimovic and Robert W. Erickson Colorado Power Electronics Center Department of Electrical and Computer Engineering

More information

Adaptive Off-Time Control for Variable-Frequency, Soft-Switched Flyback Converter at Light Loads

Adaptive Off-Time Control for Variable-Frequency, Soft-Switched Flyback Converter at Light Loads 596 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 17, NO. 4, JULY 2002 Adaptive Off-Time Control for Variable-Frequency, Soft-Switched Flyback Converter at Light Loads Yuri Panov and Milan M. Jovanović,

More information

Faster and Low Power Twin Precision Multiplier

Faster and Low Power Twin Precision Multiplier Faster and Low Twin Precision V. Sreedeep, B. Ramkumar and Harish M Kittur Abstract- In this work faster unsigned multiplication has been achieved by using a combination High Performance Multiplication

More information

CHAPTER 5 DESIGN OF COMBINATIONAL LOGIC CIRCUITS IN QCA

CHAPTER 5 DESIGN OF COMBINATIONAL LOGIC CIRCUITS IN QCA 90 CHAPTER 5 DESIGN OF COMBINATIONAL LOGIC CIRCUITS IN QCA 5.1 INTRODUCTION A combinational circuit consists of logic gates whose outputs at any time are determined directly from the present combination

More information

Performance Comparison of VLSI Adders Using Logical Effort 1

Performance Comparison of VLSI Adders Using Logical Effort 1 Performance Comparison of VLSI Adders Using Logical Effort 1 Hoang Q. Dao and Vojin G. Oklobdzija Advanced Computer System Engineering Laboratory Department of Electrical and Computer Engineering University

More information

Multiplier Design and Performance Estimation with Distributed Arithmetic Algorithm

Multiplier Design and Performance Estimation with Distributed Arithmetic Algorithm Multiplier Design and Performance Estimation with Distributed Arithmetic Algorithm M. Suhasini, K. Prabhu Kumar & P. Srinivas Department of Electronics & Comm. Engineering, Nimra College of Engineering

More information

A Novel Fuzzy Neural Network Based Distance Relaying Scheme

A Novel Fuzzy Neural Network Based Distance Relaying Scheme 902 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 15, NO. 3, JULY 2000 A Novel Fuzzy Neural Network Based Distance Relaying Scheme P. K. Dash, A. K. Pradhan, and G. Panda Abstract This paper presents a new

More information

Implementation of 4x4 Vedic Multiplier using Carry Save Adder in Quantum-Dot Cellular Automata

Implementation of 4x4 Vedic Multiplier using Carry Save Adder in Quantum-Dot Cellular Automata International Conference on Communication and Signal Processing, April 6-8, 2016, India Implementation of 4x4 Vedic Multiplier using Carry Save Adder in Quantum-Dot Cellular Automata Ashvin Chudasama,

More information

Design of Dynamic Frequency Divider using Negative Differential Resistance Circuit

Design of Dynamic Frequency Divider using Negative Differential Resistance Circuit Design of Dynamic Frequency Divider using Negative Differential Resistance Circuit Kwang-Jow Gan 1*, Kuan-Yu Chun 2, Wen-Kuan Yeh 3, Yaw-Hwang Chen 2, and Wein-So Wang 2 1 Department of Electrical Engineering,

More information

Resonant Tunneling Device. Kalpesh Raval

Resonant Tunneling Device. Kalpesh Raval Resonant Tunneling Device Kalpesh Raval Outline Diode basics History of Tunnel diode RTD Characteristics & Operation Tunneling Requirements Various Heterostructures Fabrication Technique Challenges Application

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Bifurcation-based acoustic switching and rectification N. Boechler, G. Theocharis, and C. Daraio Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA Supplementary

More information

THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE

THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE A Novel Approach of -Insensitive Null Convention Logic Microprocessor Design J. Asha Jenova Student, ECE Department, Arasu Engineering College, Tamilndu,

More information

Low Power Design for Systems on a Chip. Tutorial Outline

Low Power Design for Systems on a Chip. Tutorial Outline Low Power Design for Systems on a Chip Mary Jane Irwin Dept of CSE Penn State University (www.cse.psu.edu/~mji) Low Power Design for SoCs ASIC Tutorial Intro.1 Tutorial Outline Introduction and motivation

More information

DESIGN OF MULTIPLYING DELAY LOCKED LOOP FOR DIFFERENT MULTIPLYING FACTORS

DESIGN OF MULTIPLYING DELAY LOCKED LOOP FOR DIFFERENT MULTIPLYING FACTORS DESIGN OF MULTIPLYING DELAY LOCKED LOOP FOR DIFFERENT MULTIPLYING FACTORS Aman Chaudhary, Md. Imtiyaz Chowdhary, Rajib Kar Department of Electronics and Communication Engg. National Institute of Technology,

More information

Design of 8-4 and 9-4 Compressors Forhigh Speed Multiplication

Design of 8-4 and 9-4 Compressors Forhigh Speed Multiplication American Journal of Applied Sciences 10 (8): 893-900, 2013 ISSN: 1546-9239 2013 R. Marimuthu et al., This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license doi:10.3844/ajassp.2013.893.900

More information

ISSN Vol.03, Issue.07, September-2015, Pages:

ISSN Vol.03, Issue.07, September-2015, Pages: ISSN 2322-0929 Vol.03, Issue.07, September-2015, Pages:1116-1121 www.ijvdcs.org Design and Implementation of 32-Bits Carry Skip Adder using CMOS Logic in Virtuoso, Cadence ISHMEET SINGH 1, MANIKA DHINGRA

More information

Low Power Approach for Fir Filter Using Modified Booth Multiprecision Multiplier

Low Power Approach for Fir Filter Using Modified Booth Multiprecision Multiplier Low Power Approach for Fir Filter Using Modified Booth Multiprecision Multiplier Gowridevi.B 1, Swamynathan.S.M 2, Gangadevi.B 3 1,2 Department of ECE, Kathir College of Engineering 3 Department of ECE,

More information

Comparison of Conventional Multiplier with Bypass Zero Multiplier

Comparison of Conventional Multiplier with Bypass Zero Multiplier Comparison of Conventional Multiplier with Bypass Zero Multiplier 1 alyani Chetan umar, 2 Shrikant Deshmukh, 3 Prashant Gupta. M.tech VLSI Student SENSE Department, VIT University, Vellore, India. 632014.

More information

RESONANT tunnelling diodes (RTDs) are very fast nonlinear

RESONANT tunnelling diodes (RTDs) are very fast nonlinear 606 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 5, NO. 5, SEPTEMBER 2006 Increased Logic Functionality of Clocked Series-Connected RTDS María J. Avedillo, José M. Quintana, and Héctor Pettenghi Roldán Abstract

More information

A Novel 128-Bit QCA Adder

A Novel 128-Bit QCA Adder International Journal of Emerging Engineering Research and Technology Volume 2, Issue 5, August 2014, PP 81-88 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) A Novel 128-Bit QCA Adder V Ravichandran

More information

Novel Design of n-bit Controllable Inverter by Quantum-dot Cellular Automata

Novel Design of n-bit Controllable Inverter by Quantum-dot Cellular Automata Int. J. Nanosci. Nanotechnol., Vol. 10, No. 2, June 2014, pp. 117-126 Novel Design of n-bit Controllable Inverter by Quantum-dot Cellular Automata M. Kianpour 1, R. Sabbaghi-Nadooshan 2 1- Electrical Engineering

More information

Data Word Length Reduction for Low-Power DSP Software

Data Word Length Reduction for Low-Power DSP Software EE382C: LITERATURE SURVEY, APRIL 2, 2004 1 Data Word Length Reduction for Low-Power DSP Software Kyungtae Han Abstract The increasing demand for portable computing accelerates the study of minimizing power

More information

Towards Real-time Hardware Gamma Correction for Dynamic Contrast Enhancement

Towards Real-time Hardware Gamma Correction for Dynamic Contrast Enhancement Towards Real-time Gamma Correction for Dynamic Contrast Enhancement Jesse Scott, Ph.D. Candidate Integrated Design Services, College of Engineering, Pennsylvania State University University Park, PA jus2@engr.psu.edu

More information

Low-Complexity High-Order Vector-Based Mismatch Shaping in Multibit ΔΣ ADCs Nan Sun, Member, IEEE, and Peiyan Cao, Student Member, IEEE

Low-Complexity High-Order Vector-Based Mismatch Shaping in Multibit ΔΣ ADCs Nan Sun, Member, IEEE, and Peiyan Cao, Student Member, IEEE 872 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 58, NO. 12, DECEMBER 2011 Low-Complexity High-Order Vector-Based Mismatch Shaping in Multibit ΔΣ ADCs Nan Sun, Member, IEEE, and Peiyan

More information

Study of Threshold Gate and CMOS Logic Style Based Full Adders Circuits

Study of Threshold Gate and CMOS Logic Style Based Full Adders Circuits IEEE SPONSORED 3rd INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION SYSTEMS (ICECS 2016) Study of Threshold Gate and CMOS Logic Style Based Full Adders Circuits Raushan Kumar Department of ECE

More information

IJCSIET--International Journal of Computer Science information and Engg., Technologies ISSN

IJCSIET--International Journal of Computer Science information and Engg., Technologies ISSN An efficient add multiplier operator design using modified Booth recoder 1 I.K.RAMANI, 2 V L N PHANI PONNAPALLI 2 Assistant Professor 1,2 PYDAH COLLEGE OF ENGINEERING & TECHNOLOGY, Visakhapatnam,AP, India.

More information

Research Statement. Sorin Cotofana

Research Statement. Sorin Cotofana Research Statement Sorin Cotofana Over the years I ve been involved in computer engineering topics varying from computer aided design to computer architecture, logic design, and implementation. In the

More information

High Speed Binary Counters Based on Wallace Tree Multiplier in VHDL

High Speed Binary Counters Based on Wallace Tree Multiplier in VHDL High Speed Binary Counters Based on Wallace Tree Multiplier in VHDL E.Sangeetha 1 ASP and D.Tharaliga 2 Department of Electronics and Communication Engineering, Tagore College of Engineering and Technology,

More information

DESIGN AND IMPLEMENTATION OF AREA EFFICIENT, LOW-POWER AND HIGH SPEED 128-BIT REGULAR SQUARE ROOT CARRY SELECT ADDER

DESIGN AND IMPLEMENTATION OF AREA EFFICIENT, LOW-POWER AND HIGH SPEED 128-BIT REGULAR SQUARE ROOT CARRY SELECT ADDER DESIGN AND IMPLEMENTATION OF AREA EFFICIENT, LOW-POWER AND HIGH SPEED 128-BIT REGULAR SQUARE ROOT CARRY SELECT ADDER MURALIDHARAN.R [1],AVINASH.P.S.K [2],MURALI KRISHNA.K [3],POOJITH.K.C [4], ELECTRONICS

More information

Propagation Delay, Circuit Timing & Adder Design. ECE 152A Winter 2012

Propagation Delay, Circuit Timing & Adder Design. ECE 152A Winter 2012 Propagation Delay, Circuit Timing & Adder Design ECE 152A Winter 2012 Reading Assignment Brown and Vranesic 2 Introduction to Logic Circuits 2.9 Introduction to CAD Tools 2.9.1 Design Entry 2.9.2 Synthesis

More information

Propagation Delay, Circuit Timing & Adder Design

Propagation Delay, Circuit Timing & Adder Design Propagation Delay, Circuit Timing & Adder Design ECE 152A Winter 2012 Reading Assignment Brown and Vranesic 2 Introduction to Logic Circuits 2.9 Introduction to CAD Tools 2.9.1 Design Entry 2.9.2 Synthesis

More information

Study and Simulation of Fault Tolerant Quantum Cellular Automata Structures

Study and Simulation of Fault Tolerant Quantum Cellular Automata Structures Study and Simulation of Fault Tolerant Quantum Cellular Automata Structures Dr. E.N.Ganesh, 2 R.Kaushik Ragavan, M.Krishna Kumar and V.Krishnan Abstract Quantum cellular automata (QCA) is a new technology

More information

Tirupur, Tamilnadu, India 1 2

Tirupur, Tamilnadu, India 1 2 986 Efficient Truncated Multiplier Design for FIR Filter S.PRIYADHARSHINI 1, L.RAJA 2 1,2 Departmentof Electronics and Communication Engineering, Angel College of Engineering and Technology, Tirupur, Tamilnadu,

More information

Digital Integrated CircuitDesign

Digital Integrated CircuitDesign Digital Integrated CircuitDesign Lecture 13 Building Blocks (Multipliers) Register Adder Shift Register Adib Abrishamifar EE Department IUST Acknowledgement This lecture note has been summarized and categorized

More information

CHAPTER 4 ANALYSIS OF LOW POWER, AREA EFFICIENT AND HIGH SPEED MULTIPLIER TOPOLOGIES

CHAPTER 4 ANALYSIS OF LOW POWER, AREA EFFICIENT AND HIGH SPEED MULTIPLIER TOPOLOGIES 69 CHAPTER 4 ANALYSIS OF LOW POWER, AREA EFFICIENT AND HIGH SPEED MULTIPLIER TOPOLOGIES 4.1 INTRODUCTION Multiplication is one of the basic functions used in digital signal processing. It requires more

More information

DESIGN AND ANALYSIS OF SUB 1-V BANDGAP REFERENCE (BGR) VOLTAGE GENERATORS FOR PICOWATT LSI s.

DESIGN AND ANALYSIS OF SUB 1-V BANDGAP REFERENCE (BGR) VOLTAGE GENERATORS FOR PICOWATT LSI s. http:// DESIGN AND ANALYSIS OF SUB 1-V BANDGAP REFERENCE (BGR) VOLTAGE GENERATORS FOR PICOWATT LSI s. Shivam Mishra 1, K. Suganthi 2 1 Research Scholar in Mech. Deptt, SRM University,Tamilnadu 2 Asst.

More information

A Low-Power 12 Transistor Full Adder Design using 3 Transistor XOR Gates

A Low-Power 12 Transistor Full Adder Design using 3 Transistor XOR Gates A Low-Power 12 Transistor Full Adder Design using 3 Transistor XOR Gates Anil Kumar 1 Kuldeep Singh 2 Student Assistant Professor Department of Electronics and Communication Engineering Guru Jambheshwar

More information

Gechstudentszone.wordpress.com

Gechstudentszone.wordpress.com UNIT 4: Small Signal Analysis of Amplifiers 4.1 Basic FET Amplifiers In the last chapter, we described the operation of the FET, in particular the MOSFET, and analyzed and designed the dc response of circuits

More information

A Simple Design and Implementation of Reconfigurable Neural Networks

A Simple Design and Implementation of Reconfigurable Neural Networks A Simple Design and Implementation of Reconfigurable Neural Networks Hazem M. El-Bakry, and Nikos Mastorakis Abstract There are some problems in hardware implementation of digital combinational circuits.

More information

On Built-In Self-Test for Adders

On Built-In Self-Test for Adders On Built-In Self-Test for s Mary D. Pulukuri and Charles E. Stroud Dept. of Electrical and Computer Engineering, Auburn University, Alabama Abstract - We evaluate some previously proposed test approaches

More information

Arithmetic Structures for Inner-Product and Other Computations Based on a Latency-Free Bit-Serial Multiplier Design

Arithmetic Structures for Inner-Product and Other Computations Based on a Latency-Free Bit-Serial Multiplier Design Arithmetic Structures for Inner-Product and Other Computations Based on a Latency-Free Bit-Serial Multiplier Design Steve Haynal and Behrooz Parhami Department of Electrical and Computer Engineering University

More information

Low Power VLSI CMOS Design. An Image Processing Chip for RGB to HSI Conversion

Low Power VLSI CMOS Design. An Image Processing Chip for RGB to HSI Conversion REPRINT FROM: PROC. OF IRISCH SIGNAL AND SYSTEM CONFERENCE, DERRY, NORTHERN IRELAND, PP.165-172. Low Power VLSI CMOS Design An Image Processing Chip for RGB to HSI Conversion A.Th. Schwarzbacher and J.B.

More information

[Krishna, 2(9): September, 2013] ISSN: Impact Factor: INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

[Krishna, 2(9): September, 2013] ISSN: Impact Factor: INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Design of Wallace Tree Multiplier using Compressors K.Gopi Krishna *1, B.Santhosh 2, V.Sridhar 3 gopikoleti@gmail.com Abstract

More information

A High Speed Wallace Tree Multiplier Using Modified Booth Algorithm for Fast Arithmetic Circuits

A High Speed Wallace Tree Multiplier Using Modified Booth Algorithm for Fast Arithmetic Circuits IOSR Journal of Electronics and Communication Engineering (IOSRJECE) ISSN: 2278-2834, ISBN No: 2278-8735 Volume 3, Issue 1 (Sep-Oct 2012), PP 07-11 A High Speed Wallace Tree Multiplier Using Modified Booth

More information

ECE, Box 7914, NCSU, Raleigh NC ABSTRACT 1. INTRODUCTION

ECE, Box 7914, NCSU, Raleigh NC ABSTRACT 1. INTRODUCTION header for SPIE use Molectronics: A circuit design perspective David P. Nackashi a, Paul D. Franzon* a a Dept. of Electrical and Computer Engineering, North Carolina State University ECE, Box 7914, NCSU,

More information

電子電路. Memory and Advanced Digital Circuits

電子電路. Memory and Advanced Digital Circuits 電子電路 Memory and Advanced Digital Circuits Hsun-Hsiang Chen ( 陳勛祥 ) Department of Electronic Engineering National Changhua University of Education Email: chenhh@cc.ncue.edu.tw Spring 2010 2 Reference Microelectronic

More information

Efficient logic architectures for CMOL nanoelectronic circuits

Efficient logic architectures for CMOL nanoelectronic circuits Efficient logic architectures for CMOL nanoelectronic circuits C. Dong, W. Wang and S. Haruehanroengra Abstract: CMOS molecular (CMOL) circuits promise great opportunities for future hybrid nanoscale IC

More information

ISSN Vol.03,Issue.02, February-2014, Pages:

ISSN Vol.03,Issue.02, February-2014, Pages: www.semargroup.org, www.ijsetr.com ISSN 2319-8885 Vol.03,Issue.02, February-2014, Pages:0239-0244 Design and Implementation of High Speed Radix 8 Multiplier using 8:2 Compressors A.M.SRINIVASA CHARYULU

More information

COMPUTER ORGANIZATION & ARCHITECTURE DIGITAL LOGIC CSCD211- DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF GHANA

COMPUTER ORGANIZATION & ARCHITECTURE DIGITAL LOGIC CSCD211- DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF GHANA COMPUTER ORGANIZATION & ARCHITECTURE DIGITAL LOGIC LOGIC Logic is a branch of math that tries to look at problems in terms of being either true or false. It will use a set of statements to derive new true

More information

POWER DELAY PRODUCT AND AREA REDUCTION OF FULL ADDERS USING SYSTEMATIC CELL DESIGN METHODOLOGY

POWER DELAY PRODUCT AND AREA REDUCTION OF FULL ADDERS USING SYSTEMATIC CELL DESIGN METHODOLOGY This work by IJARBEST is licensed under Creative Commons Attribution 4.0 International License. Available at https://www.ijarbest.com ISSN (ONLINE): 2395-695X POWER DELAY PRODUCT AND AREA REDUCTION OF

More information

DESIGN AND IMPLEMENTATION OF 128-BIT QUANTUM-DOT CELLULAR AUTOMATA ADDER

DESIGN AND IMPLEMENTATION OF 128-BIT QUANTUM-DOT CELLULAR AUTOMATA ADDER DESIGN AND IMPLEMENTATION OF 128-BIT QUANTUM-DOT CELLULAR AUTOMATA ADDER 1 K.RAVITHEJA, 2 G.VASANTHA, 3 I.SUNEETHA 1 student, Dept of Electronics & Communication Engineering, Annamacharya Institute of

More information

21/10/58. M2-3 Signal Generators. Bill Hewlett and Dave Packard s 1 st product (1939) US patent No HP 200A s schematic

21/10/58. M2-3 Signal Generators. Bill Hewlett and Dave Packard s 1 st product (1939) US patent No HP 200A s schematic M2-3 Signal Generators Bill Hewlett and Dave Packard s 1 st product (1939) US patent No.2267782 1 HP 200A s schematic 2 1 The basic structure of a sinusoidal oscillator. A positive feedback loop is formed

More information

Fan in: The number of inputs of a logic gate can handle.

Fan in: The number of inputs of a logic gate can handle. Subject Code: 17333 Model Answer Page 1/ 29 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model

More information

Chapter 10 Feedback ECE 3120 Microelectronics II Dr. Suketu Naik

Chapter 10 Feedback ECE 3120 Microelectronics II Dr. Suketu Naik 1 Chapter 10 Feedback Operational Amplifier Circuit Components 2 1. Ch 7: Current Mirrors and Biasing 2. Ch 9: Frequency Response 3. Ch 8: Active-Loaded Differential Pair 4. Ch 10: Feedback 5. Ch 11: Output

More information

Preface to Third Edition Deep Submicron Digital IC Design p. 1 Introduction p. 1 Brief History of IC Industry p. 3 Review of Digital Logic Gate

Preface to Third Edition Deep Submicron Digital IC Design p. 1 Introduction p. 1 Brief History of IC Industry p. 3 Review of Digital Logic Gate Preface to Third Edition p. xiii Deep Submicron Digital IC Design p. 1 Introduction p. 1 Brief History of IC Industry p. 3 Review of Digital Logic Gate Design p. 6 Basic Logic Functions p. 6 Implementation

More information