Study Guide for Chapter 11

Size: px
Start display at page:

Download "Study Guide for Chapter 11"

Transcription

1 Study Guide for Chapter 11 Objectives: 1. Know how to analyze a balanced, three-phase Y-Y connected circuit. 2. Know how to analyze a balanced, three-phase Y-Δ connected circuit. 3. Be able to calculate power (average, reactive, and complex) in any three-phase circuit. Study guide questions: 1. Read Section a) Use the definition of a phasor to show that Eq. (11.3) holds for the positive phase sequence (Eq. 11.1) and also for the negative phase sequence (Eq. 11.2). b) Use basic trigonometry to show that both sets of the three vectors in Fig sum to zero, again confirming Eq. (11.3). c) Summarize your understanding of the material in this section by answering the i. What are the two requirements of a balanced three-phase source? ii. If you are given the phasor voltage in the a-phase of a balanced threephase source, what additional information must you know in order to determine the phasor voltages in the other two phases? iii. Describe how to calculate the a-phase and c-phase voltage phasors from the b-phase voltage phasor in a balanced, three-phase, abc source. iv. Describe how to calculate the a-phase and b-phase voltage phasors from the c-phase voltage phasor in a balanced, three-phase, acb source. v. What is the sum of the three phasor voltages in a balanced three-phase source? a) Solve the following problems: Problems Read Section a) Re-label the source voltages in Fig to distinguish the Y-connected sources from the Δ-connected sources by calling the Y-connected source V ya, V yb, and V yc and calling the Δ-connected sources V Δa, V Δb, and V Δc. Then express each Δ- connected voltage source in terms of the Y-connected voltage sources by equating the voltage drops between nodes ab, bc, and ca in both circuits. Assume the Y- connected sources use the positive phase sequence. b) Summarize your understanding of the material in this section by answering the i. What are the four configurations for three-phase circuits? ii. Which configuration is the key to solving all balanced three-phase circuits? iii. What node is available in a Y-connected source that is not available in a Δ-connected source? iv. What three letters are used to label the nodes of a three-phase source? a) Use the result in 2(a) to solve Problem 11.8.

2 3. Read Section a) Show that Eqs. (11.18) (11.20) match the equations you derived in 2(a). b) Derive the equations that describe the line-to-line voltages (V AB, V BC, and V CA ) in terms of the line-to-neutral voltages (V AN, V BN, and V CN ), assuming the line-toneutral voltages have a negative phase sequence. c) Draw the entire three-phase circuit described in Example 11.1, labeling all line voltages, line currents, phase voltages, and phase currents. d) The following questions refer to the solution for Example 11.1: i. What circuit analysis technique is used to calculate the a-phase line current in part (b)? ii. Use voltage division to calculate the a-phase voltage of the load and show that you get the same answer as in part (c). iii. Refer to the three-phase circuit you drew in 3(c). Write a KVL equation for V AB in terms of V AN and V BN. Then substitute the values of V AN and V BN into this equation and confirm the answer in part (d) of the solution. Use the same technique to check the answers for V BC and V CA. iv. Again refer to the three-phase circuit you drew in 3(c). Write a KVL equation for V ab in terms of V an and V bn. Then plug the values of V an and V bn into this equation and confirm the answers in part (f) of the solution. Use the same technique to check the answers for V bc and V ca. v. Example 11.1 asked you to calculate both the line voltages and the phase voltages at the terminals of the load. But this example asked to you to calculate only the line currents for the load, and not the phase currents for the load. Why weren t you asked to calculate the phase currents for the load? a) Summarize your understanding of the material in this section by answering the i. What is the easiest circuit analysis technique to use when analyzing a general (not necessarily balanced) three-phase Y-Y circuit? ii. What are the four conditions that must be satisfied if a three-phase circuit is balanced? iii. When a three-phase Y-Y circuit is balanced, what is the current in the neutral line? iv. When a three-phase Y-Y circuit is balanced, what is the relationship between the three line currents? v. Define the following quantities for a Y-Y circuit and give an example phasor name for each: line voltage, phase voltage, line current, phase current. vi. In a balanced Y-Y circuit, what is the relationship between the line current and the phase current? What is the relationship between the line voltage and the phase voltage? vii. What circuit analysis technique would you use to calculate the line current I aa in the single phase equivalent circuit? viii. What circuit analysis technique would you use to calculate the phase voltage V AN in the single phase equivalent circuit? ix. What is the phasor symbol for the phase current in a Y-connected load? How do you calculate its value from the line current phasor whose value you determined from the single phase equivalent circuit? x. What is the phasor symbol for the line voltage in a Y-connected load?

3 How do you calculate its value from the phase voltage phasor whose value you determined from the single phase equivalent circuit? (Hint there are two answers to this question, one for each phase sequence!) a) Solve the following problems: Assessment Problems ; Chapter Problems Read Section a) Show that Eq. (11.21 follows from Eqs. (9.51) (9.53) on p b) Derive the line current in terms of the phase currents for a negative phase sequence for a Y-Δ circuit. Follow the example for the positive phase sequence from Eqs. (11.22) (11.27). c) Draw the entire three-phase circuit described in Example 11.2, labeling the line currents, phase currents, line voltages and phase voltages in each phase. Use this circuit to show that the line voltage V ab at the terminals of the source can be calculated by summing the voltage drop across the a-phase line (V aa ), the voltage drop across the a-phase load (V AB ), and the voltage drop across the b-phase line (V Bb ). What circuit analysis technique did you use? Now perform this calculation to confirm the value computed in part (e) of the solution. d) Summarize your understanding of the material in this section by answering the i. Define the following quantities for a Y-Δ circuit and give an example phasor name for each: line voltage, phase voltage, line current, phase current. ii. In a balanced Y-Δ circuit, what is the relationship between the line current and the phase current? What is the relationship between the line voltage and the phase voltage? iii. What simple calculation do you need to make to create a single phase equivalent circuit from a balanced Y-Δ circuit? iv. What is the phasor symbol for the phase current in a Δ-connected load? How do you calculate its value from the line current phasor whose value you determined from the single phase equivalent circuit? (Hint there are two answers to this question, one for each phase sequence!) v. What is the phasor symbol for the phase voltage in a Δ-connected load? How do you calculate its value from the voltage phasor whose value you determined from the single phase equivalent circuit? (Hint there are two answers to this question, one for each phase sequence!) a) Complete the following problems: Assessment Problems Read Section a) What is the other name for the quantity cos(θ va - A θ ) in Eq. (11.28)? Rewrite Eqs. ia (11.35) and (11.36) using this alternate name. b) What is the other name for the quantity sin θ φ in Eq. (11.37)? Rewrite Eqs. (11.37) and (11.38) using this alternate name. c) Look at the solution to Example What equation for average power is used in parts (c) and (d)? What equation for per-phase complex power is used in part (f)? Show that the total complex power in the circuit for this example balances by calculating the total complex power of the source, the source impedance, the line, and the load and summing these complex power values. d) Look at the solution to Example Show that the total complex power in the circuit for this example balances by calculating the total complex power of the

4 source, the source impedance, the line, and the load and summing these complex power values. e) Look at the solution to Example How was the voltage V AN (in Fig ) calculated from the information supplied in the problem statement? Where did the first equation in part (b) come from? Note the alternative solution for the line current magnitude at the end of part (b) this is an important solution technique to master, but it is only useful in calculating the line current magnitude, not its phase angle. What circuit analysis technique is used to construct the first equation in part (c)? Show that the complex power balances for the single line equivalent circuit in Fig by calculating the complex power at the sending end of the line, the complex power in the line, and the complex power of the load and summing these complex power values. Make sure you follow the passive sign convention! f) Summarize your understanding of the material in this section by answering the i. If you use phase quantities to calculate the real, reactive, and complex power in the a-phase of a Y-connected load (that is, you use the phase voltage and phase current of a single phase of the load), what are the ii. If you use line quantities to calculate the real, reactive, and complex power in the a-phase of a Y-connected load (that is, you use the line voltage and line current of a single phase of the load), what are the iii. If you use phase quantities to calculate the real, reactive, and complex power in the a-phase of a Δ-connected load (that is, you use the phase voltage and phase current of a single phase of the load), what are the iv. If you use line quantities to calculate the real, reactive, and complex power in the a-phase of a Δ-connected load (that is, you use the line voltage and line current of a single phase of the load), what are the v. What is the advantage of using the formulas for P, Q, and S that contain the line voltage and line current when calculating the power in a single phase of a three-phase circuit? What phase angle should be used in these formulas? vi. If you are given the total P, Q, or S in a balanced three-phase circuit, how can you calculate the P, Q, or S per phase? a) Complete the following problems: Problems 11.19, 11.24, 11.29, and

5 Answers to Assigned Problems: 11.1 a) acb; b) abc 11.2 a) balanced, positive; b) balanced, negative; c) unbalanced (phase angle); d) unbalanced (amplitude); e) unbalanced (phase angle); e) unbalanced (frequency) 11.8 v AB (t) = cos(ωt + 56 ) V(rms); v BC (t) = cos(ωt - 64 ) V(rms); v AB (t) = cos(ωt ) V(rms) 11.9 a) A(rms); b) V(rms) a) I aa = A(rms), I bb = A(rms), I cc = A(rms); b) V ab = V(rms), V bc = V(rms), V ca = V(rms); c) V an = V(rms), V bn = V(rms), V cn = V(rms); d) V AB = V(rms), V BC = V(rms), V CA = V(rms); a) I AB = A(rms), I BC = A(rms), I AB = A(rms); b) I aa = A(rms), I bb = A(rms) I cc = A(rms); c) V ab = V(rms), V bc = V(rms), V ca = V(rms) a) j3510 kva; b) 99.29% V(rms) a) V(rms); b) 30, j28, VA a) V(rms); b) V(rms); c) 95.05%; d) 96.77%; e) μf

Electric Circuits II Three-Phase Circuits. Dr. Firas Obeidat

Electric Circuits II Three-Phase Circuits. Dr. Firas Obeidat Electric Circuits II Three-Phase Circuits Dr. Firas Obeidat 1 Table of Contents 1 Balanced Three-Phase Voltages 2 Balanced Wye-Wye Connection 3 Balanced Wye-Delta Connection 4 Balanced Delta-Delta Connection

More information

CHAPTER 11. Balanced Three-Phase Circuits

CHAPTER 11. Balanced Three-Phase Circuits CHAPTER 11 Balanced Three-Phase Circuits 11.1 Balanced Three-Phase Voltages Three sinusoidal voltages Identical amplitudes and frequencies Out of phase 120 with each other by exactly As the a-phase voltage,

More information

EE 221 CIRCUITS II. Chapter 12 Three-Phase Circuit

EE 221 CIRCUITS II. Chapter 12 Three-Phase Circuit EE 221 CRCUTS Chapter 12 Three-Phase Circuit 1 THREE-PHASE CRCUTS CHAPTER 12 12.1 What is a Three-Phase Circuit? 12.2 Balanced Three-Phase oltages 12.3 Balanced Three-Phase Connection 12.4 Power in a Balanced

More information

EE 221 CIRCUITS II. Chapter 12 Three-Phase Circuit

EE 221 CIRCUITS II. Chapter 12 Three-Phase Circuit EE 221 CIRCUITS II Chapter 12 Three-Phase Circuit 1 THREE-PHASE CIRCUITS CHAPTER 12 12.1 What is a Three-Phase Circuit? 12.2 Balanced Three-Phase Voltages 12.3 Balanced Three-Phase Connection 12.4 Power

More information

A) For the Y-Y circuit shown in Fig. 1, find the line currents, the line voltages, and the load voltages.

A) For the Y-Y circuit shown in Fig. 1, find the line currents, the line voltages, and the load voltages. Salman Bin Abdul Aziz University Faculty of Engineering Electrical Engineering department Electric Circuit Analysis (EE 2020) Sheet (2) Three-Phase Circuits < <

More information

Polyphase Systems. Dr Gamal Sowilam

Polyphase Systems. Dr Gamal Sowilam Polyphase Systems Dr Gamal Sowilam OBJECTIVES Become familiar with the operation of a three-phase generator and the magnitude and phase relationship connecting the three phase voltages. Be able to calculate

More information

ESO 210 Introduction to Electrical Engineering

ESO 210 Introduction to Electrical Engineering ESO 210 Introduction to Electrical Engineering Lecture-14 Three Phase AC Circuits 2 THE -CONNECTED GENERATOR If we rearrange the coils of the generator as shown in Fig. below the system is referred to

More information

Chapter Objectives: Payam zarbakhsh EElE301 Circuit Theory II Department of Electrical and Electronic Engineering Cyprus International university

Chapter Objectives: Payam zarbakhsh EElE301 Circuit Theory II Department of Electrical and Electronic Engineering Cyprus International university Chapter 12 Three Phase Circuits Chapter Objectives: Be familiar with different three-phase configurations and how to analyze them. Know the difference between balanced and unbalanced circuits Learn about

More information

Electric Circuits I. Simple Resistive Circuit. Dr. Firas Obeidat

Electric Circuits I. Simple Resistive Circuit. Dr. Firas Obeidat Electric Circuits I Simple Resistive Circuit Dr. Firas Obeidat 1 Resistors in Series The equivalent resistance of any number of resistors connected in series is the sum of the individual resistances. It

More information

ESO 210 Introduction to Electrical Engineering

ESO 210 Introduction to Electrical Engineering ESO 210 Introduction to Electrical Engineering Lecture-12 Three Phase AC Circuits Three Phase AC Supply 2 3 In general, three-phase systems are preferred over single-phase systems for the transmission

More information

AC Power Instructor Notes

AC Power Instructor Notes Chapter 7: AC Power Instructor Notes Chapter 7 surveys important aspects of electric power. Coverage of Chapter 7 can take place immediately following Chapter 4, or as part of a later course on energy

More information

QUESTION BANK ETE (17331) CM/IF. Chapter1: DC Circuits

QUESTION BANK ETE (17331) CM/IF. Chapter1: DC Circuits QUESTION BANK ETE (17331) CM/IF Chapter1: DC Circuits Q1. State & explain Ohms law. Also explain concept of series & parallel circuit with the help of diagram. 3M Q2. Find the value of resistor in fig.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Trigonometry Final Exam Study Guide Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. The graph of a polar equation is given. Select the polar

More information

Electrical Circuits I (ENGR 2405) Chapter 2 Ohm s Law, KCL, KVL, Resistors in Series/Parallel

Electrical Circuits I (ENGR 2405) Chapter 2 Ohm s Law, KCL, KVL, Resistors in Series/Parallel Electrical Circuits I (ENG 2405) Chapter 2 Ohm s Law, KCL, KVL, esistors in Series/Parallel esistivity Materials tend to resist the flow of electricity through them. This property is called resistance

More information

Lesson 27: Sine and Cosine of Complementary and Special Angles

Lesson 27: Sine and Cosine of Complementary and Special Angles Lesson 7 M Classwork Example 1 If α and β are the measurements of complementary angles, then we are going to show that sin α = cos β. In right triangle ABC, the measurement of acute angle A is denoted

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK UNIT I BASIC CIRCUITS ANALYSIS PART A (2-MARKS)

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK UNIT I BASIC CIRCUITS ANALYSIS PART A (2-MARKS) KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK YEAR / SEM : I / II SUBJECT CODE & NAME : EE 1151 CIRCUIT THEORY UNIT I BASIC CIRCUITS ANALYSIS PART A (2-MARKS)

More information

Sample Question Paper

Sample Question Paper Scheme G Sample Question Paper Course Name : Electrical Engineering Group Course Code : EE/EP Semester : Third Subject Title : Electrical Circuit and Network 17323 Marks : 100 Time: 3 hrs Instructions:

More information

Unit 27 Three-Phase Circuits

Unit 27 Three-Phase Circuits Unit 27 Three-Phase Circuits Objectives: Discuss the differences between threephase and single-phase voltages. Discuss the characteristics of delta and wye connections. Compute voltage and current values

More information

CHAPTER 9. Sinusoidal Steady-State Analysis

CHAPTER 9. Sinusoidal Steady-State Analysis CHAPTER 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source A sinusoidal voltage source (independent or dependent) produces a voltage that varies sinusoidally with time. A sinusoidal current source

More information

ECE215 Lecture 7 Date:

ECE215 Lecture 7 Date: Lecture 7 Date: 29.08.2016 AC Circuits: Impedance and Admittance, Kirchoff s Laws, Phase Shifter, AC bridge Impedance and Admittance we know: we express Ohm s law in phasor form: where Z is a frequency-dependent

More information

3.4 The Single-Loop Circuit Single-loop circuits

3.4 The Single-Loop Circuit Single-loop circuits 25 3.4 The Single-Loop Circuit Single-loop circuits Elements are connected in series All elements carry the same current We shall determine The current through each element The voltage across each element

More information

Space Vector PWM and Model Predictive Control for Voltage Source Inverter Control

Space Vector PWM and Model Predictive Control for Voltage Source Inverter Control Space Vector PWM and Model Predictive Control for Voltage Source Inverter Control Irtaza M. Syed, Kaamran Raahemifar Abstract In this paper, we present a comparative assessment of Space Vector Pulse Width

More information

Survival Skills for Circuit Analysis

Survival Skills for Circuit Analysis P. R. Nelson Fall 2010 WhatToKnow - p. 1/46 Survival Skills for Circuit Analysis What you need to know from ECE 109 Phyllis R. Nelson prnelson@csupomona.edu Professor, Department of Electrical and Computer

More information

Rarely used, problems with unbalanced loads.

Rarely used, problems with unbalanced loads. THREE-PHASE TRANSFORMERS Transformers used in three-phase systems may consist of a bank of three single-phase transformers or a single three-phase transformer which is wound on a common magnetic core.

More information

Fundamentals of Electric Circuits Chapter 2. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fundamentals of Electric Circuits Chapter 2. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Fundamentals of Electric Circuits Chapter 2 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Overview This chapter will introduce Ohm s law: a central concept

More information

3. Voltage and Current laws

3. Voltage and Current laws 1 3. Voltage and Current laws 3.1 Node, Branches, and loops A branch represents a single element such as a voltage source or a resistor A node is the point of the connection between two or more elements

More information

Alternating current circuits- Series RLC circuits

Alternating current circuits- Series RLC circuits FISI30 Física Universitaria II Professor J.. ersosimo hapter 8 Alternating current circuits- Series circuits 8- Introduction A loop rotated in a magnetic field produces a sinusoidal voltage and current.

More information

Experiment 1 Alternating Current with Coil and Ohmic Resistors

Experiment 1 Alternating Current with Coil and Ohmic Resistors Experiment Alternating Current with Coil and Ohmic esistors - Objects of the experiment - Determining the total impedance and the phase shift in a series connection of a coil and a resistor. - Determining

More information

Electric Circuits II Magnetically Coupled Circuits. Dr. Firas Obeidat

Electric Circuits II Magnetically Coupled Circuits. Dr. Firas Obeidat Electric Circuits II Magnetically Coupled Circuits Dr. Firas Obeidat 1 Table of contents 1 Mutual Inductance 2 Dot Convention 3 Analyze Circuits Involving Mutual Inductance 4 Energy in a Coupled Circuit

More information

Cork Institute of Technology. Autumn 2008 Electrical Energy Systems (Time: 3 Hours)

Cork Institute of Technology. Autumn 2008 Electrical Energy Systems (Time: 3 Hours) Cork Institute of Technology Bachelor of Science (Honours) in Electrical Power Systems - Award Instructions Answer FIVE questions. (EELPS_8_Y4) Autumn 2008 Electrical Energy Systems (Time: 3 Hours) Examiners:

More information

Three-Phase, Step-Wave Inverter Circuits

Three-Phase, Step-Wave Inverter Circuits 0 Three-Phase, Step-Wave Inverter Circuits 0. SKELETON INVERTER CIRCUIT The form of voltage-source inverter (VSI) most commonly used consists of a three-phase, naturally commutated, controlled rectifier

More information

Laboratory 2 (drawn from lab text by Alciatore)

Laboratory 2 (drawn from lab text by Alciatore) Laboratory 2 (drawn from lab text by Alciatore) Instrument Familiarization and Basic Electrical Relations Required Components: 2 1k resistors 2 1M resistors 1 2k resistor Objectives This exercise is designed

More information

EXPERIMENT 4: RC, RL and RD CIRCUITs

EXPERIMENT 4: RC, RL and RD CIRCUITs EXPERIMENT 4: RC, RL and RD CIRCUITs Equipment List An assortment of resistor, one each of (330, 1k,1.5k, 10k,100k,1000k) Function Generator Oscilloscope 0.F Ceramic Capacitor 100H Inductor LED and 1N4001

More information

THE SINUSOIDAL WAVEFORM

THE SINUSOIDAL WAVEFORM Chapter 11 THE SINUSOIDAL WAVEFORM The sinusoidal waveform or sine wave is the fundamental type of alternating current (ac) and alternating voltage. It is also referred to as a sinusoidal wave or, simply,

More information

Circuit Analysis-II. Circuit Analysis-II Lecture # 2 Wednesday 28 th Mar, 18

Circuit Analysis-II. Circuit Analysis-II Lecture # 2 Wednesday 28 th Mar, 18 Circuit Analysis-II Angular Measurement Angular Measurement of a Sine Wave ü As we already know that a sinusoidal voltage can be produced by an ac generator. ü As the windings on the rotor of the ac generator

More information

SHUNT ACTIVE POWER FILTER

SHUNT ACTIVE POWER FILTER 75 CHAPTER 4 SHUNT ACTIVE POWER FILTER Abstract A synchronous logic based Phase angle control method pulse width modulation (PWM) algorithm is proposed for three phase Shunt Active Power Filter (SAPF)

More information

Sinusoids and Phasors (Chapter 9 - Lecture #1) Dr. Shahrel A. Suandi Room 2.20, PPKEE

Sinusoids and Phasors (Chapter 9 - Lecture #1) Dr. Shahrel A. Suandi Room 2.20, PPKEE Sinusoids and Phasors (Chapter 9 - Lecture #1) Dr. Shahrel A. Suandi Room 2.20, PPKEE Email:shahrel@eng.usm.my 1 Outline of Chapter 9 Introduction Sinusoids Phasors Phasor Relationships for Circuit Elements

More information

Spring 2000 EE361: MIDTERM EXAM 1

Spring 2000 EE361: MIDTERM EXAM 1 NAME: STUDENT NUMBER: Spring 2000 EE361: MIDTERM EXAM 1 This exam is open book and closed notes. Assume f=60 hz and use the constant µ o =4π 10-7 wherever necessary. Be sure to show all work clearly. 1.

More information

Chapter 7. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 7. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 7 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Learning Objectives 1. Understand the meaning of instantaneous and average power, master AC power notation,

More information

Transformers. gpmacademics.weebly.com

Transformers. gpmacademics.weebly.com TRANSFORMERS Syllabus: Principles of operation, Constructional Details, Losses and efficiency, Regulation of Transformer, Testing: OC & SC test. TRANSFORMER: It is a static device which transfers electric

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION Important Instructions to examiners: 1. The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2. The model answer and the answer written by candidate

More information

Chapter 12 Three Phase Circuits. Chapter Objectives:

Chapter 12 Three Phase Circuits. Chapter Objectives: Chater 12 Three Phase Circuits Chater Objectives: Be familiar with different three-hase configurations and how to analyze them. Know the difference between balanced and unbalanced circuits Learn about

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Objecties Boise State Uniersity Department of Electrical and Computer Engineering ECE 22L Circuit Analysis and Design Lab Experiment #2: Sinusoidal Steady State and Resonant Circuits The objecties of this

More information

Bakiss Hiyana binti Abu Bakar JKE, POLISAS BHAB

Bakiss Hiyana binti Abu Bakar JKE, POLISAS BHAB 1 Bakiss Hiyana binti Abu Bakar JKE, POLISAS 1. Explain AC circuit concept and their analysis using AC circuit law. 2. Apply the knowledge of AC circuit in solving problem related to AC electrical circuit.

More information

EXPERIMENT 4: RC, RL and RD CIRCUITs

EXPERIMENT 4: RC, RL and RD CIRCUITs EXPERIMENT 4: RC, RL and RD CIRCUITs Equipment List Resistor, one each of o 330 o 1k o 1.5k o 10k o 100k o 1000k 0.F Ceramic Capacitor 4700H Inductor LED and 1N4004 Diode. Introduction We have studied

More information

Chapter 8. Constant Current Sources

Chapter 8. Constant Current Sources Chapter 8 Methods of Analysis Constant Current Sources Maintains same current in branch of circuit Doesn t matter how components are connected external to the source Direction of current source indicates

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 16.4. Power phasors in sinusoidal systems Apparent power is the product of the rms voltage and

More information

Transformer & Induction M/C

Transformer & Induction M/C UNIT- 2 SINGLE-PHASE TRANSFORMERS 1. Draw equivalent circuit of a single phase transformer referring the primary side quantities to secondary and explain? (July/Aug - 2012) (Dec 2012) (June/July 2014)

More information

Improvement of Power Quality Using a Hybrid Interline UPQC

Improvement of Power Quality Using a Hybrid Interline UPQC Improvement of Power Quality Using a Hybrid Interline UPQC M.K.Elango 1, C.Vengatesh Department of Electrical and Electronics Engineering K.S.Rangasamy College of Technology Tiruchengode, Tamilnadu, India

More information

Hours / 100 Marks Seat No.

Hours / 100 Marks Seat No. 17323 14115 3 Hours / 100 Seat No. Instructions (1) All Questions are Compulsory. (2) Illustrate your answers with neat sketches wherever necessary. (3) Figures to the right indicate full marks. (4) Assume

More information

The Mathematics of the Stewart Platform

The Mathematics of the Stewart Platform The Mathematics of the Stewart Platform The Stewart Platform consists of 2 rigid frames connected by 6 variable length legs. The Base is considered to be the reference frame work, with orthogonal axes

More information

Physics 227: Lecture 11 Circuits, KVL, KCL, Meters

Physics 227: Lecture 11 Circuits, KVL, KCL, Meters Physics 227: Lecture 11 Circuits, KVL, KCL, Meters Lecture 10 review: EMF ξ is not a voltage V, but OK for now. Physical emf source has V ab = ξ - Ir internal. Power in a circuit element is P = IV. For

More information

Chapter 11 Thre r e e e P has a e e C i C rc r u c its t

Chapter 11 Thre r e e e P has a e e C i C rc r u c its t Chater 11 Three Phase Circuits Three hase Circuits An AC generator designed to develo a single sinusoidal voltage for each rotation of the shaft (rotor) is referred to as a single-hase AC generator. If

More information

10kW Three-phase SiC PFC Rectifier

10kW Three-phase SiC PFC Rectifier www.onsemi.com 10kW Three-phase SiC PFC Rectifier SEMICON EUROPA, Nov 13-18, 2018, Munich, Germany Contents General PFC Concept 3 Phase System and PFC Control Simulation Understanding the losses 3 Phase

More information

Experiment 45. Three-Phase Circuits. G 1. a. Using your Power Supply and AC Voltmeter connect the circuit shown OBJECTIVE

Experiment 45. Three-Phase Circuits. G 1. a. Using your Power Supply and AC Voltmeter connect the circuit shown OBJECTIVE Experiment 45 Three-Phase Circuits OBJECTIVE To study the relationship between voltage and current in three-phase circuits. To learn how to make delta and wye connections. To calculate the power in three-phase

More information

ISSN: Page 20. International Journal of Engineering Trends and Technology- Volume2Issue3-2011

ISSN: Page 20. International Journal of Engineering Trends and Technology- Volume2Issue3-2011 Design of Shunt Active Power Filter to eliminate the harmonic currents and to compensate the reactive power under distorted and or imbalanced source voltages in steady state Sangu Ravindra #1, Dr.V.C.Veera

More information

Chapter two. Basic Laws. 2.1 Introduction

Chapter two. Basic Laws. 2.1 Introduction 2.1 Introduction Chapter two Basic Laws Chapter 1 introduced basic concepts in an electric circuit. To actually determine the values of these variables in a given circuit requires that we understand some

More information

Contributors: Sean Holt Adam Parke Tom Turner. Solutions Manual. Edition: 25 April Editors: Adam W. Parke, Thomas B. Turner, Glen Van Brummelen

Contributors: Sean Holt Adam Parke Tom Turner. Solutions Manual. Edition: 25 April Editors: Adam W. Parke, Thomas B. Turner, Glen Van Brummelen Contributors: He a v e n l y Ma t h e ma t i c s T h ef o r g o t t e nar to f S p h e r i c a l T r i g o n o me t r y Gl e nva nbr umme l e n Solutions Manual Edition: 25 April 2013 Editors: Adam W.

More information

EE6201 CIRCUIT THEORY QUESTION BANK PART A

EE6201 CIRCUIT THEORY QUESTION BANK PART A EE6201 CIRCUIT THEORY 1. State ohm s law. 2. State kirchoff s law. QUESTION BANK PART A 3. Which law is applicable for branch current method? 4. What is the matrix formation equation for mesh and nodal

More information

Unit-1(A) Circuit Analysis Techniques

Unit-1(A) Circuit Analysis Techniques Unit-1(A Circuit Analysis Techniques Basic Terms used in a Circuit 1. Node :- It is a point in a circuit where two or more circuit elements are connected together. 2. Branch :- It is that part of a network

More information

electronics fundamentals

electronics fundamentals electronics fundamentals circuits, devices, and applications THOMAS L. FLOYD DAVID M. BUCHLA chapter 6 Identifying series-parallel relationships Most practical circuits have combinations of series and

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE P a g e 2 Question Bank Programme Subject Semester / Branch : BE : EE6201-CIRCUIT THEORY : II/EEE,ECE &EIE UNIT-I PART-A 1. Define Ohm s Law (B.L.T- 1) 2. List and define Kirchoff s Laws for electric circuits.

More information

Practical Transformer on Load

Practical Transformer on Load Practical Transformer on Load We now consider the deviations from the last two ideality conditions : 1. The resistance of its windings is zero. 2. There is no leakage flux. The effects of these deviations

More information

V.S.B ENGINEERING COLLEGE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING I EEE-II Semester all subjects 2 & 16 marks QB

V.S.B ENGINEERING COLLEGE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING I EEE-II Semester all subjects 2 & 16 marks QB V.S.B ENGINEERING COLLEGE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING I EEE-II Semester all subjects 2 & 16 marks QB Sl.No Subject Name Page No. 1 Circuit Theory 2 1 UNIT-I CIRCUIT THEORY TWO

More information

ECE 215 Lecture 8 Date:

ECE 215 Lecture 8 Date: ECE 215 Lecture 8 Date: 28.08.2017 Phase Shifter, AC bridge AC Circuits: Steady State Analysis Phase Shifter the circuit current I leads the applied voltage by some phase angle θ, where 0 < θ < 90 ο depending

More information

MATLAB/SIMULINK IMPLEMENTATION AND ANALYSIS OF THREE PULSE-WIDTH-MODULATION (PWM) TECHNIQUES

MATLAB/SIMULINK IMPLEMENTATION AND ANALYSIS OF THREE PULSE-WIDTH-MODULATION (PWM) TECHNIQUES MATLAB/SIMULINK IMPLEMENTATION AND ANALYSIS OF THREE PULSE-WIDTH-MODULATION (PWM) TECHNIQUES by Phuong Hue Tran A thesis submitted in partial fulfillment of the requirements for the degree of Master of

More information

Contents. Core information about Unit

Contents. Core information about Unit 1 Contents Core information about Unit UEENEEH114A - Troubleshoot resonance circuits......3 UEENEEG102A Solve problems in low voltage AC circuits...5 TextBook...7 Topics and material Week 1...9 2 Core

More information

Performance Analysis of Three-Phase Four-Leg Voltage Source Converter

Performance Analysis of Three-Phase Four-Leg Voltage Source Converter International Journal of Science, Engineering and Technology Research (IJSETR) Volume 6, Issue 8, August 217, ISSN: 2278-7798 Performance Analysis of Three-Phase Four-Leg Voltage Source Converter Z.Harish,

More information

Series and Parallel Circuits. Series Connection

Series and Parallel Circuits. Series Connection Series and Parallel Circuits When devices are connected in an electric circuits, they can be connected in series or in parallel with other devices. A Series Connection When devices are series, any current

More information

Power Metering Fundamentals Jim Spangler Cirrus Logic 1 March 2011

Power Metering Fundamentals Jim Spangler Cirrus Logic 1 March 2011 Power Metering Fundamentals Jim Spangler Cirrus Logic 1 March 2011 Abstract: This paper defines how to measure electrical energy using electronic wattmeters, for both single phase and multiphase applications

More information

Trigonometry. David R. Wilkins

Trigonometry. David R. Wilkins Trigonometry David R. Wilkins 1. Trigonometry 1. Trigonometry 1.1. Trigonometric Functions There are six standard trigonometric functions. They are the sine function (sin), the cosine function (cos), the

More information

Prerequisite Knowledge: Definitions of the trigonometric ratios for acute angles

Prerequisite Knowledge: Definitions of the trigonometric ratios for acute angles easures, hape & pace EXEMPLAR 28 Trigonometric Identities Objective: To explore some relations of trigonometric ratios Key Stage: 3 Learning Unit: Trigonometric Ratios and Using Trigonometry Materials

More information

One of the classes that I have taught over the past few years is a technology course for

One of the classes that I have taught over the past few years is a technology course for Trigonometric Functions through Right Triangle Similarities Todd O. Moyer, Towson University Abstract: This article presents an introduction to the trigonometric functions tangent, cosecant, secant, and

More information

MAE143A Signals & Systems - Homework 8, Winter 2013 due by the end of class Tuesday March 5, 2013.

MAE143A Signals & Systems - Homework 8, Winter 2013 due by the end of class Tuesday March 5, 2013. MAE43A Signals & Systems - Homework 8, Winter 3 due by the end of class uesday March 5, 3. Question Measuring frequency responses Before we begin to measure frequency responses, we need a little theory...

More information

Relaying 101. by: Tom Ernst GE Grid Solutions

Relaying 101. by: Tom Ernst GE Grid Solutions Relaying 101 by: Tom Ernst GE Grid Solutions Thomas.ernst@ge.com Relaying 101 The abridged edition Too Much to Cover Power system theory review Phasor domain representation of sinusoidal waveforms 1-phase

More information

Electromagnetic Oscillations and Currents. March 23, 2014 Chapter 30 1

Electromagnetic Oscillations and Currents. March 23, 2014 Chapter 30 1 Electromagnetic Oscillations and Currents March 23, 2014 Chapter 30 1 Driven LC Circuit! The voltage V can be thought of as the projection of the vertical axis of the phasor V m representing the time-varying

More information

CH 1. Large coil. Small coil. red. Function generator GND CH 2. black GND

CH 1. Large coil. Small coil. red. Function generator GND CH 2. black GND Experiment 6 Electromagnetic Induction "Concepts without factual content are empty; sense data without concepts are blind... The understanding cannot see. The senses cannot think. By their union only can

More information

Aligarh College of Engineering & Technology (College Code: 109) Affiliated to UPTU, Approved by AICTE Electrical Engg.

Aligarh College of Engineering & Technology (College Code: 109) Affiliated to UPTU, Approved by AICTE Electrical Engg. Aligarh College of Engineering & Technology (College Code: 19) Electrical Engg. (EE-11/21) Unit-I DC Network Theory 1. Distinguish the following terms: (a) Active and passive elements (b) Linearity and

More information

Basic Signals and Systems

Basic Signals and Systems Chapter 2 Basic Signals and Systems A large part of this chapter is taken from: C.S. Burrus, J.H. McClellan, A.V. Oppenheim, T.W. Parks, R.W. Schafer, and H. W. Schüssler: Computer-based exercises for

More information

CHAPTER 5 DESIGN OF DSTATCOM CONTROLLER FOR COMPENSATING UNBALANCES

CHAPTER 5 DESIGN OF DSTATCOM CONTROLLER FOR COMPENSATING UNBALANCES 86 CHAPTER 5 DESIGN OF DSTATCOM CONTROLLER FOR COMPENSATING UNBALANCES 5.1 INTRODUCTION Distribution systems face severe power quality problems like current unbalance, current harmonics, and voltage unbalance,

More information

Solution: Based on the slope of q(t): 20 A for 0 t 1 s dt = 0 for 3 t 4 s. 20 A for 4 t 5 s 0 for t 5 s 20 C. t (s) 20 C. i (A) Fig. P1.

Solution: Based on the slope of q(t): 20 A for 0 t 1 s dt = 0 for 3 t 4 s. 20 A for 4 t 5 s 0 for t 5 s 20 C. t (s) 20 C. i (A) Fig. P1. Problem 1.24 The plot in Fig. P1.24 displays the cumulative charge q(t) that has entered a certain device up to time t. Sketch a plot of the corresponding current i(t). q 20 C 0 1 2 3 4 5 t (s) 20 C Figure

More information

Module 5 Trigonometric Identities I

Module 5 Trigonometric Identities I MAC 1114 Module 5 Trigonometric Identities I Learning Objectives Upon completing this module, you should be able to: 1. Recognize the fundamental identities: reciprocal identities, quotient identities,

More information

Lecture 4 - Three-phase circuits, transformer and transient analysis of RLC circuits. Figure 4.1

Lecture 4 - Three-phase circuits, transformer and transient analysis of RLC circuits. Figure 4.1 Lecture 4 - Three-phase circuits, transformer and transient analysis of RLC circuits Power supply to sizeable power converters are often from three-phase AC source. A balanced three-phase source consists

More information

ALGEBRA: Chapter I: QUESTION BANK

ALGEBRA: Chapter I: QUESTION BANK 1 ALGEBRA: Chapter I: QUESTION BANK Elements of Number Theory Congruence One mark questions: 1 Define divisibility 2 If a b then prove that a kb k Z 3 If a b b c then PT a/c 4 If a b are two non zero integers

More information

Module 7. Transformer. Version 2 EE IIT, Kharagpur

Module 7. Transformer. Version 2 EE IIT, Kharagpur Module 7 Transformer Lesson 28 Problem solving on Transformers Contents 28 Problem solving on Transformer (Lesson-28) 4 28.1 Introduction. 4 28.2 Problems on 2 winding single phase transformers. 4 28.3

More information

Digital Video and Audio Processing. Winter term 2002/ 2003 Computer-based exercises

Digital Video and Audio Processing. Winter term 2002/ 2003 Computer-based exercises Digital Video and Audio Processing Winter term 2002/ 2003 Computer-based exercises Rudolf Mester Institut für Angewandte Physik Johann Wolfgang Goethe-Universität Frankfurt am Main 6th November 2002 Chapter

More information

Chapter 31 Alternating Current

Chapter 31 Alternating Current Chapter 31 Alternating Current In this chapter we will learn how resistors, inductors, and capacitors behave in circuits with sinusoidally vary voltages and currents. We will define the relationship between

More information

Chapter 3 - Waveforms, Power and Measurement

Chapter 3 - Waveforms, Power and Measurement Chapter 3 - Waveforms, Power and Measurement Recommended problems to study: Problem Page Concentrates 3: Low-pass filter/fourier series < : Two wattmeter 3-f power measurement Timed 3: DC ammeter 4< 5:

More information

CIRCLE DIAGRAMS. Learning Objectives. Combinations of R and C circuits

CIRCLE DIAGRAMS. Learning Objectives. Combinations of R and C circuits H A P T E R18 earning Objectives ircle Diagram of a Series ircuit Rigorous Mathematical Treatment onstant Resistance but ariable Reactance Properties of onstant Reactance But ariable Resistance ircuit

More information

Quiz 6 Op-Amp Characteristics

Quiz 6 Op-Amp Characteristics Lecture Week 11 Quiz 6: Op-Amp Characteristics Complex Numbers and Phasor Domain Review Passive Filters Review Active Filters Complex Impedance and Bode Plots Workshop Quiz 6 Op-Amp Characteristics Please

More information

Lecture Week 7. Quiz 4 - KCL/KVL Capacitors RC Circuits and Phasor Analysis RC filters Workshop

Lecture Week 7. Quiz 4 - KCL/KVL Capacitors RC Circuits and Phasor Analysis RC filters Workshop Lecture Week 7 Quiz 4 - KCL/KVL Capacitors RC Circuits and Phasor Analysis RC filters Workshop Quiz 5 KCL/KVL Please clear desks and turn off phones and put them in back packs You need a pencil, straight

More information

ELECTRIC CIRCUITS. Third Edition JOSEPH EDMINISTER MAHMOOD NAHVI

ELECTRIC CIRCUITS. Third Edition JOSEPH EDMINISTER MAHMOOD NAHVI ELECTRIC CIRCUITS Third Edition JOSEPH EDMINISTER MAHMOOD NAHVI Includes 364 solved problems --fully explained Complete coverage of the fundamental, core concepts of electric circuits All-new chapters

More information

Phasor. Phasor Diagram of a Sinusoidal Waveform

Phasor. Phasor Diagram of a Sinusoidal Waveform Phasor A phasor is a vector that has an arrow head at one end which signifies partly the maximum value of the vector quantity ( V or I ) and partly the end of the vector that rotates. Generally, vectors

More information

1 Graphs of Sine and Cosine

1 Graphs of Sine and Cosine 1 Graphs of Sine and Cosine Exercise 1 Sketch a graph of y = cos(t). Label the multiples of π 2 and π 4 on your plot, as well as the amplitude and the period of the function. (Feel free to sketch the unit

More information

Questions Bank of Electrical Circuits

Questions Bank of Electrical Circuits Questions Bank of Electrical Circuits 1. If a 100 resistor and a 60 XL are in series with a 115V applied voltage, what is the circuit impedance? 2. A 50 XC and a 60 resistance are in series across a 110V

More information

3.2 Proving Identities

3.2 Proving Identities 3.. Proving Identities www.ck.org 3. Proving Identities Learning Objectives Prove identities using several techniques. Working with Trigonometric Identities During the course, you will see complex trigonometric

More information

Exercise 1: Series RLC Circuits

Exercise 1: Series RLC Circuits RLC Circuits AC 2 Fundamentals Exercise 1: Series RLC Circuits EXERCISE OBJECTIVE When you have completed this exercise, you will be able to analyze series RLC circuits by using calculations and measurements.

More information

2015 ELECTRICAL SCIENCE

2015 ELECTRICAL SCIENCE Summer 2015 ELECTRICAL SCIENCE TIME: THREE HOURS Maximum Marks : 100 Answer five questions, taking ANY TWO from GROUP A, ANY TWO from GROUP B and from GROUP C. All parts of a question (a,b,etc) should

More information

, ,54 A

, ,54 A AEB5EN2 Ground fault Example Power line 22 kv has the partial capacity to the ground 4,3.0 F/km. Decide whether ground fault currents compensation is required if the line length is 30 km. We calculate

More information

Svpwm Technique to Eliminate Harmonics and Power Factor Improvement Using Hybrid Power Filter and By Using Dsp Tms 320lf2407

Svpwm Technique to Eliminate Harmonics and Power Factor Improvement Using Hybrid Power Filter and By Using Dsp Tms 320lf2407 International Journal of Engineering Research and Development ISSN: 2278-067X, Volume 1, Issue 4 (June 2012), PP.17-25 www.ijerd.com Svpwm Technique to Eliminate Harmonics and Power Factor Improvement

More information