Use only for doing work with or for BC Hydro. Complete Legal Acknowledgement is at

Size: px
Start display at page:

Download "Use only for doing work with or for BC Hydro. Complete Legal Acknowledgement is at"

Transcription

1

2

3

4 Reviewed: Sergey Kryuchkov Distribution Engineering Scott Merriman Distribution Standards Valentina Dabic Distribution Planning Warren Quan Distribution Operations, FVO Raj Solanki Distribution Engineering Garry Walls Distribution Planning Steven Yau Distribution Standards Cheong Siew Distribution Planning Josh Patton Distribution Engineering Aaron Ellis Distribution Planning Travis Brown Distribution Engineering Page 2 of 12

5 Scope Definitions This standard defines the method for determining load unbalance emission limits for customers connecting to, or requesting connection to BC Hydro s public medium-voltage (MV) distribution network. It also describes the assessment process for verifying compliance with prescribed load unbalance emission limits. These terms are used in this section: Term Voltage Unbalance Electromagnetic Disturbance Public Network Private Network Emission Level Low Voltage (MV) Medium Voltage (MV) Cumulative Probability (CP[x]) Definition A condition in a poly-phase system in which the r.m.s. values of the line-to-line voltages (fundamental component), or the phase angles between consecutive line voltages, are not all equal. The degree of the inequality is expressed as the ratio of the negative sequence component to the positive sequence component. Any electrical or magnetic characteristic, either conducted or radiated, that affects the normal operation of equipment, or causes unwanted sensory experiences for people. Low or medium voltage networks are considered public when they serve, or are intended to serve, more than one customer from the same transformer. Low or medium voltage networks are considered private when they serve, and are only intended to serve, one customer from a dedicated transformer. The level of a given electromagnetic disturbance emitted from a particular device, equipment or system. Describes networks with a rated voltage of 0 V < U n 1,000 V. Describes networks with a rated voltage of 1,000 V < U n 35,000 V. The probability that the measured variable falls within a specified range [x]. For example, the CP95 value for a set of voltage measurements refers to the voltage quantity that was exceeded during 5% of the recorded period. Refer to Q1-02 for discussion about CP[x] statistical notation. Page 3 of 12

6 Application Q4 is intended for application by distribution planning engineers, regional engineers, designers and power quality engineers for: 1) Calculation of customer emission limits for approved operation on a BC Hydro-owned public MV network, and 2) Assessment of customer emission performance for confirmation of operational compliance with prescribed limits. Q4 emission limit determination is valid for all customers connected to, or requesting connection to, a BC Hydro-owned public MV network. Q4-07 specifically defines BC Hydro s emission limit requirements for load unbalance. What is Voltage Unbalance? Voltage unbalance occurs when the line voltages, phase voltages or phase angle separations in a three-phase system are not equal between all phases. The exact definitions, as found in IEC , are expressed as the ratios of the negative and zero-sequence components to the positive sequence component. BC Hydro considers only negative-sequence unbalance for network planning and customer emission limits (voltage and load), as it directly influences the safe and reliable operation of customer equipment. UU uuuuuuuuuu = UU 22 UU 11 (EQ 1) Where: UU 1 = pppppppppppppppp ssssssssssssssss voltage cccccccccccccccccc UU 2 = nnnnnnnnnnnnnnnn ssssssssssssssss voltage cccccccccccccccccc Where r.m.s. phase-to-phase magnitudes are known, voltage unbalance can be approximated using the algorithm represented below using both (EQ 2) and (EQ 3): Page 4 of 12

7 ββ UU uuuuuuuuuu = ββ (EQ 2) Where: ββ = UU aaaa 44 + UU bbbb 44 + UU cccc 44 ( UU aaaa 22 + UU bbbb 22 + UU cccc 22 ) 22 (EQ 3) Where r.m.s. voltage phasors are known, unbalance can be calculated directly by the determination of sequence components. This is accomplished using the algorithm represented below using both (EQ 4) and (EQ 5): UU uuuuuuuuuu = UU aa + aa 22 UU bb + aauu cc UU aa + aauu bb + aa 22 UU cc (EQ 4) Where: aa = = jj (EQ 5) Typical Causes The North American Equipment Manufacturers Association (NEMA) asserts that voltage unbalance at motor terminals should not exceed 1%, and that de-rating of motors should occur when that limit is violated. This is because the magnitude of the current unbalance may be 6 to 10 times as large as the voltage unbalance, causing increased heating and insulation breakdown, thereby leading to shorter life expectancy. Voltage unbalance on public utility networks is caused by load and/or impedance asymmetries. These can occur due to: voltage regulation equipment failure or mis-operation; unbalanced loads, particularly where use of long single-phase extensions is common practice; harmonic resonance conditions; undetected high-impedance fault conditions, or single-phase recloser or fuse operations. Page 5 of 12

8 Effects Voltage unbalance affects only three-phase customers. The primary effects of voltage unbalance are to shorten the life, decrease the efficiency, and degrade the performance of three-phase motors. Since a motor is a constant power device, if the voltage changes on any one phase then the current will compensate to maintain power output. In fact, the magnitude of the resulting current unbalance can be 6-10 times larger than the voltage unbalance (expressed as a percentage). For example, a 100 Hp motor running at full load with a 2.5% voltage unbalance will see a 27.7% current unbalance. Current unbalance causes additional heating in the motor windings. The temperature rise (ΔT + ) can be estimated using the following equation: TT + = TT bbbbbbbbbbbbbbbb UU uuuuuu(%) (EQ 6) Motor winding insulation life is reduced by 50% for each 10 C temperature rise. Using the formula above, it is estimated that a motor running at 80 C would see a temperature increase of 6.4 C when operating with just 2% voltage unbalance. Given the extreme relationship between voltage and current unbalance, the National Electrical Manufacturers Association (NEMA) recommends that motors be de-rated when voltage unbalance exceeds 1%. MV Customer Emission Limits Voltage unbalance limits for public MV networks are adapted for BC Hydro from assessment methods found in CAN/CSA This section describes the method for determining customer unbalance emission limits. BC Hydro s distribution network planning limits for negative sequence voltage unbalance (U unb2 ) are shown below in Table 1Error! Reference source not found.: Table 1 MV network voltage unbalance planning limits Network -Sequence (U unb2 %) Standard 2.0% Rural 3.0% Page 6 of 12

9 For assessment of emission limits the customer s location must first be determined to operate with either standard or rural planning limits. The following rules apply in sequence for determining the appropriate planning limit to use for subsequent calculations: 1) All customers served by substations found in Table 2 are allocated the rural planning limit. Table 2 - Rural distribution substations Rural Substations AFT CLB FRC HLD MTE SCM TDR AHM CLN FSR KAS MWN SEL TKD ASK CNL FST KWA MYE SMH UFR ATL DLK GDN LBH NAK SPN WAR AYH EDD GHL LYT NDR SPT WIN BBR ELT GVL MAS PSN SZM WOS BEL FM2 HBY MCB SBR TCK WWD 2) Customers served by substations not found in Table 2 that are located greater than 20 kms* from the substation are allocated the rural planning limit. 3) All remaining customers are allocated the standard planning limit. * Distance is measured by conductor length from the substation to the customer s MV point of interconnection. Step 1: Simplified Evaluation for Immediate Approval The simplified evaluation method involves comparison of the maximum single phase power equivalent of the load unbalance (SS uuuu ) with the short circuit power (SS ssss ) available at the customer s point of evaluation. 1) Immediate approval is granted if the following criteria is fulfilled: SS uuuu SS ssss 0.2% (EQ 7) SS uuuu Single phase power equivalent of the load unbalance at i. SS ssss Short circuit power at the point of evaluation See ES55 Q1-01. Page 7 of 12

10 Notes: 2) If immediate approval is not granted through application of the simplified evaluation method, then proceed to Step 2 for detailed limit calculations. 1) Available short circuit power (SS ssss ) refers to the calculated three phase fault level at the customer s point of evaluation. Step 2 Voltage Unbalance Emission Limit Calculation When customer installations do not qualify for immediate approval, their voltage unbalance emission limits must be calculated independently. Each customer on the MV network is assigned an emission limit in accordance with their share of the total capacity of the feeder to which they are connected. Limits for voltage unbalance are calculated using MV system planning levels, network capacity and the customer s load characteristics. Limits are presented as load current unbalance limits for ease of application. The equation below determines the negative sequence current unbalance emission limit for the installation, i. EE ll2ii = αα KK uuuu αα SS tt (EQ 8) ZZ 2 GG uuuuuu+llll SS ii EE ll2ii current unbalance emission limit for the installation (%). KK uuuu global contribution allocated for emissions from unbalanced installations in the MV and LV networks see Table 3 α summation law exponent - use 1.4. GG uuuuuu+llll network planning limit. SS ii SS tt ZZ 2 MV customer s agreed power (MVA). total supply capacity of the MV network (MVA). negative sequence impedance at the point of evaluation (Ω). Notes: 1) The customer s total current unbalance shall be limited to the lesser of: i. The emission limits prescribed by (EQ 8) of this standard; or ii. 50% negative sequence current unbalance. Page 8 of 12

11 The global contribution allocated for emissions from the unbalanced installations in the MV and LV networks is calculated considering line length, system configuration, and voltage levels. Values for KK uuuu and selection criteria are given in Table 3, below. Table 3 Global contribution allocation, KK uuuu. System Configuration High density load area with short lines or cables and meshed networks (Downtown Victoria). Mix of high density and suburban load areas with relatively short lines (< 20 km). Mix of medium and low density load areas with relatively long lines ( 20km). KK uuuu Step 3: Acceptance of higher emission levels Under some circumstances the BC Hydro MV system can tolerate emission levels higher than what might be calculated in Step 2. The following factors may provide some margin for allocating higher emission limits: Some customer installations do not produce significant voltage unbalance, thus some of that customer s voltage unbalance emission allocation could be re-assigned to others. Conditionally higher emission limits can be allowed when a customer is forced to operate under degraded network configurations through no fault of their own. If any of the above scenarios might apply to the emission limit assessment, consult a Power Quality Engineer for guidance. Performance Criteria Customer Emissions Assessment Customer emission performance with respect to current unbalance is assessed as follows: average negative sequence current unbalance shall be evaluated over 10 minute intervals for a minimum of 1000 intervals (1 week); Page 9 of 12

12 Meter Specifications Customer Response the recorded average 10 minute CP95 weekly values shall not exceed the prescribed emission limits, and the recorded average 10 minute CP99 weekly values shall not exceed 1.3 x the prescribed emission limits, and no recorded average 10 minute value shall exceed 1.5 x the prescribed emission limits. To determine compliance with unbalance requirements, measurements must be obtained using a power quality meter with a minimum of Class S performance as defined by CAN/CSA (Class A requires both zero and negative-sequence unbalance to be calculated, while Class S has Class A measurement specifications, but only measures negativesequence unbalance.) Some of the key required metering specifications are: average 12-cycle r.m.s. voltage measurements are required over 10 minute intervals; The effect of harmonics is minimized by the use of a filter or by using a DFT algorithm to extract the fundamental component for evaluation, and negative-sequence unbalance values are recorded and aggregated over 10-minute intervals. When a customer s operation violates prescribed emission limits on the BC Hydro system, mitigation must occur within 60 days of notification. Where mitigation requires a complex engineered solution, an extension of time may be granted, at BC Hydro s discretion, up to 90 days to allow for design, procurement, and commissioning of new equipment and/or process. BC Hydro Power Quality Engineers are available to assist with standards interpretation, data collection and analysis and compliance evaluation: They may, where applicable, offer general advice relating to potential mitigation options. They will not make recommendations of a specific nature for any customer facility. Page 10 of 12

13 BC Hydro Response Customers should act solely on advice from qualified professional electrical engineers, who are hired by the customer, when mitigation is required at their facility. When a customer s operation violates prescribed emission limits, BC Hydro will notify the customer of their violation. Written notification may be communicated via electronic or regular mail, and the notice will be clear that the customer s use of electricity is causing a disturbance to the BC Hydro electrical system. Where previous communication has been established electronically between BC Hydro and the customer, notification shall be considered suitable written notification. The written notice to the customer should outline that if a customer fails to meet emission limit requirements within the approved timeframe, then BC Hydro may disconnect the customer from the public network to prevent further disturbing operation. Where upgrades can be installed on the BC Hydro network to mitigate the disturbance, BC Hydro can offer to install such upgrades at the customer s cost. The customer s written confirmation for assuming responsibility of these costs should be obtained before installing upgrades for the benefit of the customer. References ES55 Q1-04 Customer Apparent Power Assessment ES55 Q2-07 Network Planning Limits Voltage Unbalance Sources Neilson, J.B., Buchholz, Vern L. BC Hydro Power Quality Guide. (2005). CAN/CSA-C Electromagnetic compatibility (EMC) - Part 2-2: Environment Compatibility levels for low frequency conducted disturbances and signalling in public low-voltage power supply systems. CAN/CSA-C Electromagnetic compatibility (EMC) - Part 3-13: Limits Assessment of emission limits for the connection of unbalanced installations to MV, HV and EHV power systems. CAN/CSA-C Electromagnetic compatibility (EMC) - Part 4-30: Testing and measurement techniques - Power quality measurement methods. ANSI/NEMA MG Motors and Generators. Page 11 of 12

14 Bolen, M.H.J. IEEE Power Engineering Review (November 2002). Definitions of Voltage Unbalance. US Department of Energy. Energy Tips: Motor Systems. Retrieved Dec. 15, 2013 from EC&M (1999). The Basics of Voltage Imbalance. Retrieved Dec. 15, 2013 from Page 12 of 12

Use only for doing work with or for BC Hydro. Complete Legal Acknowledgement is at

Use only for doing work with or for BC Hydro. Complete Legal Acknowledgement is at Reviewed: Sergey Kryuchkov Distribution Engineering Scott Merriman Distribution Standards Valentina Dabic Distribution Planning Warren Quan Distribution Operations, FVO Raj Solanki Distribution Engineering

More information

Southern Company Power Quality Policy

Southern Company Power Quality Policy Southern Company Power Quality Policy Alabama Power Georgia Power Gulf Power Mississippi Power i Table of Contents: Southern Company Power Quality Policy SCOPE AND PURPOSE... 1 DEFINITIONS... 2 I. HARMONICS...

More information

Emission Limits for Customer Facilities Connected to the Hydro-Québec Transmission System

Emission Limits for Customer Facilities Connected to the Hydro-Québec Transmission System Emission Limits for Customer Facilities Connected to the Hydro-Québec Transmission System Études de réseaux Direction Planification des actifs Hydro-Québec TransÉnergie Original in French dated December

More information

ISO Rules Part 500 Facilities Division 502 Technical Requirements Section Aggregated Generating Facilities Technical Requirements

ISO Rules Part 500 Facilities Division 502 Technical Requirements Section Aggregated Generating Facilities Technical Requirements Division 502 Technical Applicability 1(1) Section 502.1 applies to: Expedited Filing Draft August 22, 2017 the legal owner of an aggregated generating facility directly connected to the transmission system

More information

ISO Rules Part 500 Facilities Division 502 Technical Requirements Section Wind Aggregated Generating Facilities Technical Requirements

ISO Rules Part 500 Facilities Division 502 Technical Requirements Section Wind Aggregated Generating Facilities Technical Requirements Applicability 1(1) Section 502.1 applies to the ISO, and subject to the provisions of subsections 1(2), (3) and (4) to any: (a) a new wind aggregated generating facility to be connected to the transmission

More information

A robust voltage unbalance allocation methodology based on the IEC/TR guidelines

A robust voltage unbalance allocation methodology based on the IEC/TR guidelines University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 2009 A robust voltage unbalance allocation methodology based on the IEC/TR

More information

POWER CORPORATION. Power Quality. Specifications and Guidelines for Customers. Phone: Fax:

POWER CORPORATION. Power Quality. Specifications and Guidelines for Customers. Phone: Fax: POWER CORPORATION Power Quality Specifications and Guidelines for Customers Phone: 403-514-3700 Fax: 403-514-3719 1 GENERAL OVERVIEW........................................ 1.1 WHAT DOES THIS SPECIFICATION

More information

Table of Contents. Introduction... 1

Table of Contents. Introduction... 1 Table of Contents Introduction... 1 1 Connection Impact Assessment Initial Review... 2 1.1 Facility Design Overview... 2 1.1.1 Single Line Diagram ( SLD )... 2 1.1.2 Point of Disconnection - Safety...

More information

Power Quality Summary

Power Quality Summary Power Quality Summary This article provides an overview of how voltage harmonic distortion is managed on the distribution network and focuses on the current at future issues surround the connection of

More information

POWER QUALITY SPECIFICATIONS AND GUIDELINES FOR CUSTOMERS ENGINEERING STANDARDS CITY OF LETHBRIDGE ELECTRIC

POWER QUALITY SPECIFICATIONS AND GUIDELINES FOR CUSTOMERS ENGINEERING STANDARDS CITY OF LETHBRIDGE ELECTRIC CITY OF LETHBRIDGE ELECTRIC ENGINEERING STANDARDS POWER QUALITY SPECIFICATIONS AND GUIDELINES FOR CUSTOMERS The City of Lethbridge acknowledges the use of other utility industry and industry committee

More information

The development of the SA grid code on Power Quality emission. Dr. Gerhard Botha 2017/08/08

The development of the SA grid code on Power Quality emission. Dr. Gerhard Botha 2017/08/08 The development of the SA grid code on Power Quality emission Dr. Gerhard Botha 2017/08/08 Overview What is the Grid Code? What is Power Quality? Power Quality Management Principles Differences Challenges

More information

Harmonic Distortion Levels Measured at The Enmax Substations

Harmonic Distortion Levels Measured at The Enmax Substations Harmonic Distortion Levels Measured at The Enmax Substations This report documents the findings on the harmonic voltage and current levels at ENMAX Power Corporation (EPC) substations. ENMAX is concerned

More information

A comparative study of different transformer connections for railway power supplymitigation

A comparative study of different transformer connections for railway power supplymitigation Downloaded from orbit.dtu.dk on: Feb 5, 08 A comparative study of different transformer connections for railway power supplymitigation of voltage unbalance Firat, Gurkan; Yang, Guangya; Ali Hussain Al-Ali,

More information

POWER QUALITY REPORT

POWER QUALITY REPORT Power Quality Research Lab., I-7, Wyb. Wyspiaoskiego 27, 50-370 Wrocław, Poland phone +48713202626, fax +48713202006, email: zbigniew.leonowicz@pwr.wroc.pl Facility: XXX POWER QUALITY REPORT Start Monitoring:

More information

Wind Power Facility Technical Requirements CHANGE HISTORY

Wind Power Facility Technical Requirements CHANGE HISTORY CHANGE HISTORY DATE VERSION DETAIL CHANGED BY November 15, 2004 Page 2 of 24 TABLE OF CONTENTS LIST OF TABLES...5 LIST OF FIGURES...5 1.0 INTRODUCTION...6 1.1 Purpose of the Wind Power Facility Technical

More information

UNBALANCED CURRENT BASED TARRIF

UNBALANCED CURRENT BASED TARRIF UNBALANCED CURRENT BASED TARRIF Hossein ARGHAVANI Tehran Electricity Distribution (TBTB) Co.-Iran hosein.argavani@gmail.com ABSTRACT The voltage &current unbalance are serious power quality problems with

More information

Power Quality Requirements for Connection to the Transmission System

Power Quality Requirements for Connection to the Transmission System Power Quality Requirements for Connection to the Transmission System Revision: 1.0 Date: September 2015 Introduction and Purpose of this Document The purpose of this document is to provide clarity to Customers

More information

Generation and Load Interconnection Standard

Generation and Load Interconnection Standard Generation and Load Interconnection Standard Rev. 0A DRAFT Name Signature Date Prepared: Approved: VP Acceptance APEGGA Permit to Practice P-08200 TABLE OF CONTENTS 1.0 INTRODUCTION...5 1.1 Purpose...5

More information

ELECTRICITY ASSOCIATION SERVICES LIMITED 2001

ELECTRICITY ASSOCIATION SERVICES LIMITED 2001 ELECTRICITY ASSOCIATION SERVICES LIMITED 2001 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical,

More information

Company Directive STANDARD TECHNIQUE: SD1E/2. Technical Requirements for Customer Export Limiting Schemes

Company Directive STANDARD TECHNIQUE: SD1E/2. Technical Requirements for Customer Export Limiting Schemes Company Directive STANDARD TECHNIQUE: SD1E/2 Technical Requirements for Customer Export Limiting Schemes Policy Summary This Standard Technique specifies the requirements for customer owned Export Limitation

More information

Central or Local Compensation of Earth-Fault Currents in Non- Effectively Earthed Distribution Systems

Central or Local Compensation of Earth-Fault Currents in Non- Effectively Earthed Distribution Systems ODEN:TEDX/(TEE-7217)/1-12/(26) ndustrial Electrical Engineering and Automation entral or ocal ompensation of Earth-Fault urrents in Non- Effectively Earthed Distribution Systems Dept. of ndustrial Electrical

More information

SOURCES OF ERROR IN UNBALANCE MEASUREMENTS. V.J. Gosbell, H.M.S.C. Herath, B.S.P. Perera, D.A. Robinson

SOURCES OF ERROR IN UNBALANCE MEASUREMENTS. V.J. Gosbell, H.M.S.C. Herath, B.S.P. Perera, D.A. Robinson SOURCES OF ERROR IN UNBALANCE MEASUREMENTS V.J. Gosbell, H.M.S.C. Herath, B.S.P. Perera, D.A. Robinson Integral Energy Power Quality Centre School of Electrical, Computer and Telecommunications Engineering

More information

EDS FAULT LEVELS

EDS FAULT LEVELS Document Number: EDS 08-1110 Network(s): Summary: EPN, LPN, SPN ENGINEERING DESIGN STANDARD EDS 08-1110 FAULT LEVELS This standard provides guidance on the calculation, application and availability of

More information

Course No: 1 13 (3 Days) FAULT CURRENT CALCULATION & RELAY SETTING & RELAY CO-ORDINATION. Course Content

Course No: 1 13 (3 Days) FAULT CURRENT CALCULATION & RELAY SETTING & RELAY CO-ORDINATION. Course Content Course No: 1 13 (3 Days) FAULT CURRENT CALCULATION & RELAY SETTING & RELAY CO-ORDINATION Sr. No. Course Content 1.0 Fault Current Calculations 1.1 Introduction to per unit and percentage impedance 1.2

More information

FACILITY RATINGS METHOD TABLE OF CONTENTS

FACILITY RATINGS METHOD TABLE OF CONTENTS FACILITY RATINGS METHOD TABLE OF CONTENTS 1.0 PURPOSE... 2 2.0 SCOPE... 3 3.0 COMPLIANCE... 4 4.0 DEFINITIONS... 5 5.0 RESPONSIBILITIES... 7 6.0 PROCEDURE... 8 6.4 Generating Equipment Ratings... 9 6.5

More information

LIGHTNING OVERVOLTAGES AND THE QUALITY OF SUPPLY: A CASE STUDY OF A SUBSTATION

LIGHTNING OVERVOLTAGES AND THE QUALITY OF SUPPLY: A CASE STUDY OF A SUBSTATION LIGHTNING OVERVOLTAGES AND THE QUALITY OF SUPPLY: A CASE STUDY OF A SUBSTATION Andreas SUMPER sumper@citcea.upc.es Antoni SUDRIÀ sudria@citcea.upc.es Samuel GALCERAN galceran@citcea.upc.es Joan RULL rull@citcea.upc.es

More information

Symmetrical Components in Analysis of Switching Event and Fault Condition for Overcurrent Protection in Electrical Machines

Symmetrical Components in Analysis of Switching Event and Fault Condition for Overcurrent Protection in Electrical Machines Symmetrical Components in Analysis of Switching Event and Fault Condition for Overcurrent Protection in Electrical Machines Dhanashree Kotkar 1, N. B. Wagh 2 1 M.Tech.Research Scholar, PEPS, SDCOE, Wardha(M.S.),India

More information

POWER SYSTEM ANALYSIS TADP 641 SETTING OF OVERCURRENT RELAYS

POWER SYSTEM ANALYSIS TADP 641 SETTING OF OVERCURRENT RELAYS POWER SYSTEM ANALYSIS TADP 641 SETTING OF OVERCURRENT RELAYS Juan Manuel Gers, PhD Protection coordination principles Relay coordination is the process of selecting settings that will assure that the relays

More information

Draft Kenya Standard for Balloting Not to be Cited as Kenya Standard

Draft Kenya Standard for Balloting Not to be Cited as Kenya Standard KENYA STANDARD KS 2236-3:2010 ICS 03.120.10; 91.140.50 Electricity Supply Quality of supply Part 3: Voltage characteristics, compatibility levels, limits and assessment methods BALLOT DRAFT, MAY 2010 KEBS

More information

Generation and Load Interconnection Standard

Generation and Load Interconnection Standard Generation and Load Interconnection Standard Rev. 0 DRAFT Name Signature Date Prepared: Approved: VP Acceptance APEGGA Permit to Practice P-08200 TABLE OF CONTENTS 1.0 INTRODUCTION...5 1.1 Purpose...5

More information

Electric Circuits II Three-Phase Circuits. Dr. Firas Obeidat

Electric Circuits II Three-Phase Circuits. Dr. Firas Obeidat Electric Circuits II Three-Phase Circuits Dr. Firas Obeidat 1 Table of Contents 1 Balanced Three-Phase Voltages 2 Balanced Wye-Wye Connection 3 Balanced Wye-Delta Connection 4 Balanced Delta-Delta Connection

More information

OVERVIEW OF IEEE STD GUIDE FOR VOLTAGE SAG INDICES

OVERVIEW OF IEEE STD GUIDE FOR VOLTAGE SAG INDICES OVERVIEW OF IEEE STD 1564-2014 GUIDE FOR VOLTAGE SAG INDICES ABSTRACT Daniel SABIN Electrotek Concepts USA d.sabin@ieee.org IEEE Std 1564-2014 Guide for Voltage Sag Indices is a new standard that identifies

More information

Harmonic Planning Levels for Australian Distribution Systems

Harmonic Planning Levels for Australian Distribution Systems Abstract Harmonic Planning Levels for Australian Distribution Systems V.J. Gosbell 1, V.W. Smith 1, D. Robinson 1 and W. Miller 2 1 Integral Energy Power Quality Centre, University of Wollongong 2 Standards

More information

Short-circuits in ES Short-circuit: cross fault, quick emergency change in ES the most often fault in ES transient events occur during short-circuits

Short-circuits in ES Short-circuit: cross fault, quick emergency change in ES the most often fault in ES transient events occur during short-circuits Short-circuits in ES Short-circuit: cross fault, quick emergency change in ES the most often fault in ES transient eents occur during short-circuits Short-circuit formation: fault connection between phases

More information

HPC-9DJ

HPC-9DJ Manual: Distribution Design Manual Volume 1 Quality of Electricity Supply Standard Number: HPC-5DC-07-0001-2012 Document Control Author Name: Anthony Seneviratne Position: Senior Standards Engineer Document

More information

Problems connected with Commissioning of Power Transformers

Problems connected with Commissioning of Power Transformers Problems connected with Commissioning of Power Transformers ABSTRACT P Ramachandran ABB India Ltd, Vadodara, India While commissioning large Power Transformers, certain abnormal phenomena were noticed.

More information

ELECTRICITY SUPPLY POWER QUALITY AND RELIABILITY Code of Practice

ELECTRICITY SUPPLY POWER QUALITY AND RELIABILITY Code of Practice ICS 29.240:03.120 Zambian Standard ELECTRICITY SUPPLY POWER QUALITY AND RELIABILITY Code of Practice Part 3: Application Guidelines for Enterprises ZAMBIA BUREAU OF STANDARD DATE OF PUBLICATION This Zambian

More information

POWER QUALITY AND SAFETY

POWER QUALITY AND SAFETY POWER QUALITY AND SAFETY Date : November 27, 2015 Venue : 40 th IIEE Annual National Convention and 3E XPO 2015 PRESENTATION OUTLINE Power Quality I. INTRODUCTION II. GRID CODE REQUIREMENTS III. ERC RESOLUTION

More information

ADVANCED CONTROLS FOR MITIGATION OF FLICKER USING DOUBLY-FED ASYNCHRONOUS WIND TURBINE-GENERATORS

ADVANCED CONTROLS FOR MITIGATION OF FLICKER USING DOUBLY-FED ASYNCHRONOUS WIND TURBINE-GENERATORS ADVANCED CONTROLS FOR MITIGATION OF FLICKER USING DOUBLY-FED ASYNCHRONOUS WIND TURBINE-GENERATORS R. A. Walling, K. Clark, N. W. Miller, J. J. Sanchez-Gasca GE Energy USA reigh.walling@ge.com ABSTRACT

More information

ELEC351 Lecture Notes Set 1

ELEC351 Lecture Notes Set 1 ELEC351 Lecture Notes Set 1 There is a tutorial on Monday September 10! You will do the first workshop problem in the tutorial. Bring a calculator. The course web site is: www.ece.concordia.ca/~trueman/web_page_351.htm

More information

Connection of Embedded Generating Plant up to 5MW

Connection of Embedded Generating Plant up to 5MW Engineering Recommendation No.3 of the Electricity Distribution Code Connection of Embedded Generating Plant up to 5MW Version 1.0 30th November 2005 Prepared by: Al Ain Distribution Company, Abu Dhabi

More information

Fault Ride Through Technical Assessment Report Template

Fault Ride Through Technical Assessment Report Template Fault Ride Through Technical Assessment Report Template Notes: 1. This template is intended to provide guidelines into the minimum content and scope of the technical studies required to demonstrate compliance

More information

GRID CODE COMPATIBLE PROTECTION SCHEME FOR SMART GRIDS

GRID CODE COMPATIBLE PROTECTION SCHEME FOR SMART GRIDS GRID CODE COMPATIBLE PROTECTION SCHEME FOR SMART GRIDS Hannu LAAKSONEN ABB Oy Finland hannu.laaksonen@fi.abb.com ABSTRACT Medium-voltage (MV) network short-circuit protection operation time delays have

More information

SAFETY ISSUES RELATED TO THE CONNECTION OF MV AND HV GROUNDING

SAFETY ISSUES RELATED TO THE CONNECTION OF MV AND HV GROUNDING SAFETY ISSUES RELATED TO THE CONNECTION OF MV AND HV GROUNDING Y. Rajotte J. Fortin G. Lessard Hydro-Québec, Canada Hydro-Québec, Canada Hydro-Québec, Canada e-mails: rajotte.yves@ireq.ca fortin.jacques@ireq.ca

More information

MV network design & devices selection EXERCISE BOOK

MV network design & devices selection EXERCISE BOOK MV network design & devices selection EXERCISE BOOK EXERCISES 01 - MV substation architectures 02 - MV substation architectures 03 - Industrial C13-200 MV substation 04 - Max. distance between surge arrester

More information

ECE 528 Understanding Power Quality

ECE 528 Understanding Power Quality ECE 528 Understanding Power Quality http://www.ece.uidaho.edu/ee/power/ece528/ Paul Ortmann portmann@uidaho.edu 208-733-7972 (voice) Lecture 19 1 Today Flicker Power quality and reliability benchmarking

More information

Experience in the application of IEC/TR to harmonic allocation in transmission systems

Experience in the application of IEC/TR to harmonic allocation in transmission systems University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2006 Experience in the application of IEC/TR 61000-3-6

More information

[71 Baran M.E and WU, F. "Network rcconfiguration in distribution system for. References:

[71 Baran M.E and WU, F. Network rcconfiguration in distribution system for. References: References: (I) William H. Kersting, "Distribution system modeling and Analysis", CRC Press, Boca-Raton, langdon. September I 994. (2) M.H.J. Bollen, Understanding power quality problems- voltage sags

More information

Transmission Interconnection Requirements for Inverter-Based Generation

Transmission Interconnection Requirements for Inverter-Based Generation Transmission Requirements for Inverter-Based Generation June 25, 2018 Page 1 Overview: Every generator interconnecting to the transmission system must adhere to all applicable Federal and State jurisdictional

More information

Functional Specification Revision History

Functional Specification Revision History Functional Specification Revision History Revision Description of Revision By Date V1D1 For Comments Yaoyu Huang October 27, 2016 V1 For Issuance Yaoyu Huang November 21, 2016 Section 5.3 updated Transformer

More information

North-West University, 2 Eskom SOC South Africa

North-West University, 2 Eskom SOC South Africa Electricity Supply to Africa and Developing Economies. Challenges and opportunities. Technology solutions and innovations for developing economies Advances in Power Quality Requirements for RPPs MG BOTHA

More information

Roadmap For Power Quality Standards Development

Roadmap For Power Quality Standards Development Roadmap For Power Quality Standards Development IEEE Power Quality Standards Coordinating Committee Authors: David B. Vannoy, P.E., Chair Mark F. McGranghan, Vice Chair S. Mark Halpin, Vice Chair D. Daniel

More information

Relay-assisted commissioning

Relay-assisted commissioning Relay-assisted commissioning by Casper Labuschagne and Normann Fischer, Schweitzer Engineering Laboratories (SEL) Power transformer differential relays were among the first protection relays to use digital

More information

ELC 131 CIRCUIT ANALYSIS I

ELC 131 CIRCUIT ANALYSIS I ELC 131 CIRCUIT ANALYSIS I COURSE DESCRIPTION: Prerequisites: None Corequisites: MAT 121 This course introduces DC and AC electricity with emphasis on circuit analysis, measurements, and operation of test

More information

A STUDY CASE ON HARMONIC DISTORTION CREATED BY WIND TURBINES

A STUDY CASE ON HARMONIC DISTORTION CREATED BY WIND TURBINES C I R E D 8 th International Conference on Electricity Distribution Turin, 6-9 June 5 A STUDY CASE ON HARMONIC DISTORTION CREATED BY WIND TURBINES Stavros PAPATHANASSIOU Michael PAPADOPOULOS National Technical

More information

Power quality report. A Manufacturing Plant

Power quality report. A Manufacturing Plant Power quality report Prepared for A Manufacturing Plant 6 May 2016 by Dr Angelo De Francesco Power Quality Consultant Page 1 Contents 1 EXECUTIVE SUMMARY... 4 2 INTRODUCTION... 5 2.1 SITE MONITORED...

More information

PRACTICAL PROBLEMS WITH SUBSTATION EARTHING

PRACTICAL PROBLEMS WITH SUBSTATION EARTHING 1 PRACTICAL PROBLEMS WITH SUBSTATION EARTHING Dr Hendri Geldenhuys Craig Clark Eskom Distribution Technology This paper considers the issues around substation sites where the soil resistivity is of particularly

More information

ADVANCED VECTOR SHIFT ALGORITHM FOR ISLANDING DETECTION

ADVANCED VECTOR SHIFT ALGORITHM FOR ISLANDING DETECTION 23 rd International Conference on Electricity Distribution Lyon, 5-8 June 25 Paper 48 ADVANCED VECT SHIFT ALGITHM F ISLANDING DETECTION Murali KANDAKATLA Hannu LAAKSONEN Sudheer BONELA ABB GISL India ABB

More information

WFPS1 WIND FARM POWER STATION GRID CODE PROVISIONS

WFPS1 WIND FARM POWER STATION GRID CODE PROVISIONS WFPS1 WIND FARM POWER STATION GRID CODE PROVISIONS WFPS1.1 INTRODUCTION 2 WFPS1.2 OBJECTIVE 2 WFPS1.3 SCOPE 3 WFPS1.4 FAULT RIDE THROUGH REQUIREMENTS 4 WFPS1.5 FREQUENCY REQUIREMENTS 5 WFPS1.6 VOLTAGE

More information

OPEN-PHASE DETECTION TECHNIQUES FOR CRITICAL STANDBY SUPPLIES

OPEN-PHASE DETECTION TECHNIQUES FOR CRITICAL STANDBY SUPPLIES OPEN-PHASE DETECTION TECHNIQUES FOR CRITICAL STANDBY SUPPLIES U AJMAL, GE Grid Solutions UK Ltd, usman.ajmal@ge.com S SUBRAMANIAN, GE Grid Solutions UK Ltd, sankara.subramanian@ge.com H Ha GE Grid Solutions

More information

P.O (November 2009) This is an unofficial translation of the latest draft of the Spanish grid code. Source: Jason MacDowell, GE Energy

P.O (November 2009) This is an unofficial translation of the latest draft of the Spanish grid code. Source: Jason MacDowell, GE Energy INSTALLATIONS CONNECTED TO A POWER TRANSMISSION SYSTEM AND GENERATING EQUIPMENT: MINIMUM DESIGN REQUIREMENTS, EQUIPMENT, OPERATIONS, COMMISSIONING AND SAFETY. P.O. 12.2 (November 2009) This is an unofficial

More information

Southern Company Interconnection Requirements for Inverter-Based Generation

Southern Company Interconnection Requirements for Inverter-Based Generation Southern Company Interconnection Requirements for Inverter-Based Generation September 19, 2016 Page 1 of 16 All inverter-based generation connected to Southern Companies transmission system (Point of Interconnection

More information

Sizing the neutral wire cross-section and minimization of neutral currents using microgeneration in low voltage networks

Sizing the neutral wire cross-section and minimization of neutral currents using microgeneration in low voltage networks Sizing the neutral wire cross-section and minimization of neutral currents using microgeneration in low voltage networks André Braga Instituto Superior Técnico Av. Rovisco Pais, 1049-001 Lisbon, Portugal

More information

Harmonic impact of photovoltaic inverter systems on low and medium voltage distribution systems

Harmonic impact of photovoltaic inverter systems on low and medium voltage distribution systems University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2006 Harmonic impact of photovoltaic inverter systems on low and

More information

Contents. All Rights Reserved

Contents. All Rights Reserved Code of Practice 290 Issue 1 January 2004 Power Quality Contents 1 Introduction 2 Scope 3 Definitions 4 Elements of Power Quality 5 Power Quality Standards 6 Power Quality Measurement Standards 7 Practical

More information

UNIT-4 POWER QUALITY MONITORING

UNIT-4 POWER QUALITY MONITORING UNIT-4 POWER QUALITY MONITORING Terms and Definitions Spectrum analyzer Swept heterodyne technique FFT (or) digital technique tracking generator harmonic analyzer An instrument used for the analysis and

More information

LIMITS FOR TEMPORARY OVERVOLTAGES IN ENGLAND AND WALES NETWORK

LIMITS FOR TEMPORARY OVERVOLTAGES IN ENGLAND AND WALES NETWORK LIMITS FOR TEMPORARY OEROLTAGES IN ENGLAND AND WALES NETWORK This document is for internal and contract specific use only. Disclaimer NGG and NGET or their agents, servants or contractors do not accept

More information

ETSI EN V1.2.1 ( )

ETSI EN V1.2.1 ( ) EN 300 132-3 V1.2.1 (2003-08) European Standard (Telecommunications series) Environmental Engineering (EE); Power supply interface at the input to telecommunications equipment; Part 3: Operated by rectified

More information

, ,54 A

, ,54 A AEB5EN2 Ground fault Example Power line 22 kv has the partial capacity to the ground 4,3.0 F/km. Decide whether ground fault currents compensation is required if the line length is 30 km. We calculate

More information

In Class Examples (ICE)

In Class Examples (ICE) In Class Examples (ICE) 1 1. A 3φ 765kV, 60Hz, 300km, completely transposed line has the following positive-sequence impedance and admittance: z = 0.0165 + j0.3306 = 0.3310 87.14 o Ω/km y = j4.67 410-6

More information

INTERIM ARRANGEMENTS FOR GRID TIED DISTRIBUTED ENERGY RESOURCES. Technical Requirements for Grid-Tied DERs

INTERIM ARRANGEMENTS FOR GRID TIED DISTRIBUTED ENERGY RESOURCES. Technical Requirements for Grid-Tied DERs INTERIM ARRANGEMENTS FOR GRID TIED DISTRIBUTED ENERGY RESOURCES Technical Requirements for Grid-Tied DERs Projects Division 6/29/2017 Contents 1 Definitions and Acronyms... 1 2 Technical Interconnection

More information

Transmission Facilities Rating Methodology for Florida

Transmission Facilities Rating Methodology for Florida Document title Transmission Facilities Rating Methodology for Florida Document number EGR-TRMF-00001 Applies to: Transmission Engineering, Transmission System Operations, and Transmission Planning Duke

More information

INSTALLATION MANUAL. Model: Smart Analyzer Manufacturer: Smart Impulse. Power meter with consumption breakdown by use 03/12/13

INSTALLATION MANUAL. Model: Smart Analyzer Manufacturer: Smart Impulse. Power meter with consumption breakdown by use 03/12/13 INSTALLATION MANUAL Model: Smart Analyzer Manufacturer: Smart Impulse Power meter with consumption breakdown by use 03/12/13 Table of contents Table of contents... 2 1. Introduction... 3 2. Installation

More information

Harmonic Aggregation Techniques for Power Quality Assesment A review of different methods

Harmonic Aggregation Techniques for Power Quality Assesment A review of different methods Harmonic Aggregation Techniques for Power Quality Assesment A review of different methods M.M.Share Pasand Department of Electrical and Electronics Engineering Standard Research Institute- SRI Alborz,

More information

Intermittent Renewable Resources (Wind and PV) Distribution Connection Code (DCC) At Medium Voltage (MV)

Intermittent Renewable Resources (Wind and PV) Distribution Connection Code (DCC) At Medium Voltage (MV) Intermittent Renewable Resources (Wind and PV) Distribution Connection Code (DCC) At Medium Voltage (MV) IRR-DCC-MV 1. Introduction 1 IRR-DCC-MV 2. Scope 1 IRR-DCC-MV 2.1. General 1 IRR-DCC-MV 2.2. Affected

More information

Aspects of Network Harmonic Impedance Modelling in High Voltage Distribution Networks

Aspects of Network Harmonic Impedance Modelling in High Voltage Distribution Networks Aspects of Network Harmonic Impedance Modelling in High Voltage Distribution Networks Diptargha Chakravorty Indian Institute of Technology Delhi (CES) New Delhi, India diptarghachakravorty@gmail.com Jan

More information

1C.4.1 Harmonic Distortion

1C.4.1 Harmonic Distortion 2 1 Ja n 1 4 2 1 J a n 1 4 Vo l.1 -Ge n e r a l;p a r tc-p o we r Qu a lity 1. Scope This handbook section contains of PacifiCorp s standard for harmonic distortion (electrical pollution) control, as well

More information

Test Specification for Type Approval

Test Specification for Type Approval A2 (1991) (Rev.1 1993) (Rev.2 1997) (Rev. 2.1 July 1999) (Rev.3 May 2001) (Corr.1 July 2003) (Rev.4 May 2004) (Rev.5 Dec 2006) (Rev.6 Oct 2014) Test Specification for Type Approval.1 General This Test

More information

Attenuation and propagation of voltage unbalance in radial distribution networks

Attenuation and propagation of voltage unbalance in radial distribution networks University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2015 Attenuation and propagation of voltage unbalance

More information

Overcurrent and Overload Protection of AC Machines and Power Transformers

Overcurrent and Overload Protection of AC Machines and Power Transformers Exercise 2 Overcurrent and Overload Protection of AC Machines and Power Transformers EXERCISE OBJECTIVE When you have completed this exercise, you will understand the relationship between the power rating

More information

Harmonic distortion analysis on the MV and LV distribution networks: problems, influencing factors and possible solutions

Harmonic distortion analysis on the MV and LV distribution networks: problems, influencing factors and possible solutions Harmonic distortion analysis on the MV and LV distribution networks: problems, influencing factors and possible solutions Fernando Bastião and Humberto Jorge Department of Electrical Engineering and Computers

More information

StarSine Power Quality Products

StarSine Power Quality Products StarSine Power Quality Products Medium Voltage Static Voltage Regulator ( MV SVR ) MV SVR PROTECTS THE WHOLE FACILITY LOADS FROM VOLTAGE SAGS CAUSED BY UTILITY GRID FAULTS Voltage sags, whether due to

More information

Assessing network compliance for power quality performance

Assessing network compliance for power quality performance University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 214 Assessing network compliance for power quality

More information

Harmonic Distortion and Variable Frequency Drives

Harmonic Distortion and Variable Frequency Drives Harmonic Distortion and Variable Frequency Drives Definitions Variable Frequency Drives (VFDs); sometimes referred to as variable speed drives. Harmonic Distortion is a measure of the amount of deviation

More information

Monitoring Locations in Smart Grids 14PESGM2391

Monitoring Locations in Smart Grids 14PESGM2391 1 Panel Session PQ Monitoring in the Era of Smart Grids Monitoring Locations in Smart Grids 14PESGM2391 Francisc Zavoda IREQ (HQ) QUÉBEC, CANADA Power System and Monitoring Locations 2 Power System Classic

More information

Cork Institute of Technology. Autumn 2008 Electrical Energy Systems (Time: 3 Hours)

Cork Institute of Technology. Autumn 2008 Electrical Energy Systems (Time: 3 Hours) Cork Institute of Technology Bachelor of Science (Honours) in Electrical Power Systems - Award Instructions Answer FIVE questions. (EELPS_8_Y4) Autumn 2008 Electrical Energy Systems (Time: 3 Hours) Examiners:

More information

Effects of Harmonic Distortion I

Effects of Harmonic Distortion I Effects of Harmonic Distortion I Harmonic currents produced by nonlinear loads are injected back into the supply systems. These currents can interact adversely with a wide range of power system equipment,

More information

Deploying Current Transformers in Applications Greater Than 200 A

Deploying Current Transformers in Applications Greater Than 200 A Deploying Current Transformers in Applications Greater Than 200 A Andrew Schaeffler Step-down Current Transformers (CTs) are common, and useful, in large motor applications. They provide isolation between

More information

ELECTRICAL POWER TRANSMISSION TRAINER

ELECTRICAL POWER TRANSMISSION TRAINER ELECTRICAL POWER TRANSMISSION TRAINER ELECTRICAL POWER TRANSMISSION TRAINER This training system has been designed to provide the students with a fully comprehensive knowledge in Electrical Power Engineering

More information

TPL is a new Reliability Standard to specifically address the Stage 2 directives in Order No. 779.

TPL is a new Reliability Standard to specifically address the Stage 2 directives in Order No. 779. Transformer Thermal Impact Assessment White Paper Project 2013-03 (Geomagnetic Disturbance Mitigation) TPL-007-12 Transmission System Planned Performance for Geomagnetic Disturbance Events Background On

More information

PSV3St _ Phase-Sequence Voltage Protection Stage1 (PSV3St1) Stage2 (PSV3St2)

PSV3St _ Phase-Sequence Voltage Protection Stage1 (PSV3St1) Stage2 (PSV3St2) 1MRS752324-MUM Issued: 3/2000 Version: D/23.06.2005 Data subject to change without notice PSV3St _ Phase-Sequence Voltage Protection Stage1 (PSV3St1) Stage2 (PSV3St2) Contents 1. Introduction... 2 1.1

More information

RAIDK, RAIDG, RAPDK and RACIK Phase overcurrent and earth-fault protection assemblies based on single phase measuring elements

RAIDK, RAIDG, RAPDK and RACIK Phase overcurrent and earth-fault protection assemblies based on single phase measuring elements RAIDK, RAIDG, RAPDK and RACIK Phase overcurrent and earth-fault protection assemblies based on single phase measuring elements User s Guide General Most faults in power systems can be detected by applying

More information

Impact Assessment Generator Form

Impact Assessment Generator Form Impact Assessment Generator Form This connection impact assessment form provides information for the Connection Assessment and Connection Cost Estimate. Date: (dd/mm/yyyy) Consultant/Developer Name: Project

More information

Tuningintobetter power quality

Tuningintobetter power quality Technology Review Third harmonic filters Tuningintobetter power quality Jouko Jaakkola Your PC screen flickers, stops flickering, starts again... Irritating to be sure, and perhaps the first visible sign

More information

Power Quality in High Density Residential Distribution Grids

Power Quality in High Density Residential Distribution Grids Power Quality in High Density Residential Distribution Grids Gustav R. Krüger, Raj M. Naidoo Abstract Research in the field of power quality challenges in distribution grids is gaining a strong foothold.

More information

Voltage Sag Mitigation by Neutral Grounding Resistance Application in Distribution System of Provincial Electricity Authority

Voltage Sag Mitigation by Neutral Grounding Resistance Application in Distribution System of Provincial Electricity Authority Voltage Sag Mitigation by Neutral Grounding Resistance Application in Distribution System of Provincial Electricity Authority S. Songsiri * and S. Sirisumrannukul Abstract This paper presents an application

More information

1

1 Guidelines and Technical Basis Introduction The document, Power Plant and Transmission System Protection Coordination, published by the NERC System Protection and Control Subcommittee (SPCS) provides extensive

More information

ES-777-MV-P2_A1 03/01/10

ES-777-MV-P2_A1 03/01/10 ENGINEERING SPECIFICATION SYMCOM MODEL 777-MV-P2 Electronic Overload Relay PART 1 GENERAL 1.1 REFERENCES A. UL 508 Industrial Control Equipment Underwriters Laboratories B. IEC 60947 Low Voltage Switchgear

More information

Company Directive STANDARD TECHNIQUE: SD5F. Relating to connecting multiple small low voltage connections with limited network analysis

Company Directive STANDARD TECHNIQUE: SD5F. Relating to connecting multiple small low voltage connections with limited network analysis Company Directive STANDARD TECHNIQUE: SD5F Relating to connecting multiple small low voltage connections with limited network analysis Policy Summary This document specifies the procedure for connecting

More information

Transformer Thermal Impact Assessment White Paper TPL Transmission System Planned Performance for Geomagnetic Disturbance Events

Transformer Thermal Impact Assessment White Paper TPL Transmission System Planned Performance for Geomagnetic Disturbance Events Transformer Thermal Impact Assessment White Paper TPL-007-2 Transmission System Planned Performance for Geomagnetic Disturbance Events Background Proposed TPL-007-2 includes requirements for entities to

More information