Active Q-switching in an erbium-doped fiber laser using an ultrafast silicon-based variable optical attenuator

Size: px
Start display at page:

Download "Active Q-switching in an erbium-doped fiber laser using an ultrafast silicon-based variable optical attenuator"

Transcription

1 Active Q-switching in an erbium-doped fiber laser using an ultrafast silicon-based variable optical attenuator You Min Chang, 1 Junsu Lee, 1 Young Min Jhon, and Ju Han Lee 1,* 1 School of Electrical and Computer Engineering, University of Seoul, Seoul 13-73, Korea National Agenda Research Division, Korea Institute of Science and Technology (KIST), Seoul, Korea *j.h.lee@ieee.org Abstract: Presented herein is the use of an ultrafast Si-based variable optical attenuator (VOA) as a Q-switch for rare earth-doped fiber lasers. The ultrafast VOA is based on a forward-biased p-i-n diode integrated with a ridge waveguide, which was originally designed and optimized for WDM channel power equalization in optical communication systems. By incorporating a Si-based VOA with a transient time of ~1 ns into an erbium-doped fiber-based Fabry-Perot cavity it has been shown that stable Q-switched pulses possessing a temporal width of less than ~ ns can be readily obtained at a repetition rate of up to ~1 MHz. The laser s peak power of ~3 W is shown to be obtainable at khz with a slope efficiency of ~1%. 11 Optical Society of America OCIS codes: (.351) Lasers, fiber; (1.35) Lasers, Q-switched; (13.31) Integrated optics devices. References and links 1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, High power fiber lasers: current status and future perspectives, J. Opt. Soc. Am. B 7(11), B3 B9 (1).. R. Paschotta, R. Häring, E. Gini, H. Melchior, U. Keller, H. L. Offerhaus, and D. J. Richardson, Passively Q- switched.1-mj fiber laser system at 1.53 mum, Opt. Lett. (), 3 39 (1999). 3. Z. J. Chen, A. B. Grudinin, J. Porta, and J. D. Minelly, Enhanced Q switching in double-clad fiber lasers, Opt. Lett. 3(), 5 5 (199).. A. F. El-Sherif and T. A. King, High-energy, high-brightness Q-switched Tm 3+ -doped fiber laser using an electro-optic modulator, Opt. Commun. 1( ), (3). 5. D. Huang, W. Liu, and C. C. Yang, Q-switched all-fiber laser with an acoustically modulated fiber attenuator, IEEE Photon. Technol. Lett. 1(9), ().. Y. Joeng, Y. Kim, A. Liem, K. Moerl, S. Hoefer, A. Tuennermann, and K. Oh, Q-switching of Yb 3+ -doped fiber laser using a novel micro-optical wavelength on micro-actuating platform light modulator, Opt. Express 13(5), (5). 7. P. Pérez-Millán, A. Díez, M. V. Andrés, D. Zalvidea, and R. Duchowicz, Q-switched all-fiber laser based on magnetostriction modulation of a Bragg grating, Opt. Express 13(13), (5).. A. Creunteanu, D. Bouyge, D. Sabourdy, and P. Blondy, V. couderc, L. Grossard, P. H. Pioger, and A. barthelemy, Deformable micro-electro-mechanical mirror integration in a fibre laser Q-switch system, J. Opt. A, Pure Appl. Opt., S37 S351 (). 9. K. Kieu and M. Mansuripur, Active Q switching of a fiber laser with a microsphere resonator, Opt. Lett. 31(), (). 1. F. Bammer and R. Petkovsek, Q-switching of a fiber laser with a single crystal photo-elastic modulator, Opt. Express 15(1), (7). 11. R. J. Williams, N. Jovanovic, G. D. Marshall, and M. J. Withford, All-optical, actively Q-switched fiber laser, Opt. Express 1(), (1). 1. C. Lee, A MEMS VOA using electrothermal actuators, J. Lightwave Technol. 5(), 9 9 (7). 13. Y.-H. Wu, Y.-H. Lin, Y.-Q. Lu, H. Ren, Y.-H. Fan, J. Wu, and S.-T. Wu, Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal, Opt. Express 1(5), 3 39 (). 1. M. Asghari, Silicon photonics: a low cost integration platform for datacom and telecom applications, Proc. OFC/NFOEC, paper NThA (). # $15. USD Received Sep 11; revised 1 Oct 11; accepted 9 Dec 11; published 1 Dec 11 (C) 11 OSA 19 December 11 / Vol. 19, No. 7 / OPTICS EXPRESS 911

2 15. R. Soref, The past, present, and future of silicon photonics, IEEE J. Sel. Top. Quantum Electron. 1(), (). 1. B. Jalali and S. Fathpour, Silicon photonics, J. Lightwave Technol. (1), 15 (). 17. S. Park, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, H. Nishi, R. Kou, and S.-I. Itabashi, Influence of carrier lifetime on performance of silicon p-i-n variable optical attenuators fabricated on submicrometer rib waveguides, Opt. Express 1(11), (1). 1. Introduction Laser Q-switching is a well-known technique used for the generation of high energy pulses that have nanosecond-order temporal widths. In particular, Q-switched rare-earth-doped fiber lasers have recently enjoyed a great deal of technical and industrial interest, since compact fiber-integrated lasers can be easily incorporated into a variety of material processing applications [1]. Q-switching can be classified into passive and active techniques, depending on use of active modulation of the laser cavity Q-factor. In the case of passive Q-switching, a saturable absorber is incorporated into the cavity, which acts as a self-operating Q-switch. However, even if the passive Q-switching is simple and robust, it has a fundamental limitation in regards to the flexible control of the repetition rate and timing synchronization due to the fixed physical properties of the saturable absorbers []. Active Q-switching uses an externally-modulated Q-switch, which allows for flexible repetition rate changes and timing synchronization [3, ]. Commonly used active Q-switches are acousto-optic modulators [3] and electro-optic modulators []. Using the electric pulse-driven modulators, the laser cavity can be switched between high-loss and low-loss regimes, resulting in the production of high quality of Q- switched pulses. Recently, a great many investigations have been performed in order to find active Q-switches alternatives that provide cost-effective and higher performance solutions more suitable for all-fiber integrated laser systems. The acoustically modulated fiber attenuator [5], the micro-optical waveguide on a micro actuating platform light modulator [], the magnetostriction-based fiber Bragg grating (FBG) modulator [7], the electrostatically actuated micro-mirror [], the microsphere resonator [9], the single crystal photo-elastic modulator [1], and the resonance optical pumping-based FBG modulator [11] are only a few examples. High-quality Q-switched pulses have been successfully achieved through the foregoing alternative switches in rare-earth-doped fiber lasers, but there is still a huge demand for the expansion of the technological basis for alternative Q-switches, in particular ones more suitable for simple and practical applications. In this paper we present a new kind of Q-switch, an ultrafast Si-based variable optical attenuator (VOA) for the generation of nanosecond pulses in a rare earth-doped fiber laser. By incorporating the ultrafast Si-based VOA into an erbium-doped fiber (EDF) laser cavity it has been experimentally shown that Q-switched pulses with a temporal width of less than ns can be readily obtained. The repetition rate has been shown to be tunable up to ~1 MHz. It should be noted that VOAs have never been used as a Q-switch for nanosecond pulse generation in fiber lasers until now, due to their slow response time (typically larger than sub milliseconds) no matter whether they are mechanically or electrically controlled [1, 13]. However, the recent development of ultrafast VOAs with a response time of less than 1µs through Si photonics technology enables us to easily build high speed Q-switched fiber lasers without the need for any expensive and high electrical power consumption modulator type Q- switches. Compared to the commonly used acousto-optic modulators and electro-optic modulators, the Si VOA-based Q switch has several noticeable advantages, such as a low RF driving power (less than mw), a low cost, and an extremely compact size [1]. Si-based photonic devices have recently been intensively investigated as potential lowcost and high performance building blocks for ultrahigh capacity optical communication systems and microprocessor optical interconnects, due to their proven capabilities in regards to electronic integration and mass production [15, 1]. Notably, the Si-based VOA used in this work, which is a commercially available component based on a silicon ridge waveguide # $15. USD Received Sep 11; revised 1 Oct 11; accepted 9 Dec 11; published 1 Dec 11 (C) 11 OSA 19 December 11 / Vol. 19, No. 7 / OPTICS EXPRESS 91

3 integrated with a p-i-n diode, was originally designed and optimized for the power equalization of WDM channels in optical communication systems [1, 17]. In this work, we demonstrate one more potential use of this compact and low-cost device by applying it to the high speed Q-switching of a fiber laser.. Experiment setup FBG Function Generator Si-based VOA 9 nm Pump LD 9/155 nm WDM EDF 3 m % Reflection Between air and silica Laser Output Reflectivity (db) Wavelength (nm) Fig. 1. The schematic of our Q-switched EDF laser and the measured optical spectrum of the FBG used in this experimental configuration. The schematic of our Q-switched EDF laser is shown in Fig. 1. The fiber laser was constructed using a simple Fabry-Perot type cavity, in which two mirrors are defined by a fiber Bragg grating (FBG) reflector and a cleaved facet at the fiber end (% reflection between silica and air). A 3-m-long EDF with a peak absorption of db/m at 153 nm (Liekki, ER-/15) was used for the active medium, which was pumped by a 9-nm pump laser diode (LD) via a 9/155-nm wavelength division multiplexer (WDM). The Q-switch was made using a fiberized ultrafast Si-based VOA (Kotura, UltraVOA) inserted between the FBG and the WDM [1, 17]. The reflectivity of the FBG (JDSU, P/N FBG-QT9-355-) used in this experimental configuration was 95.5%, as shown in Fig. 1. The center wavelength and spectral bandwidth (full width at half maximum) of the FBG were 155. nm and.39 nm, respectively. The total length of the laser cavity was 1 m. The laser output from the 9% output coupler defined by the Fresnel reflection from the cleaved fiber end facet was monitored using a 1-GHz digital oscilloscope and an InGaAs photodetector with a bandwidth of 15 MHz. The key component in this Q-switched laser configuration was the ultrafast Si-based VOA, which was fabricated using a silicon p-i-n diode structure built on a silicon optical waveguide. The operating principle of this device is as follows: When a forward-biased current is applied to the p-i-n diode section, the highly concentrated free carriers absorb the photons propagating along the waveguide. This means that one can readily control the amount of photon absorption by adjusting the magnitude of the injected current. The response time is known to be less than 1 µs. This device was originally designed and optimized for optical communication systems applications, such as optical transient suppression, blocking, and analog signal modulation. The ultrafast Si-based VOA used in this experiment is commercially available. Further details on this device are fully described in [1] and [17]. 3. Characterization of ultrafast Si-based VOA In order to determine the electro-optic properties of the ultrafast Si-based VOA, we carried out a series of characterization measurements. First, we measured the optical attenuation of the device as a function of the applied forward-biased current, as shown in Fig.. The maximum attenuation was found to be ~35 db at a current of 5 ma, at the forward bias voltage of 5 V. Even at a current of ma, a 15-dB attenuation was possible. We then measured the transient response of the device in order to determine the maximum switching speed by modulating the current with a negative square electric pulse possessing rise and fall times of ~ ns. The measured temporal shapes of the applied electrical pulse and the # $15. USD Received Sep 11; revised 1 Oct 11; accepted 9 Dec 11; published 1 Dec 11 (C) 11 OSA 19 December 11 / Vol. 19, No. 7 / OPTICS EXPRESS 913

4 corresponding optical pulse from the VOA are shown in Fig.. The variable VOA was driven at a peak current of 5 ma to provide a dynamic attenuation of ~. db. The rise and fall times, which were defined as the temporal duration between 1 and 9% of the maximum transmittance, were found to be ~1 and ~179 ns, respectively. This indicates potential for repetition rate scaling beyond 1 MHz. The insertion loss of the fiberized variable VOA was measured to be ~1.7 db. The polarization dependent loss was measured to be less than.5 db. Attenuation (db) Current (ma) Electrical Current (a.u.) Switch-Open Time Rise Time 1ns Electrical Pulse Optical Pulse TIme (ns) Fall Time 179ns Optical Fig.. The measured optical attenuation v.s. the driving current curve and the transient response of the ultrafast Si-based VOA used in this experiment.. Q-switched laser output operating at khz 1 1 ~5ns Time (µs) Fig. 3. The measured oscilloscope trace of the Q-switched pulses at khz and the close-up view of a pulse. At first the laser was operated at a repetition rate of khz by modulating the 5 ma driving current, at a V forward bias. This means that the VOA driving power was less than mw. Considering the rise and fall times we decided to open the switch for a duration of 7 ns and close it for the rest of the period. In other words, the temporal duration of the applied electrical pulse was fixed to be 7 ns, resulting in a duty ratio of 1.% at a repetition rate of khz. Figure 3 shows the measured oscilloscope trace of the pulse trains emitted from the laser; a close-up view is shown in Fig. 3. The measured pulse spacing and pulse width were measured to be 5 µs and 5 ns, respectively. Figure shows the measured output spectrum at a pump power of 5 mw. Figure shows the measured average output power as a function of the pump power. The laser center wavelength was ~155. nm; the spectral width was observed to be ~.35 nm. The laser threshold was ~ mw; the maximum output average power of ~37 mw was obtained at a pump power of 1 mw. The slope efficiency was ~1%. From the average power value the maximum peak power level was estimated to be ~3W. At the pump power level of 1 mw we did not observe any damage of the VOA. According to the specification of the VOA it maximum handling optical power was ~5 mw in the continuous wave mode. # $15. USD Received Sep 11; revised 1 Oct 11; accepted 9 Dec 11; published 1 Dec 11 (C) 11 OSA 19 December 11 / Vol. 19, No. 7 / OPTICS EXPRESS 91

5 35 Power (1dB/div) Output Power (mw) Wavelength (nm) Pump Power (mw) Fig.. The measured optical spectrum of the Q-switched laser output at khz and the measured average output power vs. the pump power. The resolution bandwidth of the optical spectrum analyzer used was. nm. 5. Operating frequency tuning of the Q-switched laser Next, we attempted to determine the maximum operating frequency of the Q-switched laser. In order to do this we increased the modulation frequency of the driving current supplied to the variable VOA from khz to 1 MHz. The pump power and driving current were fixed at 5 mw and 5 ma, respectively. The applied electrical pulse duration was also maintained at a value of 7 ns and therefore the duty ratio was decreased accordingly. Figure 5 shows the measured pulse peak power variation with the increasing repetition rate; Fig. 5 shows the corresponding pulse width change. The output pulse width was observed to increase with the increased repetition rate from ~5 ns to ~ ns; the output pulse peak power decrease was inversely proportional to the repetition rate. Pulse Peak Power (W) Pulse Width (ns) Repetition Rate (khz) 1 Repetition Rate (khz) Fig. 5. The measured peak power and the temporal width of the output pulses as a function of the repetition rate. Figure presents the measured oscilloscope trace of the laser output at a repetition rate of 1 MHz; a close-up view is shown in Fig.. The high quality of the Q-switched pulses is clearly evident at a repetition rate of 1 MHz from these figures. As an interesting sideexperiment we attempted to further increase the repetition rate faster than 1 MHz, but found that the generated pulse quality was not as stable as that found at 1 MHz. Figure 7 illustrates the measured oscilloscope traces of the applied electrical pulse, the VOA response, and the output Q-switched pulse at repetition rates of 1.5 and MHz, respectively. The duty ratio of the applied electrical pulse was set to be 5% considering the pulse period to obtain appropriate gain building-up and photon emission times. It is obvious from the figure that the VOA response had a triangular temporal shape rather than a rectangular shape due to the limited rise and fall times. Consequently, the output pulses became unstable at 1.5 MHz even if the pulse width was maintained at ~ ns. Then, significant temporal distortion of the # $15. USD Received Sep 11; revised 1 Oct 11; accepted 9 Dec 11; published 1 Dec 11 (C) 11 OSA 19 December 11 / Vol. 19, No. 7 / OPTICS EXPRESS 915

6 output was observed at MHz as shown in Fig. 7. To further confirm the reason of pulse degradation we carried out the same measurements at various duty ratios of the applied electrical pulse, but always observed the same sort of distortion at repetition rates larger than 1 MHz. 1 1 ~ns Time (µs) Fig.. The measured oscilloscope trace of the Q-switched pulses at 1 MHz and the close-up view of a pulse. Voltage (a.u.) Power (a.u.) Electrical Pulse VOA Response ~ ns Output Pulse Power (a.u.) Voltage (a.u.) Electrical Pulse VOA Response ~9 ns Output Pulse Conclusion Fig. 7. The measured oscilloscope traces of the applied electrical pulse, the corresponding VOA response, and the output Q-switched pulse at repetition rates of 1.5 and MHz, respectively. We have demonstrated that an ultrafast Si-based VOA can readily be used as a high speed and low cost Q-switch for the generation of nanosecond pulses in a rare earth-doped fiber laser. It was shown that stable Q-switched pulses with a temporal width of less than ns could be readily obtained using the variable VOA with a repetition rate of up to 1 MHz. We believe that such ultrahigh speed Si-based, fiberized VOAs can be used as a highly promising alternative Q-switch for the practical implementation of high speed Q-switched fiber lasers. Further research on the enhancement of the optical power handling capacity of the devices is essentially required for their successful application to high power fiber lasers. Acknowledgments This research work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (MEST), Republic of Korea (No ). This work was partly supported by the Project funded by MKE/KEIT (No ) Ultra-Precision Green Processing Technology Using Femtosecond Fiber Laser. # $15. USD Received Sep 11; revised 1 Oct 11; accepted 9 Dec 11; published 1 Dec 11 (C) 11 OSA 19 December 11 / Vol. 19, No. 7 / OPTICS EXPRESS 91

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique Chien-Hung Yeh 1, *, Ming-Ching Lin 3, Ting-Tsan Huang 2, Kuei-Chu Hsu 2 Cheng-Hao Ko 2, and Sien Chi

More information

Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating

Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating M. Delgado-Pinar Departamento de Física Aplicada-ICMUV, Universidad de Valencia, Dr. Moliner 50, 46100, Burjasot,

More information

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity Shinji Yamashita (1)(2) and Kevin Hsu (3) (1) Dept. of Frontier Informatics, Graduate School of Frontier Sciences The University

More information

A continuous-wave Raman silicon laser

A continuous-wave Raman silicon laser A continuous-wave Raman silicon laser Haisheng Rong, Richard Jones,.. - Intel Corporation Ultrafast Terahertz nanoelectronics Lab Jae-seok Kim 1 Contents 1. Abstract 2. Background I. Raman scattering II.

More information

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers 1.0 Modulation depth 0.8 0.6 0.4 0.2 0.0 Laser 3 Laser 2 Laser 4 2 3 4 5 6 7 8 Absorbed pump power (W) Laser 1 W. Guan and J. R.

More information

Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode

Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode Chien Hung Yeh, 1* Fu Yuan Shih, 2 Chia Hsuan Wang, 3 Chi Wai Chow, 3 and Sien Chi 2, 3 1 Information and Communications

More information

Hybrid Q-switched Yb-doped fiber laser

Hybrid Q-switched Yb-doped fiber laser Hybrid Q-switched Yb-doped fiber laser J. Y. Huang, W. Z. Zhuang, W. C. Huang, K. W. Su, K. F. Huang, and Y. F. Chen* Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan * yfchen@cc.nctu.edu.tw

More information

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender Journal of the Optical Society of Korea Vol. 15, No. 3, September 2011, pp. 222-226 DOI: http://dx.doi.org/10.3807/josk.2011.15.3.222 An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources

More information

Q-switching of Yb 3+ -doped fiber laser using a novel micro-optical waveguide on microactuating platform light modulator

Q-switching of Yb 3+ -doped fiber laser using a novel micro-optical waveguide on microactuating platform light modulator Q-switching of Yb 3+ -doped fiber laser using a novel micro-optical waveguide on microactuating platform light modulator Yunsong Joeng 1, Youngbok Kim 1, Andreas Liem 2, Klaus Moerl 3, Sven Hoefer 2, Andreas

More information

Optically switched erbium fibre laser using a tunable fibre-bragg grating

Optically switched erbium fibre laser using a tunable fibre-bragg grating Optically switched erbium fibre laser using a tunable fibre-bragg grating Robert J. Williams, * Nemanja Jovanovic, Graham D. Marshall and Michael J. Withford. Centre for Ultrahigh bandwidth Devices for

More information

Optical fiber-fault surveillance for passive optical networks in S-band operation window

Optical fiber-fault surveillance for passive optical networks in S-band operation window Optical fiber-fault surveillance for passive optical networks in S-band operation window Chien-Hung Yeh 1 and Sien Chi 2,3 1 Transmission System Department, Computer and Communications Research Laboratories,

More information

Wavelength switching using multicavity semiconductor laser diodes

Wavelength switching using multicavity semiconductor laser diodes Wavelength switching using multicavity semiconductor laser diodes A. P. Kanjamala and A. F. J. Levi Department of Electrical Engineering University of Southern California Los Angeles, California 989-1111

More information

A broadband fiber ring laser technique with stable and tunable signal-frequency operation

A broadband fiber ring laser technique with stable and tunable signal-frequency operation A broadband fiber ring laser technique with stable and tunable signal-frequency operation Chien-Hung Yeh 1 and Sien Chi 2, 3 1 Transmission System Department, Computer & Communications Research Laboratories,

More information

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

Introduction Fundamentals of laser Types of lasers Semiconductor lasers ECE 5368 Introduction Fundamentals of laser Types of lasers Semiconductor lasers Introduction Fundamentals of laser Types of lasers Semiconductor lasers How many types of lasers? Many many depending on

More information

Ultra-short distributed Bragg reflector fiber laser for sensing applications

Ultra-short distributed Bragg reflector fiber laser for sensing applications Ultra-short distributed Bragg reflector fiber laser for sensing applications Yang Zhang 2, Bai-Ou Guan 1,2,*, and Hwa-Yaw Tam 3 1 Institute of Photonics Technology, Jinan University, Guangzhou 510632,

More information

Mitigation of Self-Pulsing in High Power Pulsed Fiber Lasers

Mitigation of Self-Pulsing in High Power Pulsed Fiber Lasers Mitigation of Self-Pulsing in High Power Pulsed Fiber Lasers Yusuf Panbiharwala, Deepa Venkitesh, Balaji Srinivasan* Department of Electrical Engineering, Indian Institute of Technology Madras. *Email

More information

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber H. Ahmad 1, S. Shahi 1 and S. W. Harun 1,2* 1 Photonics Research Center, University of Malaya, 50603 Kuala Lumpur, Malaysia 2 Department

More information

Linear cavity erbium-doped fiber laser with over 100 nm tuning range

Linear cavity erbium-doped fiber laser with over 100 nm tuning range Linear cavity erbium-doped fiber laser with over 100 nm tuning range Xinyong Dong, Nam Quoc Ngo *, and Ping Shum Network Technology Research Center, School of Electrical & Electronics Engineering, Nanyang

More information

All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser

All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser International Conference on Logistics Engineering, Management and Computer Science (LEMCS 2014) All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser Shengxiao

More information

CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER

CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER Progress In Electromagnetics Research Letters, Vol. 9, 9 18, 29 CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER H. Ahmad, M. Z. Zulkifli, S. F. Norizan,

More information

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p.

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p. Preface p. xiii Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p. 6 Plastic Optical Fibers p. 9 Microstructure Optical

More information

A tunable and switchable single-longitudinalmode dual-wavelength fiber laser with a simple linear cavity

A tunable and switchable single-longitudinalmode dual-wavelength fiber laser with a simple linear cavity A tunable and switchable single-longitudinalmode dual-wavelength fiber laser with a simple linear cavity Xiaoying He, 1 Xia Fang, 1 Changrui Liao, 1 D. N. Wang, 1,* and Junqiang Sun 2 1 Department of Electrical

More information

A silicon avalanche photodetector fabricated with standard CMOS technology with over 1 THz gain-bandwidth product

A silicon avalanche photodetector fabricated with standard CMOS technology with over 1 THz gain-bandwidth product A silicon avalanche photodetector fabricated with standard CMOS technology with over 1 THz gain-bandwidth product Myung-Jae Lee and Woo-Young Choi* Department of Electrical and Electronic Engineering,

More information

DBR based passively mode-locked 1.5m semiconductor laser with 9 nm tuning range Moskalenko, V.; Williams, K.A.; Bente, E.A.J.M.

DBR based passively mode-locked 1.5m semiconductor laser with 9 nm tuning range Moskalenko, V.; Williams, K.A.; Bente, E.A.J.M. DBR based passively mode-locked 1.5m semiconductor laser with 9 nm tuning range Moskalenko, V.; Williams, K.A.; Bente, E.A.J.M. Published in: Proceedings of the 20th Annual Symposium of the IEEE Photonics

More information

Single mode EDF fiber laser using an ultra-narrow bandwidth tunable optical filter

Single mode EDF fiber laser using an ultra-narrow bandwidth tunable optical filter Indian Journal of Pure & Applied Physics Vol. 53, September 2015, pp. 579-584 Single mode EDF fiber laser using an ultra-narrow bandwidth tunable optical filter N F Razak* 1, H Ahmad 2, M Z Zulkifli 2,

More information

Continuum White Light Generation. WhiteLase: High Power Ultrabroadband

Continuum White Light Generation. WhiteLase: High Power Ultrabroadband Continuum White Light Generation WhiteLase: High Power Ultrabroadband Light Sources Technology Ultrafast Pulses + Fiber Laser + Non-linear PCF = Spectral broadening from 400nm to 2500nm Ultrafast Fiber

More information

A 100 W all-fiber linearly-polarized Yb-doped single-mode fiber laser at 1120 nm

A 100 W all-fiber linearly-polarized Yb-doped single-mode fiber laser at 1120 nm A 1 W all-fiber linearly-polarized Yb-doped single-mode fiber laser at 112 nm Jianhua Wang, 1,2 Jinmeng Hu, 1 Lei Zhang, 1 Xijia Gu, 3 Jinbao Chen, 2 and Yan Feng 1,* 1 Shanghai Key Laboratory of Solid

More information

Colorless Amplified WDM-PON Employing Broadband Light Source Seeded Optical Sources and Channel-by-Channel Dispersion Compensators for >100 km Reach

Colorless Amplified WDM-PON Employing Broadband Light Source Seeded Optical Sources and Channel-by-Channel Dispersion Compensators for >100 km Reach Journal of the Optical Society of Korea Vol. 18, No. 5, October 014, pp. 46-441 ISSN: 16-4776(Print) / ISSN: 09-6885(Online) DOI: http://dx.doi.org/10.807/josk.014.18.5.46 Colorless Amplified WDM-PON Employing

More information

DESIGN AND CHARACTERIZATION OF HIGH PERFORMANCE C AND L BAND ERBIUM DOPED FIBER AMPLIFIERS (C,L-EDFAs)

DESIGN AND CHARACTERIZATION OF HIGH PERFORMANCE C AND L BAND ERBIUM DOPED FIBER AMPLIFIERS (C,L-EDFAs) DESIGN AND CHARACTERIZATION OF HIGH PERFORMANCE C AND L BAND ERBIUM DOPED FIBER AMPLIFIERS (C,L-EDFAs) Ahmet Altuncu Arif Başgümüş Burçin Uzunca Ekim Haznedaroğlu e-mail: altuncu@dumlupinar.edu.tr e-mail:

More information

Timing Noise Measurement of High-Repetition-Rate Optical Pulses

Timing Noise Measurement of High-Repetition-Rate Optical Pulses 564 Timing Noise Measurement of High-Repetition-Rate Optical Pulses Hidemi Tsuchida National Institute of Advanced Industrial Science and Technology 1-1-1 Umezono, Tsukuba, 305-8568 JAPAN Tel: 81-29-861-5342;

More information

A new picosecond Laser pulse generation method.

A new picosecond Laser pulse generation method. PULSE GATING : A new picosecond Laser pulse generation method. Picosecond lasers can be found in many fields of applications from research to industry. These lasers are very common in bio-photonics, non-linear

More information

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University Photonics Group Department of Micro- and Nanosciences Aalto University Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Last Lecture Topics Course introduction Ray optics & optical

More information

Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers

Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers Shun-ichi Matsushita*, * 2, Taizo Miyato*, * 2, Hiroshi Hashimoto*, * 2, Eisuke Otani* 2, Tatsuji Uchino* 2, Akira Fujisaki*,

More information

Stabilisation of Linear-cavity Fibre Laser Using a Saturable Absorber

Stabilisation of Linear-cavity Fibre Laser Using a Saturable Absorber Edith Cowan University Research Online ECU Publications 2011 2011 Stabilisation of Linear-cavity Fibre Laser Using a Saturable Absorber David Michel Edith Cowan University Feng Xiao Edith Cowan University

More information

Testing with Femtosecond Pulses

Testing with Femtosecond Pulses Testing with Femtosecond Pulses White Paper PN 200-0200-00 Revision 1.3 January 2009 Calmar Laser, Inc www.calmarlaser.com Overview Calmar s femtosecond laser sources are passively mode-locked fiber lasers.

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1: Mach-Zehnder interferometer (MZI) phase stabilization. (a) DC output of the MZI with and without phase stabilization. (b) Performance of MZI stabilization

More information

Coherent addition of fiber lasers by use of a fiber coupler

Coherent addition of fiber lasers by use of a fiber coupler Coherent addition of fiber lasers by use of a fiber coupler Akira Shirakawa, Tomoharu Saitou, Tomoki Sekiguchi, and Ken-ichi Ueda Institute for Laser Science, University of Electro-Communications akira@ils.uec.ac.jp,

More information

Thermal treatment method for tuning the lasing wavelength of a DFB fiber laser using coil heaters

Thermal treatment method for tuning the lasing wavelength of a DFB fiber laser using coil heaters Thermal treatment method for tuning the lasing wavelength of a DFB fiber laser using coil heaters Ha Huy Thanh and Bui Trung Dzung National Center for Technology Progress (NACENTECH) C6-Thanh Xuan Bac-Hanoi-Vietnam

More information

taccor Optional features Overview Turn-key GHz femtosecond laser

taccor Optional features Overview Turn-key GHz femtosecond laser taccor Turn-key GHz femtosecond laser Self-locking and maintaining Stable and robust True hands off turn-key system Wavelength tunable Integrated pump laser Overview The taccor is a unique turn-key femtosecond

More information

RECENTLY, studies have begun that are designed to meet

RECENTLY, studies have begun that are designed to meet 838 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 43, NO. 9, SEPTEMBER 2007 Design of a Fiber Bragg Grating External Cavity Diode Laser to Realize Mode-Hop Isolation Toshiya Sato Abstract Recently, a unique

More information

PERFORMANCE OF PHOTODIGM S DBR SEMICONDUCTOR LASERS FOR PICOSECOND AND NANOSECOND PULSING APPLICATIONS

PERFORMANCE OF PHOTODIGM S DBR SEMICONDUCTOR LASERS FOR PICOSECOND AND NANOSECOND PULSING APPLICATIONS PERFORMANCE OF PHOTODIGM S DBR SEMICONDUCTOR LASERS FOR PICOSECOND AND NANOSECOND PULSING APPLICATIONS By Jason O Daniel, Ph.D. TABLE OF CONTENTS 1. Introduction...1 2. Pulse Measurements for Pulse Widths

More information

The Theta Laser A Low Noise Chirped Pulse Laser. Dimitrios Mandridis

The Theta Laser A Low Noise Chirped Pulse Laser. Dimitrios Mandridis CREOL Affiliates Day 2011 The Theta Laser A Low Noise Chirped Pulse Laser Dimitrios Mandridis dmandrid@creol.ucf.edu April 29, 2011 Objective: Frequency Swept (FM) Mode-locked Laser Develop a frequency

More information

Single-Frequency, 2-cm, Yb-Doped Silica-Fiber Laser

Single-Frequency, 2-cm, Yb-Doped Silica-Fiber Laser Single-Frequency, 2-cm, Yb-Doped Silica-Fiber Laser W. Guan and J. R. Marciante University of Rochester Laboratory for Laser Energetics The Institute of Optics Frontiers in Optics 2006 90th OSA Annual

More information

Tunable single frequency fiber laser based on FP-LD injection locking

Tunable single frequency fiber laser based on FP-LD injection locking Tunable single frequency fiber laser based on FP-LD injection locking Aiqin Zhang, Xinhuan Feng, * Minggui Wan, Zhaohui Li, and Bai-ou Guan Institute of Photonics Technology, Jinan University, Guangzhou,

More information

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature Donghui Zhao.a, Xuewen Shu b, Wei Zhang b, Yicheng Lai a, Lin Zhang a, Ian Bennion a a Photonics Research Group,

More information

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers Keisuke Kasai a), Jumpei Hongo, Masato Yoshida, and Masataka Nakazawa Research Institute of

More information

Actively mode-locked Raman fiber laser

Actively mode-locked Raman fiber laser Actively mode-locked Raman fiber laser Xuezong Yang, 1,2 Lei Zhang, 1 Huawei Jiang, 1,2 Tingwei Fan, 1,2 and Yan Feng 1,* 1 Shanghai Institute of Optics and fine Mechanics, Chinese Academy of Sciences,

More information

Vertical External Cavity Surface Emitting Laser

Vertical External Cavity Surface Emitting Laser Chapter 4 Optical-pumped Vertical External Cavity Surface Emitting Laser The booming laser techniques named VECSEL combine the flexibility of semiconductor band structure and advantages of solid-state

More information

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE Progress In Electromagnetics Research Letters, Vol. 7, 25 33, 2009 RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE H.-H. Lu, C.-Y. Li, C.-H. Lee,

More information

High-power semiconductor lasers for applications requiring GHz linewidth source

High-power semiconductor lasers for applications requiring GHz linewidth source High-power semiconductor lasers for applications requiring GHz linewidth source Ivan Divliansky* a, Vadim Smirnov b, George Venus a, Alex Gourevitch a, Leonid Glebov a a CREOL/The College of Optics and

More information

Communication using Synchronization of Chaos in Semiconductor Lasers with optoelectronic feedback

Communication using Synchronization of Chaos in Semiconductor Lasers with optoelectronic feedback Communication using Synchronization of Chaos in Semiconductor Lasers with optoelectronic feedback S. Tang, L. Illing, J. M. Liu, H. D. I. barbanel and M. B. Kennel Department of Electrical Engineering,

More information

Photonic Generation of Millimeter-Wave Signals With Tunable Phase Shift

Photonic Generation of Millimeter-Wave Signals With Tunable Phase Shift Photonic Generation of Millimeter-Wave Signals With Tunable Phase Shift Volume 4, Number 3, June 2012 Weifeng Zhang, Student Member, IEEE Jianping Yao, Fellow, IEEE DOI: 10.1109/JPHOT.2012.2199481 1943-0655/$31.00

More information

Index Terms WDM, multi-wavelength Erbium Doped fiber laser.

Index Terms WDM, multi-wavelength Erbium Doped fiber laser. A Multi-wavelength Erbium Doped Fiber Laser for Free Space Optical Communication link S. Qhumayo, R. Martinez Manuel and J.J. M. Kaboko Photonics Research Group, Department of Electrical and Electronic

More information

Novel Dual-mode locking semiconductor laser for millimetre-wave generation

Novel Dual-mode locking semiconductor laser for millimetre-wave generation Novel Dual-mode locking semiconductor laser for millimetre-wave generation P. Acedo 1, C. Roda 1, H. Lamela 1, G. Carpintero 1, J.P. Vilcot 2, S. Garidel 2 1 Grupo de Optoelectrónica y Tecnología Láser,

More information

Mode-locking and frequency beating in. compact semiconductor lasers. Michael J. Strain

Mode-locking and frequency beating in. compact semiconductor lasers. Michael J. Strain Mode-locking and frequency beating in Michael J. Strain Institute of Photonics Dept. of Physics University of Strathclyde compact semiconductor lasers Outline Pulsed lasers Mode-locking basics Semiconductor

More information

Quantum-Well Semiconductor Saturable Absorber Mirror

Quantum-Well Semiconductor Saturable Absorber Mirror Chapter 3 Quantum-Well Semiconductor Saturable Absorber Mirror The shallow modulation depth of quantum-dot saturable absorber is unfavorable to increasing pulse energy and peak power of Q-switched laser.

More information

Utilizing Self-Seeding RSOA with Faraday Rotator Mirror for Colorless Access Network

Utilizing Self-Seeding RSOA with Faraday Rotator Mirror for Colorless Access Network Utilizing Self-Seeding RSOA with Faraday Rotator Mirror for Colorless Access Network Yu-Fu Wu a, Jinu-Yu Sung a, and Chi-Wai Chow a, and Chien-Hung Yeh* b,c a Department of Photonics and Institute of Electro-Optical

More information

Dependence of stimulated Brillouin scattering in pulsed fiber amplifier on signal linewidth, pulse duration, and repetition rate

Dependence of stimulated Brillouin scattering in pulsed fiber amplifier on signal linewidth, pulse duration, and repetition rate Dependence of stimulated Brillouin scattering in pulsed fiber amplifier on signal linewidth, pulse duration, and repetition rate Rongtao Su ( Â ), Pu Zhou ( ), Xiaolin Wang ( ), Hu Xiao ( Ñ), and Xiaojun

More information

High-frequency tuning of high-powered DFB MOPA system with diffraction limited power up to 1.5W

High-frequency tuning of high-powered DFB MOPA system with diffraction limited power up to 1.5W High-frequency tuning of high-powered DFB MOPA system with diffraction limited power up to 1.5W Joachim Sacher, Richard Knispel, Sandra Stry Sacher Lasertechnik GmbH, Hannah Arendt Str. 3-7, D-3537 Marburg,

More information

Differential measurement scheme for Brillouin Optical Correlation Domain Analysis

Differential measurement scheme for Brillouin Optical Correlation Domain Analysis Differential measurement scheme for Brillouin Optical Correlation Domain Analysis Ji Ho Jeong, 1,2 Kwanil Lee, 1,4 Kwang Yong Song, 3,* Je-Myung Jeong, 2 and Sang Bae Lee 1 1 Center for Opto-Electronic

More information

Photonics (OPTI 510R 2017) - Final exam. (May 8, 10:30am-12:30pm, R307)

Photonics (OPTI 510R 2017) - Final exam. (May 8, 10:30am-12:30pm, R307) Photonics (OPTI 510R 2017) - Final exam (May 8, 10:30am-12:30pm, R307) Problem 1: (30pts) You are tasked with building a high speed fiber communication link between San Francisco and Tokyo (Japan) which

More information

Ring cavity tunable fiber laser with external transversely chirped Bragg grating

Ring cavity tunable fiber laser with external transversely chirped Bragg grating Ring cavity tunable fiber laser with external transversely chirped Bragg grating A. Ryasnyanskiy, V. Smirnov, L. Glebova, O. Mokhun, E. Rotari, A. Glebov and L. Glebov 2 OptiGrate, 562 South Econ Circle,

More information

Multiwavelength Single-Longitudinal-Mode Ytterbium-Doped Fiber Laser. Citation IEEE Photon. Technol. Lett., 2013, v. 25, p.

Multiwavelength Single-Longitudinal-Mode Ytterbium-Doped Fiber Laser. Citation IEEE Photon. Technol. Lett., 2013, v. 25, p. Title Multiwavelength Single-Longitudinal-Mode Ytterbium-Doped Fiber Laser Author(s) ZHOU, Y; Chui, PC; Wong, KKY Citation IEEE Photon. Technol. Lett., 2013, v. 25, p. 385-388 Issued Date 2013 URL http://hdl.handle.net/10722/189009

More information

Demonstration of directly modulated silicon Raman laser

Demonstration of directly modulated silicon Raman laser Demonstration of directly modulated silicon Raman laser Ozdal Boyraz and Bahram Jalali Optoelectronic Circuits and Systems Laboratory University of California, Los Angeles Los Angeles, CA 995-1594 jalali@ucla.edu

More information

Optoelectronic Oscillator Topologies based on Resonant Tunneling Diode Fiber Optic Links

Optoelectronic Oscillator Topologies based on Resonant Tunneling Diode Fiber Optic Links Optoelectronic Oscillator Topologies based on Resonant Tunneling Diode Fiber Optic Links Bruno Romeira* a, José M. L Figueiredo a, Kris Seunarine b, Charles N. Ironside b, a Department of Physics, CEOT,

More information

Basic concepts. Optical Sources (b) Optical Sources (a) Requirements for light sources (b) Requirements for light sources (a)

Basic concepts. Optical Sources (b) Optical Sources (a) Requirements for light sources (b) Requirements for light sources (a) Optical Sources (a) Optical Sources (b) The main light sources used with fibre optic systems are: Light-emitting diodes (LEDs) Semiconductor lasers (diode lasers) Fibre laser and other compact solid-state

More information

Channel wavelength selectable singleõdualwavelength erbium-doped fiber ring laser

Channel wavelength selectable singleõdualwavelength erbium-doped fiber ring laser Channel wavelength selectable singleõdualwavelength erbium-doped fiber ring laser Tong Liu Yeng Chai Soh Qijie Wang Nanyang Technological University School of Electrical and Electronic Engineering Nanyang

More information

Loop Mirror Multi-wavelength Brillouin Fiber Laser Utilizing Semiconductor Optical Amplifier and Fiber Bragg Grating

Loop Mirror Multi-wavelength Brillouin Fiber Laser Utilizing Semiconductor Optical Amplifier and Fiber Bragg Grating Loop Mirror Multi-wavelength Brillouin Fiber Laser Utilizing Semiconductor Optical Amplifier and Fiber Bragg Grating N. A. Idris 1,2,*, N. A. M. Ahmad Hambali 1,2, M.H.A. Wahid 1,2, N. A. Ariffin 1,2,

More information

High average power picosecond pulse generation from a thulium-doped all-fiber MOPA system

High average power picosecond pulse generation from a thulium-doped all-fiber MOPA system High average power picosecond pulse generation from a thulium-doped all-fiber MOPA system Jiang Liu, Qian Wang, and Pu Wang * National Center of Laser Technology, Institute of Laser Engineering, Beijing

More information

To generate a broadband light source by using mutually injection-locked Fabry-Perot laser diodes

To generate a broadband light source by using mutually injection-locked Fabry-Perot laser diodes To generate a broadband light source by using mutually injection-locked Fabry-Perot laser diodes Cheng-Ling Ying 1, Yu-Chieh Chi 2, Chia-Chin Tsai 3, Chien-Pen Chuang 3, and Hai-Han Lu 2a) 1 Department

More information

Multiwatts narrow linewidth fiber Raman amplifiers

Multiwatts narrow linewidth fiber Raman amplifiers Multiwatts narrow linewidth fiber Raman amplifiers Yan Feng *, Luke Taylor, and Domenico Bonaccini Calia European Southern Observatory, Karl-Schwarzschildstr., D-878 Garching, Germany * Corresponding author:

More information

HIGH POWER LASERS FOR 3 RD GENERATION GRAVITATIONAL WAVE DETECTORS

HIGH POWER LASERS FOR 3 RD GENERATION GRAVITATIONAL WAVE DETECTORS HIGH POWER LASERS FOR 3 RD GENERATION GRAVITATIONAL WAVE DETECTORS P. Weßels for the LZH high power laser development team Laser Zentrum Hannover, Germany 23.05.2011 OUTLINE Requirements on lasers for

More information

ModBox - Spectral Broadening Unit

ModBox - Spectral Broadening Unit ModBox - Spectral Broadening Unit The ModBox Family The ModBox systems are a family of turnkey optical transmitters and external modulation benchtop units for digital and analog transmission, pulsed and

More information

The Development of a High Quality and a High Peak Power Pulsed Fiber Laser With a Flexible Tunability of the Pulse Width

The Development of a High Quality and a High Peak Power Pulsed Fiber Laser With a Flexible Tunability of the Pulse Width The Development of a High Quality and a High Peak Power Pulsed Fiber Laser With a Flexible Tunability of the Pulse Width Ryo Kawahara *1, Hiroshi Hashimoto *1, Jeffrey W. Nicholson *2, Eisuke Otani *1,

More information

Single-longitudinal mode laser structure based on a very narrow filtering technique

Single-longitudinal mode laser structure based on a very narrow filtering technique Single-longitudinal mode laser structure based on a very narrow filtering technique L. Rodríguez-Cobo, 1,* M. A. Quintela, 1 S. Rota-Rodrigo, 2 M. López-Amo 2 and J. M. López-Higuera 1 1 Photonics Engineering

More information

22-Channel Capacity of 2.5Gbit/s DWDM-PON ONU Transmitter by Direct-Modularly Side-Mode Injection Locked FPLD

22-Channel Capacity of 2.5Gbit/s DWDM-PON ONU Transmitter by Direct-Modularly Side-Mode Injection Locked FPLD 22-Channel Capacity of 2.5Gbit/s DWDM-PON ONU Transmitter by Direct-Modularly Side-Mode Injection Locked FPLD Yu-Sheng Liao a, Yung-Jui Chen b, and Gong-Ru Lin c* a Department of Photonics & Institute

More information

Transient Control in Dynamically Reconfigured Networks with Cascaded Erbium Doped Fiber Amplifiers

Transient Control in Dynamically Reconfigured Networks with Cascaded Erbium Doped Fiber Amplifiers Transient Control in Dynamically Reconfigured Networks with Cascaded Erbium Doped Fiber Amplifiers Lei Zong, Ting Wang lanezong@nec-labs.com NEC Laboratories America, Princeton, New Jersey, USA WOCC 2007

More information

Gain-clamping techniques in two-stage double-pass L-band EDFA

Gain-clamping techniques in two-stage double-pass L-band EDFA PRAMANA c Indian Academy of Sciences Vol. 66, No. 3 journal of March 2006 physics pp. 539 545 Gain-clamping techniques in two-stage double-pass L-band EDFA S W HARUN 1, N Md SAMSURI 2 and H AHMAD 2 1 Faculty

More information

High order cascaded Raman random fiber laser with high spectral purity

High order cascaded Raman random fiber laser with high spectral purity Vol. 6, No. 5 5 Mar 18 OPTICS EXPRESS 575 High order cascaded Raman random fiber laser with high spectral purity JINYAN DONG,1, LEI ZHANG,1, HUAWEI JIANG,1, XUEZONG YANG,1, WEIWEI PAN,1, SHUZHEN CUI,1

More information

Lecture 1: Course Overview. Rajeev J. Ram

Lecture 1: Course Overview. Rajeev J. Ram Lecture 1: Course Overview Rajeev J. Ram Office: 36-491 Telephone: X3-4182 Email: rajeev@mit.edu Syllabus Basic concepts Advanced concepts Background: p-n junctions Photodetectors Modulators Optical amplifiers

More information

Long-distance fiber grating sensor system using a fiber ring laser with EDWA and SOA

Long-distance fiber grating sensor system using a fiber ring laser with EDWA and SOA Optics Communications 252 (2005) 127 131 www.elsevier.com/locate/optcom Long-distance fiber grating sensor system using a fiber ring laser with EDWA and SOA Peng-Chun Peng a, *, Kai-Ming Feng b, Wei-Ren

More information

EDFA WDM Optical Network using GFF

EDFA WDM Optical Network using GFF EDFA WDM Optical Network using GFF Shweta Bharti M. Tech, Digital Communication, (Govt. Women Engg. College, Ajmer), Rajasthan, India ABSTRACT This paper describes the model and simulation of EDFA WDM

More information

High-power operation of Tm:YLF, Ho:YLF and Er:YLF lasers

High-power operation of Tm:YLF, Ho:YLF and Er:YLF lasers High-power operation of Tm:YLF, Ho:YLF and Er:YLF lasers Peter F. Moulton Solid State and Diode Laser Technology Review 2003 20 May Albuquerque, NM Outline High-power Tm:YLF-pumped Ho:YLF laser ZGP OPO

More information

Opto-VLSI-based reconfigurable photonic RF filter

Opto-VLSI-based reconfigurable photonic RF filter Research Online ECU Publications 29 Opto-VLSI-based reconfigurable photonic RF filter Feng Xiao Mingya Shen Budi Juswardy Kamal Alameh This article was originally published as: Xiao, F., Shen, M., Juswardy,

More information

Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration

Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration 22 Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration Jun-Hyuk Seo, and Woo-Young Choi Department of Electrical and

More information

How to build an Er:fiber femtosecond laser

How to build an Er:fiber femtosecond laser How to build an Er:fiber femtosecond laser Daniele Brida 17.02.2016 Konstanz Ultrafast laser Time domain : pulse train Frequency domain: comb 3 26.03.2016 Frequency comb laser Time domain : pulse train

More information

Generation and evolution of mode-locked noiselike square-wave pulses in a large-anomalousdispersion Er-doped ring fiber laser

Generation and evolution of mode-locked noiselike square-wave pulses in a large-anomalousdispersion Er-doped ring fiber laser Generation and evolution of mode-locked noiselike square-wave pulses in a large-anomalousdispersion Er-doped ring fiber laser Jun Liu, 1 Yu Chen, 1 Pinghua Tang, 2 Changwen Xu, 1 Chujun Zhao, 1,2,* Han

More information

Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser

Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser 28 J. Opt. Soc. Am. B/Vol. 17, No. 1/January 2000 Man et al. Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser W. S. Man, H. Y. Tam, and

More information

Dispersion engineered As 2 S 3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals

Dispersion engineered As 2 S 3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals Dispersion engineered As 2 S 3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals Feng Luan, 1 Mark D. Pelusi, 1 Michael R.E. Lamont, 1 Duk-Yong Choi, 2 Steve

More information

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber I. H. M. Nadzar 1 and N. A.Awang 1* 1 Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia, Johor,

More information

Sensitivity enhancement of Faraday effect based heterodyning fiber laser magnetic field sensor by lowering linear birefringence

Sensitivity enhancement of Faraday effect based heterodyning fiber laser magnetic field sensor by lowering linear birefringence Sensitivity enhancement of Faraday effect based heterodyning fiber laser magnetic field sensor by lowering linear birefringence Linghao Cheng, Jianlei Han, Long Jin, Zhenzhen Guo, and Bai-Ou Guan * Institute

More information

CSO/CTB PERFORMANCE IMPROVEMENT BY USING FABRY-PEROT ETALON AT THE RECEIVING SITE

CSO/CTB PERFORMANCE IMPROVEMENT BY USING FABRY-PEROT ETALON AT THE RECEIVING SITE Progress In Electromagnetics Research Letters, Vol. 6, 107 113, 2009 CSO/CTB PERFORMANCE IMPROVEMENT BY USING FABRY-PEROT ETALON AT THE RECEIVING SITE S.-J. Tzeng, H.-H. Lu, C.-Y. Li, K.-H. Chang,and C.-H.

More information

Dispersion measurement in optical fibres over the entire spectral range from 1.1 mm to 1.7 mm

Dispersion measurement in optical fibres over the entire spectral range from 1.1 mm to 1.7 mm 15 February 2000 Ž. Optics Communications 175 2000 209 213 www.elsevier.comrlocateroptcom Dispersion measurement in optical fibres over the entire spectral range from 1.1 mm to 1.7 mm F. Koch ), S.V. Chernikov,

More information

Q-switched resonantly diode-pumped Er:YAG laser

Q-switched resonantly diode-pumped Er:YAG laser Q-switched resonantly diode-pumped Er:YAG laser Igor Kudryashov a) and Alexei Katsnelson Princeton Lightwave Inc., 2555 US Route 130, Cranbury, New Jersey, 08512 ABSTRACT In this work, resonant diode pumping

More information

High-Coherence Wavelength Swept Light Source

High-Coherence Wavelength Swept Light Source Kenichi Nakamura, Masaru Koshihara, Takanori Saitoh, Koji Kawakita [Summary] Optical technologies that have so far been restricted to the field of optical communications are now starting to be applied

More information

Recent Progress in Pulsed Optical Synchronization Systems

Recent Progress in Pulsed Optical Synchronization Systems FLS 2010 Workshop March 4 th, 2010 Recent Progress in Pulsed Optical Synchronization Systems Franz X. Kärtner Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics,

More information

Laser Diode. Photonic Network By Dr. M H Zaidi

Laser Diode. Photonic Network By Dr. M H Zaidi Laser Diode Light emitters are a key element in any fiber optic system. This component converts the electrical signal into a corresponding light signal that can be injected into the fiber. The light emitter

More information

A 40 GHz, 770 fs regeneratively mode-locked erbium fiber laser operating

A 40 GHz, 770 fs regeneratively mode-locked erbium fiber laser operating LETTER IEICE Electronics Express, Vol.14, No.19, 1 10 A 40 GHz, 770 fs regeneratively mode-locked erbium fiber laser operating at 1.6 µm Koudai Harako a), Masato Yoshida, Toshihiko Hirooka, and Masataka

More information

Waveguide-based single-pixel up-conversion infrared spectrometer

Waveguide-based single-pixel up-conversion infrared spectrometer Waveguide-based single-pixel up-conversion infrared spectrometer Qiang Zhang 1,2, Carsten Langrock 1, M. M. Fejer 1, Yoshihisa Yamamoto 1,2 1. Edward L. Ginzton Laboratory, Stanford University, Stanford,

More information

Optical RI sensor based on an in-fiber Bragg grating. Fabry-Perot cavity embedded with a micro-channel

Optical RI sensor based on an in-fiber Bragg grating. Fabry-Perot cavity embedded with a micro-channel Optical RI sensor based on an in-fiber Bragg grating Fabry-Perot cavity embedded with a micro-channel Zhijun Yan *, Pouneh Saffari, Kaiming Zhou, Adedotun Adebay, Lin Zhang Photonic Research Group, Aston

More information