Novel Dual-mode locking semiconductor laser for millimetre-wave generation

Size: px
Start display at page:

Download "Novel Dual-mode locking semiconductor laser for millimetre-wave generation"

Transcription

1 Novel Dual-mode locking semiconductor laser for millimetre-wave generation P. Acedo 1, C. Roda 1, H. Lamela 1, G. Carpintero 1, J.P. Vilcot 2, S. Garidel 2 1 Grupo de Optoelectrónica y Tecnología Láser, Universidad Carlos III de Madrid, Avda de la Universidad 30, Leganes (Madrid) SPAIN 2 IEMN-CNRS. Lille, France pag@ing.uc3m.es ABSTRACT In this work we present a new mode-locked device that can be used for millimeter-wave photonic applications. Such device presents for certain bias conditions a dual-mode behavior we have investigated for millimeter wave generation. Through the small signal analysis of the device, we have identified a resonance at the frequency separation of the longitudinal modes that has allowed us to demonstrate signal transmission at 40 GHz. The millimeter wave signal generated in detection is studied in terms of phase noise and the noise intrinsic to the emitter. Keywords: Photonic millimetre wave generation, mode-locking semiconductor lasers, dual-mode lasers 1. INTRODUCTION The development of compact, low-cost, semiconductor optical sources for the millimeter-wave radio band in radioover-fiber systems is of great importance motivated to a large point by potential applications such as phased array antenna and mm-wave indoor personal communication systems [1,2]. However, direct modulation of semiconductor lasers is restricted to a maximum frequency of around 30 GHz imposed by the intrinsic diode laser relaxation oscillation frequency and damping [3]. In this sense the possibility of mode-locking a semiconductor laser for millimeter wave generation has attracted great interest during the last years [4]. In this sense, and recently, mode-locking of dual-mode lasers (dual-mode-locking) has proven to be an attractive technique to obtain more compact devices for mm-wave applications [7, 8]. Externally injection of a mm-wave signal allows synchronisation of both modes and a sinusoidal signal at the frequency separation between modes will be generated [8]. Active mode-locking by injecting a signal directly at the gain section of the semiconductor laser is an easy way to synchronise them. In this work we present a new monolithically integrated mode-locked laser source developed within the European Project MONOPLA [5] for the generation of optical pulses at rates of 40 GHz. This device, based on a MQW-DFB structure, consists of four sections: absorber, gain, phase (or extended cavity) and grating; that can be independently biased. Analysis of its optical spectrum has revealed that under certain bias conditions it presents stable dual-mode behaviour. Such two modes can be synchronised to generate mm-wave signals at the designed frequency at which the device was conceived, 39.5 GHz. Its performance as a signal generator can then be analysed and compared. This paper is organized as follows: first a description of the novel dual-mode semiconductor laser is presented in section 2. Section 3 is devoted to the experimental characterization of the device in terms of its static behavior: threshold current, optical spectrum and RIN. In this study, a zone of dual-mode operation of the device will be identified and so, in section 4, the study and experimental characterization of the device with this dual-mode behavior is carried out in the framework of millimeter-wave generation. We end the paper with the conclusions of our work.

2 2. DESCRIPTION OF THE NOVEL DUAL-MODE-LOCKED SEMICONDUCTOR LASER The mode-locked devices under study in this work have been fabricated within the European Project MONOPLA. The main objective of this project is the design and fabrication of a monolithic source of ultrafast, high repetition rate, optical pulses suitable for the next generation communication systems, compatible with both optical time division multiplexing (OTDM) and wavelength division multiplexing (WDM) [5]. Theses devices consist of GaInAsP/InP multiple quantum wells (MQW) structures, emitting at approximately 1550 nm, and are dimensioned (length of the cavity) to have a separation between longitudinal modes of 40 GHz [6]. As it is shown in figure 1, they consist of four sections grown on the same substrate : gain, extended cavity (or phase), grating, and absorber, where the active layer is all along the total length of the laser device. Each section, that can be independently biased, is active, and can participate on the light amplification. In the experiments that follow we have used the device labeled S04, which has a geometry of 300 µm gain section length, 370 µm phase section length, 200 µm grating section length, and of 150 µm absorber section length. Figure 1: Schematic structure of a monolithically integrated MQW mode-locked laser from MONOPLA project. In figure 2 we see a picture of one of the SO4 device used for this study. As we can see in this picture, the laser is mounted on a RF submount with two k-connectors for the bias and absorber sections. The rest of the pins are for biasing phase and grating sections and for the thermistor and TE cooler used for temperature stabilization. Figure 2: Picture of the first mode-locked laser from MONOPLA project.

3 3. CHARACTERIZATION OF THE NOVEL DUAL-MODE SEMICONDUCTOR LASER 3.1 P(I) and V(I) curves In order to determine the basic lasing characteristics of the device under study, an experimental characterization as a single section laser were performed to obtain its threshold current, quantum efficiency and series resistance. In a monoelectrode configuration [6], where all four sections are shorted, we measured its optical output power and driving voltage as function of the injected current. Experimental results for power and voltage versus injected current are shown in figure 3. A threshold current of I th = 60 ma, a quantum efficiency of η = W A -1, and a series resistance of R s = 4.7 Ω were measured. Measurements biasing independently each section were also performed. For an applied voltage at the absorber of V abs = 0V, the multisection laser started to lase when the sum of the injected currents at the other three sections reached the threshold current for the monoelectrode configuration. Series resistance of the three sections were also calculated, obtaining a resistance for the gain section of R s g = 17.9 Ω, for the phase section R s ph = 18.7 Ω, and for the grating section R s gr = 18 Ω Output Power (mw) Voltage (V) Optical spectrum Current (ma) Figure 3: Output power and voltage as a function of current for the Novel Dual-mode laser in a monoelectrode configuration (see text). The optical spectrum of the device for different bias conditions was measured using an YVON-JOBIN TRIAX 550 monochromator with 0.05 nm of resolution. In figure 4 we show the measured spectra for several bias conditions. In all cases the absorber section was short-circuited (Vabs = 0V) while the others sections were biased independently. When the laser is above the threshold condition, several modes around 1565 nm wavelength appear. Separation between adjacent modes was calculated to be f sep = 39.5 GHz, that corresponds to the designed parameters for which the device was fabricated. In figures 4.b, 4.c, and 4.d, we can also appreciate two differentiated group of modes. Control of the number of modes oscillating, center frequency, and distribution can be achieved changing the bias currents of each section. A more detailed optical spectrum measurement was made using a Fabry-Perot interferometer with a free spectral range of 650 GHz. In this sense, in figure 5, we can see for certain bias conditions, the strong presence of only two modes with same amplitude, centered at nm, and separated 39.5 GHz. Others adjacent modes have much lower power levels. As mentioned in the introduction this later result it is important in the framework of photonic generation of millimeter wave. Dual-mode lasers with two longitudinal modes have been proposed for the generation of such signals through the synchronization of both modes with an external signal [7, 8], and several radio-over fiber applications described [9]. In this sense, in the next section we will continue the characterization of this device in a small signal regime to study the possibility of using the mode-locked laser developed within the project MONOPLA for millimeter wave generation when working in dual-mode configuration.

4 Intensity (a.u.) Intensity (a.u.) Wavelength (um) Wavelength (um) a) b) Intensity (a.u.) Intensity (a.u) Wavelength (um) Wavelength (um) c) d) Figure 4: Wavelength spectrum of the novel laser device. Biasing conditions are V abs = 0V, I gain = 30 ma, I phase = 30 ma, and a) I grating = 16 ma, b) I grating = 18 ma, c) I grating = 20 ma, d) I grating = 22 ma GHz 39.5 GHz Log (a.u.) Frecuency Figure 5: Detail optical spectrum and intermodal frequency separation measured with a Fabry- Perot interferometer. V abs = 0V, I gain = 30 ma, I phase = 30 ma, and I grating = 20 ma.

5 3.3 Relative intensity noise The last study we have carried out on the static behaviour of these new devices is the measurement of the laser intensity noise. It is important to note that the relative intensity noise (RIN) of a laser is frequency dependent and its frequency response gives also information of the dynamics of the laser as peaks at the resonant frequency in standard edge emitting lasers. In the case of mode-locked lasers, a new resonance should appear at the longitudinal mode intermodal frequency separation. RIN of the dual-mode laser is showed in figure 6, when biased for the stable dual-mode behavior and for frequencies higher than the intrinsic relaxation frequency. In such figure we can see how a peak appears at the predicted frequency of 39.5 GHz. Below 35 GHz the RIN is lower than the sensibility of our measurement system while above 35 GHz, is always lower than -105dBc/Hz. Such low value of RIN make it an excellent candidate for its use in actual lightwave communications systems, where RIN of less than -95dBc/Hz is a typical specification parameter GHz Relative Intensity Noise (db/hz) shot noise limit Frequency (GHz) Figure 6: RIN of the dual-mode laser. Bias conditions: V abs = 0V, I gain = 30 ma, I phase = 30 ma, and I grating = 20 ma. 4. MILLIMETRE-WAVE GENERATION USING NOVEL DUAL-MODE LOCKING SEMICONDUCTOR LASER In order to determine the possibility of using this device in dual-mode operation for millimeter wave generation we first introduced a tone at the longitudinal mode separation frequency in order to observe the output spectrum. For this reason we drive the gain section with a RF signal generated by a low phase noise CW generator (ANRITSU MG3695A). The output light was coupled to an optical fiber and detected with a high speed photodiode (u2t XPDV2020R). Due to reflections and high losses at fiber coupling an optical isolator and an EDFA were also used. The output signal was displayed using an electrical spectrum analyzer (ANRITSU MS2668C). The results are shown in Figure 7.

6 -40 RBW 10kHz VBW 10kHz Att 0dB -50 Power (dbm) Frequency (GHz) Figure 7: Received RF tone when modulating gain section with a RF signal of 39.4GHz. In this figure 7 we can clearly see that the introduced 39.5 GHz RF signal, well above the relaxation oscillation frequency of the intrinsic laser, is transmitted by the laser due to the synchronization of the two longitudinal modes. This result, nevertheless, has to be confirmed through the study of the small signal response of the laser to clearly demonstrate that this is a resonance due to the longitudinal modes that are locked by means of the external signal introduced in the gain section. 4.1 Small-signal modulation frequency response For this reason we have studied the small signal modulation response of the novel dual-mode laser that is shown in figure 8. The laser was biased at the stable dual-mode operation point and a RF signal of +6dBm was injected at the gain section. We can observe that a narrow peak appears at the same frequency than the intermodal frequency separation (39.5GHz). At least 20 db of gain was measured, proving generation of millimeter-wave frequencies by active modelocking. In figure 9 we show a detail of the small signal modulation response in the 39.5 GHz range. We can see that the 3 db bandwidth of the resonance peak has a value of around 600 MHz. The appearance of this resonant frequency with a 600 MHz bandwidth proves that this device is a very attractive candidate for narrow-band high-frequency application like millimeter lightwave communication systems.

7 -50 Modulation Response (db) db Frequency (GHz) Figure 8: Small-signal frequency response of the novel dual-mode locked laser. Bias conditions: V abs = 0V, I gain = 30 ma, I phase = 30 ma, and I grating = 20 ma (dual-mode operation). -54 Modulation Response (db) db Frequency Offset (MHz) Figure 9: Detail of the peak centered at 39.4 GHz showing a 600 MHz 3 db bandwidth.

8 4.2 Phase noise of the generated millimeter-wave signal In order to better characterize the behavior of this new dual-mode mode-locked laser for mm-wave applications we have studied the quality of the millimeter wave signal generated. For this reason we have measured the phase noise of the generated tone that is shown in figure 9 when modulating gain section at 39.4GHz and +8dBm. A phase noise of - 65dBc/Hz at a frequency offset of 1kHz and of -85dBc/Hz at 1MHz were measured Phase Noise (dbc/hz) Frequency Offset (Hz) Figure 9: Phase noise of generated millimeter-wave signal at 39.4GHz using the novel dual-mode locked laser. 5. CONCLUSIONS In summary, we have demonstrated the possibility of using mode-locked semiconductor lasers for mm-wave generation at frequencies around 40 GHz. For this experiment we have used an experimental mode-locking semiconductor laser with a cavity length of 1mm and with 39.5 GHz intermodal frequency separation. Through the study of its optical spectrum we observed that under certain bias conditions it presents a dual-mode behaviour. Under this operation we have synchronized both modes by injecting at the gain section of the laser a signal at 39.5 GHz (dualmode-locking), obtaining at detection a pure tone at the injected frequency. The mm-wave generated was characterised to have a phase noise of -85dBc/Hz at 1MHz frequency offset. ACKNOWLEDGEMENTS This work has been carried out within the framework of the European Project MONOPLA (IST ), founded by the European Commission under the Fifth Framework Programme, where the mode-locked laser devices have been designed, fabricated and tested.

9 REFERENCES [1] K.E. Razavi and P.A. Davies Semiconductor laser sources for the generation of millimetre-wave signals IEE Proc. Optoelectron., Vol. 145, Nº3, pp (1998). [2] L.A. Johansson and A.K. Seeds, Generation and Transmission of Millimeter-wave data-modulated optical signals using and optical injection phase-lock loop, IEEE Journal of Lightwave Technol., vol 21, Nº 2, pp , [3] N. Dagli Wide Bandwidth Lasers and Modulators for RF Photonics IEEE Trans. on Microwave Theory and Tech., Vol. 47, Nº 7, pp (1999). [4] K.Y. Lau Narrow-Band Modulation of Semiconductor Lasers at Millimeter Wave Frequencies (>100 GHz) by Mode Locking. IEEE Journal of Quantum Electronics, Vol. 26, pp (1990). [5] [6] S. Garidel Fabrication de reseaux de Bragg particuliers par lithographie electronique : application a la realisation de dispositifs photoniques et optoelectroniques sur materiaux de la filiere InP Ph.D. Thesis, Univeriste des Sciences et Technologies de Lille (2004) [7] K.E. Razavi, P.A. Davies Semiconductor laser source for the generation of millimeter-wave signal IEE Proc. Optoelectronics, Vol. 145, No. 3, pp (1998) [8] L.A. Johansson, Zhaoyang Hu, D.J. Blumenthal, L.A. coldren, Y.A. Akulova, G.A. Fish 40-GHz Dual-Mode- Locked Widely Tunable Sampled-Grating DBR Laser IEEE Photonics Technology Lettes, Vol. 17, No. 2, pp (2005) [9] R. Nagarajan, S. Levy and J.E. Bowers Millimeter wave narrowband optical fiber links using external cavity semiconductor lasers IEEE Journal of Lightwave Technol., Vol. 12, No. 1, pp (1994)

40 GHz Dual Mode-Locked Widely-Tunable Sampled-Grating DBR Laser

40 GHz Dual Mode-Locked Widely-Tunable Sampled-Grating DBR Laser 40 GHz Dual Mode-Locked Widely-Tunable Sampled-Grating DBR Laser L.A. Johansson, Zhaoyang Hu, D.J. Blumenthal and L.A. Coldren Department of Electrical and Computer Engineering, University of California,

More information

Wavelength switching using multicavity semiconductor laser diodes

Wavelength switching using multicavity semiconductor laser diodes Wavelength switching using multicavity semiconductor laser diodes A. P. Kanjamala and A. F. J. Levi Department of Electrical Engineering University of Southern California Los Angeles, California 989-1111

More information

All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser

All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser International Conference on Logistics Engineering, Management and Computer Science (LEMCS 2014) All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser Shengxiao

More information

Optoelectronic Oscillator Topologies based on Resonant Tunneling Diode Fiber Optic Links

Optoelectronic Oscillator Topologies based on Resonant Tunneling Diode Fiber Optic Links Optoelectronic Oscillator Topologies based on Resonant Tunneling Diode Fiber Optic Links Bruno Romeira* a, José M. L Figueiredo a, Kris Seunarine b, Charles N. Ironside b, a Department of Physics, CEOT,

More information

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1 Lecture 6 Optical transmitters Photon processes in light matter interaction Lasers Lasing conditions The rate equations CW operation Modulation response Noise Light emitting diodes (LED) Power Modulation

More information

Laser Diode. Photonic Network By Dr. M H Zaidi

Laser Diode. Photonic Network By Dr. M H Zaidi Laser Diode Light emitters are a key element in any fiber optic system. This component converts the electrical signal into a corresponding light signal that can be injected into the fiber. The light emitter

More information

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers Keisuke Kasai a), Jumpei Hongo, Masato Yoshida, and Masataka Nakazawa Research Institute of

More information

The Theta Laser A Low Noise Chirped Pulse Laser. Dimitrios Mandridis

The Theta Laser A Low Noise Chirped Pulse Laser. Dimitrios Mandridis CREOL Affiliates Day 2011 The Theta Laser A Low Noise Chirped Pulse Laser Dimitrios Mandridis dmandrid@creol.ucf.edu April 29, 2011 Objective: Frequency Swept (FM) Mode-locked Laser Develop a frequency

More information

A new picosecond Laser pulse generation method.

A new picosecond Laser pulse generation method. PULSE GATING : A new picosecond Laser pulse generation method. Picosecond lasers can be found in many fields of applications from research to industry. These lasers are very common in bio-photonics, non-linear

More information

High brightness semiconductor lasers M.L. Osowski, W. Hu, R.M. Lammert, T. Liu, Y. Ma, S.W. Oh, C. Panja, P.T. Rudy, T. Stakelon and J.E.

High brightness semiconductor lasers M.L. Osowski, W. Hu, R.M. Lammert, T. Liu, Y. Ma, S.W. Oh, C. Panja, P.T. Rudy, T. Stakelon and J.E. QPC Lasers, Inc. 2007 SPIE Photonics West Paper: Mon Jan 22, 2007, 1:20 pm, LASE Conference 6456, Session 3 High brightness semiconductor lasers M.L. Osowski, W. Hu, R.M. Lammert, T. Liu, Y. Ma, S.W. Oh,

More information

Low Phase Noise Laser Synthesizer with Simple Configuration Adopting Phase Modulator and Fiber Bragg Gratings

Low Phase Noise Laser Synthesizer with Simple Configuration Adopting Phase Modulator and Fiber Bragg Gratings ALMA Memo #508 Low Phase Noise Laser Synthesizer with Simple Configuration Adopting Phase Modulator and Fiber Bragg Gratings Takashi YAMAMOTO 1, Satoki KAWANISHI 1, Akitoshi UEDA 2, and Masato ISHIGURO

More information

Photonic integrated circuit on InP for millimeter wave generation

Photonic integrated circuit on InP for millimeter wave generation Invited Paper Photonic integrated circuit on InP for millimeter wave generation Frederic van Dijk 1, Marco Lamponi 1, Mourad Chtioui 2, François Lelarge 1, Gaël Kervella 1, Efthymios Rouvalis 3, Cyril

More information

Synchronization of Optically Coupled Resonant Tunneling Diode Oscillators

Synchronization of Optically Coupled Resonant Tunneling Diode Oscillators Synchronization of ly Coupled Resonant Tunneling Diode Oscillators Bruno Romeira a, José M. L. Figueiredo a, Charles N. Ironside b, and José M. Quintana c a Centro de Electrónica, Optoelectrónica e Telecomunicações

More information

146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system

146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system 146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system M. J. Fice, 1 E. Rouvalis, 1 F. van Dijk, 2 A. Accard, 2 F. Lelarge, 2 C. C. Renaud, 1 G. Carpintero, 3,* and A. J. Seeds

More information

A broadband fiber ring laser technique with stable and tunable signal-frequency operation

A broadband fiber ring laser technique with stable and tunable signal-frequency operation A broadband fiber ring laser technique with stable and tunable signal-frequency operation Chien-Hung Yeh 1 and Sien Chi 2, 3 1 Transmission System Department, Computer & Communications Research Laboratories,

More information

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p.

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p. Preface p. xiii Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p. 6 Plastic Optical Fibers p. 9 Microstructure Optical

More information

RECENTLY, studies have begun that are designed to meet

RECENTLY, studies have begun that are designed to meet 838 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 43, NO. 9, SEPTEMBER 2007 Design of a Fiber Bragg Grating External Cavity Diode Laser to Realize Mode-Hop Isolation Toshiya Sato Abstract Recently, a unique

More information

A NOVEL SCHEME FOR OPTICAL MILLIMETER WAVE GENERATION USING MZM

A NOVEL SCHEME FOR OPTICAL MILLIMETER WAVE GENERATION USING MZM A NOVEL SCHEME FOR OPTICAL MILLIMETER WAVE GENERATION USING MZM Poomari S. and Arvind Chakrapani Department of Electronics and Communication Engineering, Karpagam College of Engineering, Coimbatore, Tamil

More information

High-power semiconductor lasers for applications requiring GHz linewidth source

High-power semiconductor lasers for applications requiring GHz linewidth source High-power semiconductor lasers for applications requiring GHz linewidth source Ivan Divliansky* a, Vadim Smirnov b, George Venus a, Alex Gourevitch a, Leonid Glebov a a CREOL/The College of Optics and

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction 1-1 Preface Telecommunication lasers have evolved substantially since the introduction of the early AlGaAs-based semiconductor lasers in the late 1970s suitable for transmitting

More information

22-Channel Capacity of 2.5Gbit/s DWDM-PON ONU Transmitter by Direct-Modularly Side-Mode Injection Locked FPLD

22-Channel Capacity of 2.5Gbit/s DWDM-PON ONU Transmitter by Direct-Modularly Side-Mode Injection Locked FPLD 22-Channel Capacity of 2.5Gbit/s DWDM-PON ONU Transmitter by Direct-Modularly Side-Mode Injection Locked FPLD Yu-Sheng Liao a, Yung-Jui Chen b, and Gong-Ru Lin c* a Department of Photonics & Institute

More information

HOMODYNE and heterodyne laser synchronization techniques

HOMODYNE and heterodyne laser synchronization techniques 328 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 17, NO. 2, FEBRUARY 1999 High-Performance Phase Locking of Wide Linewidth Semiconductor Lasers by Combined Use of Optical Injection Locking and Optical Phase-Lock

More information

DBR based passively mode-locked 1.5m semiconductor laser with 9 nm tuning range Moskalenko, V.; Williams, K.A.; Bente, E.A.J.M.

DBR based passively mode-locked 1.5m semiconductor laser with 9 nm tuning range Moskalenko, V.; Williams, K.A.; Bente, E.A.J.M. DBR based passively mode-locked 1.5m semiconductor laser with 9 nm tuning range Moskalenko, V.; Williams, K.A.; Bente, E.A.J.M. Published in: Proceedings of the 20th Annual Symposium of the IEEE Photonics

More information

Lecture 9 External Modulators and Detectors

Lecture 9 External Modulators and Detectors Optical Fibres and Telecommunications Lecture 9 External Modulators and Detectors Introduction Where are we? A look at some real laser diodes. External modulators Mach-Zender Electro-absorption modulators

More information

Synchronization in Chaotic Vertical-Cavity Surface-Emitting Semiconductor Lasers

Synchronization in Chaotic Vertical-Cavity Surface-Emitting Semiconductor Lasers Synchronization in Chaotic Vertical-Cavity Surface-Emitting Semiconductor Lasers Natsuki Fujiwara and Junji Ohtsubo Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, 432-8561 Japan

More information

Single-Frequency, 2-cm, Yb-Doped Silica-Fiber Laser

Single-Frequency, 2-cm, Yb-Doped Silica-Fiber Laser Single-Frequency, 2-cm, Yb-Doped Silica-Fiber Laser W. Guan and J. R. Marciante University of Rochester Laboratory for Laser Energetics The Institute of Optics Frontiers in Optics 2006 90th OSA Annual

More information

Photonic Microwave Harmonic Generator driven by an Optoelectronic Ring Oscillator

Photonic Microwave Harmonic Generator driven by an Optoelectronic Ring Oscillator Photonic Microwave Harmonic Generator driven by an Optoelectronic Ring Oscillator Margarita Varón Durán, Arnaud Le Kernec, Jean-Claude Mollier MOSE Group SUPAERO, 1 avenue Edouard-Belin, 3155, Toulouse,

More information

To generate a broadband light source by using mutually injection-locked Fabry-Perot laser diodes

To generate a broadband light source by using mutually injection-locked Fabry-Perot laser diodes To generate a broadband light source by using mutually injection-locked Fabry-Perot laser diodes Cheng-Ling Ying 1, Yu-Chieh Chi 2, Chia-Chin Tsai 3, Chien-Pen Chuang 3, and Hai-Han Lu 2a) 1 Department

More information

Spurious-Mode Suppression in Optoelectronic Oscillators

Spurious-Mode Suppression in Optoelectronic Oscillators Spurious-Mode Suppression in Optoelectronic Oscillators Olukayode Okusaga and Eric Adles and Weimin Zhou U.S. Army Research Laboratory Adelphi, Maryland 20783 1197 Email: olukayode.okusaga@us.army.mil

More information

Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration

Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration 22 Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration Jun-Hyuk Seo, and Woo-Young Choi Department of Electrical and

More information

Special Issue Review. 1. Introduction

Special Issue Review. 1. Introduction Special Issue Review In recently years, we have introduced a new concept of photonic antennas for wireless communication system using radio-over-fiber technology. The photonic antenna is a functional device

More information

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity Shinji Yamashita (1)(2) and Kevin Hsu (3) (1) Dept. of Frontier Informatics, Graduate School of Frontier Sciences The University

More information

Highly Reliable 40-mW 25-GHz 20-ch Thermally Tunable DFB Laser Module, Integrated with Wavelength Monitor

Highly Reliable 40-mW 25-GHz 20-ch Thermally Tunable DFB Laser Module, Integrated with Wavelength Monitor Highly Reliable 4-mW 2-GHz 2-ch Thermally Tunable DFB Laser Module, Integrated with Wavelength Monitor by Tatsuya Kimoto *, Tatsushi Shinagawa *, Toshikazu Mukaihara *, Hideyuki Nasu *, Shuichi Tamura

More information

Testing with Femtosecond Pulses

Testing with Femtosecond Pulses Testing with Femtosecond Pulses White Paper PN 200-0200-00 Revision 1.3 January 2009 Calmar Laser, Inc www.calmarlaser.com Overview Calmar s femtosecond laser sources are passively mode-locked fiber lasers.

More information

Timing Noise Measurement of High-Repetition-Rate Optical Pulses

Timing Noise Measurement of High-Repetition-Rate Optical Pulses 564 Timing Noise Measurement of High-Repetition-Rate Optical Pulses Hidemi Tsuchida National Institute of Advanced Industrial Science and Technology 1-1-1 Umezono, Tsukuba, 305-8568 JAPAN Tel: 81-29-861-5342;

More information

High-frequency tuning of high-powered DFB MOPA system with diffraction limited power up to 1.5W

High-frequency tuning of high-powered DFB MOPA system with diffraction limited power up to 1.5W High-frequency tuning of high-powered DFB MOPA system with diffraction limited power up to 1.5W Joachim Sacher, Richard Knispel, Sandra Stry Sacher Lasertechnik GmbH, Hannah Arendt Str. 3-7, D-3537 Marburg,

More information

Characteristics of InP HEMT Harmonic Optoelectronic Mixers and Their Application to 60GHz Radio-on-Fiber Systems

Characteristics of InP HEMT Harmonic Optoelectronic Mixers and Their Application to 60GHz Radio-on-Fiber Systems . TU6D-1 Characteristics of Harmonic Optoelectronic Mixers and Their Application to 6GHz Radio-on-Fiber Systems Chang-Soon Choi 1, Hyo-Soon Kang 1, Dae-Hyun Kim 2, Kwang-Seok Seo 2 and Woo-Young Choi 1

More information

OPTOELECTRONIC mixing is potentially an important

OPTOELECTRONIC mixing is potentially an important JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 17, NO. 8, AUGUST 1999 1423 HBT Optoelectronic Mixer at Microwave Frequencies: Modeling and Experimental Characterization Jacob Lasri, Y. Betser, Victor Sidorov, S.

More information

Microwave Photonics: Photonic Generation of Microwave and Millimeter-wave Signals

Microwave Photonics: Photonic Generation of Microwave and Millimeter-wave Signals 16 Microwave Photonics: Photonic Generation of Microwave and Millimeter-wave Signals Jianping Yao Microwave Photonics Research Laboratory School of Information Technology and Engineering University of

More information

taccor Optional features Overview Turn-key GHz femtosecond laser

taccor Optional features Overview Turn-key GHz femtosecond laser taccor Turn-key GHz femtosecond laser Self-locking and maintaining Stable and robust True hands off turn-key system Wavelength tunable Integrated pump laser Overview The taccor is a unique turn-key femtosecond

More information

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature Donghui Zhao.a, Xuewen Shu b, Wei Zhang b, Yicheng Lai a, Lin Zhang a, Ian Bennion a a Photonics Research Group,

More information

Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers

Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers T. Day and R. A. Marsland New Focus Inc. 340 Pioneer Way Mountain View CA 94041 (415) 961-2108 R. L. Byer

More information

4 Photonic Wireless Technologies

4 Photonic Wireless Technologies 4 Photonic Wireless Technologies 4-1 Research and Development of Photonic Feeding Antennas Keren LI, Chong Hu CHENG, and Masayuki IZUTSU In this paper, we presented our recent works on development of photonic

More information

Simultaneous Measurements for Tunable Laser Source Linewidth with Homodyne Detection

Simultaneous Measurements for Tunable Laser Source Linewidth with Homodyne Detection Simultaneous Measurements for Tunable Laser Source Linewidth with Homodyne Detection Adnan H. Ali Technical college / Baghdad- Iraq Tel: 96-4-770-794-8995 E-mail: Adnan_h_ali@yahoo.com Received: April

More information

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers 1.0 Modulation depth 0.8 0.6 0.4 0.2 0.0 Laser 3 Laser 2 Laser 4 2 3 4 5 6 7 8 Absorbed pump power (W) Laser 1 W. Guan and J. R.

More information

Basic concepts. Optical Sources (b) Optical Sources (a) Requirements for light sources (b) Requirements for light sources (a)

Basic concepts. Optical Sources (b) Optical Sources (a) Requirements for light sources (b) Requirements for light sources (a) Optical Sources (a) Optical Sources (b) The main light sources used with fibre optic systems are: Light-emitting diodes (LEDs) Semiconductor lasers (diode lasers) Fibre laser and other compact solid-state

More information

Suppression of Stimulated Brillouin Scattering

Suppression of Stimulated Brillouin Scattering Suppression of Stimulated Brillouin Scattering 42 2 5 W i de l y T u n a b l e L a s e r T ra n s m i t te r www.lumentum.com Technical Note Introduction This technical note discusses the phenomenon and

More information

NOVAK and Tucker [1] have proposed the generation

NOVAK and Tucker [1] have proposed the generation 142 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 2, FEBRUARY 1998 Comparison of Optical Processing Techniques for Optical Microwave Signal Generation Arthur James Lowery, Senior Member,

More information

ARTICLE IN PRESS. Optik 121 (2010) Simulative investigation of the impact of EDFA and SOA over BER of a single-tone RoF system

ARTICLE IN PRESS. Optik 121 (2010) Simulative investigation of the impact of EDFA and SOA over BER of a single-tone RoF system Optik 121 (2010) 1280 1284 Optik Optics www.elsevier.de/ijleo Simulative investigation of the impact of EDFA and SOA over BER of a single-tone RoF system Vishal Sharma a,, Amarpal Singh b, Ajay K. Sharma

More information

Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode

Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode Chien Hung Yeh, 1* Fu Yuan Shih, 2 Chia Hsuan Wang, 3 Chi Wai Chow, 3 and Sien Chi 2, 3 1 Information and Communications

More information

High-Power Highly Linear Photodiodes for High Dynamic Range LADARs

High-Power Highly Linear Photodiodes for High Dynamic Range LADARs High-Power Highly Linear Photodiodes for High Dynamic Range LADARs Shubhashish Datta and Abhay Joshi th June, 6 Discovery Semiconductors, Inc. 9 Silvia Street, Ewing, NJ - 868, USA www.discoverysemi.com

More information

PERFORMANCE ASSESSMENT OF TWO-CHANNEL DISPERSION SUPPORTED TRANSMISSION SYSTEMS USING SINGLE AND DOUBLE-CAVITY FABRY-PEROT FILTERS AS DEMULTIPLEXERS

PERFORMANCE ASSESSMENT OF TWO-CHANNEL DISPERSION SUPPORTED TRANSMISSION SYSTEMS USING SINGLE AND DOUBLE-CAVITY FABRY-PEROT FILTERS AS DEMULTIPLEXERS PERFORMANCE ASSESSMENT OF TWO-CHANNEL DISPERSION SUPPORTED TRANSMISSION SYSTEMS USING SINGLE AND DOUBLE-CAVITY FABRY-PEROT FILTERS AS DEMULTIPLEXERS Mário M. Freire Department of Mathematics and Information

More information

PERFORMANCE OF PHOTODIGM S DBR SEMICONDUCTOR LASERS FOR PICOSECOND AND NANOSECOND PULSING APPLICATIONS

PERFORMANCE OF PHOTODIGM S DBR SEMICONDUCTOR LASERS FOR PICOSECOND AND NANOSECOND PULSING APPLICATIONS PERFORMANCE OF PHOTODIGM S DBR SEMICONDUCTOR LASERS FOR PICOSECOND AND NANOSECOND PULSING APPLICATIONS By Jason O Daniel, Ph.D. TABLE OF CONTENTS 1. Introduction...1 2. Pulse Measurements for Pulse Widths

More information

Demonstration of multi-cavity optoelectronic oscillators based on multicore fibers

Demonstration of multi-cavity optoelectronic oscillators based on multicore fibers Demonstration of multi-cavity optoelectronic oscillators based on multicore fibers Sergi García, Javier Hervás and Ivana Gasulla ITEAM Research Institute Universitat Politècnica de València, Valencia,

More information

Mode-locking and frequency beating in. compact semiconductor lasers. Michael J. Strain

Mode-locking and frequency beating in. compact semiconductor lasers. Michael J. Strain Mode-locking and frequency beating in Michael J. Strain Institute of Photonics Dept. of Physics University of Strathclyde compact semiconductor lasers Outline Pulsed lasers Mode-locking basics Semiconductor

More information

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

Introduction Fundamentals of laser Types of lasers Semiconductor lasers ECE 5368 Introduction Fundamentals of laser Types of lasers Semiconductor lasers Introduction Fundamentals of laser Types of lasers Semiconductor lasers How many types of lasers? Many many depending on

More information

Novel cascaded injection-locked 1.55-µm VCSELs with 66 GHz modulation bandwidth

Novel cascaded injection-locked 1.55-µm VCSELs with 66 GHz modulation bandwidth Novel cascaded injection-locked 1.55-µm VCSELs with 66 GHz modulation bandwidth Xiaoxue Zhao, 1 * Devang Parekh, 1 Erwin K. Lau, 1 Hyuk-Kee Sung, 1, 3 Ming C. Wu, 1 Werner Hofmann, 2 Markus C. Amann, 2

More information

Spectrally Compact Optical Subcarrier Multiplexing with 42.6 Gbit/s AM-PSK Payload and 2.5Gbit/s NRZ Labels

Spectrally Compact Optical Subcarrier Multiplexing with 42.6 Gbit/s AM-PSK Payload and 2.5Gbit/s NRZ Labels Spectrally Compact Optical Subcarrier Multiplexing with 42.6 Gbit/s AM-PSK Payload and 2.5Gbit/s NRZ Labels A.K. Mishra (1), A.D. Ellis (1), D. Cotter (1),F. Smyth (2), E. Connolly (2), L.P. Barry (2)

More information

Optical monitoring technique based on scanning the gain profiles of erbium-doped fiber amplifiers for WDM networks

Optical monitoring technique based on scanning the gain profiles of erbium-doped fiber amplifiers for WDM networks Optics Communications () 8 www.elsevier.com/locate/optcom Optical monitoring technique based on scanning the gain profiles of erbium-doped fiber amplifiers for WDM networks Chien-Hung Yeh *, Chien-Chung

More information

Progress In Electromagnetics Research Letters, Vol. 8, , 2009

Progress In Electromagnetics Research Letters, Vol. 8, , 2009 Progress In Electromagnetics Research Letters, Vol. 8, 171 179, 2009 REPEATERLESS HYBRID CATV/16-QAM OFDM TRANSPORT SYSTEMS C.-H. Chang Institute of Electro-Optical Engineering National Taipei University

More information

HIGH POWER DFB LASERS

HIGH POWER DFB LASERS HIGH POWER DFB LASERS Single frequency lasers in 14-pin butterfly package AA1401 SERIES INCLUDING AA1402, AA1406, AA1408, and AA1415 The Gooch & Housego high power distributed feedback laser (DFB) is an

More information

This is a paper submitted to and accepted for publication in:

This is a paper submitted to and accepted for publication in: This is a paper submitted to and accepted for publication in: Mu-Chieh Lo, Robinson Guzmán, Carlos Gordón and Guillermo Carpintero. Mode-locked photonic integrated circuits for millimeter and terahertz

More information

optoel 2013 VIII REUNIÓN ESPAÑOLA DE Optoelectrónica Julio de 2013 Alcalá de Henares Madrid LIBRO DE COMUNICACIONES

optoel 2013 VIII REUNIÓN ESPAÑOLA DE Optoelectrónica Julio de 2013 Alcalá de Henares Madrid LIBRO DE COMUNICACIONES optoel 213 VIII REUNIÓN ESPAÑOLA DE Optoelectrónica www.optoel213.fgua.es 1-12 Julio de 213 Alcalá de Henares Madrid LIBRO DE COMUNICACIONES Publicado por: Grupo de Ingeniería Fotónica Departamento de

More information

Coherent power combination of two Masteroscillator-power-amplifier. semiconductor lasers using optical phase lock loops

Coherent power combination of two Masteroscillator-power-amplifier. semiconductor lasers using optical phase lock loops Coherent power combination of two Masteroscillator-power-amplifier (MOPA) semiconductor lasers using optical phase lock loops Wei Liang, Naresh Satyan and Amnon Yariv Department of Applied Physics, MS

More information

DESIGN AND CHARACTERIZATION OF HIGH PERFORMANCE C AND L BAND ERBIUM DOPED FIBER AMPLIFIERS (C,L-EDFAs)

DESIGN AND CHARACTERIZATION OF HIGH PERFORMANCE C AND L BAND ERBIUM DOPED FIBER AMPLIFIERS (C,L-EDFAs) DESIGN AND CHARACTERIZATION OF HIGH PERFORMANCE C AND L BAND ERBIUM DOPED FIBER AMPLIFIERS (C,L-EDFAs) Ahmet Altuncu Arif Başgümüş Burçin Uzunca Ekim Haznedaroğlu e-mail: altuncu@dumlupinar.edu.tr e-mail:

More information

1014 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 40, NO. 8, AUGUST 2004

1014 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 40, NO. 8, AUGUST 2004 1014 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 40, NO. 8, AUGUST 2004 Theory and Experiments of a Mode-Beating Noise-Suppressed and Mutually Injection-Locked Fabry Perot Laser Diode and Erbium-Doped Fiber

More information

LM-QPSK-R. Lightwave Modulator for QPSK/ QAM. Features. Applications. Functional Diagram

LM-QPSK-R. Lightwave Modulator for QPSK/ QAM. Features. Applications. Functional Diagram LM-QPSK-R Lightwave Modulator for QPSK/ QAM The Optilab LM-QPSK-R is a high performance Quadrature Phase Shift Key (QPSK) lightwave transmitter designed for Optical Communication up to 80 Gb/s or beyond.

More information

R. J. Jones Optical Sciences OPTI 511L Fall 2017

R. J. Jones Optical Sciences OPTI 511L Fall 2017 R. J. Jones Optical Sciences OPTI 511L Fall 2017 Semiconductor Lasers (2 weeks) Semiconductor (diode) lasers are by far the most widely used lasers today. Their small size and properties of the light output

More information

This is a postprint version of the following published document:

This is a postprint version of the following published document: This is a postprint version of the following published document: Prior Cano, E.; Dios Fernández, C. de; Criado Serrano, A.R.; Ortsiefer, M.; Meissner, P. and Acedo, P. (2014). Experimental study of VCSEL-based

More information

SEMICONDUCTOR lasers and amplifiers are important

SEMICONDUCTOR lasers and amplifiers are important 240 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 28, NO. 3, FEBRUARY 1, 2010 Temperature-Dependent Saturation Characteristics of Injection Seeded Fabry Pérot Laser Diodes/Reflective Optical Amplifiers Hongyun

More information

MILLIMETER WAVE RADIATION GENERATED BY OPTICAL MIXING IN FETs INTEGRATED WITH PRINTED CIRCUIT ANTENNAS

MILLIMETER WAVE RADIATION GENERATED BY OPTICAL MIXING IN FETs INTEGRATED WITH PRINTED CIRCUIT ANTENNAS Second International Symposium on Space Terahertz Technology Page 523 MILLIMETER WAVE RADIATION GENERATED BY OPTICAL MIXING IN FETs INTEGRATED WITH PRINTED CIRCUIT ANTENNAS by D.V. Plant, H.R. Fetterman,

More information

3 General Principles of Operation of the S7500 Laser

3 General Principles of Operation of the S7500 Laser Application Note AN-2095 Controlling the S7500 CW Tunable Laser 1 Introduction This document explains the general principles of operation of Finisar s S7500 tunable laser. It provides a high-level description

More information

White Paper Laser Sources For Optical Transceivers. Giacomo Losio ProLabs Head of Technology

White Paper Laser Sources For Optical Transceivers. Giacomo Losio ProLabs Head of Technology White Paper Laser Sources For Optical Transceivers Giacomo Losio ProLabs Head of Technology September 2014 Laser Sources For Optical Transceivers Optical transceivers use different semiconductor laser

More information

LASER DIODE MODULATION AND NOISE

LASER DIODE MODULATION AND NOISE > 5' O ft I o Vi LASER DIODE MODULATION AND NOISE K. Petermann lnstitutfiir Hochfrequenztechnik, Technische Universitdt Berlin Kluwer Academic Publishers i Dordrecht / Boston / London KTK Scientific Publishers

More information

Monolithically-integrated long vertical cavity surface emitting laser incorporating a concave micromirror on a glass substrate

Monolithically-integrated long vertical cavity surface emitting laser incorporating a concave micromirror on a glass substrate Monolithically-integrated long vertical cavity surface emitting laser incorporating a concave micromirror on a glass substrate Rafael I. Aldaz, Michael W. Wiemer, David A.B. Miller, and James S. Harris

More information

Radio over Fiber technology for 5G Cloud Radio Access Network Fronthaul

Radio over Fiber technology for 5G Cloud Radio Access Network Fronthaul Radio over Fiber technology for 5G Cloud Radio Access Network Fronthaul Using a highly linear fiber optic transceiver with IIP3 > 35 dbm, operating at noise level of -160dB/Hz, we demonstrate 71 km RF

More information

S Optical Networks Course Lecture 2: Essential Building Blocks

S Optical Networks Course Lecture 2: Essential Building Blocks S-72.3340 Optical Networks Course Lecture 2: Essential Building Blocks Edward Mutafungwa Communications Laboratory, Helsinki University of Technology, P. O. Box 2300, FIN-02015 TKK, Finland Tel: +358 9

More information

Planar External Cavity Low Noise Narrow Linewidth Lasers

Planar External Cavity Low Noise Narrow Linewidth Lasers Planar External Cavity Low Noise Narrow Linewidth Lasers Lew Stolpner Redfern Integrated Optics Inc. Santa Clara, CA 95054, USA 1 Outline 1550 nm narrow linewidth lasers for fiber optic sensing Planar

More information

Electrical-to-optical conversion of OFDM g/a signals by direct current modulation of semiconductor optical amplifiers

Electrical-to-optical conversion of OFDM g/a signals by direct current modulation of semiconductor optical amplifiers Electrical-to-ical conversion of OFDM 802.11g/a signals by direct current modulation of semiconductor ical amplifiers Francesco Vacondio, Marco Michele Sisto, Walid Mathlouthi, Leslie Ann Rusch and Sophie

More information

Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback

Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback Song, B.; Kojima, K.; Pina, S.; Koike-Akino, T.; Wang, B.;

More information

Novel Integrable Semiconductor Laser Diodes

Novel Integrable Semiconductor Laser Diodes Novel Integrable Semiconductor Laser Diodes J.J. Coleman University of Illinois 1998-1999 Distinguished Lecturer Series IEEE Lasers and Electro-Optics Society Definition of the Problem Why aren t conventional

More information

High bit-rate combined FSK/IM modulated optical signal generation by using GCSR tunable laser sources

High bit-rate combined FSK/IM modulated optical signal generation by using GCSR tunable laser sources High bit-rate combined FSK/IM modulated optical signal generation by using GCSR tunable laser sources J. J. Vegas Olmos, I. Tafur Monroy, A. M. J. Koonen COBRA Research Institute, Eindhoven University

More information

Vertical External Cavity Surface Emitting Laser

Vertical External Cavity Surface Emitting Laser Chapter 4 Optical-pumped Vertical External Cavity Surface Emitting Laser The booming laser techniques named VECSEL combine the flexibility of semiconductor band structure and advantages of solid-state

More information

Photonic Generation of Millimeter-Wave Signals With Tunable Phase Shift

Photonic Generation of Millimeter-Wave Signals With Tunable Phase Shift Photonic Generation of Millimeter-Wave Signals With Tunable Phase Shift Volume 4, Number 3, June 2012 Weifeng Zhang, Student Member, IEEE Jianping Yao, Fellow, IEEE DOI: 10.1109/JPHOT.2012.2199481 1943-0655/$31.00

More information

Optoelectronics ELEC-E3210

Optoelectronics ELEC-E3210 Optoelectronics ELEC-E3210 Lecture 4 Spring 2016 Outline 1 Lateral confinement: index and gain guiding 2 Surface emitting lasers 3 DFB, DBR, and C3 lasers 4 Quantum well lasers 5 Mode locking P. Bhattacharya:

More information

A continuously tunable and filterless optical millimeter-wave generation via frequency octupling

A continuously tunable and filterless optical millimeter-wave generation via frequency octupling A continuously tunable and filterless optical millimeter-wave generation via frequency octupling Chun-Ting Lin, 1 * Po-Tsung Shih, 2 Wen-Jr Jiang, 2 Jason (Jyehong) Chen, 2 Peng-Chun Peng, 3 and Sien Chi

More information

~r. PACKARD. The Use ofgain-switched Vertical Cavity Surface-Emitting Laser for Electro-Optic Sampling

~r. PACKARD. The Use ofgain-switched Vertical Cavity Surface-Emitting Laser for Electro-Optic Sampling r~3 HEWLETT ~r. PACKARD The Use ofgain-switched Vertical Cavity Surface-Emitting Laser for Electro-Optic Sampling Kok Wai Chang, Mike Tan, S. Y. Wang Koichiro Takeuchi* nstrument and Photonics Laboratory

More information

Evaluation of RF power degradation in microwave photonic systems employing uniform period fibre Bragg gratings

Evaluation of RF power degradation in microwave photonic systems employing uniform period fibre Bragg gratings Evaluation of RF power degradation in microwave photonic systems employing uniform period fibre Bragg gratings G. Yu, W. Zhang and J. A. R. Williams Photonics Research Group, Department of EECS, Aston

More information

I. INTRODUCTION II. FABRICATION AND OPERATION OF SLM FIBER LASER

I. INTRODUCTION II. FABRICATION AND OPERATION OF SLM FIBER LASER JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 27, NO. 20, OCTOBER 15, 2009 4455 Dual-Wavelength Single-Longitudinal-Mode Polarization-Maintaining Fiber Laser and Its Application in Microwave Generation Weisheng

More information

Impact of Double Cavity Fabry-Perot Demultiplexers on the Performance of. Dispersion Supported Transmission of Three 10 Gbit/s

Impact of Double Cavity Fabry-Perot Demultiplexers on the Performance of. Dispersion Supported Transmission of Three 10 Gbit/s Impact of Double Cavity Fabry-Perot Demultiplexers on the Performance of Dispersion Supported Transmission of Three 10 Gbit/s WDM Channels Separated 1 nm Mário M. Freire and José A. R. Pacheco de Carvalho

More information

Photonics (OPTI 510R 2017) - Final exam. (May 8, 10:30am-12:30pm, R307)

Photonics (OPTI 510R 2017) - Final exam. (May 8, 10:30am-12:30pm, R307) Photonics (OPTI 510R 2017) - Final exam (May 8, 10:30am-12:30pm, R307) Problem 1: (30pts) You are tasked with building a high speed fiber communication link between San Francisco and Tokyo (Japan) which

More information

Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source

Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source JOURNAL OF L A TEX CLASS FILES, VOL. X, NO. XX, XXXX XXX 1 Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source Jérôme Vasseur, Jianjun Yu Senior Member,

More information

Optoelectronic integrated circuits incorporating negative differential resistance devices

Optoelectronic integrated circuits incorporating negative differential resistance devices Optoelectronic integrated circuits incorporating negative differential resistance devices José Figueiredo Centro de Electrónica, Optoelectrónica e Telecomunicações Departamento de Física da Faculdade de

More information

FI..,. HEWLETT. High-Frequency Photodiode Characterization using a Filtered Intensity Noise Technique

FI..,. HEWLETT. High-Frequency Photodiode Characterization using a Filtered Intensity Noise Technique FI..,. HEWLETT ~~ PACKARD High-Frequency Photodiode Characterization using a Filtered Intensity Noise Technique Doug Baney, Wayne Sorin, Steve Newton Instruments and Photonics Laboratory HPL-94-46 May,

More information

Analysis of Self-Pulsation in Distributed Bragg Reflector Laser based on Four-Wave Mixing

Analysis of Self-Pulsation in Distributed Bragg Reflector Laser based on Four-Wave Mixing Analysis of Self-Pulsation in Distributed Bragg Reflector Laser based on Four-Wave Mixing P. Landais 1, J. Renaudier 2, P. Gallion 2 and G.-H.Duan 3 1 School of Electronic Engineering, Dublin City University,

More information

Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes

Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes Abstract We report the fabrication and testing of a GaAs-based high-speed resonant cavity enhanced (RCE) Schottky photodiode. The

More information

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE Progress In Electromagnetics Research Letters, Vol. 7, 25 33, 2009 RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE H.-H. Lu, C.-Y. Li, C.-H. Lee,

More information

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender Journal of the Optical Society of Korea Vol. 15, No. 3, September 2011, pp. 222-226 DOI: http://dx.doi.org/10.3807/josk.2011.15.3.222 An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources

More information

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade:

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade: Examination Optoelectronic Communication Technology April, 26 Name: Student ID number: OCT : OCT 2: OCT 3: OCT 4: Total: Grade: Declaration of Consent I hereby agree to have my exam results published on

More information

Agilent 71400C Lightwave Signal Analyzer Product Overview. Calibrated measurements of high-speed modulation, RIN, and laser linewidth

Agilent 71400C Lightwave Signal Analyzer Product Overview. Calibrated measurements of high-speed modulation, RIN, and laser linewidth Agilent 71400C Lightwave Signal Analyzer Product Overview Calibrated measurements of high-speed modulation, RIN, and laser linewidth High-Speed Lightwave Analysis 2 The Agilent 71400C lightwave signal

More information