A High Power, High Quality Single-Phase AC-DC Converter for Wireless Power Transfer Applications

Size: px
Start display at page:

Download "A High Power, High Quality Single-Phase AC-DC Converter for Wireless Power Transfer Applications"

Transcription

1 A High Power, High Quality Single-Phase AC-DC Converter for Wireless Power Transfer Applications Rahimi Baharom; Abd Razak Mahmud; Mohd Khairul Mohd Salleh; Khairul Safuan Muhammad and Mohammad Nawawi Seroji Faculty of Electrical Engineering Universiti Teknologi MARA Shah Alam, Selangor, Malaysia Abstract This paper presents a high power and high quality AC-DC converter for wireless power transfer (WPT) function. Based on the active power filter technique, the supply current waveform is forced to follow the desired reference signal, which is shaped to be continuous, sinusoidal and in phase with the supply voltage waveform. As a consequence, a low total harmonic distortion (THD) level can be achieved, with almost unity power factor, resulting in high quality power conversion system. This is performed by active power filter using the rectifier boost technique, which is piloted by a current control loop (CCL). Consisting of a subtraction circuit, proportional-integrator (PI) controller and comparator circuit, the CCL is carefully designed to enable the power factor corrector (PFC) function in the AC-DC converter. The half-bridge inverter that is driven by two power MOSFET is used to generate high-frequency alternating current (AC). Since both the transmitter and receiver coils, transmits and receives an AC voltage, respectively a high frequency full-wave diode-bridge rectifier is used to rectify the voltage into dc form to supply the dc loads. A proof-of-concept simulation model based on MATLAB/Simulink operating at 10kHz switching frequency is modelled and its performance is investigated. The selected simulation results are presented to verify the proposed converter. Keywords - AC-DC converter; wireless power transfer; power factor correction I. INTRODUCTION Nowadays, in line with increasing interest in WPT technology, many researchers focuses on developing various methods to enhance the WPT systems such as power transfer distance and efficiency [1] - [8] in order to improve their overall performance. A very important aspect of the system that need to be given a special focus is on designing the complete power converter for the WPT systems from an AC source. Conventional ac to dc converters, either in full-wave or half-wave operation, in emerging technologies such as WPT applications, are often inefficient due to the high THD level with low power factor. As a result, the amount of the output power would be reduced [9]. In order to solve the conventional AC-DC converters problems, an alternative method such as Class E resonant AC-DC converters that are known to operate efficiently at high resonant frequencies and at large input voltages, has been proposed. With a continuous, near sinusoidal supply current, which is in-phase with the supply voltage waveform, such method will lead to an improved overall system performance and increased efficiency, especially that of the transmitting coil driver. However, the use of class-e rectifier, requires the large inductance for the low-pass filter. In addition, the diode reverse voltage in the class-e rectifier is several times higher than the output voltage. As a result, these disadvantages may lead to the large size of the circuit configuration, hence, a high implementation cost [10]. Another drawback of the Class E converters is that their normal operation at open-loop has no feedback control to coordinate the precise soft switching operation [11]. This paper proposes to implement a high power quality AC-DC converter with WPT function. Here, an AC-DC converter with rectifier boost technique for power factor correction is developed for WPT systems to improve their performance and increase their overall system efficiency. Based on the well-established AC-DC converter with rectifier boost technique circuit configuration in [12] and [13], and WPT system in [14], this paper extends and enhances the work by integrating both circuit configurations to provide a more comprehensive power electronics converters for WPT systems. The paper is organized as follows. In Section II, the topology and operating principle of the AC-DC converter circuit to perform power factor correction will be introduced. The operating principle of the proposed high power quality AC-DC converter for WPT function will be explicitly described with the aid of corresponding timing and equivalent circuit diagrams. The CCL to drive active power switch to control the charging and discharging times of the boost inductor for power factor correction will be analytically investigated and presented. Then, the computer simulation model will be presented in Section III. Afterwards, the computer simulation results will be presented and discussed in Section IV. Section V gives the conclusions of the paper. DOI /IJSSST.a ISSN: x online, print

2 II. CIRCUIT TOPOLOGY AND OPERATING PRINCIPLE In this section, a high power quality ac to dc power converter with WPT function is presented as given in Figure 1. The advantageous features of this proposed converter include almost unity input power factor and low total harmonics distortion level hence, increase the overall performance of the proposed power converter system. extends to the receiver coil. The magnetic field then generates a current, which flows through the receiving coil. The ac current flowing through the receiver coil is converted back into dc form by the high-frequency full-wave diode bridge rectifier, which can then be used to power the dc load or device. The detail principle operation of WPT system have been researched and summarized in [14]. -Figure 1. The proposed high power quality AC-DC converter for WPT applications. Figure 1. The distorted supply current waveform The principle operation of overall system for high power quality ac to dc converter with WPT function can be summarized into four key steps as follows: The ac supply voltage is converted to the dc form using a full-wave diode-bridge rectifier. At this stage, a power factor corrector using rectifier boost technique is used to correct the highly distorted supply current waveform and result in a low input power factor drawn by diode-bridge rectifier and dc capacitor filter. In addition, the distorted supply current waveform as shown in Figure 2 has a rich high order harmonic content. This could lead to the emission of electromagnetic interference (EMI) that affects the operation of neighbouring system. By incorporating active power filter with the front-end ac to dc converter, efficient operation can be achieved, leading to a continuous, near sinusoidal supply current waveform with low total harmonic distortion level as shown in Figure 3. The principle of operation of ac to dc converter incorporating active power filter configurations that have been analyzed are summarized in [12] and [13] and the references therein. The output dc line voltage of the front-end ac to dc converter is then converted into the high-frequency ac form using a high frequency half-bridge inverter. The highfrequency ac square-wave output voltage waveform as shown in Figure 4, is then sent to the transmitter coil. The square-wave ac current which is flowing through the transmitter coil induces a magnetic field which Figure 2. The sinusoidal supply current and voltage waveforms of the front-end AC-DC converter with WPT function. III. COMPUTER MODELING MATLAB/Simulink circuit simulation software is used in this work to verify the system design. The simulated ac to dc converter incorporating the closed current control loop, high-frequency half-bridge inverter and WPT system are illustrated in Figure 5. Figure 6 shows the closed current control loop to perform as a power factor correction circuit. Table I shows parameters used in the modelling of the proposed converter. The chosen parameters are based on [12], [13] and [14] in order to investigate the behaviour of the proposed converter and for comparison purposes. Here, a rectifier boost technique is used to shape the distorted ac supply current drawn by the rectifier to be continuous, near sinusoidal and in phase with the ac supply voltage [15]. The proposed closed loop current controller consists of a DOI /IJSSST.a ISSN: x online, print

3 subtraction block set, proportional integral block set, comparator block set and carrier signal block set. The step response to control the reference signal is shown in Figure 7. Figure 6. The step response control of reference signal TABLE I. COMPUTER MODELING SCALE SIMULATION SYSTEM PARAMETERS System Parameters Supply voltage Active power filter switching frequency Values 40Vrms 10kHz Proportional controller gain 20 Integral controller gain 180 Half-bridge inverter switching frequency 20kHz Transmitter and receiver coils inductance 24µH Figure 3. The output DC voltage waveform of front-end AC-DC converter, the high-side and low-side PWM waveform and the square-wave output voltage waveform Figure 4. The top main model of high power quality AC-DC converter for WPT function Figure 5. The elements of current control loop Compensation capacitor 24µH Maximum Quality Factor, Q 80 IV. RESULTS AND DISCUSSION It can be seen that the typical converter without any filter function results in distorted supply current waveform as shown in Figure 8 with high THD level of %. The waveform is discontinuous with low power factor. The use of active power filter with rectifier boost technique shaping the discontinuous supply current waveform to become continuous, sinusoidal and in phase with the supply voltage waveform as illustrated in Figure 9. With the proposed compensation technique, the supply current waveform will follow the sinusoidal reference current waveform as shown in Figure 10. Hence, the THD level is reduced to 2.85%. Figure 11 shows the high frequency output voltage waveform of half-bridge inverter which is fed to the transmitter coil of WPT system, whilst Figure 12 shows the dc output voltage waveform for the proposed converter. Figure 13 and Figure 14 show the comparison results of the THD spectrum without any filter function and with the proposed compensation technique against the IEEE519 Standard respectively. By inclusion of the proposed compensation technique, the THD spectrum has been reduced well below the acceptable limit that was defined by IEEE519 Standard. As a result, the proposed converter will comply with the standard. Again, to verify the effectiveness of the proposed active power filter, a ±1A step response is used with varied value of the reference current. As clearly shown in Figure 15 and Figure 16, the supply current will follow the step change of the reference current for both during the reference values increased and decreased. DOI /IJSSST.a ISSN: x online, print

4 Figure 7. The distorted supply current waveform without any compensation filter Figure 11. The output DC voltage waveform Figure 8. The supply current and voltage waveforms using active power filter with rectifier boost technique Figure 12. The THD comparison of the distorted supply current waveform with IEEE519 Std Figure 9. The supply current and reference current waveforms using active power filter with rectifier boost technique Figure 13. The THD comparison of the supply current waveform after compensation with IEEE519 Std Figure 10. The output voltage waveform for controlled half-bridge inverter Figure 14. The step response of the supply current waveform with the reference current for IA step at 0.08 Iref increase DOI /IJSSST.a ISSN: x online, print

5 Figure 15. The step response of the supply current waveform with the reference current for IA step at 0.08 Iref decrease V. CONCLUSION A 10-kHz high power quality ac to dc converter for WPT system is demonstrated. With the use of rectifier boost technique, the converter is able to perform the function of WPT configuration by maintaining the high power factor operation and low THD level at the front-end of proposed converter. The simulation results prove that the proposed converter is able to achieve a high PF (PF > 0.997) and a low total harmonic distortion (THD) level of 2.85% for the supply current waveform. The distinctive features of this converter are favourable for future wireless dc power supply operating in the high power factor and low THD level. ACKNOWLEDGMENT Financial support from Institute of Research Management and Innovation (IRMI) Universiti Teknologi MARA Grant No: 600-IRMI/DANA 5/3/LESTARI (0015/2016) is gratefully acknowledged. REFERENCES [1] M. Kiani and M. Ghovanloo, The circuit theory behind coupledmode magnetic resonance-based wireless power transmission, IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 9, pp , Sept [2] S. Cheon, Y. H. Kim, S. Y. Kang, M. L. Lee, J. M. Lee, and T. Zyung, Circuit-model-based analysis of a wireless energy-transfer system via coupled magnetic resonances, IEEE Transactions on Industrial Electronics, vol. 58, no. 7, pp , July [3] Y.-H. Kim, S.-Y. Kang, M.-L. Lee, B.-G. Yu, and T. Zyung, Optimization of wireless power transmission through resonant coupling, in 2009 Compatibility and Power Electronics, May 2009, pp [4] N. Y. Kim, K. Y. Kim, J. Choi, and C. W. Kim, Adaptive frequency with power-level tracking system for efficient magnetic resonance wireless power transfer, Electronics Letters, vol. 48, no. 8, pp , April [5] H. Jiang, B. Lariviere, D. Lan, J. Zhang, J. Wang, R. Fechter, M. Harrison, and S. Roy, A low switching frequency ac-dc boost converter for wireless powered miniaturized implants, in Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), 2014 IEEE Topical Conference on, Jan 2014, pp [6] E. Asa, K. Colak, M. Bojarski, and D. Czarkowski, A novel multilevel phase-controlled resonant inverter with common mode capacitor for wireless ev chargers, in Transportation Electrification Conference and Expo (ITEC), 2015 IEEE, June 2015, pp [7] Z. Yang, S. Kiratipongvoot, C. K. Lee, and S. S. Ho, A study of high-frequency-fed ac-dc converter with different dc-dc topologies, in Emerging Technologies: Wireless Power (WoW), 2015 IEEE PELS Workshop on, June 2015, pp [8] M. B. Shamseh, A. Kawamura, I. Yuzurihara, and A. Takayanagi, A wireless power transfer system optimized for high efficiency and high power applications, in 2014 International Power Electronics Conference (IPEC-Hiroshima ECCE ASIA), May 2014, pp [9] S. Aldhaher, P. C. K. Luk, K. E. K. Drissi, and J. F. Whidborne, High input-voltage high-frequency class e rectifiers for resonant inductive links, IEEE Transactions on Power Electronics, vol. 30, no. 3, pp , March [10] T. Nagashima, X. Wei, E. Bou, E. Alarcn, and H. Sekiya, Analytical design for resonant inductive coupling wireless power transfer system with class-e inverter and class-de rectifier, in 2015 IEEE International Symposium on Circuits and Systems (ISCAS), May 2015, pp [11] J. Tian, A. P. Hu, A. Abdolkhani, G. R. Nagendra, and S. Ren, A current-fed energy injection power converter for wireless power transfer applications, in Industrial Electronics Society, IECON th Annual Conference of the IEEE, Nov 2013, pp [12] R. Baharom, S. A. Ramli, and M. K. Hamzah, Peripheral interface controller (pic) based smart low power ac-dc converter, in Industrial Electronics Applications (ISIEA), 2010 IEEE Symposium on, Oct 2010, pp [13] R. Baharom, N. F. N. Ismail, N. R. Hamzah, and M. K. Hamzah, Studies on control electronics implementation of single-phase single switch active power filter, in Computer Applications and Industrial Electronics (ICCAIE), 2011 IEEE International Conference on, Dec 2011, pp [14] R. Baharom, M. K. M. Salleh, K. S. Muhammad, and M. N. Seroji, Impact of switching frequency variation to the power transfer efficiency of wireless power transfer converter, in 2016 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE2016), [15] L. Junwei, C. Y. Chung, and H. L. Chan, Design and implementation of high power closed-loop ac-dc resonant converter for wireless power transfer, in 2014 IEEE 15th Workshop on Control and Modeling for Power Electronics (COMPEL), June 2014, pp DOI /IJSSST.a ISSN: x online, print

Selected paper. Voltage Controlled Single Phase Matrix Converter with Low Harmonics

Selected paper. Voltage Controlled Single Phase Matrix Converter with Low Harmonics Noraliza Hamzah 1,*, M. F. M. Zin 1 and M. N. Seroji 1, J. Electrical Systems Special issue AMPE2015 Selected paper Voltage Controlled Single Phase Matrix Converter with Low Harmonics JES Journal of Electrical

More information

A Study on the Effect of Load Variation on Quality Factor for Single-Phase Half- Bridge Resonant Converter

A Study on the Effect of Load Variation on Quality Factor for Single-Phase Half- Bridge Resonant Converter A Study on the Effect of Load Variation on Quality Factor for Single-Phase Half- Bridge Resonant Converter R. Baharom, M.F. Omar, N. Wahab, M.K.M Salleh and M.N. Seroji Faculty of Electrical Engineering

More information

A Predictive Control Strategy for Power Factor Correction

A Predictive Control Strategy for Power Factor Correction IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 8, Issue 6 (Nov. - Dec. 2013), PP 07-13 A Predictive Control Strategy for Power Factor Correction

More information

Single Phase Bridgeless SEPIC Converter with High Power Factor

Single Phase Bridgeless SEPIC Converter with High Power Factor International Journal of Emerging Engineering Research and Technology Volume 2, Issue 6, September 2014, PP 117-126 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Single Phase Bridgeless SEPIC Converter

More information

Small-Signal Model and Dynamic Analysis of Three-Phase AC/DC Full-Bridge Current Injection Series Resonant Converter (FBCISRC)

Small-Signal Model and Dynamic Analysis of Three-Phase AC/DC Full-Bridge Current Injection Series Resonant Converter (FBCISRC) Small-Signal Model and Dynamic Analysis of Three-Phase AC/DC Full-Bridge Current Injection Series Resonant Converter (FBCISRC) M. F. Omar M. N. Seroji Faculty of Electrical Engineering Universiti Teknologi

More information

A Single Phase Single Stage AC/DC Converter with High Input Power Factor and Tight Output Voltage Regulation

A Single Phase Single Stage AC/DC Converter with High Input Power Factor and Tight Output Voltage Regulation 638 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 A Single Phase Single Stage AC/DC Converter with High Input Power Factor and Tight Output Voltage Regulation A. K.

More information

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 14 CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 2.1 INTRODUCTION Power electronics devices have many advantages over the traditional power devices in many aspects such as converting

More information

Performance Improvement of Bridgeless Cuk Converter Using Hysteresis Controller

Performance Improvement of Bridgeless Cuk Converter Using Hysteresis Controller International Journal of Electrical Engineering. ISSN 0974-2158 Volume 6, Number 1 (2013), pp. 1-10 International Research Publication House http://www.irphouse.com Performance Improvement of Bridgeless

More information

A NEW SINGLE STAGE THREE LEVEL ISOLATED PFC CONVERTER FOR LOW POWER APPLICATIONS

A NEW SINGLE STAGE THREE LEVEL ISOLATED PFC CONVERTER FOR LOW POWER APPLICATIONS A NEW SINGLE STAGE THREE LEVEL ISOLATED PFC CONVERTER FOR LOW POWER APPLICATIONS S.R.Venupriya 1, Nithyananthan.K 2, Ranjidharan.G 3, Santhosh.M 4,Sathiyadevan.A 5 1 Assistant professor, 2,3,4,5 Students

More information

Power Factor Correction for Chopper Fed BLDC Motor

Power Factor Correction for Chopper Fed BLDC Motor ISSN No: 2454-9614 Power Factor Correction for Chopper Fed BLDC Motor S.Dhamodharan, D.Dharini, S.Esakki Raja, S.Steffy Minerva *Corresponding Author: S.Dhamodharan E-mail: esakkirajas@yahoo.com Department

More information

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR 105 CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR 6.1 GENERAL The line current drawn by the conventional diode rectifier filter capacitor is peaked pulse current. This results in utility line

More information

e-issn: p-issn:

e-issn: p-issn: Available online at www.ijiere.com International Journal of Innovative and Emerging Research in Engineering e-issn: 2394-3343 p-issn: 2394-5494 PFC Boost Topology Using Average Current Control Method Gemlawala

More information

Linear Transformer based Sepic Converter with Ripple Free Output for Wide Input Range Applications

Linear Transformer based Sepic Converter with Ripple Free Output for Wide Input Range Applications Linear Transformer based Sepic Converter with Ripple Free Output for Wide Input Range Applications Karthik Sitapati Professor, EEE department Dayananda Sagar college of Engineering Bangalore, India Kirthi.C.S

More information

LLC Resonant Converter for Battery Charging Application

LLC Resonant Converter for Battery Charging Application International Journal of Electrical Engineering. ISSN 0974-2158 Volume 8, Number 4 (2015), pp. 379-388 International Research Publication House http://www.irphouse.com LLC Resonant Converter for Battery

More information

Design and Simulation of New Efficient Bridgeless AC- DC CUK Rectifier for PFC Application

Design and Simulation of New Efficient Bridgeless AC- DC CUK Rectifier for PFC Application Design and Simulation of New Efficient Bridgeless AC- DC CUK Rectifier for PFC Application Thomas Mathew.T PG Student, St. Joseph s College of Engineering, C.Naresh, M.E.(P.hd) Associate Professor, St.

More information

A Proficient AC/DC Converter with Power Factor Correction

A Proficient AC/DC Converter with Power Factor Correction American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-5, Issue-8, pp-233-238 www.ajer.org Research Paper Open Access A Proficient AC/DC Converter with Power Factor

More information

ISSN Vol.04,Issue.15, October-2016, Pages:

ISSN Vol.04,Issue.15, October-2016, Pages: WWW.IJITECH.ORG ISSN 2321-8665 Vol.04,Issue.15, October-2016, Pages:2851-2856 Power Factor Correction AC-DC Power Converter with One Switching Per Cycle for High Frequency Input JATAVATH RAKESH 1, ANUGU

More information

Bridgeless Cuk Power Factor Corrector with Regulated Output Voltage

Bridgeless Cuk Power Factor Corrector with Regulated Output Voltage Bridgeless Cuk Power Factor Corrector with Regulated Output Voltage Ajeesh P R 1, Prof. Dinto Mathew 2, Prof. Sera Mathew 3 1 PG Scholar, 2,3 Professors, Department of Electrical and Electronics Engineering,

More information

BLDC Motor Drive with Power Factor Correction Using PWM Rectifier

BLDC Motor Drive with Power Factor Correction Using PWM Rectifier BLDC Motor Drive with Power Factor Correction Using PWM Rectifier P. Sarala, S.F. Kodad and B. Sarvesh Abstract Major constraints while using motor drive system are efficiency and cost. Commutation in

More information

A Feedback Resonant LED Driver with Capacitive Power Transfer for Lighting Applications

A Feedback Resonant LED Driver with Capacitive Power Transfer for Lighting Applications A Feedback Resonant LED Driver with Capacitive Power Transfer for Lighting Applications Shreedhar Mullur 1, B.P. Harish 2 1 PG Scholar, 2 Associate Professor, Department of Electrical Engineering, University

More information

SCIENCE & TECHNOLOGY

SCIENCE & TECHNOLOGY Pertanika J. Sci. & Technol. 25 (S): 9-18 (2017) SCIENCE & TECHNOLOGY Journal homepage: http://www.pertanika.upm.edu.my/ A Single-stage LED Driver with Voltage Doubler Rectifier Nurul Asikin, Zawawi 1

More information

Comparative study on Bridge type Negative Luo converter fed BLDC motor drive.

Comparative study on Bridge type Negative Luo converter fed BLDC motor drive. IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 PP 45-52 www.iosrjen.org Comparative study on Bridge type Negative Luo converter fed BLDC motor drive. Baiju Antony 1, Gomathy

More information

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor 770 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 48, NO. 4, AUGUST 2001 A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor Chang-Shiarn Lin, Member, IEEE, and Chern-Lin

More information

Simulation of Closed Loop Controlled PFC Boost Converter fed DC Drive with Reduced Harmonics and Unity Power Factor

Simulation of Closed Loop Controlled PFC Boost Converter fed DC Drive with Reduced Harmonics and Unity Power Factor Simulation of Closed Loop Controlled PFC Boost Converter fed DC Drive with Reduced Harmonics and Unity Power Factor Pradeep Kumar Manju Dabas P.R. Sharma YMCA University of Science and Technology, Haryana,

More information

ZCS BRIDGELESS BOOST PFC RECTIFIER Anna Joy 1, Neena Mani 2, Acy M Kottalil 3 1 PG student,

ZCS BRIDGELESS BOOST PFC RECTIFIER Anna Joy 1, Neena Mani 2, Acy M Kottalil 3 1 PG student, ZCS BRIDGELESS BOOST PFC RECTIFIER Anna Joy 1, Neena Mani 2, Acy M Kottalil 3 1 PG student, annajoykandathil@gmail.com,8111948255 Abstract A new bridgeless single-phase ac dc converter with a natural power

More information

Sepic Topology Based High Step-Up Step down Soft Switching Bidirectional DC-DC Converter for Energy Storage Applications

Sepic Topology Based High Step-Up Step down Soft Switching Bidirectional DC-DC Converter for Energy Storage Applications IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 12, Issue 3 Ver. IV (May June 2017), PP 68-76 www.iosrjournals.org Sepic Topology Based High

More information

MODERN switching power converters require many features

MODERN switching power converters require many features IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 19, NO. 1, JANUARY 2004 87 A Parallel-Connected Single Phase Power Factor Correction Approach With Improved Efficiency Sangsun Kim, Member, IEEE, and Prasad

More information

ACEEE Int. J. on Control System and Instrumentation, Vol. 02, No. 02, June 2011

ACEEE Int. J. on Control System and Instrumentation, Vol. 02, No. 02, June 2011 A New Active Snubber Circuit for PFC Converter Burak Akýn Yildiz Technical University/Electrical Engineering Department Istanbul TURKEY Email: bakin@yildizedutr ABSTRACT In this paper a new active snubber

More information

Fuzzy Logic Based Power Factor Correction AC- DC Converter

Fuzzy Logic Based Power Factor Correction AC- DC Converter GRD Journals- Global Research and Development Journal for Engineering Volume 2 Issue 5 April 2017 ISSN: 2455-5703 Fuzzy Logic Based Power Factor Correction AC- DC Converter Gururaj Patgar M.E Student Department

More information

Soft-Switching Two-Switch Resonant Ac-Dc Converter

Soft-Switching Two-Switch Resonant Ac-Dc Converter Soft-Switching Two-Switch Resonant Ac-Dc Converter Aqulin Ouseph 1, Prof. Kiran Boby 2,, Prof. Dinto Mathew 3 1 PG Scholar,Department of Electrical and Electronics Engineering, Mar Athanasius College of

More information

Electromagnetic Compatibility and Better Harmonic Performance with Seven Level CHB Converter Based PV-Battery Hybrid System

Electromagnetic Compatibility and Better Harmonic Performance with Seven Level CHB Converter Based PV-Battery Hybrid System Electromagnetic Compatibility and Better Harmonic Performance with Seven Level CHB Converter Based PV-Battery Hybrid System A. S. S. Veerendra Babu 1, G. Kiran Kumar 2 1 M.Tech Scholar, Department of EEE,

More information

PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT CARRIER AND MODULATING SIGNAL

PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT CARRIER AND MODULATING SIGNAL Journal of Engineering Science and Technology Vol. 10, No. 4 (2015) 420-433 School of Engineering, Taylor s University PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT

More information

AN EFFICIENT CLOSED LOOP CONTROLLED BRIDGELESS CUK RECTIFIER FOR PFC APPLICATIONS

AN EFFICIENT CLOSED LOOP CONTROLLED BRIDGELESS CUK RECTIFIER FOR PFC APPLICATIONS AN EFFICIENT CLOSED LOOP CONTROLLED BRIDGELESS CUK RECTIFIER FOR PFC APPLICATIONS Shalini.K 1, Murthy.B 2 M.E. (Power Electronics and Drives) Department of Electrical and Electronics Engineering, C.S.I.

More information

DEVELOPMENT OF A GATE DRIVE WITH OVERCURRENT PROTECTION CIRCUIT USING IR2110 FOR FAST SWITCHING HALF- BRIDGE CONVERTER

DEVELOPMENT OF A GATE DRIVE WITH OVERCURRENT PROTECTION CIRCUIT USING IR2110 FOR FAST SWITCHING HALF- BRIDGE CONVERTER DEVELOPMENT OF A GATE DRIVE WITH OVERCURRENT PROTECTION CIRCUIT USING IR2110 FOR FAST SWITCHING HALF- BRIDGE CONVERTER R. Baharom, K. S. Muhammad, M. N. Seroji and M. K. M. Salleh Faculty of Electrical

More information

Buck-boost converter as power factor correction controller for plug-in electric vehicles and battery charging application

Buck-boost converter as power factor correction controller for plug-in electric vehicles and battery charging application ISSN 1 746-7233, England, UK World Journal of Modelling and Simulation Vol. 13 (2017) No. 2, pp. 143-150 Buck-boost converter as power factor correction controller for plug-in electric vehicles and battery

More information

POWER FACTOR CORRECTION OF ELECTRONIC BALLAST FOR FLUORESCENT LAMPS BY BOOST TOPOLOGY

POWER FACTOR CORRECTION OF ELECTRONIC BALLAST FOR FLUORESCENT LAMPS BY BOOST TOPOLOGY POWER FACTOR CORRECTION OF ELECTRONIC BALLAST FOR FLUORESCENT LAMPS BY BOOST TOPOLOGY Kahan K. Raval 1, Jainish Rana 2 PG Student, Electronics & Communication,SNPIT & RC, Umrakh, Bardoli, Surat, India

More information

Current Rebuilding Concept Applied to Boost CCM for PF Correction

Current Rebuilding Concept Applied to Boost CCM for PF Correction Current Rebuilding Concept Applied to Boost CCM for PF Correction Sindhu.K.S 1, B. Devi Vighneshwari 2 1, 2 Department of Electrical & Electronics Engineering, The Oxford College of Engineering, Bangalore-560068,

More information

CLOSED LOOP CONTROL OF THE Z SOURCE RESONANT CONVERTER FOR THE ELECTRIC VEHICLE WIRELESS CHARGER Shwetha K B 1, Shubha Kulkarni 2 1

CLOSED LOOP CONTROL OF THE Z SOURCE RESONANT CONVERTER FOR THE ELECTRIC VEHICLE WIRELESS CHARGER Shwetha K B 1, Shubha Kulkarni 2 1 CLOSED LOOP CONTROL OF THE Z SOURCE RESONANT CONVERTER FOR THE ELECTRIC VEHICLE WIRELESS CHARGER Shwetha K B 1, Shubha Kulkarni 2 1 P.G. Student, Power Electronics, Dayananda Sagar College of Engg., Bangalore,

More information

POWER FACTOR CORRECTION AND HARMONIC CURRENT REDUCTION IN DUAL FEEDBACK PWM CONTROLLED AC/DC DRIVES.

POWER FACTOR CORRECTION AND HARMONIC CURRENT REDUCTION IN DUAL FEEDBACK PWM CONTROLLED AC/DC DRIVES. POWER FACTOR CORRECTION AND HARMONIC CURRENT REDUCTION IN DUAL FEEDBACK PWM CONTROLLED AC/DC DRIVES. 1 RAJENDRA PANDAY, 2 C.VEERESH,ANIL KUMAR CHAUDHARY 1, 2 Mandsaur Institute of Techno;ogy,Mandsaur,

More information

International Journal of Advance Research in Engineering, Science & Technology

International Journal of Advance Research in Engineering, Science & Technology Impact Factor (JIF): 3.632 International Journal of Advance Research in Engineering, cience & Technology e-in: 2393-9877, p-in: 2394-2444 (pecial Issue for ITECE 2016) A Novel PWM Technique to Reduce Common

More information

Improved Power Quality Bridgeless Isolated Cuk Converter Fed BLDC Motor Drive

Improved Power Quality Bridgeless Isolated Cuk Converter Fed BLDC Motor Drive Improved Power Quality Bridgeless Isolated Cuk Converter Fed BLDC Motor Drive 1 Midhun Mathew John, 2 Phejil K Paul 1 PG Scholar, 2 Assistant Professor, 1 Electrical and Electronics Engineering 1 Mangalam

More information

AN EXPERIMENTAL INVESTIGATION OF PFC BLDC MOTOR DRIVE USING BRIDGELESS CUK DERIVED CONVERTER

AN EXPERIMENTAL INVESTIGATION OF PFC BLDC MOTOR DRIVE USING BRIDGELESS CUK DERIVED CONVERTER Volume 116 No. 11 2017, 141-149 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.12732/ijpam.v116i11.15 ijpam.eu AN EXPERIMENTAL INVESTIGATION OF PFC

More information

Power factor improvement of SMPS using PFC Boost converter

Power factor improvement of SMPS using PFC Boost converter Power factor improvement of SMPS using PFC Boost converter S. B. Mehta 1, Dr. J. A. Makwana 2 1 PG student, Dept. of Electrical Engineering School of Engineering, RK.University, Rajkot, India 2 Dept. of

More information

Webpage: Volume 3, Issue IV, April 2015 ISSN

Webpage:  Volume 3, Issue IV, April 2015 ISSN CLOSED LOOP CONTROLLED BRIDGELESS PFC BOOST CONVERTER FED DC DRIVE Manju Dabas Kadyan 1, Jyoti Dabass 2 1 Rattan Institute of Technology & Management, Department of Electrical Engg., Palwal-121102, Haryana,

More information

Development of a Single-Phase PWM AC Controller

Development of a Single-Phase PWM AC Controller Pertanika J. Sci. & Technol. 16 (2): 119-127 (2008) ISSN: 0128-7680 Universiti Putra Malaysia Press Development of a Single-Phase PWM AC Controller S.M. Bashi*, N.F. Mailah and W.B. Cheng Department of

More information

Series-Loaded Resonant Converter DC-DC Buck Operating for Low Power

Series-Loaded Resonant Converter DC-DC Buck Operating for Low Power Indonesian Journal of Electrical Engineering and Computer Science Vol. 8, No. 1, October 2017, pp. 159 ~ 168 DOI: 10.11591/ijeecs.v8.i1.pp159-168 159 Series-Loaded Resonant Converter DC-DC Buck Operating

More information

ZCS-PWM Converter for Reducing Switching Losses

ZCS-PWM Converter for Reducing Switching Losses IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 1 Ver. III (Jan. 2014), PP 29-35 ZCS-PWM Converter for Reducing Switching Losses

More information

Usha Nandhini.M #1, Kaliappan.S *2, Dr. R. Rajeswari #3 #1 PG Scholar, Department of EEE, Kumaraguru College of Technology, Coimbatore, India

Usha Nandhini.M #1, Kaliappan.S *2, Dr. R. Rajeswari #3 #1 PG Scholar, Department of EEE, Kumaraguru College of Technology, Coimbatore, India A Power Factor Corrector DC-DC Buck-Boost Converter fed BLDC Motor Usha Nandhini.M #1, Kaliappan.S *2, Dr. R. Rajeswari #3 #1 PG Scholar, Department of EEE, Kumaraguru College of Technology, Coimbatore,

More information

Student Department of EEE (M.E-PED), 2 Assitant Professor of EEE Selvam College of Technology Namakkal, India

Student Department of EEE (M.E-PED), 2 Assitant Professor of EEE Selvam College of Technology Namakkal, India Design and Development of Single Phase Bridgeless Three Stage Interleaved Boost Converter with Fuzzy Logic Control System M.Pradeep kumar 1, M.Ramesh kannan 2 1 Student Department of EEE (M.E-PED), 2 Assitant

More information

A New Multilevel Inverter Topology with Reduced Number of Power Switches

A New Multilevel Inverter Topology with Reduced Number of Power Switches A New Multilevel Inverter Topology with Reduced Number of Power Switches L. M. A.Beigi 1, N. A. Azli 2, F. Khosravi 3, E. Najafi 4, and A. Kaykhosravi 5 Faculty of Electrical Engineering, Universiti Teknologi

More information

Three Phase Rectifier with Power Factor Correction Controller

Three Phase Rectifier with Power Factor Correction Controller International Journal of Advances in Electrical and Electronics Engineering 300 Available online at www.ijaeee.com & www.sestindia.org ISSN: 2319-1112 Three Phase Rectifier with Power Factor Correction

More information

Simulation of a novel ZVT technique based boost PFC converter with EMI filter

Simulation of a novel ZVT technique based boost PFC converter with EMI filter ISSN 1746-7233, England, UK World Journal of Modelling and Simulation Vol. 4 (2008) No. 1, pp. 49-56 Simulation of a novel ZVT technique based boost PFC converter with EMI filter P. Ram Mohan 1 1,, M.

More information

SINGLE STAGE LOW FREQUENCY ELECTRONIC BALLAST FOR HID LAMPS

SINGLE STAGE LOW FREQUENCY ELECTRONIC BALLAST FOR HID LAMPS SINGLE STAGE LOW FREQUENCY ELECTRONIC BALLAST FOR HID LAMPS SUMAN TOLANUR 1 & S.N KESHAVA MURTHY 2 1,2 EEE Dept., SSIT Tumkur E-mail : sumantolanur@gmail.com Abstract - The paper presents a single-stage

More information

ISSN Vol.03,Issue.42 November-2014, Pages:

ISSN Vol.03,Issue.42 November-2014, Pages: ISSN 2319-8885 Vol.03,Issue.42 November-2014, Pages:8462-8466 www.ijsetr.com Design and Simulation of Boost Converter for Power Factor Correction and THD Reduction P. SURESH KUMAR 1, S. SRIDHAR 2, T. RAVI

More information

International Journal of Engineering Science Invention Research & Development; Vol. II Issue VIII February e-issn:

International Journal of Engineering Science Invention Research & Development; Vol. II Issue VIII February e-issn: ANALYSIS AND DESIGN OF SOFT SWITCHING BASED INTERLEAVED FLYBACK CONVERTER FOR PHOTOVOLTAIC APPLICATIONS K.Kavisindhu 1, P.Shanmuga Priya 2 1 PG Scholar, 2 Assistant Professor, Department of Electrical

More information

Australian Journal of Basic and Applied Sciences. Design of a Half Bridge AC AC Series Resonant Converter for Domestic Application

Australian Journal of Basic and Applied Sciences. Design of a Half Bridge AC AC Series Resonant Converter for Domestic Application ISSN:1991-8178 Australian Journal of Basic and Applied Sciences Journal home page: www.ajbasweb.com Design of a Half Bridge AC AC Series Resonant Converter for Domestic Application K. Prabu and A.Ruby

More information

A CSC Converter fed Sensorless BLDC Motor Drive

A CSC Converter fed Sensorless BLDC Motor Drive A CSC Converter fed Sensorless BLDC Motor Drive Anit K. Jose P G Student St Joseph's College of Engg Pala Bissy Babu Assistant Professor St Joseph's College of Engg Pala Abstract: The Brushless Direct

More information

Fuzzy Controlled Capacitor Voltage Balancing Control for a Three Level Boost Converter

Fuzzy Controlled Capacitor Voltage Balancing Control for a Three Level Boost Converter Fuzzy Controlled Capacitor Voltage Balancing Control for a Three evel Boost Converter Neethu Rajan 1, Dhivya Haridas 2, Thanuja Mary Abraham 3 1 M.Tech student, Electrical and Electronics Engineering,

More information

ZVT Buck Converter with Synchronous Rectifier

ZVT Buck Converter with Synchronous Rectifier IJSTE - International Journal of Science Technology & Engineering Volume 3 Issue 8 February 217 ISSN (online): 2349-784X ZVT Buck Converter with Synchronous Rectifier Preenu Paul Assistant Professor Department

More information

Design And Simulation of Single stage High PF Electronic ballast with boost topology for multiple Fluorescent lamps

Design And Simulation of Single stage High PF Electronic ballast with boost topology for multiple Fluorescent lamps Design And Simulation of Single stage High PF Electronic ballast with boost topology for multiple Fluorescent lamps R. A. Gupta, Rohit Agarwal, Hanuman Soni and Mahankali Ajay Department of Electrical

More information

A FULLY INTEGRATED THREE LEVEL ISOLATED SINGLE STAGEAC-DC POWER FACTOR CORRECTION CONVERTER

A FULLY INTEGRATED THREE LEVEL ISOLATED SINGLE STAGEAC-DC POWER FACTOR CORRECTION CONVERTER A FULLY INTEGRATED THREE LEVEL ISOLATED SINGLE STAGEAC-DC POWER FACTOR CORRECTION CONVERTER S.Banumathi Professor, Department of Electrical and Electronics Engineering, M.Kumarasamy College of Engineering,

More information

Dual mode controller based boost converter employing soft switching techniques

Dual mode controller based boost converter employing soft switching techniques International Journal of Energy and Power Engineering 2013; 2(3): 90-96 Published online June 10, 2013 (http://www.sciencepublishinggroup.com/j/ijepe) doi: 10.11648/j.ijepe.20130203.11 Dual mode controller

More information

Power Factor Corrected Single Stage AC-DC Full Bridge Resonant Converter

Power Factor Corrected Single Stage AC-DC Full Bridge Resonant Converter Power Factor Corrected Single Stage AC-DC Full Bridge Resonant Converter Gokul P H Mar Baselios College of Engineering Mar Ivanios Vidya Nagar, Nalanchira C Sojy Rajan Assisstant Professor Mar Baselios

More information

Power Factor Correction of LED Drivers with Third Port Energy Storage

Power Factor Correction of LED Drivers with Third Port Energy Storage Power Factor Correction of LED Drivers with Third Port Energy Storage Saeed Anwar Mohamed O. Badawy Yilmaz Sozer sa98@zips.uakron.edu mob4@zips.uakron.edu ys@uakron.edu Electrical and Computer Engineering

More information

FREQUENCY TRACKING BY SHORT CURRENT DETECTION FOR INDUCTIVE POWER TRANSFER SYSTEM

FREQUENCY TRACKING BY SHORT CURRENT DETECTION FOR INDUCTIVE POWER TRANSFER SYSTEM FREQUENCY TRACKING BY SHORT CURRENT DETECTION FOR INDUCTIVE POWER TRANSFER SYSTEM PREETI V. HAZARE Prof. R. Babu Vivekananda Institute of Technology and Vivekananda Institute of Technology Science, Karimnagar

More information

Design and Simulation of PFC Circuit for AC/DC Converter Based on PWM Boost Regulator

Design and Simulation of PFC Circuit for AC/DC Converter Based on PWM Boost Regulator International Journal of Automation and Power Engineering, 2012, 1: 124-128 - 124 - Published Online August 2012 www.ijape.org Design and Simulation of PFC Circuit for AC/DC Converter Based on PWM Boost

More information

Phase Shift Modulation of a Single Dc Source Cascaded H-Bridge Multilevel Inverter for Capacitor Voltage Regulation with Equal Power Distribution

Phase Shift Modulation of a Single Dc Source Cascaded H-Bridge Multilevel Inverter for Capacitor Voltage Regulation with Equal Power Distribution Phase Shift Modulation of a Single Dc Source Cascaded H-Bridge Multilevel Inverter for Capacitor Voltage Regulation with Equal Power Distribution K.Srilatha 1, Prof. V.Bugga Rao 2 M.Tech Student, Department

More information

THE converter usually employed for single-phase power

THE converter usually employed for single-phase power 82 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 46, NO. 1, FEBRUARY 1999 A New ZVS Semiresonant High Power Factor Rectifier with Reduced Conduction Losses Alexandre Ferrari de Souza, Member, IEEE,

More information

BRIDGELESS SEPIC CONVERTER FOR POWER FACTOR IMPROVEMENT

BRIDGELESS SEPIC CONVERTER FOR POWER FACTOR IMPROVEMENT BRIDGELESS SEPIC CONVERTER FOR POWER FACTOR IMPROVEMENT Hemalatha Gunasekaran Department of EEE, Pondicherry Engineering college, Pillaichavady, Puducherry, INDIA hemalathagunasekarancluny@gmail.com Dr.

More information

High Power Factor Bridgeless SEPIC Rectifier for Drive Applications

High Power Factor Bridgeless SEPIC Rectifier for Drive Applications High Power Factor Bridgeless SEPIC Rectifier for Drive Applications Basheer K 1, Divyalal R K 2 P.G. Student, Dept. of Electrical and Electronics Engineering, Govt. College of Engineering, Kannur, Kerala,

More information

II. SINGLE PHASE BOOST TYPE APFC CONVERTER

II. SINGLE PHASE BOOST TYPE APFC CONVERTER An Overview of Control Strategies of an APFC Single Phase Front End Converter Nimitha Muraleedharan 1, Dr. Devi V 2 1,2 Electrical and Electronics Engineering, NSS College of Engineering, Palakkad Abstract

More information

A Novel Single Phase Soft Switched PFC Converter

A Novel Single Phase Soft Switched PFC Converter J Electr Eng Technol Vol. 9, No. 5: 1592-1601, 2014 http://dx.doi.org/10.5370/jeet.2014.9.5.1592 ISSN(Print) 1975-0102 ISSN(Online) 2093-7423 A Novel Single Phase Soft Switched PFC Converter Nihan ALTINTAŞ

More information

Closed Loop Analysis of a High Efficient Single Stage Power Factor Correction (SSPFC) Converter

Closed Loop Analysis of a High Efficient Single Stage Power Factor Correction (SSPFC) Converter P International Journal of Scientific Engineering Applied Science (IJSEAS) - Volume-1, Issue-4, June 2015 Closed Loop Analys of a High Efficient Single Stage Power Factor Correction (SSPFC) Converter 1

More information

SINGLE STAGE SINGLE SWITCH AC-DC STEP DOWN CONVERTER WITHOUT TRANSFORMER

SINGLE STAGE SINGLE SWITCH AC-DC STEP DOWN CONVERTER WITHOUT TRANSFORMER SINGLE STAGE SINGLE SWITCH AC-DC STEP DOWN CONVERTER WITHOUT TRANSFORMER K. Umar Farook 1, P.Karpagavalli 2, 1 PG Student, 2 Assistant Professor, Department of Electrical and Electronics Engineering, Government

More information

Implementation of Single Stage Three Level Power Factor Correction AC-DC Converter with Phase Shift Modulation

Implementation of Single Stage Three Level Power Factor Correction AC-DC Converter with Phase Shift Modulation Implementation of Single Stage Three Level Power Factor Correction AC-DC Converter with Phase Shift Modulation V. Ravi 1, M. Venkata Kishore 2 and C. Ashok kumar 3 Balaji Institute of Technology & Sciences,

More information

Closed Loop Control of an Efficient AC-DC Step up Converter

Closed Loop Control of an Efficient AC-DC Step up Converter International Journal of Electrical Engineering. ISSN 0974-2158 Volume 5, Number 1 (2012), pp. 1-6 International Research Publication House http://www.irphouse.com Closed Loop Control of an Efficient AC-DC

More information

Mechatronics, Electrical Power, and Vehicular Technology

Mechatronics, Electrical Power, and Vehicular Technology Mechatronics, Electrical Power, and Vehicular Technology 04 (2013) 75-80 Mechatronics, Electrical Power, and Vehicular Technology e-issn:2088-6985 p-issn: 2087-3379 Accreditation Number: 432/Akred-LIPI/P2MI-LIPI/04/2012

More information

An Adjustable-Speed PFC Bridgeless Single Switch SEPIC Converter-Fed BLDC Motor

An Adjustable-Speed PFC Bridgeless Single Switch SEPIC Converter-Fed BLDC Motor An Adjustable-Speed PFC Bridgeless Single Switch SEPIC Converter-Fed BLDC Motor Tintu Rani Joy M. Tech Scholar St. Joseph college of Engineering and technology Palai Shiny K George, Assistant Professor

More information

A New Interleaved Three-Phase Single-Stage PFC AC-DC Converter with Flying Capacitor

A New Interleaved Three-Phase Single-Stage PFC AC-DC Converter with Flying Capacitor A New Interleaved Three-Phase Single-Stage PFC AC-DC Converter with Flying Capacitor Mehdi Narimani, Member, IEEE, Gerry Moschopoulos, Senior Member, IEEE mnariman@uwo.ca, gmoschop@uwo.ca Abstract A new

More information

P. Sivakumar* 1 and V. Rajasekaran 2

P. Sivakumar* 1 and V. Rajasekaran 2 IJESC: Vol. 4, No. 1, January-June 2012, pp. 1 5 P. Sivakumar* 1 and V. Rajasekaran 2 Abstract: This project describes the design a controller for PWM boost Rectifier. This regulates the output voltage

More information

A Reduced Component Count Single-stage Electrolytic Capacitor-less Battery Charger with Sinusoidal Charging

A Reduced Component Count Single-stage Electrolytic Capacitor-less Battery Charger with Sinusoidal Charging A Reduced Component Count Single-stage Electrolytic Capacitor-less Battery Charger with Sinusoidal Charging Byeongwoo Kim, Minjae Kim and Sewan Choi Department of Electrical and Information Engineering

More information

LOW ORDER HARMONICS IMPROVEMENT OF A SINGLE GRID CONNECTED INVERTER SYSTEM UNDER PR CONTROL TECHNIQUE

LOW ORDER HARMONICS IMPROVEMENT OF A SINGLE GRID CONNECTED INVERTER SYSTEM UNDER PR CONTROL TECHNIQUE LOW ORDER HARMONICS IMPROVEMENT OF A SINGLE GRID CONNECTED INVERTER SYSTEM UNDER PR CONTROL TECHNIQUE S. Salimin 1, A. A Bakar 1 and M. Armstrong 2 1 Department of Electrical Power, Faculty of Electrical

More information

PERFORMANCE OF INDUCTION HEATING TOPOLOGIES WITH VARIOUS SWITCHING SCHEMES

PERFORMANCE OF INDUCTION HEATING TOPOLOGIES WITH VARIOUS SWITCHING SCHEMES PERFORMANCE OF INDUCTION HEATING TOPOLOGIES WITH VARIOUS SWITCHING SCHEMES Janet Teresa K. Cyriac 1, Sreekala P. 2 P.G. Scholar 1, Assistant Professor 2 Amal Jyothi College of Engineering Kanjirapally,

More information

Power Factor Corrected Zeta Converter Based Switched Mode Power Supply

Power Factor Corrected Zeta Converter Based Switched Mode Power Supply Power Factor Corrected Zeta Converter Based Switched Mode Power Supply Reshma Shabi 1, Dhanya B Nair 2 M-Tech Power Electronics, EEE, ICET Mulavoor, Kerala 1 Asst. Professor, EEE, ICET Mulavoor, Kerala

More information

Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System

Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System 1 G.Balasundaram, 2 Dr.S.Arumugam, 3 C.Dinakaran 1 Research Scholar - Department of EEE, St.

More information

Design and Implementation of a New PWM Based Active Impedance Power Factor Correction (AIPFC)

Design and Implementation of a New PWM Based Active Impedance Power Factor Correction (AIPFC) Design and Implementation of a New PWM Based Active Impedance Power Factor Correction (AIPFC) S. Ali Al-Mawsawi Department of Electrical and Electronics Engineering, College of Engineering, University

More information

Single switch three-phase ac to dc converter with reduced voltage stress and current total harmonic distortion

Single switch three-phase ac to dc converter with reduced voltage stress and current total harmonic distortion Published in IET Power Electronics Received on 18th May 2013 Revised on 11th September 2013 Accepted on 17th October 2013 ISSN 1755-4535 Single switch three-phase ac to dc converter with reduced voltage

More information

A BRUSHLESS DC MOTOR DRIVE WITH POWER FACTOR CORRECTION USING ISOLATED ZETA CONVERTER

A BRUSHLESS DC MOTOR DRIVE WITH POWER FACTOR CORRECTION USING ISOLATED ZETA CONVERTER A BRUSHLESS DC MOTOR DRIVE WITH POWER FACTOR CORRECTION USING ISOLATED ZETA CONVERTER Rajeev K R 1, Dr. Babu Paul 2, Prof. Smitha Paulose 3 1 PG Scholar, 2,3 Professor, Department of Electrical and Electronics

More information

DC DC CONVERTER FOR WIDE OUTPUT VOLTAGE RANGE BATTERY CHARGING APPLICATIONS USING LLC RESONANT

DC DC CONVERTER FOR WIDE OUTPUT VOLTAGE RANGE BATTERY CHARGING APPLICATIONS USING LLC RESONANT Volume 114 No. 7 2017, 517-530 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu DC DC CONVERTER FOR WIDE OUTPUT VOLTAGE RANGE BATTERY CHARGING APPLICATIONS

More information

ZERO VOLTAGE TRANSITION SYNCHRONOUS RECTIFIER BUCK CONVERTER

ZERO VOLTAGE TRANSITION SYNCHRONOUS RECTIFIER BUCK CONVERTER International Journal of Electrical and Electronics Engineering Research (IJEEER) ISSN(P): 225-155X; ISSN(E): 2278-943X Vol. 4, Issue 3, Jun 214, 75-84 TJPRC Pvt. Ltd. ZERO VOLTAGE TRANSITION SYNCHRONOUS

More information

INDUCTIVE power transfer (IPT) is an emerging technology

INDUCTIVE power transfer (IPT) is an emerging technology Soft-Switching Self-Tuning H-bridge Converter for Inductive Power Transfer Systems Masood Moghaddami, Andres Cavada, and Arif I. Sarwat Department of Electrical and Computer Engineering, Florida International

More information

A CONTROLLED SINGLE-PHASE SERIES RESONANT AC CHOPPER

A CONTROLLED SINGLE-PHASE SERIES RESONANT AC CHOPPER International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 1 (February 2014), PP. 32-38 A CONTROLLED SINGLE-PHASE SERIES RESONANT

More information

Inductive Power Transfer in the MHz ISM bands: Drones without batteries

Inductive Power Transfer in the MHz ISM bands: Drones without batteries Inductive Power Transfer in the MHz ISM bands: Drones without batteries Paul D. Mitcheson, S. Aldhaher, Juan M. Arteaga, G. Kkelis and D. C. Yates EH017, Manchester 1 The Concept 3 Challenges for Drone

More information

THREE-PHASE converters are used to handle large powers

THREE-PHASE converters are used to handle large powers IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 14, NO. 6, NOVEMBER 1999 1149 Resonant-Boost-Input Three-Phase Power Factor Corrector Da Feng Weng, Member, IEEE and S. Yuvarajan, Senior Member, IEEE Abstract

More information

Minimized Standby Power Scheme For Forward Converter With Isolated Output- Feedback

Minimized Standby Power Scheme For Forward Converter With Isolated Output- Feedback ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 2014 2014 International Conference

More information

A Unique SEPIC converter based Power Factor Correction method with a DCM Detection Technique

A Unique SEPIC converter based Power Factor Correction method with a DCM Detection Technique IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 11, Issue 4 Ver. III (Jul. Aug. 2016), PP 01-06 www.iosrjournals.org A Unique SEPIC converter

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BY AENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2016 March 10(3): pages 190-197 Open Access Journal Power Factor Correction

More information

Improved Battery Charger Circuit Utilizing Reduced DC-link Capacitors

Improved Battery Charger Circuit Utilizing Reduced DC-link Capacitors Improved Battery Charger Circuit Utilizing Reduced DC-link Capacitors Vencislav Valchev 1, Plamen Yankov 1, Orlin Stanchev 1 1 Department of Electronics and Microelectronics, Technical University of Varna,

More information

Fariborz Musavi. Wilson Eberle. William G. Dunford Senior Member IEEE

Fariborz Musavi. Wilson Eberle. William G. Dunford Senior Member IEEE A High-Performance Single-Phase AC-DC Power Factor Corrected Boost Converter for plug in Hybrid Electric Vehicle Battery Chargers Fariborz Musavi Student Member IEEE Wilson Eberle Member IEEE 2 William

More information

A Novel Bridgeless Single-Stage Half-Bridge AC/DC Converter

A Novel Bridgeless Single-Stage Half-Bridge AC/DC Converter A Novel Bridgeless Single-Stage Half-Bridge AC/DC Converter Woo-Young Choi 1, Wen-Song Yu, and Jih-Sheng (Jason) Lai Virginia Polytechnic Institute and State University Future Energy Electronics Center

More information