SCHERING BRIDGE AB13. Analog Lab Experiment Board Ver. 1.0

Size: px
Start display at page:

Download "SCHERING BRIDGE AB13. Analog Lab Experiment Board Ver. 1.0"

Transcription

1 SCHERING BRIDGE AB13 Analog Lab Experiment Board Ver. 1.0 QUALITY POLICY To be a Global Provider of Innovative and Affordable Electronic Equipments for Technology Training by enhancing Customer Satisfaction based on Research, Modern manufacturing techniques and continuous improvement in Quality of the products and Services with active participation of employees. An ISO 9001: 2000 company , Electronic Complex, Pardesipura INDORE , India.

2 Tel.: Fax: Web: Scientech Technologies Pvt. Ltd. 2

3 Scientech Technologies Pvt. Ltd. 3

4 SCHERING BRIDGE AB13 TABLE OF CONTENTS 1.Introduction 4 2. Theory 6 3.Schering Bridge 8 4.Experiment 9 To measure the value of unknown capacitance with the help of Schearing Bridge 5.Observation table 11 6.Datasheet 12 7.Warranty 14 8.List of service centers 15 9.List of accessories with AB13 16 Scientech Technologies Pvt. Ltd. 4

5 INTRODUCTION AB13 is a compact, ready to use SCHERING BRIDGE experiment board. This bridge is the simplest way to determine the value of unknown capacitance; by comparing the branch impedance of the bridge. It can be used as stand alone unit with external DC power supply or can be used with SCIENTECH ANALOG LAB, ST2612; which has built in DC power supply, AC power supply, function generator, modulation generator, continuity tester, toggle switch and potentiometer. List of boards : Model AB01 AB02 AB03 AB04 AB05 AB06 AB07 AB08 AB09 AB10 AB11 AB12 AB14 AB15 AB16 AB17 AB18 AB19 AB20 AB21 AB22 AB23 AB25 AB28 AB29 AB30 Name Diode characteristics (Si, Zener, LED) Transistor characteristics (CB NPN) Transistor characteristics (CB PNP) Transistor characteristics (CE NPN) Transistor characteristics (CE PNP) Transistor characteristics (CC NPN) Transistor characteristics (CC PNP) FET characteristics Rectifier Circuits Wheatstone Bridge Maxwell s Bridge De Sauty s Bridge Darlington Pair Common Emitter Amplifier Common Collector Amplifier Common Base Amplifier Cascode Amplifier RC-Coupled Amplifier Direct Coupled Amplifier Class A Amplifier Class B Amplifier (push pull emitter follower) Class C Tuned Amplifier Phase Locked Loop (FM Demodulator & Frequency Divider / Multiplier) Multivibrator ( Mono stable / Astable) F-V and V-F Converter V-I and I-V Converter Scientech Technologies Pvt. Ltd. 5

6 AB31 Zener Voltage Regulator AB32 Transistor Series Voltage Regulator AB33 Transistor Shunt Voltage Regulator AB39 Instrumentation Amplifier AB41 Differential Amplifier (Transistorized) AB42 Operational Amplifier (Inverting / Non-inverting / Differentiator) AB43 Operational Amplifier (Adder/Scalar) AB44 Operational Amplifier (Integrator/ Differentiator) AB45 Schmitt Trigger and Comparator AB51 Active filters (Low Pass and High Pass) AB52 Active Band Pass Filter AB53 Notch Filter AB54 Tschebyscheff Filter AB56 Fiber Optic Analog Link AB65 Phase Shift Oscillator AB66 Wien Bridge Oscillators AB67 Colpitt Oscillator AB68 Hartley Oscillator AB80 RLC Series and RLC Parallel Resonance AB81 Kirchoff s Laws (Kirchoff s Current Law & Kirchoff s Voltage Law) AB82 Thevenin s and Maximum power Transfer Theorem AB83 Reciprocity and Superposition Theorem AB84 Tellegen s Theorem AB85 Norton s theorem AB88 Diode Clipper AB89 Diode Clampers AB90 Two port network parameter AB91 Optical Transducer (Photovoltaic cell) AB92 Optical Transducer (Photoconductive cell/ldr) AB93 Optical Transducer (Phototransistor) AB96 Temperature Transducer (RTD & IC335) AB97 Temperature Transducer (Thermocouple) AB101 DSB Modulator and Demodulator AB102 SSB Modulator and Demodulator AB106 FM Modulator and Demodulator and many more Scientech Technologies Pvt. Ltd. 6

7 THEORY An A.C. Bridge, in its basic form, consists of four arms, a source of excitation and a balance detector. In an A.C. bridge each of four arms are impedance, and the A.C. source and a detector sensitive to small alternating potential differences. The usefulness of A.C. bridge circuits is not restricted to the measurement of unknown impedances and associated parameters like inductance, capacitance, storage factor etc. These circuits find other application in communication system and complex electronics circuits. A.C bridges are commonly used for phase shifting, providing feedback paths for oscillators and amplifiers, filtering out undesirable signals and measuring the frequency of audio signals. For measurement at low frequencies, the power line may act as the source of the supply to bridge circuits. For higher frequencies electronic oscillators are universally used as bridge source supplies. These oscillators have the advantage that the frequency is constant easily adjustable and determinable with accuracy the waveform is very close to a sine wave and their power output is sufficient for most bridge measurements. Detectors most commonly used for A.C. bridges are 1. Head phones 2. Vibration galvanometers 3. Tunable amplifiers detectors Head phones are widely used as detectors at frequencies of 250 Hz and up to 3 or 4 khz. They are most sensitive detectors for this range When working at a single frequency a tuned detector normally gives the greatest sensitivity and discrimination against harmonics in the supply.vibration galvanometer are extremely use for power and low audio frequency ranges.vibration galvanometers are manufactures to work at various frequencies ranging from 5 Hz to 1000 Hz but are most commonly used below 200 Hz as below this frequency they are more sensitive that the head phones. Tunable amplifiers detectors are the most versatile of the detectors.the transistors amplifiers can be tuned electrically and thus can be made to respond to a narrow bandwidth at the bridge frequency.the output of the amplifier is fed to a pointer type instrument this detector can be used, over a frequency range of 10 Hz to 100 khz. Scientech Technologies Pvt. Ltd. 7

8 General equation for bridge balance : Basic A.C. bridge circuit is shown below the four arm of the bridge are impedance Z 1, Z 2, Z 3, Z 4.The condition for balance of bridge require that there should be no current through the detector.this requires that the potential difference between points b and d should be zero. This will be the case when the voltage drop from a to b equals the voltage drop from a to d both in magnitude and phase. In complex notation we can, write: E 1 = E 2 I 1 Z 1 =I 2 Z 2 Also at balance, I 1 =I 3 =E/Z 1 +Z 2 Substituting the Eq. We Get I 2 =I 4 =E/Z 2 +Z 4 Z 1 Z 4 =Z 2 Z 3 Eq. states that the product of impedances of one pair opposite arms must equal the product of impedance of the other pair of opposite arms in complex notation.this means that both magnitude and phase angle of the impedance must be taken into account. Two conditions must be satisfied simultaneously when balancing the A.C. Bridge The first condition is that the magnitude of impedances satisfies the relationship: Z 1 Z 4= Z 2 Z 3 The second condition is that the phase angles of impedance satisfy the relationship: θ 1 +θ 4 =θ 2 +θ 3 The phase angles are positive for inductive impedance and negative for capacitance impedance. Scientech Technologies Pvt. Ltd. 8

9 SCHERING BRIDGE This Bridge is the simplest method of comparing two capacitance and to determine unknown capacitance. Figure 1 shows the basic Schering Bridge circuit configuration. Its first arm Z X consisting of an unknown capacitor Cx in series with the resistance R x and second arms are consisting of capacitor C 3 and third arm consisting of variable resistance R 2 and fourth arm consists a parallel combination of resistance R 1 and capacitor C 1. The balance can be obtained by varying the resistance R 2 of third arm. C X = capacitor with unknown capacitance, R X =Effective resistance, C 3 = standard capacitor, R 1, R 2 = non-inductive resistance. At balance,z 1 Z X =Z 2 Z 3 The value of Rx can be calculated by the formula: Rx = R 2C 1 C 3 The value of Cx can be calculated by the formula: Cx=R 1C 3 R 2 The Dissipation factor for the capacitor is given by the formula: D=ωCxR x Where C x is the value of unknown capacitor and R x is effective resistance. The value of D is the reciprocal of the quality factor Q i.e. D=1/Q D indicates the quality of the capacitor. This bridge is widely used for measurement of small valued capacitors at low voltages with high Precision. Schering Bridge Fig. 1 Scientech Technologies Pvt. Ltd. 9

10 EXPERIMENT Objective : To measure the value of unknown capacitance with the help of Schearing Bridge. Apparatus required : 1. Analog Board, AB13 2. DC power supplies +/ 12V from external source ST-2612 Analog lab 3. Function generator 4. 2 mm patch cords. 5. Digital multimeter Circuit diagram : Circuit used to measure the value of unknown capacitance is shown Fig. 2 Scientech Technologies Pvt. Ltd. 10

11 Procedure : Connect +/ 12V dc power supply at their indicated position from external source or ST-2612 Analog lab. 1. Connect function generator probes between Vin terminals. 2. Connect 2mm patch chord between sockets d and a to calculate the value of Cx1 and Rx1. 3. Switch ON the power supply and function generator. 4. Set the 5Vpp, 1 KHz input sinusoidal signal of function generator. 5. Rotate the potentiometer R2 to find a condition where null or minimum sound is obtained. The null point should be such that beyond or below that point sound gets starts gradually increasing. 6. Switch off the power supply and function generator 7. Take the reading of potentiometer resistance at test-point e and f. 8. Calculate the value of capacitance Cx and Rx by their formulae. 9. Calculate the value of dissipation factor for capacitor C X1 10. Connect 2mm patch chord between point d and b to determine the capacitance of capacitor Cx Repeat the above step from 4 to Connect 2mm patch chord between point d and c to determine the capacitance of capacitor Cx Repeat the above step from 4 to 10. Scientech Technologies Pvt. Ltd. 11

12 OBSERVATION TABLE Sr. no. R 1 Ω C 1 µf C 3 µf R 2 Ω R x=r 2C 1/3 Ω Cx=R 1C 3/R 2 µf D Note : Values of C 1, C 3, and R 1 are indicated on the front of the board. Calculation : Measured value of R 2 is.. Ω/kΩ Now measure the value of Cx by the formula : Cx=R 2 C 1 /C 3 Now measure the values of Rx by the formula : R x =R 1 C 3 /R 2 Now calculate the value of dissipation factor by the formula : D = ωc x R x The dissipation factor D i.e. wc x R x should be approximately equal to ω*c1*r1. Result : The capacitance of capacitor C x = µf The effective resistance R x =. Ω/KΩ The dissipation factor D =.. Scientech Technologies Pvt. Ltd. 12

13 DATASHEET Scientech Technologies Pvt. Ltd. 13

14 Scientech Technologies Pvt. Ltd. 14

15 WARRANTY 1. We guarantee the instrument against all manufacturing defects during 24 months from the date of sale by us or through our dealers. 2. The guarantee covers manufacturing defects in respect of indigenous components and material limited to the warranty extended to us by the original manufacturer, and defect will be rectified as far as lies within our control. 3. The guarantee will become INVALID. a)if the instrument is not operated as per instruction given in the instruction manual. b)if the agreed payment terms and other conditions of sale are not followed. c) If the customer resells the instrument to another party. d)provided no attempt have been made to service and modify the instrument. 4. The non-working of the instrument is to be communicated to us immediately giving full details of the complaints and defects noticed specifically mentioning the type and sr. no. of the instrument, date of purchase etc. 5. The repair work will be carried out, provided the instrument is dispatched securely packed and insured with the railways. To and fro charges will be to the account of the customer. DISPATCH PROCEDURE FOR SERVICE Should it become necessary to send back the instrument to factory please observe the following procedure: 1) Before dispatching the instrument please write to us giving full details of the fault noticed. 2) After receipt of your letter our repairs dept. will advise you whether it is necessary to send the instrument back to us for repairs or the adjustment is possible in your premises. Dispatch the instrument (only on the receipt of our advice) securely packed in original packing duly insured and freight paid along with accessories and a copy of the details noticed to us at our factory address. Scientech Technologies Pvt. Ltd. 15

16 LIST OF SERVICE CENTERS 1. Scientech Technologies Pvt. Ltd. 90, Electronic Complex Ph : (0731) Pardesipura, info@scientech.bz INDORE Scientech Technologies Pvt. Ltd. First Floor, C-19, Ph : (011) , F.I.E., Patparganj Industrial Area, Fax : (011) DELHI ndel@scientech.bz 3. Scientech Technologies Pvt. Ltd. New no.2, Old no.10, 4 th street Ph : (044) , Venkateswara nagar, Adyar Fax : (044) CHENNAI chennai@scientech.bz 4. Scientech Technologies Pvt. Ltd. 202/19, 4 th main street Ph : (080) Ganganagar, Fax : (080) BANGALORE Scientech Technologies Pvt. Ltd. 8,1st floor, 123-Hariram Mansion, Ph : (022) Dada Saheb Phalke road, Fax : (022) Dadar (East), MUMBAI bangalore@scientech.bz stplmum@scientech.bz 6. Scientech Technologies Pvt. Ltd. 988, Sadashiv Peth, Ph : (020) Gyan Prabodhini Lane, Fax : (020) PUNE pune@scientech.bz 7. Scientech Technologies Pvt. Ltd SPS Apartment, 1 st Floor Ph : , Ahmed Mamoji Street, kolkata@scientech.bz Behind Jaiswal Hospital, Liluah, HOWRAH W.B. 8. Scientech Technologies Pvt. Ltd Flat No. 205, 2 nd Floor, Ph : (040) Lakshminarayana Apartments hyd@scientech.bz C wing, Street No. 17, Himaytnagar, HYDERABAD Scientech Technologies Pvt. Ltd. 16

17 LIST OF ACCESSORIES 1. 2 mm Patch cords (Red)...3 Nos mm Patch cord (Black)...2 Nos mm Patch cord (Black)...1 Nos. Scientech Technologies Pvt. Ltd. 17

18 Scientech Technologies Pvt. Ltd. 18

Analog Lab Experiment Board Ver. 1.0

Analog Lab Experiment Board Ver. 1.0 PASSIVE ATTENUATORS Analog Lab Experiment Board Ver. 1.0 QUALITY POLICY To be a Global Provider of Innovative and Affordable Electronic Equipments for Technology Training by enhancing Customer Satisfaction

More information

Analog Lab Experiment Board Ver. 1.0

Analog Lab Experiment Board Ver. 1.0 PHASE SHIFT OSCILLATOR Analog Lab Experiment Board Ver. 1.0 QUALITY POLICY To be a Global Provider of Innovative and Affordable Electronic Equipments for Technology Training by enhancing Customer Satisfaction

More information

AB-30 V-I AND I-V CONVERTER

AB-30 V-I AND I-V CONVERTER V-I AND I-V CONVERTER ANALOG LAB EXPERIMENT BOARD Ver. 1.0 An ISO 9001: 2000 company 94-101, Electronic Complex, Pardesipura INDORE-452010, India. Tel.: 91-731-2570301 Fax: 91-731-2555643 Email: info@scientech.bz

More information

AB-45 Operational Amplifier (Schmitt Trigger & Comparators) ANALOG LAB EXPERIMENT BOARD Ver. 1.0

AB-45 Operational Amplifier (Schmitt Trigger & Comparators) ANALOG LAB EXPERIMENT BOARD Ver. 1.0 Operational Amplifier (Schmitt Trigger & Comparators) ANALOG LAB EXPERIMENT BOARD Ver. 1.0 An ISO 9001: 2000 company 94-101, Electronic Complex, Pardesipura INDORE-452010, India. Tel.: 91-731-2570301 Fax:

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 Colpitt s Oscillator Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731- 2555643 e mail : info@scientech.bz

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 SSB Modulator and Demodulator Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731- 2555643 e

More information

Analog Lab Experiment Board Ver. 1.0

Analog Lab Experiment Board Ver. 1.0 SILICON, ZENER, LED DIODE CHARACTERISTICS Analog Lab Experiment Board Ver. 1.0 QUALITY POLICY To be a Global Provider of Innovative and Affordable Electronic Equipments for Technology Training by enhancing

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 Common Base NPN Transistor Characteristics Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731-

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 Common Collector Amplifier Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731- 2555643 e mail

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 Phase Shift Oscillator Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731- 2555643 e mail :

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 Multivibrators (Astable and Monostable) Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731-

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 FET Amplifier Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731- 2555643 e mail : info@scientech.bz

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 SCR Triggering Techniques ST2703 Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731- 2555643

More information

UNIT 1 MULTI STAGE AMPLIFIES

UNIT 1 MULTI STAGE AMPLIFIES UNIT 1 MULTI STAGE AMPLIFIES 1. a) Derive the equation for the overall voltage gain of a multistage amplifier in terms of the individual voltage gains. b) what are the multi-stage amplifiers? 2. Describe

More information

SCR Triggering Techniques Scientech 2703

SCR Triggering Techniques Scientech 2703 SCR Triggering Techniques Scientech 2703 Learning Material Ver 1.1 An ISO 9001:2008 company Scientech Technologies Pvt. Ltd. 94, Electronic Complex, Pardesipura, Indore - 452 010 India, + 91-731 4211100,

More information

APPLIED ELECTRONIC CIRCUITS

APPLIED ELECTRONIC CIRCUITS SRM UNIVERSITY DEPARTMENT OF BIOMEDICAL ENGINEERING ODD Semester-2014-2015 BM1005 APPLIED ELECTRONIC CIRCUITS Course Code: BM1005 Course Title: APPLIED ELECTRONIC CIRCUITS Sem: III SEM B. Tech Second Year

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 UJT Characteristics Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731- 2555643 e mail : info@scientech.bz

More information

DIGITAL ELECTRONICS ANALOG ELECTRONICS

DIGITAL ELECTRONICS ANALOG ELECTRONICS DIGITAL ELECTRONICS 1. N10 4 Bit Binary Universal shift register. 2. N22- Random Access Memory (16*4). 3. N23- Read Only Memory. 4. N4-R-S/D-T Flip flop, characteristic and comparison. 5. Master Slave

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 Fourier Synthesis Trainer ST2603 Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, INDIA Ph: 91-731- 2556638, 2570301 Fax: 91-731- 2555643 E-mail

More information

PRODUCT CATALOG TRAINER KITS FOR ENGINEERING DEGREE COURSES MICROTECH INDUSTRIES

PRODUCT CATALOG TRAINER KITS FOR ENGINEERING DEGREE COURSES MICROTECH INDUSTRIES PRODUCT CATALOG TRAINER KITS FOR ENGINEERING DEGREE COURSES µ MICROTECH INDUSTRIES 14A/ 1G, ULTADANGA ROAD GOPAL BHAVAN KOLKATA 700 004 Phone : (033) 3296 9273, Cell : 98312 63293 E- mail : hkg@cal3.vsnl.net.in

More information

Learning Material Ver 1.1

Learning Material Ver 1.1 SCR Triggering Circuits Scientech 2702 Learning Material Ver 1.1 An ISO 9001:2008 company Scientech Technologies Pvt. Ltd. 94, Electronic Complex, Pardesipura, Indore - 452 010 India, + 91-731 4211100,

More information

The steeper the phase shift as a function of frequency φ(ω) the more stable the frequency of oscillation

The steeper the phase shift as a function of frequency φ(ω) the more stable the frequency of oscillation It should be noted that the frequency of oscillation ω o is determined by the phase characteristics of the feedback loop. the loop oscillates at the frequency for which the phase is zero The steeper the

More information

UNIT 1. 9 What is the Causes of Free Response in Electrical Circuit. 12 Write the Expression for transient current and voltages of RL circuit.

UNIT 1. 9 What is the Causes of Free Response in Electrical Circuit. 12 Write the Expression for transient current and voltages of RL circuit. SUB: Electric Circuits and Electron Devices Course Code: UBEE309 UNIT 1 PART A 1 State Transient and Transient Time? 2 What is Tansient State? 3 What is Steady State? 4 Define Source Free Response 5 Define

More information

i Intelligent Digitize Emulated Achievement Lab

i Intelligent Digitize Emulated Achievement Lab Electronics Circuits Equipment Intelligent Digitize Emulated Achievement Lab intelligent digitize emulated achievement lab is a digitized-based training system, which utilizes integrated Hardware Platform,

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road QUESTION BANK

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road QUESTION BANK SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK Subject with Code : Electronic Circuit Analysis (16EC407) Year & Sem: II-B.Tech & II-Sem

More information

Operating Manual Ver 1.1

Operating Manual Ver 1.1 Frequency Modulation and Demodulation Trainer ST2203 Operating Manual Ver 1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100

More information

DC/AC CIRCUITS: CONVENTIONAL FLOW TEXTBOOKS

DC/AC CIRCUITS: CONVENTIONAL FLOW TEXTBOOKS 4 PEARSON CUSTOM ELECTRONICS TECHNOLOGY DC/AC CIRCUITS: CONVENTIONAL FLOW TEXTBOOKS AVAILABLE MARCH 2009 Boylestad Introductory Circuit Analysis, 11/e, 0-13-173044-4 Introduction 32 LC4501 Voltage and

More information

Figure 1: Closed Loop System

Figure 1: Closed Loop System SIGNAL GENERATORS 3. Introduction Signal sources have a variety of applications including checking stage gain, frequency response, and alignment in receivers and in a wide range of other electronics equipment.

More information

Communication Circuit Lab Manual

Communication Circuit Lab Manual German Jordanian University School of Electrical Engineering and IT Department of Electrical and Communication Engineering Communication Circuit Lab Manual Experiment 2 Tuned Amplifier Eng. Anas Alashqar

More information

Analog Electronic Circuits Lab-manual

Analog Electronic Circuits Lab-manual 2014 Analog Electronic Circuits Lab-manual Prof. Dr Tahir Izhar University of Engineering & Technology LAHORE 1/09/2014 Contents Experiment-1:...4 Learning to use the multimeter for checking and indentifying

More information

Lesson Plan. Electronics 1-Total 51 Hours

Lesson Plan. Electronics 1-Total 51 Hours Lesson Plan. Electronics 1-Total 5s Unit I: Electrical Engineering materials:(10) Crystal structure & defects; Ceramic materials-structures, composites, processing and uses; Insulating laminates for electronics,

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS UNIT-I - PN DIODEAND ITSAPPLICATIONS 1. What is depletion region in PN junction?

More information

EE301 ELECTRONIC CIRCUITS CHAPTER 2 : OSCILLATORS. Lecturer : Engr. Muhammad Muizz Bin Mohd Nawawi

EE301 ELECTRONIC CIRCUITS CHAPTER 2 : OSCILLATORS. Lecturer : Engr. Muhammad Muizz Bin Mohd Nawawi EE301 ELECTRONIC CIRCUITS CHAPTER 2 : OSCILLATORS Lecturer : Engr. Muhammad Muizz Bin Mohd Nawawi 2.1 INTRODUCTION An electronic circuit which is designed to generate a periodic waveform continuously at

More information

Table of Contents...2. About the Tutorial...6. Audience...6. Prerequisites...6. Copyright & Disclaimer EMI INTRODUCTION Voltmeter...

Table of Contents...2. About the Tutorial...6. Audience...6. Prerequisites...6. Copyright & Disclaimer EMI INTRODUCTION Voltmeter... 1 Table of Contents Table of Contents...2 About the Tutorial...6 Audience...6 Prerequisites...6 Copyright & Disclaimer...6 1. EMI INTRODUCTION... 7 Voltmeter...7 Ammeter...8 Ohmmeter...8 Multimeter...9

More information

EC202- ELECTRONIC CIRCUITS II Unit- I -FEEEDBACK AMPLIFIER

EC202- ELECTRONIC CIRCUITS II Unit- I -FEEEDBACK AMPLIFIER EC202- ELECTRONIC CIRCUITS II Unit- I -FEEEDBACK AMPLIFIER 1. What is feedback? What are the types of feedback? 2. Define positive feedback. What are its merits and demerits? 3. Define negative feedback.

More information

Unit/Standard Number. LEA Task # Alignment

Unit/Standard Number. LEA Task # Alignment 1 Secondary Competency Task List 100 SAFETY 101 Demonstrate an understanding of State and School safety regulations. 102 Practice safety techniques for electronics work. 103 Demonstrate an understanding

More information

TEACHING & EXAMINATION SCHEME For the Examination 2015 ELECTRONICS. B.Sc. Part - I

TEACHING & EXAMINATION SCHEME For the Examination 2015 ELECTRONICS. B.Sc. Part - I TEACHING & EXAMINATION SCHEME For the Examination 2015 ELECTRONICS THEORY B.Sc. Part - I Elec. 101 Paper I Circuit Elements and Networks Pd/W Exam. Max. (45mts.) Hours Marks 150 2 3 50 Elec. 102 Paper

More information

B.Sc. Syllabus for Electronics under CBCS. Semester-I

B.Sc. Syllabus for Electronics under CBCS. Semester-I Semester-I Title: Electronic Circuit Analysis Course Code: UELTC101 Credits: 4 Total Marks: 100 Internal Examination: 20 marks End Semester Examination: 80 marks Duration: 3 hours Validity of Syllabus:

More information

R & D Electronics DIGITAL IC TRAINER. Model : DE-150. Feature: Object: Specification:

R & D Electronics DIGITAL IC TRAINER. Model : DE-150. Feature: Object: Specification: DIGITAL IC TRAINER Model : DE-150 Object: To Study the Operation of Digital Logic ICs TTL and CMOS. To Study the All Gates, Flip-Flops, Counters etc. To Study the both the basic and advance digital electronics

More information

Oscillators. An oscillator may be described as a source of alternating voltage. It is different than amplifier.

Oscillators. An oscillator may be described as a source of alternating voltage. It is different than amplifier. Oscillators An oscillator may be described as a source of alternating voltage. It is different than amplifier. An amplifier delivers an output signal whose waveform corresponds to the input signal but

More information

Gechstudentszone.wordpress.com

Gechstudentszone.wordpress.com 8.1 Operational Amplifier (Op-Amp) UNIT 8: Operational Amplifier An operational amplifier ("op-amp") is a DC-coupled high-gain electronic voltage amplifier with a differential input and, usually, a single-ended

More information

Paper-1 (Circuit Analysis) UNIT-I

Paper-1 (Circuit Analysis) UNIT-I Paper-1 (Circuit Analysis) UNIT-I AC Fundamentals & Kirchhoff s Current and Voltage Laws 1. Explain how a sinusoidal signal can be generated and give the significance of each term in the equation? 2. Define

More information

FREQUENTLY ASKED QUESTIONS

FREQUENTLY ASKED QUESTIONS FREQUENTLY ASKED QUESTIONS UNIT-1 SUBJECT : ELECTRONIC DEVICES AND CIRCUITS SUBJECT CODE : EC6202 BRANCH: EEE PART -A 1. What is meant by diffusion current in a semi conductor? (APR/MAY 2010, 2011, NOV/DEC

More information

Xeltronix.

Xeltronix. +91-8048720001 Xeltronix https://www.indiamart.com/xeltronix/ Reckoned firms engaged in manufacturing and supplying a quality array of Electronic Trainer Kits, we ensure that our products would serve the

More information

Introductory Electronics for Scientists and Engineers

Introductory Electronics for Scientists and Engineers Introductory Electronics for Scientists and Engineers Second Edition ROBERT E. SIMPSON University of New Hampshire Allyn and Bacon, Inc. Boston London Sydney Toronto Contents Preface xiü 1 Direct Current

More information

Ohm Technologiees.

Ohm Technologiees. +91-8048706704 Ohm Technologiees https://www.ohmtechnologiees.com/ Our company is engaged in manufacturing, supplying and importing the most sought after range Scientific Electronic Equipment. These products

More information

Electronic Measurements & Instrumentation. 1. Draw the Maxwell s Bridge Circuit and derives the expression for the unknown element at balance?

Electronic Measurements & Instrumentation. 1. Draw the Maxwell s Bridge Circuit and derives the expression for the unknown element at balance? UNIT -6 1. Draw the Maxwell s Bridge Circuit and derives the expression for the unknown element at balance? Ans: Maxwell's bridge, shown in Fig. 1.1, measures an unknown inductance in of standard arm offers

More information

LINEAR IC APPLICATIONS

LINEAR IC APPLICATIONS 1 B.Tech III Year I Semester (R09) Regular & Supplementary Examinations December/January 2013/14 1 (a) Why is R e in an emitter-coupled differential amplifier replaced by a constant current source? (b)

More information

Code: 9A Answer any FIVE questions All questions carry equal marks *****

Code: 9A Answer any FIVE questions All questions carry equal marks ***** II B. Tech II Semester (R09) Regular & Supplementary Examinations, April/May 2012 ELECTRONIC CIRCUIT ANALYSIS (Common to EIE, E. Con. E & ECE) Time: 3 hours Max Marks: 70 Answer any FIVE questions All

More information

Learning Material Ver 1.1

Learning Material Ver 1.1 Insulated Gate Bipolar Transistor (IGBT) ST2701 Learning Material Ver 1.1 An ISO 9001:2008 company Scientech Technologies Pvt. Ltd. 94, Electronic Complex, Pardesipura, Indore - 452 010 India, + 91-731

More information

UNIVERSITY OF NAIROBI COLLEGE OF BIOLOGICAL AND PHYSICAL SCIENCES FACULTY OF SCIENCE SPH 307 INTRODUCTORY ELECTRONICS

UNIVERSITY OF NAIROBI COLLEGE OF BIOLOGICAL AND PHYSICAL SCIENCES FACULTY OF SCIENCE SPH 307 INTRODUCTORY ELECTRONICS UNIVERSITY OF NAIROBI COLLEGE OF BIOLOGICAL AND PHYSICAL SCIENCES FACULTY OF SCIENCE SPH 307 INTRODUCTORY ELECTRONICS Dr. Kenneth A. Kaduki Department of Physics University of Nairobi Reviewer: Prof. Bernard

More information

OBJECTIVE TYPE QUESTIONS

OBJECTIVE TYPE QUESTIONS OBJECTIVE TYPE QUESTIONS Q.1 The breakdown mechanism in a lightly doped p-n junction under reverse biased condition is called (A) avalanche breakdown. (B) zener breakdown. (C) breakdown by tunnelling.

More information

Chapter.8: Oscillators

Chapter.8: Oscillators Chapter.8: Oscillators Objectives: To understand The basic operation of an Oscillator the working of low frequency oscillators RC phase shift oscillator Wien bridge Oscillator the working of tuned oscillator

More information

TUNED AMPLIFIERS 5.1 Introduction: Coil Losses:

TUNED AMPLIFIERS 5.1 Introduction: Coil Losses: TUNED AMPLIFIERS 5.1 Introduction: To amplify the selective range of frequencies, the resistive load R C is replaced by a tuned circuit. The tuned circuit is capable of amplifying a signal over a narrow

More information

HIGH LOW Astable multivibrators HIGH LOW 1:1

HIGH LOW Astable multivibrators HIGH LOW 1:1 1. Multivibrators A multivibrator circuit oscillates between a HIGH state and a LOW state producing a continuous output. Astable multivibrators generally have an even 50% duty cycle, that is that 50% of

More information

DEPT. OF ELECTRICAL & ELECTRONICS ENGG SRM INSTITUTE OF SCIENCE & TECHNOLOGY LESSON PLAN. Subject Name : Electronic Circuits

DEPT. OF ELECTRICAL & ELECTRONICS ENGG SRM INSTITUTE OF SCIENCE & TECHNOLOGY LESSON PLAN. Subject Name : Electronic Circuits DEPT. OF ELECTRICAL & ELECTRONICS ENGG SRM INSTITUTE OF SCIENCE & TECHNOLOGY LESSON PLAN Subject Code : EE0208 Subject Name : Electronic Circuits Branch : ELECTRICAL AND ELECTRONICS Year : II Section C

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6401 ELECTRONICS CIRCUITS-II SEM / YEAR: IV / II year B.E.

More information

State the application of negative feedback and positive feedback (one in each case)

State the application of negative feedback and positive feedback (one in each case) (ISO/IEC - 700-005 Certified) Subject Code: 073 Model wer Page No: / N Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer

More information

UNIT I Introduction to DC & AC circuits

UNIT I Introduction to DC & AC circuits SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code: Basic Electrical and Electronics Engineering (16EE207) Year & Sem: II-B.

More information

Associate In Applied Science In Electronics Engineering Technology Expiration Date:

Associate In Applied Science In Electronics Engineering Technology Expiration Date: PROGRESS RECORD Study your lessons in the order listed below. Associate In Applied Science In Electronics Engineering Technology Expiration Date: 1 2330A Current and Voltage 2 2330B Controlling Current

More information

Gujarat University B. Sc. Electronics Semester I: ELE (Effective from: )

Gujarat University B. Sc. Electronics Semester I: ELE (Effective from: ) Unit - I: Components and Instrumentation: Gujarat University B. Sc. Electronics Semester I: ELE - 101 Passive Circuit devices: Resistors, nonlinear resistors, inductors, types of inductors, capacitors,

More information

Transistor Digital Circuits

Transistor Digital Circuits Recapitulation Transistor Digital Circuits The transistor Operating principle and regions Utilization of the transistor Transfer characteristics, symbols Controlled switch model BJT digital circuits MOSFET

More information

GATE: Electronics MCQs (Practice Test 1 of 13)

GATE: Electronics MCQs (Practice Test 1 of 13) GATE: Electronics MCQs (Practice Test 1 of 13) 1. Removing bypass capacitor across the emitter leg resistor in a CE amplifier causes a. increase in current gain b. decrease in current gain c. increase

More information

LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers

LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers General Description The LM13600 series consists of two current controlled transconductance amplifiers each with

More information

Question Bank SENSORS AND INSTRUMENTATION [EE-305/405]

Question Bank SENSORS AND INSTRUMENTATION [EE-305/405] UNIT-1 1. Discuss liquid in glass thermometers? 2. Write a short note on strain gauges. 3. Mention the various temperature scales and relation between them. 4. An experiment is conducted to calibrate a

More information

SILVER OAK COLLEGE OF ENGG. & TECHNOLOGY Midsem I Syllabus Electronics & communication Engineering

SILVER OAK COLLEGE OF ENGG. & TECHNOLOGY Midsem I Syllabus Electronics & communication Engineering SILVER OAK COLLEGE OF ENGG. & TECHNOLOGY Midsem I Syllabus Electronics & communication Engineering Subject Name: Control System Engineering Subject Code: 2141004 Unit 1: Introduction to Control Systems:

More information

An active filter offers the following advantages over a passive filter:

An active filter offers the following advantages over a passive filter: ACTIVE FILTERS An electric filter is often a frequency-selective circuit that passes a specified band of frequencies and blocks or attenuates signals of frequencies outside this band. Filters may be classified

More information

Lab 4 : Transistor Oscillators

Lab 4 : Transistor Oscillators Objective: Lab 4 : Transistor Oscillators In this lab, you will learn how to design and implement a colpitts oscillator. In part II you will implement a RC phase shift oscillator Hardware Required : Pre

More information

Devices and Op-Amps p. 1 Introduction to Diodes p. 3 Introduction to Diodes p. 4 Inside the Diode p. 6 Three Diode Models p. 10 Computer Circuit

Devices and Op-Amps p. 1 Introduction to Diodes p. 3 Introduction to Diodes p. 4 Inside the Diode p. 6 Three Diode Models p. 10 Computer Circuit Contents p. v Preface p. ix Devices and Op-Amps p. 1 Introduction to Diodes p. 3 Introduction to Diodes p. 4 Inside the Diode p. 6 Three Diode Models p. 10 Computer Circuit Analysis p. 16 MultiSIM Lab

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE) PART - A

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE) PART - A SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code: Basic Electrical and Electronics Engineering (16EE207) Year & Sem: II-B.

More information

Function Generator Using Op Amp Ic 741 Theory

Function Generator Using Op Amp Ic 741 Theory Function Generator Using Op Amp Ic 741 Theory Note: Op-Amps ua741, LM 301, LM311, LM 324 & AD 633 may be used To design an Inverting Amplifier for the given specifications using Op-Amp IC 741. THEORY:

More information

PART-A UNIT I Introduction to DC & AC circuits

PART-A UNIT I Introduction to DC & AC circuits SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Basic Electrical and Electronics Engineering (16EE207)

More information

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 12, 2017

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 12, 2017 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 12, 2017 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

Oscillator Principles

Oscillator Principles Oscillators Introduction Oscillators are circuits that generates a repetitive waveform of fixed amplitude and frequency without any external input signal. The function of an oscillator is to generate alternating

More information

Small signal Amplifier stages. Figure 5.2 Classification of power amplifiers

Small signal Amplifier stages. Figure 5.2 Classification of power amplifiers 5.1 Introduction When the power requirement to drive the load is in terms of several Watts rather than mili-watts the power amplifiers are used. Power amplifiers form the last stage of multistage amplifiers.

More information

LIST OF TRAINING MODULES

LIST OF TRAINING MODULES LIST OF TRAINING MODULES S.NO. TYPE SECTION-A (CHARACTERISTICS) 1. Diode & Zener Diode Characteristics EE-1 2. Tunnel Diode Characteristics EE-P50 3. L.E.D. Characteristics EE-2 4. Transistor Characteristics

More information

Homework Assignment 12

Homework Assignment 12 Homework Assignment 12 Question 1 Shown the is Bode plot of the magnitude of the gain transfer function of a constant GBP amplifier. By how much will the amplifier delay a sine wave with the following

More information

BE Assignment. (1) Explain Active component and Passive component in Detail. (1) Explain practical voltage source and ideal voltage source.

BE Assignment. (1) Explain Active component and Passive component in Detail. (1) Explain practical voltage source and ideal voltage source. BE Assignment chapter-1 (1) Explain Active component and Passive component in Detail. (1) Explain practical voltage source and ideal voltage source. (2) Explain practical current source and ideal current

More information

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING KINGS COLLEGE OF ENGINEERING PUNALKULAM. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT CODE : EE1152 SEM / YEAR : II / I SUBJECT NAME : ELECTRIC CIRCUITS AND ELECTRON DEVICES

More information

LM125 Precision Dual Tracking Regulator

LM125 Precision Dual Tracking Regulator LM125 Precision Dual Tracking Regulator INTRODUCTION The LM125 is a precision, dual, tracking, monolithic voltage regulator. It provides separate positive and negative regulated outputs, thus simplifying

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMUS) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMUS) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMUS) Dundigal, Hyderabad - 00 0 ELECTRONICS AND COMMUNICATION ENGINEERING ASSIGNMENT Name : ELECTRONIC CIRCUIT ANALYSIS Code : A0 Class : II - B. Tech nd semester

More information

Number of Lessons:155 #14B (P) Electronics Technology with Digital and Microprocessor Laboratory Completion Time: 42 months

Number of Lessons:155 #14B (P) Electronics Technology with Digital and Microprocessor Laboratory Completion Time: 42 months PROGRESS RECORD Study your lessons in the order listed below. Number of Lessons:155 #14B (P) Electronics Technology with Digital and Microprocessor Laboratory Completion Time: 42 months 1 2330A Current

More information

DEPARTMENT OF ELECTRONICS

DEPARTMENT OF ELECTRONICS DEPARTMENT OF ELECTRONICS Academic Planner for odd Semesters Semester : I Subject : Electronics(ELT1). Course: B.Sc. (PME) Introduction to Number systems B Construction and types, working Review of P type

More information

Electronics II. 3. measurement : Tuned circuits

Electronics II. 3. measurement : Tuned circuits Electronics II. 3. measurement : Tuned circuits This laboratory session involves circuits which contain a double-t (or TT), a passive RC circuit: Figure 1. Double T passive RC circuit module The upper

More information

INSTITUTE OF AERONAUTICAL ENGINERING DUNDIGAL, HYDERABAD

INSTITUTE OF AERONAUTICAL ENGINERING DUNDIGAL, HYDERABAD INSTITUTE OF AERONAUTICAL ENGINERING DUNDIGAL, HYDERABAD 500 043 Digital Signal Processing Lab Work Book Name: Reg.No: Branch: Class: Section: IARE-ECE Department CERTIFICATE This is to certify that it

More information

PREFACE xvii PRACTICAL TRANSISTOR CIRCUIT THEORY 1.1 Iterated Circuits 1.2 Symbols 1.3 Feedback 1.4 The Miller Effect 1.5 Transistors 1.6 The transistor gain-impedance relation 1.7 Ohm's law and dc current-voltage

More information

Introduction to Simulation using EDWinXP

Introduction to Simulation using EDWinXP Introduction to Simulation using EDWinXP Introduction to Simulation using EDWinXP First Edition Copyright Notice ALL RIGHTS RESERVED. Any unauthorized reprint or use of this material is prohibited. No

More information

R (a) Explain characteristics and limitations of op-amp comparators. (b) Explain operation of free running Multivibrator using op-amp.

R (a) Explain characteristics and limitations of op-amp comparators. (b) Explain operation of free running Multivibrator using op-amp. Set No: 1 1. (a) Draw the equivalent circuits of emitter coupled differential amplifier from which calculate Ad. (b) Draw the block diagram of four stage cascaded amplifier. Explain the function of each

More information

Electronics Laboratory And Students kits For Self-Study And Distant Learning. By: Charbel T. Fahed

Electronics Laboratory And Students kits For Self-Study And Distant Learning. By: Charbel T. Fahed Electronics Laboratory And Students kits For Self-Study And Distant Learning By: Charbel T. Fahed Table of Contents I. DC and AC fundamentals 1) Color Code 2) Ohm s Law 3) Series Circuits 4) Parallel Circuits

More information

Feedback and Oscillator Circuits

Feedback and Oscillator Circuits Chapter 14 Chapter 14 Feedback and Oscillator Circuits Feedback Concepts The effects of negative feedback on an amplifier: Disadvantage Lower gain Advantages Higher input impedance More stable gain Improved

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE) UNIT I INTRODUCTION

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE) UNIT I INTRODUCTION SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Electrical Circuits(16EE201) Year & Sem: I-B.Tech & II-Sem

More information

EMT212 Analog Electronic II. Chapter 4. Oscillator

EMT212 Analog Electronic II. Chapter 4. Oscillator EMT Analog Electronic II Chapter 4 Oscillator Objectives Describe the basic concept of an oscillator Discuss the basic principles of operation of an oscillator Analyze the operation of RC, LC and crystal

More information

B.Tech II SEM Question Bank. Electronics & Electrical Engg UNIT-1

B.Tech II SEM Question Bank. Electronics & Electrical Engg UNIT-1 UNIT-1 1. State & Explain Superposition theorem & Thevinin theorem with example? 2. Calculate the current in the 400Ωm resistor of below figure by Superposition theorem. 3. State & Explain node voltage

More information

Integrated Circuit: Classification:

Integrated Circuit: Classification: Integrated Circuit: It is a miniature, low cost electronic circuit consisting of active and passive components that are irreparably joined together on a single crystal chip of silicon. Classification:

More information

1. LINEAR WAVE SHAPING

1. LINEAR WAVE SHAPING Aim: 1. LINEAR WAVE SHAPING i) To design a low pass RC circuit for the given cutoff frequency and obtain its frequency response. ii) To observe the response of the designed low pass RC circuit for the

More information

INVITATION FOR QUOTATION. TEQIP-II/2015/UP1G01/Shopping/60

INVITATION FOR QUOTATION. TEQIP-II/2015/UP1G01/Shopping/60 INVITATION FOR QUOTATION TEQIP-II/2015/UP1G01/Shopping/60 24-Jul-2015 Sub: Invitation for Quotations for supply of Goods Dear Sir, 1. You are invited to submit your most competitive quotation for the following

More information

1. What is the unit of electromotive force? (a) volt (b) ampere (c) watt (d) ohm. 2. The resonant frequency of a tuned (LRC) circuit is given by

1. What is the unit of electromotive force? (a) volt (b) ampere (c) watt (d) ohm. 2. The resonant frequency of a tuned (LRC) circuit is given by Department of Examinations, Sri Lanka EXAMINATION FOR THE AMATEUR RADIO OPERATORS CERTIFICATE OF PROFICIENCY ISSUED BY THE DIRECTOR GENERAL OF TELECOMMUNICATIONS, SRI LANKA 2004 (NOVICE CLASS) Basic Electricity,

More information

multivibrator; Introduction to silicon-controlled rectifiers (SCRs).

multivibrator; Introduction to silicon-controlled rectifiers (SCRs). Appendix The experiments of which details are given in this book are based largely on a set of 'modules' specially designed by Dr. K.J. Close. These 'modules' are now made and marketed by Irwin-Desman

More information

Op Amp Booster Designs

Op Amp Booster Designs Op Amp Booster Designs Although modern integrated circuit operational amplifiers ease linear circuit design, IC processing limits amplifier output power. Many applications, however, require substantially

More information

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Post-lab Forms

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Post-lab Forms Facility of Engineering Biomedical Engineering Department Medical Electronic Lab BME (317) Post-lab Forms Prepared by Eng.Hala Amari Spring 2014 Facility of Engineering Biomedical Engineering Department

More information