Fixed Low-Frequency Broadband Wireless Access Radio Systems

Size: px
Start display at page:

Download "Fixed Low-Frequency Broadband Wireless Access Radio Systems"

Transcription

1 BROADBAND WIRELESS ACCESS TECHNOLOGIES AND APPLICATIONS Fixed Low-Frequency Broadband Wireless Access Radio Systems Mina Danesh, Juan-Carlos Zuniga, and Fabio Concilio, Harris Corporation ABSTRACT This article provides an overview of a fixed low-frequency broadband wireless access system for point-to-multipoint voice and data applications. Operating frequency bands are from 2 to 11 GHz, and the base station can use multiple sectors and will be capable of supporting smart antenna technology. The product system requirements, design of the radio subsystem specification, as well as an analysis of microwave transmission related to current radio technologies are presented. Examples of BWA technology are provided courtesy of Harris Corporation. INTRODUCTION Global integration and fast-growing business activity in conjunction with remote multisite operations have increased the need for highspeed information exchange. In many places around the world, the existing infrastructure is not able to cope with such demand for highspeed communications. Wireless systems, with their fast deployment, have proven to be reliable transmission media at very reasonable costs. Fixed broadband wireless access (BWA) is a communication system that provides digital twoway voice, data, Internet, and video services, making use of a point-to-multipoint topology. The BWA low-frequency radio systems addressed in this article are in the 3.5 GHz and 10.5 GHz frequency bands. The BWA market targets wireless multimedia services to small offices/home offices (SOHOs), small and medium-sized businesses, and residences. Currently licensed bands for 3.5 GHz BWA systems are available in South America, Asia, Europe, and Canada. The 10.5 GHz band is used in Central and South America as well as Asia, where expanding business development is occurring. The fixed wireless market for broadband megabit per second transmission rates is growing for providing an easily deployable low-cost solution, compared with existing cable and digital subscriber line (xdsl) technologies for dense and suburban environments. This article describes the BWA network system, the radio architecture, and the BWA planning and deployment issues for 3.5 and 10.5 GHz systems. Table 1 summarizes the system characteristics for each frequency range according to various International Telecommunication Union Radiocommunication Standardization Sector (ITU-R) drafts, EN , IEEE , and other national regulations. A maximum of 35 Mb/s capacity is achievable for 64- quadrature amplitude modulation (QAM) over 7 MHz channel bandwidth. Coverage ranges for line-of-sight links are given for percent availability. THE BWA SYSTEM NETWORK A BWA system comprises at least one base station (BS) and one or more subscriber remote station(s) (RS). The BS and RS consist of an outdoor unit (ODU), which includes the radio transceiver and antenna, and an indoor unit (IDU) for modem, communication, and network management (Fig. 1). The two units interface at an intermediate frequency (IF); optionally, the RS ODU and IDU can be integrated. The BS assigns the radio channel to each RS independently, according to the policies of the media access control (MAC) air interface. Time in the upstream channel is usually slotted, providing for time-division multiple access (TDMA), whereas on the downstream channel a continuous time-division multiplexing (TDM) scheme is used. Each RS can deliver voice and data using common interfaces, such as plain old telephony service (POTS), Ethernet, video, and E1/T1. Depending on the type of service required by the client, remote stations can provide access to a 10/100Base-T local area network (LAN) for data access and voice over IP (VoIP) services; to a LAN and up to 8 POTS targeted to small businesses; or to a /01/$ IEEE

2 Product 3. 5 GHz 10.5 GHz Frequency (GHz) Tx/Rx spacing (MHz) Channelization (MHz) 3.5, 5, 7 3.5, 7 RS upstream modulation QPSK/16 QAM QPSK RS downstream modulation 16/64 QAM 16 QAM RS upstream capacity (Mb/s) , 10 RS downstream capacity (Mb/s) , 23 Coverage radius (km) 19 8 Table and 10.5 GHz system characteristics. LAN and an E1/T1 channel connected to a private branch exchange (PBX) for small and medium enterprises. The BS grooms the voice and data channels of several carriers and provides connection to a backbone network (i.e., IP or asynchronous transfer mode, ATM) or transport equipment via the STM1/OC-3c ( Mb/s) high-capacity fiber link. The ATM network gives access to the public switched telephone network (PSTN) gateway through competitive local exchange carriers (CLECs) using V5.2/GR.303 standards, or to an edge router for accessing the Internet data network through Internet service providers (ISPs). The ATM network interface is also connected to the network management system via Simple Network Management Protocol (SNMP) for performing tasks such as statistics and billing, database control, network setup, and signaling alarms for radio failures. Configuration of the radio network link is made possible through a Web browser http link via TCP/IP. Each BS has a certain available bandwidth per carrier that can be fully or partially allocated to a single RS either for a certain period of time (i.e., variable bit rate,vbr, or best effort), or permanently (i.e., constant bit rate, CBR). BWA systems are envisioned to work with a TDMA rather than code-division multiple access (CDMA) scheme in order to counteract propagation issues. Also, for non-line-of-sight (NLOS) environments, BWA systems with a single carrier with frequency domain equalizer and decision feedback equalizer (FD-DFE) or orthogonal frequency-division multiplexing (OFDM) technologies are applicable [1]. Small and medium-sized businesses require fast and dynamic capacity allocation for data and voice packet-switched traffic. This TDMA access scheme can be applied to either frequency-division duplexing (FDD) or time-division duplexing (TDD) [2]. Both duplexing schemes have intrinsic advantages and disadvantages, so the optimum scheme to be applied depends on deployment-specific characteristics (i.e., bandwidth availability, Tx-to-Rx spacing, frequency congestion, and traffic usage). Targeting the business market, Harris ClearBurst MB products are designed for FDD. In symmetric twoway data traffic, FDD allows continuous downstream and upstream traffic on both lowand high-band channels. Moreover, it has full flexibility for instantaneous capacity allocation, dynamically set through the MAC channel assignment. THE RADIO FREQUENCY SYSTEM RF subsystems consist of the base station and remote station ODUs. This section will provide a global understanding of the different RF technology employed for high-performance low-cost radio design. In addition to meeting all the func- Network management and billing system Base station Air interface 3.5 GHz 10.5 GHz Remote station LAN Internet Edge router 10/100 Base-T ATM network STM-1/OC-3c Radio tower TDMA/TDM FDD ODU radio POTS STM-1/OC-3c Router and concentrator V.35 N 64 Video IDU modem CLEC V5.2/GR.303 E1/T1 PBX PSTN PSTN gateway E1/T1 clear channel Figure 1. Fixed broadband wireless access system architecture. 135

3 RF in Diplexer Dual antenna Figure 2. The Harris base station outdoor radio unit. LNA BPF MXR BS radio enclosure Coax cable to IDU router LO BPF RF out PA BPF MXR BPF ATT Figure 3. A dumb transceiver: block diagram. Pole mounting AGC RX IF out TX IF in tional, performance, regulatory, mechanical, and environmental requirements, the radio system must achieve most of the following criteria: Cost effectiveness Be maintenance-free Be easily upgradable Quick installation Attractive appearance Flexibility Scalability An example of a BWA radio system is shown in Fig. 2: a base station ODU, part of the Clear- Burst MB product. Its radio enclosure contains two sets of identical transceivers with high-power amplifiers and RF diplexers for redundancy. A dual flat panel antenna is directly integrated with the enclosure. A single coaxial cable is used to connect to the indoor base station router unit. The base station radio units can be mounted on either a pole, a tower, or a wall mount. The remote station ODU is an unprotected unit, where a single transceiver with a medium-power amplifier is used. The enclosure is directly connected to the flat panel antenna. In addition, an alignment indication connector is also provided for antenna installation and alignment with the base station. An ODU radio consists of transmitter and receiver circuits, frequency sources, a diplexer connected to the antenna, and a cable interface to connect to the indoor modem unit. Moreover, a minimum of intelligence is required in the radio to control the power level throughout the transceiver. Development of software-controlled radios is presently underway, but the issue of cost-effectiveness remains. Typically for small businesses or residential markets, cost is the main factor that comes into play; hence, simpler design by limiting radio intelligence may translate into less demanding requirements for the radio processor. Software-controlled radios present many advantages, such as reducing hardware complexity, but it is up to the design engineers to compromise among the high performance, low cost, and flexibility of the product. A low-cost low-performance radio solution appropriate for the high-volume residential market is shown in Fig. 3 as a dumb transceiver. This architecture uses a minimal number of hardware components, integrated with or without software control capabilities. Following the RF diplexer, the receive (Rx) path includes a low-noise amplifier, bandpass filters (BPFs) for image-reject and channel select filtering, a downconverter mixer, and an open loop gain to allow a wide input dynamic range. The transmitter (Tx) consists mainly of an upconverter associated with some filtering and a power amplifier (PA). The local oscillator (LO) may provide for fixed or variable frequency to the mixers. A fixed LO would give a variable IF; hence, by using a wider BPF bandwidth, the receiver would not be immune to interference. Adding a microcontroller to the radio provides control of the phase locked loop (PLL) for the transceiver synthesizer and can put the PA into mute mode. Single up/downconversion stages further reduce the overall cost, but at the expense of lower radio performance. Two separate IF cables simplify the interfacing. An intelligent transceiver involves more digital and software-controlled circuitry, and hence higher cost. Figure 4 shows a transceiver block diagram which includes closed loop gain control, cable, and fade margin compensation on the transmit and receive paths; that is, power detection circuits on Rx IF, Tx chain, and PA. The transmitter mutes on a synthesizer out-oflock alarm in order to avoid transmitting undesirable frequencies, and also on no received signal. The microcontroller provides for the receive signal strength indicator (RSSI) level for antenna alignment, and for control and monitor channels. A single cable is used for all input and output IFs, the telemetry signal, and the DC biasing from the IDU. Software control also allows for calibrated radios, which results in no gain variation or frequency shifting of the signal with respect to temperature variation. Technology advancement in the past few years in the RF integrated circuit market allows for greater chip integration using commercial offthe-shelf (COTS) devices and simplified hardware board level design [3]. This architecture achieves better performance, especially for higher-modulation schemes, and therefore is suitable for higher-capacity radios targeting the business market. The modulation scheme chosen for the radio system depends on several product defi- 136

4 RF in LNA BPF MXR VAR BPF AMP MXR BPF ATT AMP IF out Rx synthesizer Power detector RSSI Diplexer Microcontroller microprocessor Memory A/D Rx/Tx synthesizer DC Cable interface MAC modem Power detector Tx synthesizer Alarm RF out PA AMP BPF MXR AMP BPF MXR AMP ATT IF in Figure 4. An intelligent transceiver: block diagram. nition factors, such as required channel size, upstream and downstream data rates, transmit output power, minimum carrier-to-noise ratio (C/N), system availability, and coverage. Table 2 gives the characteristics for quadrature phase shift keying (QPSK) and QAM signals typically used for BWA systems for 7 MHz channel bandwidth. Higher-modulation schemes provide higher data rates at the expense of better C/N requirements and smaller coverage radii for the same availability, adding to the hardware complexity. For the 64-QAM 7 MHz channel bandwidth signal typically used on the 3.5 GHz system, a maximum of 35 Mb/s is achieved. A system can require symmetric or asymmetric capacity depending on its specific application. For a symmetric capacity system, upstream and downstream traffic are equivalent, whereas for an asymmetric system the downstream link usually requires more capacity. Hence, higher-level modulations with higher capacity are better suited to downstream transmissions. Using n-qam modulations for downstream transmission becomes advantageous, whereas QPSK can be used in the upstream direction. Since lower-level modulations perform better in more constrained environments, they can be not only used in burst, low-power, low-capacity, or upstream transmissions, but also adjusted dynamically in link fading conditions. RADIO TRANSMISSION SYSTEM AND DEPLOYMENT The maximum cell size for the service area is related to the desired availability level. At 3.5 GHz and 10.5 GHz, the average cell radius for line-of-sight (LOS) percent availability is 19 km and 8 km, respectively. Principal factors affecting cell radius and availability include the rain region, the antenna and its height, foliage loss, modulation, Tx power, Rx sensitivity, and sectorization. These effects are generally related Modulation Data rate (Mb/s) C/N for 10 6 BER QPSK (upstream) db 16-QAM (downstream) db 16-QAM (upstream) db 64-QAM (downstream) db Table 2. QPSK and QAM modulation characteristics for 7 MHz channel bandwidth. to the service area, such as dense urban, suburban, and low-density. As an aid to determining these parameters, a powerful point-to-multipoint RF transmission engineering tool is used to estimate the maximum distance between the BS and RS, while maintaining the desired link performance and availability in a single or multihub environment. Taken into account are the margins required to combat multipath fading, rainfall attenuation, and interference. The effect of the rainfall attenuation is negligible at 3.5 GHz but noticeable at 10.5 GHz. The base station hub is divided into a number of sectors to accommodate all received signals and cumulative traffic from the remote stations. The number of cell sectors affects the cost per cell and complicates cell planning, but also increases the capacity of the system. Each BS unit typically serves 1000 and 100 remote stations at 3.5 and 10.5 GHz, respectively. The deployment consists of a four-sector/90 or sixsector/60 cell configuration. The antenna panel can be assembled for horizontal or vertical polarization for reduced interference. CONCLUSIONS Growing demand for fast information exchange to support business activities requires the implementation of low-cost, easily deployable communications networks. Fixed low-frequency BWA radio systems at 3.5 and 10.5 GHz were present- 137

5 Growing demand for fast information exchange to support business activities requires the implementation of low cost and easily deployable communications networks. ed as an attractive solution. System architecture was presented from a signal processing and radio frequency perspective. Architecture compromises were discussed, enabling the use of cost-effective solutions that meet quality and performance requirements. ACKNOWLEDGMENT This article is based on our previously published material from WAS 2000 organized by DEL- SON GROUP. REFERENCES [1] IEEE a, Draft documents for Sub 11 BWA, IEEE c-58 and 59. [2] J. Klein, TDD vs. FDD: The Drive for Effective Bandwidth Management, RF Design, Aug. 1999, pp [3] M. Danesh, N. Hassaïne, and F. Concilio, New Transceiver Design Approaches for Digital Microwave Radios, 2000 IEEE Radio and Wireless Conf., Denver, CO, Sept , pp BIOGRAPHIES MINA DANESH [S 93 M 99] (mdanesh@harris.com) received her B.Eng. from Concordia University, Montreal, Canada, and an M.A.Sc. from the University of Toronto, Canada, in 1996 and 1999, respectively, all in electrical engineering. In 1999 she joined Harris Corporation, Microwave Communications Division, Montreal, Canada, as an RF design engineer. She is currently involved in the design of radio transceivers for broadband wireless access products. Her current research interests cover wireless communications, RF/microwave, and millimeter-wave MIC and MMIC design. JUAN-CARLOS ZUNIGA [M] received his B. Eng. degree in electrical engineering from the National University of Mexico (UNAM) in 1995, and his M.Sc. and DIC in communications and signal processing from the Imperial College of Science, Technology and Medicine, University of London, in He worked at Kb/TEL Telecommunications in Mexico City, Mexico, then at Nortel Networks in Harlow, England, in the Broadband Satellite Networks department. He joined Harris Corporation, Microwave Communications Division, Montreal, Canada, as a system design engineer in the Broadband Wireless Access department in He is presently a senior systems engineer and a member of the IEEE Working Group on Broadband Wireless Access Standards, and his research interests are in high-speed mobile and fixed wireless networks. FABIO CONCILIO received his B. Eng. in electrical engineering in 1975 followed by post-graduatie courses in microelectronics and yelecommunications in 1978 from Escola Politécnica, University of São Paulo, Brazil. He first joined Philips Transmission Division in Brazil working in the Advanced Development Group in the microwave field, then as a senior engineer at the development laboratory at Telefunken, returning to Philips where he was responsible for the microwave group developing high-capacity microwave digital radios. He moved to Harris Corporation, Microwave Communications Division as a senior engineer in 1992 and currently manages the RF Design department responsible for the development of pointto-point and point-to-multipoint radio units. 138

IEEE c-00/40. IEEE Broadband Wireless Access Working Group <

IEEE c-00/40. IEEE Broadband Wireless Access Working Group < Project Title Date Submitted Source(s) IEEE 802.16 Broadband Wireless Access Working Group Initial PHY Layer System Proposal for Sub 11 GHz BWA 2000-10-30 Anader Benyamin-Seeyar

More information

IEEE Broadband Wireless Access Working Group < Initial PHY Layer System Proposal for Sub 11 GHz BWA

IEEE Broadband Wireless Access Working Group <  Initial PHY Layer System Proposal for Sub 11 GHz BWA Project Title Date Submitted Source(s) Re: Abstract Purpose Notice Release Patent Policy and Procedures IEEE 802.16 Broadband Wireless Access Working Group Initial PHY Layer System

More information

Institute of Electrical and Electronics Engineers (IEEE) PROPOSED AMENDMENTS TO ANNEX 15 TO DOCUMENT 8A/202

Institute of Electrical and Electronics Engineers (IEEE) PROPOSED AMENDMENTS TO ANNEX 15 TO DOCUMENT 8A/202 2005-07-20 IEEE L802.16-05/043r1 INTERNATIONAL TELECOMMUNICATION UNION RADIOCOMMUNICATION STUDY GROUPS *** DRAFT *** Document 12 July 2005 English only Source: Annex 15 to Document 8A/202 Question: 212/8

More information

Guide to Wireless Communications, Third Edition Cengage Learning Objectives

Guide to Wireless Communications, Third Edition Cengage Learning Objectives Guide to Wireless Communications, Third Edition Chapter 9 Wireless Metropolitan Area Networks Objectives Explain why wireless metropolitan area networks (WMANs) are needed Describe the components and modes

More information

System Specification. BreezeACCESS TM EZ. January 2008

System Specification. BreezeACCESS TM EZ. January 2008 System Specification BreezeACCESS TM EZ January 2008 All rights reserved Alvarion Ltd 2008 The information contained in this document is the proprietary and exclusive property of Alvarion Ltd. except as

More information

RECOMMENDATION ITU-R F Radio interface standards for broadband wireless access systems in the fixed service operating below 66 GHz

RECOMMENDATION ITU-R F Radio interface standards for broadband wireless access systems in the fixed service operating below 66 GHz Rec. ITU-R F.1763 1 RECOMMENDATION ITU-R F.1763 Radio interface standards for broadband wireless access systems in the fixed service operating below 66 GHz (Question ITU-R 236/9) (2006) 1 Introduction

More information

Wireless and Mobile Network Architecture. Outline. Introduction. Cont. Chapter 1: Introduction

Wireless and Mobile Network Architecture. Outline. Introduction. Cont. Chapter 1: Introduction Wireless and Mobile Network Architecture Chapter 1: Introduction Prof. Yuh-Shyan Chen Department of Computer Science and Information Engineering National Taipei University Sep. 2006 Outline Introduction

More information

Wireless WAN Case Study: WiMAX/ W.wan.6

Wireless WAN Case Study: WiMAX/ W.wan.6 Wireless WAN Case Study: WiMAX/802.16 W.wan.6 Dr.M.Y.Wu@CSE Shanghai Jiaotong University Shanghai, China Dr.W.Shu@ECE University of New Mexico Albuquerque, NM, USA W.wan.6-2 WiMAX/802.16 IEEE 802 suite

More information

WiMAX/ Wireless WAN Case Study: WiMAX/ W.wan.6. IEEE 802 suite. IEEE802 suite. IEEE 802 suite WiMAX/802.16

WiMAX/ Wireless WAN Case Study: WiMAX/ W.wan.6. IEEE 802 suite. IEEE802 suite. IEEE 802 suite WiMAX/802.16 W.wan.6-2 Wireless WAN Case Study: WiMAX/802.16 W.wan.6 WiMAX/802.16 IEEE 802 suite WiMAX/802.16 PHY Dr.M.Y.Wu@CSE Shanghai Jiaotong University Shanghai, China Dr.W.Shu@ECE University of New Mexico Albuquerque,

More information

Wireless and Mobile Network Architecture

Wireless and Mobile Network Architecture Wireless and Mobile Network Architecture Chapter 1: Introduction Prof. Yuh-Shyan Chen Department of Computer Science and Information Engineering National Taipei University Sep. 2006 1 Outline Introduction

More information

Using the epmp Link Budget Tool

Using the epmp Link Budget Tool Using the epmp Link Budget Tool The epmp Series Link Budget Tool can offer a help to determine the expected performances in terms of distances of a epmp Series system operating in line-of-sight (LOS) propagation

More information

Wireless Broadband Networks

Wireless Broadband Networks Wireless Broadband Networks WLAN: Support of mobile devices, but low data rate for higher number of users What to do for a high number of users or even needed QoS support? Problem of the last mile Provide

More information

Wireless Broadband. IST 220, Dr. Abdullah Konak 4/27/ Blake Drive Reading, PA Prepared by: Dennis DeFrancesco

Wireless Broadband. IST 220, Dr. Abdullah Konak 4/27/ Blake Drive Reading, PA Prepared by: Dennis DeFrancesco Wireless Broadband IST 220, Dr. Abdullah Konak 4/27/2005 500 Blake Drive Reading, PA 19601 Prepared by: Dennis DeFrancesco 1 Table Of Contents 1. Wireless Broadband Overview... 3 1.1. Beginnings... 3 1.2.

More information

Data and Computer Communications

Data and Computer Communications Data and Computer Communications Chapter 14 Cellular Wireless Networks Eighth Edition by William Stallings Cellular Wireless Networks key technology for mobiles, wireless nets etc developed to increase

More information

Mobile Communication Systems. Part 7- Multiplexing

Mobile Communication Systems. Part 7- Multiplexing Mobile Communication Systems Part 7- Multiplexing Professor Z Ghassemlooy Faculty of Engineering and Environment University of Northumbria U.K. http://soe.ac.uk/ocr Contents Multiple Access Multiplexing

More information

Today s mobile devices

Today s mobile devices PAGE 1 NOVEMBER 2013 Highly Integrated, High Performance Microwave Radio IC Chipsets cover 6-42 GHz Bands Complete Upconversion & Downconversion Chipsets for Microwave Point-to-Point Outdoor Units (ODUs)

More information

High Speed Wireless Services Using Two Way MMDS System

High Speed Wireless Services Using Two Way MMDS System High Speed Wireless Services Using Two Way MMDS System Sanjay Moghe Director of Engineering, ADC Telecommunications Phone (612) 946-3522 e-mail: sanjay_moghe@adc.com Joy Laskar President, RF Solutions

More information

EE 304 TELECOMMUNICATIONs ESSENTIALS HOMEWORK QUESTIONS AND ANSWERS

EE 304 TELECOMMUNICATIONs ESSENTIALS HOMEWORK QUESTIONS AND ANSWERS Homework Question 1 EE 304 TELECOMMUNICATIONs ESSENTIALS HOMEWORK QUESTIONS AND ANSWERS Allocated channel bandwidth for commercial TV is 6 MHz. a. Find the maximum number of analog voice channels that

More information

Introduction to WiMAX Dr. Piraporn Limpaphayom

Introduction to WiMAX Dr. Piraporn Limpaphayom Introduction to WiMAX Dr. Piraporn Limpaphayom 1 WiMAX : Broadband Wireless 2 1 Agenda Introduction to Broadband Wireless Overview of WiMAX and Application WiMAX: PHY layer Broadband Wireless Channel OFDM

More information

WiMAX-Ready NLOS/OFDM Broadband Solutions

WiMAX-Ready NLOS/OFDM Broadband Solutions WiMAX-Ready NLOS/OFDM Broadband Solutions 2 symmetry Advanced wireless services today and a low-risk migration path to the WiMAX standards of tomorrow. symmetry is the only broadband wireless access (BWA)

More information

PRACTICAL CONSIDERATIONS

PRACTICAL CONSIDERATIONS WIRELESS DOCSIS TM CABLE EXTENSION PRACTICAL CONSIDERATIONS DAN CASTELLANO VP SALES AND BUSINESS DEVELOPMENT Arcwave Inc. 910 Campisi Way, Ste 1C Campbell, CA 95008 Office (408) 558-2300, Fax (408) 558-2302

More information

Cordless Systems and Wireless Local Loop. Cordless System Operating Environments. Design Considerations for Cordless Standards

Cordless Systems and Wireless Local Loop. Cordless System Operating Environments. Design Considerations for Cordless Standards CSE5807 Wireless and personal communications systems / FIT3024 Internetworking and wireless communications Cordless Systems and Wireless Local Loop Week 7. Cordless systems and wireless local loop. Chapter

More information

Cordless Systems and Wireless Local Loop. Chapter 11

Cordless Systems and Wireless Local Loop. Chapter 11 Cordless Systems and Wireless Local Loop Chapter 11 Cordless System Operating Environments Residential a single base station can provide in-house voice and data support Office A single base station can

More information

ITU-T. Series L Supplement 23 (04/2016)

ITU-T. Series L Supplement 23 (04/2016) I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n ITU-T TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU Series L Supplement 23 (04/2016) SERIES L: ENVIRONMENT AND ICTS, CLIMATE CHANGE,

More information

Introduction to Wireless Networking CS 490WN/ECE 401WN Winter 2007

Introduction to Wireless Networking CS 490WN/ECE 401WN Winter 2007 Introduction to Wireless Networking CS 490WN/ECE 401WN Winter 2007 Lecture 9: WiMax and IEEE 802.16 Chapter 11 Cordless Systems and Wireless Local Loop I. Cordless Systems (Section 11.1) This section of

More information

Data and Computer Communications. Tenth Edition by William Stallings

Data and Computer Communications. Tenth Edition by William Stallings Data and Computer Communications Tenth Edition by William Stallings Data and Computer Communications, Tenth Edition by William Stallings, (c) Pearson Education - 2013 CHAPTER 10 Cellular Wireless Network

More information

High Speed E-Band Backhaul: Applications and Challenges

High Speed E-Band Backhaul: Applications and Challenges High Speed E-Band Backhaul: Applications and Challenges Xiaojing Huang Principal Research Scientist and Communications Team Leader CSIRO, Australia ICC2014 Sydney Australia Page 2 Backhaul Challenge High

More information

TELECOMMUNICATIONS. Y-Packet Y-Trunk Y-Split Y-Haul

TELECOMMUNICATIONS. Y-Packet Y-Trunk Y-Split Y-Haul TELECOMMUNICATIONS Y-Packet Y-Trunk Y-Split Y-Haul > 20 000 microwave radio have been produced for last 10 years > 100 international partners > 50 countries all over the world receive Youncta s products

More information

Antenna Performance in Fixed Wireless Broadband Systems. IEEE CVT Luncheon 20 June 2000

Antenna Performance in Fixed Wireless Broadband Systems. IEEE CVT Luncheon 20 June 2000 Antenna Performance in Fixed Wireless Broadband Systems IEEE CVT Luncheon 20 June 2000 1 Outline Market discussion/overview BWA Architectures Antenna Requirements Antenna Technologies Antenna Performance

More information

W-band Point to Multipoint Backhaul of 4G -5G mobile in dense cities & fix residential

W-band Point to Multipoint Backhaul of 4G -5G mobile in dense cities & fix residential W-band Point to Multipoint Backhaul of G -G mobile in dense cities & fix residential François Magne WHEN-AB, France W µwave & RF Wireless mm-wave for LTE-A & towards G, March 07 AGENDA W-band wireless

More information

Point to Point PTP500

Point to Point PTP500 Point to Point PTP500 The PTP Family of Products Product Family 2.5GHz 4.5GHz 4.9GHz 5.4GHz 5.8GHz Enhanced Max data rate EBS band DoD/Nato Public Safety Unlicensed Unlicensed IDU Mar'08 PTP600 Full 300Mbps

More information

Bluetooth BlueTooth - Allows users to make wireless connections between various communication devices such as mobile phones, desktop and notebook comp

Bluetooth BlueTooth - Allows users to make wireless connections between various communication devices such as mobile phones, desktop and notebook comp ECE 271 Week 8 Bluetooth BlueTooth - Allows users to make wireless connections between various communication devices such as mobile phones, desktop and notebook computers - Uses radio transmission - Point-to-multipoint

More information

WIMAX TECHNOLOGY APPLICATION RESEARCH IN THE KLAIPEDA REGION

WIMAX TECHNOLOGY APPLICATION RESEARCH IN THE KLAIPEDA REGION WIMAX TECHNOLOGY APPLICATION RESEARCH IN THE KLAIPEDA REGION Arunas Andziulis, Valdemaras Pareigis, Violeta Bulbenkiene, Danielius Adomaitis, Mindaugas Kurmis, Sergej Jakovlev Klaipeda University, Department

More information

IEEE P Broadband Wireless Access Working Group

IEEE P Broadband Wireless Access Working Group Project Title Date Submitted Source Re: Abstract Purpose Notice Release IEEE P802.16 Broadband Wireless Access Working Group Contribution to the 802.16 System Requirements Document on the Issue of The

More information

TELECOMMUNICATIONS. Y-Trunk Y-packet R2 Y-packet R1 Y-packet 80 farlink

TELECOMMUNICATIONS. Y-Trunk Y-packet R2 Y-packet R1 Y-packet 80 farlink TELECOMMUNICATIONS Y-packet R1 Y-packet 80 farlink GAME IS NOT OVER Game is not over yet for microwave PtP in mobile operator s network. Network configuration changes quickly, sometimes intentionally,

More information

Active Antennas: The Next Step in Radio and Antenna Evolution

Active Antennas: The Next Step in Radio and Antenna Evolution Active Antennas: The Next Step in Radio and Antenna Evolution Kevin Linehan VP, Chief Technology Officer, Antenna Systems Dr. Rajiv Chandrasekaran Director of Technology Development, RF Power Amplifiers

More information

EC 551 Telecommunication System Engineering Mohamed Khedr

EC 551 Telecommunication System Engineering Mohamed Khedr EC 551 Telecommunication System Engineering Mohamed Khedr http://webmail.aast.edu/~khedr Syllabus Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week

More information

Communicator II WIRELESS DATA TRANSCEIVER

Communicator II WIRELESS DATA TRANSCEIVER Communicator II WIRELESS DATA TRANSCEIVER C O M M U N I C A T O R I I The Communicator II is a high performance wireless data transceiver designed for industrial serial and serial to IP networks. The Communicator

More information

Boosting Microwave Capacity Using Line-of-Sight MIMO

Boosting Microwave Capacity Using Line-of-Sight MIMO Boosting Microwave Capacity Using Line-of-Sight MIMO Introduction Demand for network capacity continues to escalate as mobile subscribers get accustomed to using more data-rich and video-oriented services

More information

Overview of IEEE Broadband Wireless Access Standards. Timo Smura Contents. Network topologies, frequency bands

Overview of IEEE Broadband Wireless Access Standards. Timo Smura Contents. Network topologies, frequency bands Overview of IEEE 802.16 Broadband Wireless Access Standards Timo Smura 24.02.2004 Contents Fixed Wireless Access networks Network topologies, frequency bands IEEE 802.16 standards Air interface: MAC +

More information

SEN366 (SEN374) (Introduction to) Computer Networks

SEN366 (SEN374) (Introduction to) Computer Networks SEN366 (SEN374) (Introduction to) Computer Networks Prof. Dr. Hasan Hüseyin BALIK (8 th Week) Cellular Wireless Network 8.Outline Principles of Cellular Networks Cellular Network Generations LTE-Advanced

More information

Adoption of this document as basis for broadband wireless access PHY

Adoption of this document as basis for broadband wireless access PHY Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group Proposal on modulation methods for PHY of FWA 1999-10-29 Source Jay Bao and Partha De Mitsubishi Electric ITA 571 Central

More information

TDD and FDD Wireless Access Systems

TDD and FDD Wireless Access Systems WHITE PAPER WHITE PAPER Coexistence of TDD and FDD Wireless Access Systems In the 3.5GHz Band We Make WiMAX Easy TDD and FDD Wireless Access Systems Coexistence of TDD and FDD Wireless Access Systems In

More information

Redline Communications Inc. Combining Fixed and Mobile WiMAX Networks Supporting the Advanced Communication Services of Tomorrow.

Redline Communications Inc. Combining Fixed and Mobile WiMAX Networks Supporting the Advanced Communication Services of Tomorrow. Redline Communications Inc. Combining Fixed and Mobile WiMAX Networks Supporting the Advanced Communication Services of Tomorrow WiMAX Whitepaper Author: Frank Rayal, Redline Communications Inc. Redline

More information

License Exempt Spectrum and Advanced Technologies. Marianna Goldhammer Director Strategic Technologies

License Exempt Spectrum and Advanced Technologies. Marianna Goldhammer Director Strategic Technologies License Exempt Spectrum and Advanced Technologies Marianna Goldhammer Director Strategic Technologies Contents BWA Market trends Power & Spectral Ingredients for Successful BWA Deployments Are regulations

More information

BreezeACCESS VL. Beyond the Non Line of Sight

BreezeACCESS VL. Beyond the Non Line of Sight BreezeACCESS VL Beyond the Non Line of Sight July 2003 Introduction One of the key challenges of Access deployments is the coverage. Operators providing last mile Broadband Wireless Access (BWA) solution

More information

IEEE PROPOSED AMENDMENTS TO WORKING DOCUMENT TOWARDS PRELIMINARY DRAFT NEW RECOMMENDATION ITU-R F.[9B/BWA]

IEEE PROPOSED AMENDMENTS TO WORKING DOCUMENT TOWARDS PRELIMINARY DRAFT NEW RECOMMENDATION ITU-R F.[9B/BWA] Approved by the IEEE 802.16 WG (2004-07-15) and the IEEE 802 Executive Committee (2004-07-16). 2004-07-15 IEEE L802.16-04/25 INTERNATIONAL TELECOMMUNICATION UNION RADIOCOMMUNICATION STUDY GROUPS Document

More information

TECHNICAL INFORMATION GUIDE. Alcatel MDR-9000s-155 High Capacity/High Frequency SONET Microwave Radio

TECHNICAL INFORMATION GUIDE. Alcatel MDR-9000s-155 High Capacity/High Frequency SONET Microwave Radio TECHNICAL INFORMATION GUIDE Alcatel MDR-9000s-155 High Capacity/High Frequency SONET Microwave Radio Introduction The Alcatel MDR-9000s-155 is the latest addition to Alcatel s industry leading wireless

More information

Satellite Basics Term Glossary

Satellite Basics Term Glossary Satellite Basics Term Glossary AES Advanced Encryption Standard is an encryption standard comprised of three blocks of ciphers AES 128, AES 192, and AES 256 ACM Adaptive Coding and Modulation uses an algorithm

More information

RAPTORXR. Broadband TV White Space (TVWS) Backhaul Digital Radio System

RAPTORXR. Broadband TV White Space (TVWS) Backhaul Digital Radio System RAPTORXR Broadband TV White Space (TVWS) Backhaul Digital Radio System TECHNICAL OVERVIEW AND DEPLOYMENT GUIDE CONTACT: BBROWN@METRICSYSTEMS.COM Broadband White Space Mesh Infrastructure LONG REACH - FAST

More information

Specifications PPC-1000

Specifications PPC-1000 In response to market demand for ultra-wide broadband communication equipment, Elva-1 offers new PPC-1000 series of Gigabit Ethernet radios. The Gigabit Elva-1 radio bridge was designed for a wide range

More information

RECOMMENDATION ITU-R BT.1832 * Digital video broadcast-return channel terrestrial (DVB-RCT) deployment scenarios and planning considerations

RECOMMENDATION ITU-R BT.1832 * Digital video broadcast-return channel terrestrial (DVB-RCT) deployment scenarios and planning considerations Rec. ITU-R BT.1832 1 RECOMMENDATION ITU-R BT.1832 * Digital video broadcast-return channel terrestrial (DVB-RCT) deployment scenarios and planning considerations (Question ITU-R 16/6) (2007) Scope This

More information

Combiner Space Diversity in Long Haul Microwave Radio Networks

Combiner Space Diversity in Long Haul Microwave Radio Networks Combiner Space Diversity in Long Haul Microwave Radio Networks Abstract Long-haul and short-haul microwave radio systems deployed by telecommunication carriers must meet extremely high availability and

More information

Wireless WANS and MANS. Chapter 3

Wireless WANS and MANS. Chapter 3 Wireless WANS and MANS Chapter 3 Cellular Network Concept Use multiple low-power transmitters (100 W or less) Areas divided into cells Each served by its own antenna Served by base station consisting of

More information

Software Version 3.12

Software Version 3.12 SAF CFM-L4 Series Microwave Radio System Product Family Technical Description Software Version 3.12 SAF Tehnika A/S 2003 SAF CFM-L4 Series Product Family Technical Description SOFTWARE VERSION 3.12 SAF

More information

Considerations for deploying mobile WiMAX at various frequencies

Considerations for deploying mobile WiMAX at various frequencies White Paper Considerations for deploying mobile WiMAX at various frequencies Introduction The explosive growth of the Internet over the last decade has led to an increasing demand for high-speed, ubiquitous

More information

TELECOMMUNICATIONS. Y-Packet R2 Y-Trunk farlink

TELECOMMUNICATIONS. Y-Packet R2 Y-Trunk farlink TELECOMMUNICATIONS Y-Trunk farlink > 20 000 microwave radio have been produced for last 10 years > 100 international partners > 50 countries all over the world receive Micran's products About Our Company

More information

MICHIGAN DEPARTMENT OF TRANSPORTATION SPECIAL PROVISION FOR TRAFFIC SIGNAL WIRELESS COMMUNICATIONS LINK

MICHIGAN DEPARTMENT OF TRANSPORTATION SPECIAL PROVISION FOR TRAFFIC SIGNAL WIRELESS COMMUNICATIONS LINK MICHIGAN DEPARTMENT OF TRANSPORTATION SPECIAL PROVISION FOR TRAFFIC SIGNAL WIRELESS COMMUNICATIONS LINK SIG:EMS 1 of 6 APPR:LWB:DBP:07-14-15 FHWA:APPR:07-28-15 a. Description. This work consists of site

More information

2012 LitePoint Corp LitePoint, A Teradyne Company. All rights reserved.

2012 LitePoint Corp LitePoint, A Teradyne Company. All rights reserved. LTE TDD What to Test and Why 2012 LitePoint Corp. 2012 LitePoint, A Teradyne Company. All rights reserved. Agenda LTE Overview LTE Measurements Testing LTE TDD Where to Begin? Building a LTE TDD Verification

More information

MICHIGAN DEPARTMENT OF TRANSPORTATION SPECIAL PROVISION FOR TRAFFIC SIGNAL WIRELESS COMMUNICATIONS LINK

MICHIGAN DEPARTMENT OF TRANSPORTATION SPECIAL PROVISION FOR TRAFFIC SIGNAL WIRELESS COMMUNICATIONS LINK MICHIGAN DEPARTMENT OF TRANSPORTATION SPECIAL PROVISION FOR TRAFFIC SIGNAL WIRELESS COMMUNICATIONS LINK SIG:CJS 1 of 6 APPR:EMS:DBP:06-29-17 FHWA:APPR:08-14-17 a. Description. This work consists of completing

More information

Huawei response to the Ofcom call for input: Fixed Wireless Spectrum Strategy

Huawei response to the Ofcom call for input: Fixed Wireless Spectrum Strategy Huawei response to the Fixed Wireless Spectrum Strategy Summary Huawei welcomes the opportunity to comment on this important consultation on use of Fixed wireless access. We consider that lower traditional

More information

TELECOMMUNICATIONS. Y-Packet Y-Trunk Y-Split Y-Haul

TELECOMMUNICATIONS. Y-Packet Y-Trunk Y-Split Y-Haul TELECOMMUNICATIONS Y-Packet Y-Trunk Y-Split Y-Haul > 20 000 microwave radios have been produced for last 10 years > 100 international partners > 50 countries all over the world receive Micran's products

More information

Chapter 1 INTRODUCTION

Chapter 1 INTRODUCTION Chapter 1 INTRODUCTION 1 The History of Mobile Radio Communication (1/3) 1880: Hertz Initial demonstration of practical radio communication 1897: Marconi Radio transmission to a tugboat over an 18 mi path

More information

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) Long Term Evolution (LTE) What is LTE? LTE is the next generation of Mobile broadband technology Data Rates up to 100Mbps Next level of

More information

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE Overview 18-759: Wireless Networks Lecture 9: OFDM, WiMAX, LTE Dina Papagiannaki & Peter Steenkiste Departments of Computer Science and Electrical and Computer Engineering Spring Semester 2009 http://www.cs.cmu.edu/~prs/wireless09/

More information

REPORT ITU-R M Characteristics of broadband wireless access systems operating in the land mobile service for use in sharing studies

REPORT ITU-R M Characteristics of broadband wireless access systems operating in the land mobile service for use in sharing studies Rep. ITU-R M.2116 1 REPORT ITU-R M.2116 Characteristics of broadband wireless access systems operating in the land mobile service for use in sharing studies (Questions ITU-R 1/8 and ITU-R 7/8) (2007) 1

More information

5G deployment below 6 GHz

5G deployment below 6 GHz 5G deployment below 6 GHz Ubiquitous coverage for critical communication and massive IoT White Paper There has been much attention on the ability of new 5G radio to make use of high frequency spectrum,

More information

Chapter 14. Cellular Wireless Networks

Chapter 14. Cellular Wireless Networks Chapter 14 Cellular Wireless Networks Evolu&on of Wireless Communica&ons 1901 Marconi: Trans-Atlantic wireless transmission 1906 Fessenden: first radio broadcast (AM) 1921 Detroit Police Dept wireless

More information

ECE 271 INTRODUCTION TO TELECOMMUNICATION NETWORKS HOMEWORK QUESTIONS ECE 271 HOMEWORK-1

ECE 271 INTRODUCTION TO TELECOMMUNICATION NETWORKS HOMEWORK QUESTIONS ECE 271 HOMEWORK-1 ECE 271 INTRODUCTION TO TELECOMMUNICATION NETWORKS HOMEWORK QUESTIONS Homework Question 1 ECE 271 HOMEWORK-1 Allocated channel bandwidth for commercial TV is 6 MHz. a. Find the maximum number of analog

More information

[Raghuwanshi*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

[Raghuwanshi*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY PERFORMANCE ANALYSIS OF INTEGRATED WIFI/WIMAX MESH NETWORK WITH DIFFERENT MODULATION SCHEMES Mr. Jogendra Raghuwanshi*, Mr. Girish

More information

Propagation and Throughput Study for Broadband Wireless Systems at 5.8 GHz

Propagation and Throughput Study for Broadband Wireless Systems at 5.8 GHz Propagation and Throughput Study for 82.6 Broadband Wireless Systems at 5.8 GHz Thomas Schwengler, Member IEEE Qwest Communications, 86 Lincoln street th floor, Denver CO 8295 USA. (phone: + 72-947-84;

More information

Institute of Electrical and Electronics Engineers (IEEE) CHARACTERISTICS OF IEEE SYSTEMS IN MHz

Institute of Electrical and Electronics Engineers (IEEE) CHARACTERISTICS OF IEEE SYSTEMS IN MHz As submitted to ITU-R IEEE L802.16-04/42r3 INTERNATIONAL TELECOMMUNICATION UNION RADIOCOMMUNICATION STUDY GROUPS Document 21 December 2004 English only Received: Institute of Electrical and Electronics

More information

Chapter 5: WMAN - IEEE / WiMax. 5.1 Introduction and Overview 5.2 Deployment 5.3 PHY layer 5.4 MAC layer 5.5 Network Entry 5.

Chapter 5: WMAN - IEEE / WiMax. 5.1 Introduction and Overview 5.2 Deployment 5.3 PHY layer 5.4 MAC layer 5.5 Network Entry 5. Chapter 5: WMAN - IEEE 802.16 / WiMax 5.1 Introduction and Overview 5.2 Deployment 5.3 PHY layer 5.4 MAC layer 5.5 Network Entry 5.6 Mobile WiMAX 5.1 Introduction and Overview IEEE 802.16 and WiMAX IEEE

More information

and WAN Carlos Alberto Avendaño Pérez Medellín-Colombia

and WAN Carlos Alberto Avendaño Pérez Medellín-Colombia Satellite Stations, Radio-Links and WAN Carlos Alberto Avendaño Pérez Universidad de Antioquia Medellín-Colombia School on Radio Use for Digital and Multimedia Communications The Abdus Salam International

More information

Achieving capacities over 1Gbps. Martins Dzelde Senior Sales Engineer

Achieving capacities over 1Gbps. Martins Dzelde Senior Sales Engineer Achieving capacities over 1Gbps Martins Dzelde Senior Sales Engineer Agenda Spectrum Availability Ethernet data rate & link budget Mounting multiple radios to single antenna Case study: 1.7 Gbps links

More information

TESTING OF FIXED BROADBAND WIRELESS SYSTEMS AT 5.8 GHZ

TESTING OF FIXED BROADBAND WIRELESS SYSTEMS AT 5.8 GHZ To be presented at IEEE Denver / Region 5 Conference, April 7-8, CU Boulder, CO. TESTING OF FIXED BROADBAND WIRELESS SYSTEMS AT 5.8 GHZ Thomas Schwengler Qwest Communications Denver, CO (thomas.schwengler@qwest.com)

More information

DRAFT. The MSS incorporates the base band processing, tributaries interfaces, radio port interfaces and supervision. The MSS is frequency independent.

DRAFT. The MSS incorporates the base band processing, tributaries interfaces, radio port interfaces and supervision. The MSS is frequency independent. 8 Functional operation 8.1 Microwave service switch (MSS) Microwave Service Switch (MSS) shelves provides up to 16 Gb/s packet switch node. The MSS incorporates the base band processing, tributaries interfaces,

More information

Maximizing MIMO Effectiveness by Multiplying WLAN Radios x3

Maximizing MIMO Effectiveness by Multiplying WLAN Radios x3 ATHEROS COMMUNICATIONS, INC. Maximizing MIMO Effectiveness by Multiplying WLAN Radios x3 By Winston Sun, Ph.D. Member of Technical Staff May 2006 Introduction The recent approval of the draft 802.11n specification

More information

Linear-In-dB RF Power Detector In W-CDMA User Equipment

Linear-In-dB RF Power Detector In W-CDMA User Equipment Linear-In-dB RF Power Detector In W-CDMA User Equipment Introduction Since 1997, Wideband Code Division Multiple Access technology has been adopted as the third generation cellular phone standard by 3GPP

More information

IEEE Broadband Wireless Access Working Group <

IEEE Broadband Wireless Access Working Group < Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group Proposed IEEE Contribution to ITU-R on Detailed specifications of the radio interfaces for fixed

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v01.05.00 HMC141/142 MIXER OPERATION

More information

Wireless Physical Layer Concepts: Part III

Wireless Physical Layer Concepts: Part III Wireless Physical Layer Concepts: Part III Raj Jain Professor of CSE Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-08/

More information

Alcatel-Lucent MDR / 1 1 G H z D I G I T A L R A D I O S

Alcatel-Lucent MDR / 1 1 G H z D I G I T A L R A D I O S Alcatel-Lucent MDR-8000 1 0. 5 / 1 1 G H z D I G I T A L R A D I O S O V E R V I E W The MDR-8X11 is Alcatel-Lucent s premier digital microwave radio for medium- and long-haul, point-to-point wireless

More information

Exhibit 8 User Manual. 8 Product Functional Requirements (User Manual)

Exhibit 8 User Manual. 8 Product Functional Requirements (User Manual) Ground Systems Division User Manual Motorola Customer Premise Equipment (CPE) Model No. LT 20M-00 8 Product Functional Requirements (User Manual) 8.1 Scope The requirements described herein are functional

More information

Università degli Studi di Catania Dipartimento di Ingegneria Informatica e delle Telecomunicazioni WiMAX

Università degli Studi di Catania Dipartimento di Ingegneria Informatica e delle Telecomunicazioni WiMAX WiMAX Ing. Alessandro Leonardi Content List Introduction System Architecture IEEE 802.16 standard Comparison with other technologies Conclusions Introduction Why WiMAX? (1/2) Main problems with actual

More information

How to Achieve 1Gbps Link Capacity with Microwave Links Bare Truths and False Claims V1.1

How to Achieve 1Gbps Link Capacity with Microwave Links Bare Truths and False Claims V1.1 WHITE PAPER How to Achieve 1Gbps Link Capacity with Microwave Links Bare Truths and False Claims V1.1 1. Introduction Capacity requirement for backbone links and networks have rapidly grown in recent years

More information

Airmux-400 Broadband Wireless Multiplexer

Airmux-400 Broadband Wireless Multiplexer Data Sheet For North America Only Airmux-400 Point-to-point and multi point-to-point broadband radio solution for Cost-effective multi point-to-point encrypted wireless broadband multiplexer Net throughput

More information

High Spectral Efficiency Designs and Applications. Eric Rebeiz, Ph.D. Director of Wireless Technology 1 TARANA WIRELESS, INC.

High Spectral Efficiency Designs and Applications. Eric Rebeiz, Ph.D. Director of Wireless Technology 1 TARANA WIRELESS, INC. High Spectral Efficiency Designs and Applications Eric Rebeiz, Ph.D. Director of Wireless Technology 1 TARANA WIRELESS, INC. FOR PUBLIC USE Opportunity: Un(der)served Broadband Consumer 3.4B Households

More information

Technical Aspects of LTE Part I: OFDM

Technical Aspects of LTE Part I: OFDM Technical Aspects of LTE Part I: OFDM By Mohammad Movahhedian, Ph.D., MIET, MIEEE m.movahhedian@mci.ir ITU regional workshop on Long-Term Evolution 9-11 Dec. 2013 Outline Motivation for LTE LTE Network

More information

Beamforming for 4.9G/5G Networks

Beamforming for 4.9G/5G Networks Beamforming for 4.9G/5G Networks Exploiting Massive MIMO and Active Antenna Technologies White Paper Contents 1. Executive summary 3 2. Introduction 3 3. Beamforming benefits below 6 GHz 5 4. Field performance

More information

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1 US 20070042773A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0042773 A1 Alcorn (43) Pub. Date: Feb. 22, 2007 (54) BROADBAND WIRELESS Publication Classification COMMUNICATION

More information

Data and Computer Communications. Tenth Edition by William Stallings

Data and Computer Communications. Tenth Edition by William Stallings Data and Computer Communications Tenth Edition by William Stallings Data and Computer Communications, Tenth Edition by William Stallings, (c) Pearson Education - Prentice Hall, 2013 CHAPTER 8 Multiplexing

More information

Alcatel-Lucent MDR / 8 G H Z D I G I T A L R A D I O S

Alcatel-Lucent MDR / 8 G H Z D I G I T A L R A D I O S Alcatel-Lucent MDR-8000 7 / 8 G H Z D I G I T A L R A D I O S O V E R V I E W The MDR-8X08 is Alcatel-Lucent s premier digital microwave radio for long-haul, point-to-point wireless communications. The

More information

NetPoint Pro. 6x2.4, 6x5.8, 3x2.4, 3x5.8. Wi-Fi base Stations Providing Superior Connectivity

NetPoint Pro. 6x2.4, 6x5.8, 3x2.4, 3x5.8. Wi-Fi base Stations Providing Superior Connectivity NetPoint Pro 6x2.4, 6x5.8, 3x2.4, 3x5.8 Wi-Fi base Stations Providing Superior Connectivity NetPoint Pro is an advanced Wi-Fi base station that provides superior connectivity and greater range. It enables

More information

500 Series AP and SM CAP and CSM Licensed, Reliable Wireless Connectivity

500 Series AP and SM CAP and CSM Licensed, Reliable Wireless Connectivity 500 Series AP and SM CAP 35500 and CSM 35500 Licensed, Reliable Wireless Connectivity Reliable, Cost Effective Connectivity 3.5 GHz Licensed Band OFDM nlos and NLOS Connectivity High Downlink AND Uplink

More information

WiMAX and Non-Standard Solutions

WiMAX and Non-Standard Solutions Unit 14 WiMAX and Non-Standard Solutions Developed by: Ermanno Pietrosemoli, EsLaREd Creative Commons License: Attribution Non-Commercial Share-Alike 3.0 Objectives Describe WiMAX technology, its motivation

More information

All Beamforming Solutions Are Not Equal

All Beamforming Solutions Are Not Equal White Paper All Beamforming Solutions Are Not Equal Executive Summary This white paper compares and contrasts the two major implementations of beamforming found in the market today: Switched array beamforming

More information

Radio interface standards of vehicle-tovehicle and vehicle-to-infrastructure communications for Intelligent Transport System applications

Radio interface standards of vehicle-tovehicle and vehicle-to-infrastructure communications for Intelligent Transport System applications Recommendation ITU-R M.2084-0 (09/2015) Radio interface standards of vehicle-tovehicle and vehicle-to-infrastructure communications for Intelligent Transport System applications M Series Mobile, radiodetermination,

More information

SOLUTION BRIEF ONE POINT WIRELSS SUITE. PTP LINKPlanner: No Surprises Link Planning for PTP 800 Solutions

SOLUTION BRIEF ONE POINT WIRELSS SUITE. PTP LINKPlanner: No Surprises Link Planning for PTP 800 Solutions SOLUTION BRIEF ONE POINT WIRELSS SUITE PTP LINKPlanner: No Surprises Link Planning for PTP 800 Solutions Prior Planning Prevents Poor Performance. The five-p s serve as a simple, yet indisputable, reminder

More information

OBJECTIVES. Understand the basic of Wi-MAX standards Know the features, applications and advantages of WiMAX

OBJECTIVES. Understand the basic of Wi-MAX standards Know the features, applications and advantages of WiMAX OBJECTIVES Understand the basic of Wi-MAX standards Know the features, applications and advantages of WiMAX INTRODUCTION WIMAX the Worldwide Interoperability for Microwave Access, is a telecommunications

More information