Università degli Studi di Catania Dipartimento di Ingegneria Informatica e delle Telecomunicazioni WiMAX

Size: px
Start display at page:

Download "Università degli Studi di Catania Dipartimento di Ingegneria Informatica e delle Telecomunicazioni WiMAX"

Transcription

1 WiMAX Ing. Alessandro Leonardi

2 Content List Introduction System Architecture IEEE standard Comparison with other technologies Conclusions

3 Introduction

4 Why WiMAX? (1/2) Main problems with actual standards supporting communications in Metropolitan Area Networks: Broadband wired access (DSL, T1 line) is pretty expensive and it doesn t reach all areas WiFi hot spots are very small, so coverage is sparse

5 Why WiMAX? (2/2) What if there were a new technology which provides: - The high speed of broadband service? - Wireless rather than wired access? - Broad coverage like the cell-phone network? This system is actually coming into being right now and it is called WiMAX

6 What is WiMAX? (1/2) A technology based on an evolving standard for point-to-multipoint wireless networking BWA (Broadband Wireless Access) solution for Wireless Metropolitan Area Network offering fast broadband connections over long distances Comply with European BWA standard IEEE /ETSI HiperMAN ( European Telecommunications Standards Institute's High-performance radio metropolitan area network )

7 What is WiMAX? (2/2) WiMAX is short for Worldwide Interoperability for Microwave Access: the forum comprises of industry leaders who are committed to the open interoperability of all products used for broadband wireless access The commercialization of IEEE standard The technique or technology behind the standards is often referred as WiMAX

8 System Architecture

9 System Architecture (1/2) A WiMAX system consists of two parts: A WiMAX tower: similar in concept to a cell-phone tower can provide coverage to a very large area A WiMAX receiver: the receiver and antenna could be a small box or PCMCIA card, or they could be built into a laptop the way WiFi access is today

10 System Architecture (2/2)

11 WiMAX deployment types A WiMAX tower station can connect directly to the Internet using a high-bandwidth, wired connection for example, a T3 line) A WiMAX tower can also connect to another WiMAX tower using a line-of-sight (LOS) microwave link (this connection is often referred to as a backhaul)

12 WiMAX wireless services (1/3) WiMAX actually can provide two form of wireless services: Non-line-of-sight (NLOS), WiFi sort of service Line-of-sight (LOS) point-to-point service

13 WiMAX wireless services (2/3) Non-line-of-sight (NLOS) service : In this mode WiMAX uses a lower frequency range 2 GHz to 11 GHz. Lower-wavelength transmissions are not so easily disrupted by physical obstructions, they are better able to diffract, or bend, around obstacles. By virtue of NLOS propagation, a standard specifies a protocol that will enable a wireless alternative for cable, DSL and T1 level services for last mile broadband access.

14 WiMAX wireless services (3/3) Line-of-sight (LOS) service : In this mode a fixed dish antenna points straight at the WiMAX Tower. The line-of-sight connection is stronger and more stable, so it is able to send a lot of data with fewer errors and allows WiMAX to achieve its maximum range. Higher frequencies are used, with ranges reaching a possible 66 GHz. At higher frequencies, there is less interference and lots more bandwidth.

15 Network integration

16 WiMAX-WiFi integration The WiMAX base station would send data to a WiMAX-enabled router, which would then send the data to different computers on your local network (eventually a WiFi indoor connection)

17 IEEE Standard

18 The IEEE standard IEEE was completed on Oct, 2004 Point-to-Multipoint (PMP) broadband wireless access standard for systems in the frequency ranges GHz and sub 11 GHz.

19 The IEEE chronology , published in April 2002 A set of air interfaces on a common MAC protocol Addresses frequencies 10 to 66 GHz Single carrier (SC) and only LOS a, published in January 2003 A completed amendment that extends the physical layer to the 2 to 11GHz both licensed and license-exempt frequencies. SC, 256 point FFT OFDM and 2048 point FFT OFDMA LOS and NLOS , published in July 2004 Revises and replaces , a, and REVd. This announcement marks a significant milestone in the development of future WiMax technology P /Cor1 published on e, Draft 12 was approved Extends the a standard for portability (mobile clients).

20 The family of standard

21 IEEE Covers MAC layer and PHY layer PHY layer Transmission Convergence sublayer MAC layer

22 Physical Layer In the design of the PHY specification for GHz, line-of-sight propagation was deemed a practical necessity. Because of the point-to-multipoint architecture, the BS basically transmits a TDM signal, with individual subscriber stations allocated time slots serially. The PHY specification defined for GHz uses burst singlecarrier modulation with adaptive burst profiling in which transmission parameters, including the modulation and coding schemes, may be adjusted individually to each subscriber station (SS) on a frame-by-frame basis. Both TDD and burst FDD variants are defined.

23 Overview of modulation Single Carrier QAM, Gray coded - QPSK - 16QAM Mandatory for Downlink, Optional for Uplink - 64QAM Optional for both Downlink & Uplink

24 Physical Layer a

25 Medium Access Control The medium access control (MAC) layer supports many different physical layer specifications, both licensed and unlicensed.

26 MAC Addressing Subscriber station (SS) has 48-bit IEEE MAC Address Base Station (BS) has 48-bit Base Station ID - Not a MAC address - 24-bit operator indicator 16-bit Connection ID (CID) - Used in MAC PDUs

27 Frame Structure and PDU Each MAC packet consists of the three components, a) A MAC header, which contains frame control information. b) A variable length frame body, which contains information specific to the frame type. c) A frame check sequence (FCS), which contains an IEEE 32-bit cyclic redundancy code (CRC).

28 Generic MAC Header

29 MAC PDUs Transmission (1/2) MAC PDUs are transmitted in PHY bursts A single PHY burst can contain multiple Concatenated MAC PDUs The PHY burst can contain multiple FEC blocks MAC PDUs may span FEC block boundaries The TC (Transmission Convergence) layer between the MAC and the PHY allows for capturing the start of the next MAC PDU in case of erroneous FEC blocks

30 MAC PDUs Transmission (2/2)

31 Transmission Convergence sublayer This layer performs the transformation of variable length MAC protocol data units (PDUs) into the fixed length FEC blocks (plus possibly a shortened block at the end) of each burst. The TC layer has a PDU sized to fit in the FEC block currently being filled. It starts with a pointer indicating where the next MAC PDU header starts within the FEC block. The TC PDU format allows resynchronization to the next MAC PDU in the event that the previous FEC block had irrecoverable errors.

32 Transmission Convergence sublayer PDU Format

33 Security Authentication and registration are part of the MAC common part sub-layer. Authentication is based on the use of PKI technologybased X.509 digital certificates. Each Subscriber Station contains both a manufacturer-issued factoryinstalled X.509 digital certificate and the certificate of the manufacturer. Privacy Sublayer uses privacy protocol that is based on the privacy key exchange management protocol of the DOCSIS BPI+ specification. PKM protocol uses X.509 digital certificates with RSA public key encryption for SS authentication and authorization key exchange. Traffic encryption uses DEC.

34 MAC operational modes The standard specifies two modes for sharing the wireless medium: Point-to-Multipoint (PMP): The nodes are organized into a cellular-like structure where a base station (BS) serves a set of subscriber stations (SSs) within the same antenna sector in a broadcast manner, with all SSs receiving the same transmission from the BS. Transmissions from SSs are directed to and coordinated by the BS. Mesh (optional): The nodes are organized ad-hoc and access coordination is distributed among them.

35 MAC DL/UL connections Uplink and downlink data transmission are frame-based and in PMP mode they occur in separate time frames : Downlink (DL): The protocol employs TDM data streams from BS to SS. The BS transmits a burst of MAC Payload Data Units (PDUs) in broadcast and all SSs listen to the data transmitted by the BS. An SS is only required to process PDUs that are addressed to itself or that are explicitly intended for all the SSs. Uplink (UL) : Any SS transmits a burst of MAC PDUs to the BS in a Time Division Multiple Access (TDMA) manner

36 MAC DL transmissions Two kinds of bursts: TDM and TDMA All bursts are identified by a DIUC Downlink Interval Usage Code TDMA bursts have resync preamble allows for more flexible scheduling Each terminal listens to all bursts at its operational IUC, or at a more robust one, except when told to transmit Each burst may contain data for several terminals SS must recognize the PDUs with known CIDs DL-MAP message signals downlink usage

37 MAC: Downlink Map Message DL-MAP message defines usage of downlink and contains carrier-specific data DL-MAP is first message in each frame Decoding very time-critical typically done in hardware Entries denote instants when the burst profile changes

38 MAC UL transmissions Invited transmissions Transmissions in contention slots Bandwidth requests Contention resolved using truncated exponential backoff Transmissions in initial ranging slots Ranging Requests (RNG-REQ) Contention resolved using truncated exponential backoff Bursts defined by UIUCs Transmissions allocated by the UL-MAP message All transmissions have synchronization preamble Ideally, all data from a single SS is concatenated into a single PHY burst

39 MAC: Uplink Map Message UL-MAP message defines usage of the uplink Contains the "grants" Grants addressed to the SS Time given in mini-slots Time expressed as arrival time at BS

40 MAC Duplex techniques Downlink and uplink frames are transmitted using one of following techniques: Frequency Division Duplex (FDD) Time Division Duplex (TDD)

41 MAC QoS support (1/2) The MAC protocol is connection-oriented. At the start of each frame the BS schedules the uplink an downlink grants in order to meet the negotiated QoS requirements. Each SS learns of its allocation within the current frame by decoding the UL-MAP message. On the other hand, the DL MAP message contains the timetable of the downlink grants in the forthcoming frame. Both maps are transmitted by the BS at the beginning of each frame.

42 MAC QoS support (2/2)

43 Request/Grant scheme Self Correcting No acknowledgement All errors are handled in the same way, i.e., periodical aggregate requests Bandwidth Requests are always per Connection Grants are either per Connection (GPC) or per Subscriber Station (GPSS) Grants (given as durations) are carried in the UL-MAP messages SS needs to convert the time to amount of data using information about the UIUC

44 Come from the Connection Several kinds of requests: Implicit requests (UGS) Bandwidth Requests No actual messages, negotiated at connection setup BW request messages Uses the special BW request header Requests up to 32 KB with a single message Incremental or aggregate, as indicated by MAC header Piggybacked request (for non-ugs services only) Presented in GM sub-header and always incremental Up to 32 KB per request for the CID Poll-Me bit (for UGS services only) Used by the SS to request a bandwidth poll for non-ugs services

45 Classes of Uplink Service Characteristic of the Service Flow Unsolicited Grant Services (UGS) for constant bit-rate (CBR) or CBR-like Service Flows (SFs) such as T1/E1 Real-time Polling Services (rtps) for real-time-vbr-like SFs such as MPEG video Non-real-time Polling Services (nrtps) for non-real-time SFs with better than best effort service such as bandwidth-intensive file transfer Best Effort (BE) for best-effort traffic

46 802.16a MAC Features

47 Full mobility challenge e The IEEE e standard will provide full mobility to WiMAX Portable devices

48 Comparison with other technologies

49 WiMAX vs. 3G Comparison of OFDMA and CDMA based technologies WiMax systems for portable/nomadic use will have better performance Interference rejection Spectral efficiency Multipath tolerance High Data QoS support Lower future equipment cost WCDMA has advantage for voice communication

50 WiMAX vs. WiFi (1/2) At the PHY layer WiMAX supports flexible RF channel bandwidths and channel reuse. The standard also specifies support for automatic transmit power control and channel quality measurements. At the MAC layer standard has been designed from one up to 100 s of users within one RF channel, a feat that MAC was never designed for and is incapable of supporting. In a based network more users results in a geometric reduction of throughput. The BWA standard is designed for optimal performance in all types of propagation environments, including LOS, near LOS and NLOS. The robust OFDM waveform supports high spectral efficiency over ranges from 2 to 40 Km with up 70 Mbps in a single RF channel. In contrast, WLANs systems use CDMA or OFDM (with a much different design) to support only low-power, limited range transmissions.

51 WiMAX vs. WiFi (2/2) The MAC relies on a Grant/Request protocol for access to the medium and it supports differentiated service levels. By assuring collision-free data access to the channel, the a MAC improves total system throughput and bandwidth efficiency, in comparison with contention-based access techniques like the CSMA-CA protocol used in WLANs. The a MAC also assures bounded delay on the data (CSMA-CA by contrast, offers no guarantees on delay). The TDM/TDMA access technique also ensures easier support for multicast and broadcast services. With a CSMA/CA approach at its core, WLANs in their current implementation will never be able to deliver the QoS of a BWA, system.

52 Conclusions

53 WiMAX Promises In practical terms, WiMAX would operate similar to WiFi but at higher speeds, over greater distances and for a greater number of users. WiMAX could potentially erase the suburban and rural blackout areas that currently have no broadband Internet access because phone and cable companies have not yet run the necessary wires to those remote locations. WiMAX doesn t just pose a threat to providers of DSL and cable-modem service. The WiMAX protocol is designed to accommodate several different methods of data transmission, one of which is Voice Over Internet Protocol (VoIP). If WiMAX-compatible computers become very common, the use of VoIP could increase dramatically.

Wireless Broadband Networks

Wireless Broadband Networks Wireless Broadband Networks WLAN: Support of mobile devices, but low data rate for higher number of users What to do for a high number of users or even needed QoS support? Problem of the last mile Provide

More information

Contents. IEEE family of standards Protocol layering TDD frame structure MAC PDU structure

Contents. IEEE family of standards Protocol layering TDD frame structure MAC PDU structure Contents Part 1: Part 2: IEEE 802.16 family of standards Protocol layering TDD frame structure MAC PDU structure Dynamic QoS management OFDM PHY layer S-72.3240 Wireless Personal, Local, Metropolitan,

More information

Chapter 5: WMAN - IEEE / WiMax. 5.1 Introduction and Overview 5.2 Deployment 5.3 PHY layer 5.4 MAC layer 5.5 Network Entry 5.

Chapter 5: WMAN - IEEE / WiMax. 5.1 Introduction and Overview 5.2 Deployment 5.3 PHY layer 5.4 MAC layer 5.5 Network Entry 5. Chapter 5: WMAN - IEEE 802.16 / WiMax 5.1 Introduction and Overview 5.2 Deployment 5.3 PHY layer 5.4 MAC layer 5.5 Network Entry 5.6 Mobile WiMAX 5.1 Introduction and Overview IEEE 802.16 and WiMAX IEEE

More information

Wireless Comm. Dept. of CCL/ITRI 電通所無線通訊技術組 Overview. 工研院電通所 M100 林咨銘 2005/1/13

Wireless Comm. Dept. of CCL/ITRI 電通所無線通訊技術組 Overview. 工研院電通所 M100 林咨銘 2005/1/13 802.16 Overview 工研院電通所 M100 林咨銘 tmlin@itri.org.tw 2005/1/13 Outline Introduction 802.16 Working group WiMAX 802.16 Overview Comparison of IEEE standards Wi-Fi vs WiMAX Summary 2 Introduction Current IEEE

More information

Guide to Wireless Communications, Third Edition Cengage Learning Objectives

Guide to Wireless Communications, Third Edition Cengage Learning Objectives Guide to Wireless Communications, Third Edition Chapter 9 Wireless Metropolitan Area Networks Objectives Explain why wireless metropolitan area networks (WMANs) are needed Describe the components and modes

More information

Overview of IEEE Broadband Wireless Access Standards. Timo Smura Contents. Network topologies, frequency bands

Overview of IEEE Broadband Wireless Access Standards. Timo Smura Contents. Network topologies, frequency bands Overview of IEEE 802.16 Broadband Wireless Access Standards Timo Smura 24.02.2004 Contents Fixed Wireless Access networks Network topologies, frequency bands IEEE 802.16 standards Air interface: MAC +

More information

EC 551 Telecommunication System Engineering Mohamed Khedr

EC 551 Telecommunication System Engineering Mohamed Khedr EC 551 Telecommunication System Engineering Mohamed Khedr http://webmail.aast.edu/~khedr Syllabus Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week

More information

Politecnico di Milano Facoltà di Ingegneria dell Informazione

Politecnico di Milano Facoltà di Ingegneria dell Informazione Politecnico di Milano Facoltà di Ingegneria dell Informazione WI-3 Wireless Metropolitan Area Networks (WMAN) Wireless Internet Prof. Antonio Capone Broadband Wireless Access (BWA) Core Network o o Wireless

More information

Introduction to WiMAX Dr. Piraporn Limpaphayom

Introduction to WiMAX Dr. Piraporn Limpaphayom Introduction to WiMAX Dr. Piraporn Limpaphayom 1 WiMAX : Broadband Wireless 2 1 Agenda Introduction to Broadband Wireless Overview of WiMAX and Application WiMAX: PHY layer Broadband Wireless Channel OFDM

More information

Wireless WAN Case Study: WiMAX/ W.wan.6

Wireless WAN Case Study: WiMAX/ W.wan.6 Wireless WAN Case Study: WiMAX/802.16 W.wan.6 Dr.M.Y.Wu@CSE Shanghai Jiaotong University Shanghai, China Dr.W.Shu@ECE University of New Mexico Albuquerque, NM, USA W.wan.6-2 WiMAX/802.16 IEEE 802 suite

More information

PHY Layer NCHU CSE WMAN - 1

PHY Layer NCHU CSE WMAN - 1 PHY Layer NCHU CSE WMAN - 1 Multiple Access and Duplexing Time-Division Duplex (TDD) DL & UL time-share the same RF channel Dynamic asymmetry (also named as Demand Assigned Multiple Access : DAMA) Half-duplex

More information

WiMAX/ Wireless WAN Case Study: WiMAX/ W.wan.6. IEEE 802 suite. IEEE802 suite. IEEE 802 suite WiMAX/802.16

WiMAX/ Wireless WAN Case Study: WiMAX/ W.wan.6. IEEE 802 suite. IEEE802 suite. IEEE 802 suite WiMAX/802.16 W.wan.6-2 Wireless WAN Case Study: WiMAX/802.16 W.wan.6 WiMAX/802.16 IEEE 802 suite WiMAX/802.16 PHY Dr.M.Y.Wu@CSE Shanghai Jiaotong University Shanghai, China Dr.W.Shu@ECE University of New Mexico Albuquerque,

More information

RECOMMENDATION ITU-R F Radio interface standards for broadband wireless access systems in the fixed service operating below 66 GHz

RECOMMENDATION ITU-R F Radio interface standards for broadband wireless access systems in the fixed service operating below 66 GHz Rec. ITU-R F.1763 1 RECOMMENDATION ITU-R F.1763 Radio interface standards for broadband wireless access systems in the fixed service operating below 66 GHz (Question ITU-R 236/9) (2006) 1 Introduction

More information

VISHVESHWARAIAH TECHNOLOGICAL UNIVERSITY S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY

VISHVESHWARAIAH TECHNOLOGICAL UNIVERSITY S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY VISHVESHWARAIAH TECHNOLOGICAL UNIVERSITY S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY A seminar report on WiMAX Submitted by RONAK KOTAK 2SD06CS076 8 th semester DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

More information

Department of Computer Science Institute for System Architecture, Chair for Computer Networks

Department of Computer Science Institute for System Architecture, Chair for Computer Networks Department of Computer Science Institute for System Architecture, Chair for Computer Networks LTE, WiMAX and 4G Mobile Communication and Mobile Computing Prof. Dr. Alexander Schill http://www.rn.inf.tu-dresden.de

More information

Module 4: Wireless Metropolitan and Wide Area Networks

Module 4: Wireless Metropolitan and Wide Area Networks Module 4: Wireless Metropolitan and Wide Area Networks SMD161 Wireless Mobile Networks Kaustubh S. Phanse Department of Computer Science and Electrical Engineering Luleå University of Technology Lecture

More information

OBJECTIVES. Understand the basic of Wi-MAX standards Know the features, applications and advantages of WiMAX

OBJECTIVES. Understand the basic of Wi-MAX standards Know the features, applications and advantages of WiMAX OBJECTIVES Understand the basic of Wi-MAX standards Know the features, applications and advantages of WiMAX INTRODUCTION WIMAX the Worldwide Interoperability for Microwave Access, is a telecommunications

More information

[Raghuwanshi*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

[Raghuwanshi*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY PERFORMANCE ANALYSIS OF INTEGRATED WIFI/WIMAX MESH NETWORK WITH DIFFERENT MODULATION SCHEMES Mr. Jogendra Raghuwanshi*, Mr. Girish

More information

Overview of Mobile WiMAX Technology

Overview of Mobile WiMAX Technology Overview of Mobile WiMAX Technology Esmael Dinan, Ph.D. April 17, 2009 1 Outline Part 1: Introduction to Mobile WiMAX Part 2: Mobile WiMAX Architecture Part 3: MAC Layer Technical Features Part 4: Physical

More information

Wireless Networks. Wireless MANs. David Tipper. Wireless Wide Area Networks (WWANs) Wireless Metro Area Networks (WMANs)

Wireless Networks. Wireless MANs. David Tipper. Wireless Wide Area Networks (WWANs) Wireless Metro Area Networks (WMANs) Wireless MAN Networks David Tipper Associate Professor Graduate Telecommunications and Networking Program University of Pittsburgh Slides 17 Wireless Networks Wireless Wide Area Networks (WWANs) Cellular

More information

Performance Analysis of WiMAX Physical Layer Model using Various Techniques

Performance Analysis of WiMAX Physical Layer Model using Various Techniques Volume-4, Issue-4, August-2014, ISSN No.: 2250-0758 International Journal of Engineering and Management Research Available at: www.ijemr.net Page Number: 316-320 Performance Analysis of WiMAX Physical

More information

IEEE C802.16a-02/94r1. IEEE Broadband Wireless Access Working Group <

IEEE C802.16a-02/94r1. IEEE Broadband Wireless Access Working Group < Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group OFDM sub-channelization improvement and system performance selected topics 2002-11-14 Source(s)

More information

IEEE c-00/40. IEEE Broadband Wireless Access Working Group <

IEEE c-00/40. IEEE Broadband Wireless Access Working Group < Project Title Date Submitted Source(s) IEEE 802.16 Broadband Wireless Access Working Group Initial PHY Layer System Proposal for Sub 11 GHz BWA 2000-10-30 Anader Benyamin-Seeyar

More information

Improving the Data Rate of OFDM System in Rayleigh Fading Channel Using Spatial Multiplexing with Different Modulation Techniques

Improving the Data Rate of OFDM System in Rayleigh Fading Channel Using Spatial Multiplexing with Different Modulation Techniques 2009 International Symposium on Computing, Communication, and Control (ISCCC 2009) Proc.of CSIT vol.1 (2011) (2011) IACSIT Press, Singapore Improving the Data Rate of OFDM System in Rayleigh Fading Channel

More information

WiMAX and Non-Standard Solutions

WiMAX and Non-Standard Solutions Unit 14 WiMAX and Non-Standard Solutions Developed by: Ermanno Pietrosemoli, EsLaREd Creative Commons License: Attribution Non-Commercial Share-Alike 3.0 Objectives Describe WiMAX technology, its motivation

More information

IEEE Broadband Wireless Access Working Group < Initial PHY Layer System Proposal for Sub 11 GHz BWA

IEEE Broadband Wireless Access Working Group <  Initial PHY Layer System Proposal for Sub 11 GHz BWA Project Title Date Submitted Source(s) Re: Abstract Purpose Notice Release Patent Policy and Procedures IEEE 802.16 Broadband Wireless Access Working Group Initial PHY Layer System

More information

WORLDWIDE INTEROPERABILITY FOR MICROWAVE ACCESS (WIMAX)

WORLDWIDE INTEROPERABILITY FOR MICROWAVE ACCESS (WIMAX) WORLDWIDE INTEROPERABILITY FOR MICROWAVE ACCESS (WIMAX) WiMAX is coming to fix this need and deliver new broadband solutions for all the ISPs and WIPSs that was harassed by the users needs of counting

More information

IEEE Standard : Broadband Wireless Access for New Opportunities.

IEEE Standard : Broadband Wireless Access for New Opportunities. IEEE Standard 802.16: 1 Broadband Wireless Access for New Opportunities http://wirelessman.org IEEE Standard 802.16: 2 Broadband Wireless Access for New Opportunities Workshop on Nationwide Internet Access

More information

License Exempt Spectrum and Advanced Technologies. Marianna Goldhammer Director Strategic Technologies

License Exempt Spectrum and Advanced Technologies. Marianna Goldhammer Director Strategic Technologies License Exempt Spectrum and Advanced Technologies Marianna Goldhammer Director Strategic Technologies Contents BWA Market trends Power & Spectral Ingredients for Successful BWA Deployments Are regulations

More information

Institute of Electrical and Electronics Engineers (IEEE) PROPOSED AMENDMENTS TO ANNEX 15 TO DOCUMENT 8A/202

Institute of Electrical and Electronics Engineers (IEEE) PROPOSED AMENDMENTS TO ANNEX 15 TO DOCUMENT 8A/202 2005-07-20 IEEE L802.16-05/043r1 INTERNATIONAL TELECOMMUNICATION UNION RADIOCOMMUNICATION STUDY GROUPS *** DRAFT *** Document 12 July 2005 English only Source: Annex 15 to Document 8A/202 Question: 212/8

More information

Effective Bandwidth Utilization in WiMAX Network

Effective Bandwidth Utilization in WiMAX Network Effective Bandwidth Utilization in WiMAX Network 1 Mohamed I. Yousef, 2 Mohamed M. Zahra, 3 Ahmed S. Shalaby 1 Professor, 2 Associate Professor, 3 Lecturer Department of Electrical Engineering, Faculty

More information

Performance Evaluation of IEEE e (Mobile WiMAX) in OFDM Physical Layer

Performance Evaluation of IEEE e (Mobile WiMAX) in OFDM Physical Layer Performance Evaluation of IEEE 802.16e (Mobile WiMAX) in OFDM Physical Layer BY Prof. Sunil.N. Katkar, Prof. Ashwini S. Katkar,Prof. Dattatray S. Bade ( VidyaVardhini s College Of Engineering And Technology,

More information

4G WiMAX Networks (IEEE Standards)

4G WiMAX Networks (IEEE Standards) 4G WiMAX Networks (IEEE 802.16 Standards) Chandni Chaudhary # # Electronics & Communication, Gujarat Technological University Gujarat, India. Chandni.1406@gmail.com ABSTRACT This paper gives an overview

More information

Cordless Systems and Wireless Local Loop. Cordless System Operating Environments. Design Considerations for Cordless Standards

Cordless Systems and Wireless Local Loop. Cordless System Operating Environments. Design Considerations for Cordless Standards CSE5807 Wireless and personal communications systems / FIT3024 Internetworking and wireless communications Cordless Systems and Wireless Local Loop Week 7. Cordless systems and wireless local loop. Chapter

More information

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1 US 20070042773A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0042773 A1 Alcorn (43) Pub. Date: Feb. 22, 2007 (54) BROADBAND WIRELESS Publication Classification COMMUNICATION

More information

COMPILED BY : - GAUTAM SINGH STUDY MATERIAL TELCOM What is Wi-Fi?

COMPILED BY : - GAUTAM SINGH STUDY MATERIAL TELCOM What is Wi-Fi? What is Wi-Fi? WiFi stands for Wireless Fidelity. WiFiIt is based on the IEEE 802.11 family of standards and is primarily a local area networking (LAN) technology designed to provide in-building broadband

More information

Cordless Systems and Wireless Local Loop. Chapter 11

Cordless Systems and Wireless Local Loop. Chapter 11 Cordless Systems and Wireless Local Loop Chapter 11 Cordless System Operating Environments Residential a single base station can provide in-house voice and data support Office A single base station can

More information

Broadband Wireless Access: A Brief Introduction to IEEE and WiMAX

Broadband Wireless Access: A Brief Introduction to IEEE and WiMAX Broadband Wireless Access: A Brief Introduction to IEEE 802.16 and WiMAX Prof. Dave Michelson davem@ece.ubc.ca UBC Radio Science Lab 26 April 2006 1 Introduction The IEEE 802.16/WiMAX standard promises

More information

Modelling and Performances Analysis of WiMAX/IEEE Wireless MAN OFDM Physical Downlink

Modelling and Performances Analysis of WiMAX/IEEE Wireless MAN OFDM Physical Downlink Modelling and Performances Analysis of WiMAX/IEEE 802.16 Wireless MAN OFDM Physical Downlink Fareda Ali Elmaryami M. Sc Student, Zawia University, Faculty of Engineering/ EE Department, Zawia, Libya, Faredaali905@yahoo.com

More information

IEEE C802.16d-03/23

IEEE C802.16d-03/23 0-0-0 IEEE C0.d-0/ Project IEEE 0. Broadband Wireless Access Working Group Title Profiles for WirelessMAN-OFDM and WirelessHUMAN(-OFDM) Date Submitted 0-0-0 Source(s) Re: Abstract Purpose

More information

The WiMAX e Advantage

The WiMAX e Advantage The WiMAX 802.16e Advantage An analysis of WiFi 802.11 a/b/g/n and WiMAX 802.16e technologies for license-exempt, outdoor broadband wireless applications. White Paper 2 Objective WiMAX and WiFi are technologies

More information

Using the epmp Link Budget Tool

Using the epmp Link Budget Tool Using the epmp Link Budget Tool The epmp Series Link Budget Tool can offer a help to determine the expected performances in terms of distances of a epmp Series system operating in line-of-sight (LOS) propagation

More information

IEEE Project m as an IMT-Advanced Technology

IEEE Project m as an IMT-Advanced Technology 2008-09-25 IEEE L802.16-08/057r2 IEEE Project 802.16m as an IMT-Advanced Technology IEEE 802.16 Working Group on Broadband Wireless Access 1 IEEE 802.16 A Working Group: The IEEE 802.16 Working Group on

More information

WiMAX: , e, WiBRO Introduction to WiMAX Measurements

WiMAX: , e, WiBRO Introduction to WiMAX Measurements Products: R&S FSQ, R&S SMU, R&S SMJ, R&S SMATE WiMAX: 802.16-2004, 802.16e, WiBRO Introduction to WiMAX Measurements Application Note 1EF57 The new WiMAX radio technology worldwide interoperability for

More information

Wireless TDMA Mesh Networks

Wireless TDMA Mesh Networks Wireless TDMA Mesh Networks Vinay Ribeiro Department of Computer Science and Engineering IIT Delhi Outline What are mesh networks Applications of wireless mesh Quality-of-service Design and development

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.1 Wireless Networks A computer network using wireless data connections to connect different nodes is known as wireless network. Wireless networking is a method using which costly

More information

Department of Computer Science Institute for System Architecture, Chair for Computer Networks

Department of Computer Science Institute for System Architecture, Chair for Computer Networks Department of Computer Science Institute for System Architecture, Chair for Computer Networks LTE, WiMAX and 4G Mobile Communication and Mobile Computing Prof. Dr. Alexander Schill http://www.rn.inf.tu-dresden.de

More information

IEEE Broadband Wireless Access Working Group <http://ieee802.org/16>

IEEE Broadband Wireless Access Working Group <http://ieee802.org/16> Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group W-OFDM Proposal for the IEEE 802.16.3 PHY 2000-10-29 Source(s) Bob Heise Wi-Lan Inc. 300, 801 Manning

More information

IEEE PROPOSED AMENDMENTS TO WORKING DOCUMENT TOWARDS PRELIMINARY DRAFT NEW RECOMMENDATION ITU-R F.[9B/BWA]

IEEE PROPOSED AMENDMENTS TO WORKING DOCUMENT TOWARDS PRELIMINARY DRAFT NEW RECOMMENDATION ITU-R F.[9B/BWA] Approved by the IEEE 802.16 WG (2004-07-15) and the IEEE 802 Executive Committee (2004-07-16). 2004-07-15 IEEE L802.16-04/25 INTERNATIONAL TELECOMMUNICATION UNION RADIOCOMMUNICATION STUDY GROUPS Document

More information

WiMAX. Enabling a world of broadband wireless opportunities. All rights reserved 2006, Alcatel

WiMAX. Enabling a world of broadband wireless opportunities. All rights reserved 2006, Alcatel WiMAX Enabling a world of broadband wireless opportunities MVD Telcom 2006 Ing. Armando Regusci Agenda Introduction Market Drivers Wimax Key Technologies WiMAX Standardization Overview 802.16e Performance

More information

Deploying WiMAX Certified Broadband Wireless Access Systems

Deploying WiMAX Certified Broadband Wireless Access Systems Cristian Patachia-Sultanoiu Deploying WiMAX Certified Broadband Wireless Access Systems Author Cristian Patachia Sultanoiu Telecommunications Department of Electronics and Telecommunications Faculty, Politehnica

More information

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE Overview 18-759: Wireless Networks Lecture 9: OFDM, WiMAX, LTE Dina Papagiannaki & Peter Steenkiste Departments of Computer Science and Electrical and Computer Engineering Spring Semester 2009 http://www.cs.cmu.edu/~prs/wireless09/

More information

Solutions. Innovation in Microwave Communications. Backhauling WiMAX on Wide Channel TDD

Solutions. Innovation in Microwave Communications. Backhauling WiMAX on Wide Channel TDD Backhauling WiMAX on Wide Channel TDD White Paper Created August 2008 Index 1 Introduction............................................................ 2 2 TDD needs less spectrum than licensed FDD...................................

More information

Chapter 6 Applications. Office Hours: BKD Tuesday 14:00-16:00 Thursday 9:30-11:30

Chapter 6 Applications. Office Hours: BKD Tuesday 14:00-16:00 Thursday 9:30-11:30 Chapter 6 Applications 1 Office Hours: BKD 3601-7 Tuesday 14:00-16:00 Thursday 9:30-11:30 Chapter 6 Applications 6.1 3G (UMTS and WCDMA) 2 Office Hours: BKD 3601-7 Tuesday 14:00-16:00 Thursday 9:30-11:30

More information

Performance Enhancement of WiMAX System using Adaptive Equalizer

Performance Enhancement of WiMAX System using Adaptive Equalizer Performance Enhancement of WiMAX System using Adaptive Equalizer 1 Anita Garhwal, 2 Partha Pratim Bhattacharya 1,2 Department of Electronics and Communication Engineering, Faculty of Engineering and Technology

More information

Improvement of System Capacity using Different Frequency Reuse and HARQ and AMC in IEEE OFDMA Networks

Improvement of System Capacity using Different Frequency Reuse and HARQ and AMC in IEEE OFDMA Networks Improvement of System Capacity using Different Frequency Reuse and HARQ and AMC in IEEE 802.16 OFDMA Networks Dariush Mohammad Soleymani, Vahid Tabataba Vakili Abstract IEEE 802.16 OFDMA network (WiMAX)

More information

802.16s SOFTWARE PLATFORM

802.16s SOFTWARE PLATFORM General Software s 802.16s SOFTWARE PLATFORM Architecture Operation system Embedded Linux 1. MAC layer application running on ARM processor 2. PHY layer application running on DSP Application software

More information

IEEE Broadband Wireless Access Working Group <http://ieee802.org/16> Initial rangin clarifications for OFDMA PHY

IEEE Broadband Wireless Access Working Group <http://ieee802.org/16> Initial rangin clarifications for OFDMA PHY Project Title Date Submitted 2004-04-22 IEEE 802.16 Broadband Wireless Access Working Group Initial rangin clarifications for OFDMA PHY Source(s) Itzik Kitroser Voice: +972-3-9528440

More information

A Worldwide Broadband Mobile Internet Standard

A Worldwide Broadband Mobile Internet Standard 802.16 A Worldwide Broadband Mobile Internet Standard A. Paulraj Stanford University NIST, MRA October 6, 2005 1 Outline Broadband Services, Status and Markets Core Technology 802.16e Features and Differentiation

More information

Technical Aspects of LTE Part I: OFDM

Technical Aspects of LTE Part I: OFDM Technical Aspects of LTE Part I: OFDM By Mohammad Movahhedian, Ph.D., MIET, MIEEE m.movahhedian@mci.ir ITU regional workshop on Long-Term Evolution 9-11 Dec. 2013 Outline Motivation for LTE LTE Network

More information

Wireless WANS and MANS. Chapter 3

Wireless WANS and MANS. Chapter 3 Wireless WANS and MANS Chapter 3 Cellular Network Concept Use multiple low-power transmitters (100 W or less) Areas divided into cells Each served by its own antenna Served by base station consisting of

More information

WASHINGTON UNIVERSITY SEVER INSTITUTE SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

WASHINGTON UNIVERSITY SEVER INSTITUTE SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING WASHINGTON UNIVERSITY SEVER INSTITUTE SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING EXPONENTIAL EFFECTIVE SIGNAL TO NOISE RATIO MAPPING (EESM) COMPUTATION FOR

More information

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) Long Term Evolution (LTE) What is LTE? LTE is the next generation of Mobile broadband technology Data Rates up to 100Mbps Next level of

More information

5 GHz, and WiMax

5 GHz, and WiMax 5 GHz, 802.16 and WiMax Abdus Salam ICTP, February 2004 School on Digital Radio Communications for Research and Training in Developing Countries Ermanno Pietrosemoli Latin American Networking School (Fundación

More information

IEEE Broadband Wireless Access Working Group < Extended IE format for concurrent transmission of bursts

IEEE Broadband Wireless Access Working Group <  Extended IE format for concurrent transmission of bursts Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group Extended IE format for concurrent transmission of bursts 2004-03-17 Source(s) Re: Christian Hoymann

More information

IEEE ax / OFDMA

IEEE ax / OFDMA #WLPC 2018 PRAGUE CZECH REPUBLIC IEEE 802.11ax / OFDMA WFA CERTIFIED Wi-Fi 6 PERRY CORRELL DIR. PRODUCT MANAGEMENT 1 2018 Aerohive Networks. All Rights Reserved. IEEE 802.11ax Timeline IEEE 802.11ax Passed

More information

A two Layer Guaranteed and Sustained Rate based Scheduler for IEEE based WiMAX Networks

A two Layer Guaranteed and Sustained Rate based Scheduler for IEEE based WiMAX Networks A two Layer Guaranteed and Sustained Rate based Scheduler for IEEE 802.16-2009 based WiMAX Networks Volker Richter, Rico Radeke, and Ralf Lehnert Technische Universität Dresden Dresden, Mommsenstrasse

More information

Full Spectrum: Mission Critical Private Wireless Networks

Full Spectrum: Mission Critical Private Wireless Networks Full Spectrum: Mission Critical Private Wireless Networks Licensed, Point-to-Multipoint, Broadband Wireless Networks fullspectrumnet.com 1 Company Introduction fullspectrumnet.com 2 Full Spectrum Background

More information

Scheduling in WiMAX Networks

Scheduling in WiMAX Networks Scheduling in WiMAX Networks Ritun Patney and Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Ritun@cse.wustl.edu Presented at WiMAX Forum AATG F2F Meeting, Washington

More information

A R DIGITECH International Journal Of Engineering, Education And Technology (ARDIJEET) X, VOLUME 2 ISSUE 1, 01/01/2014

A R DIGITECH International Journal Of Engineering, Education And Technology (ARDIJEET) X, VOLUME 2 ISSUE 1, 01/01/2014 Performance Enhancement of WiMAX System using Adaptive Equalizer RICHA ANAND *1, PRASHANT BHATI *2 *1 (Prof. of Department, Patel college of science and technology / RGPV University, India) *2(student

More information

Adoption of this document as basis for broadband wireless access PHY

Adoption of this document as basis for broadband wireless access PHY Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group Proposal on modulation methods for PHY of FWA 1999-10-29 Source Jay Bao and Partha De Mitsubishi Electric ITA 571 Central

More information

RADWIN 5000 JET REDEFINING POINT-TO-MULTIPOINT WIRELESS CONNECTIVITY IN SUB-6GHZ BANDS

RADWIN 5000 JET REDEFINING POINT-TO-MULTIPOINT WIRELESS CONNECTIVITY IN SUB-6GHZ BANDS RADWIN 5000 JET POINT-TO-MULTIPOINT Product Brochure PtMP solution with PtP performance 750 Mbps RADWIN 5000 JET REDEFINING POINT-TO-MULTIPOINT WIRELESS CONNECTIVITY IN SUB-6GHZ BANDS RADWIN 5000 JET is

More information

Evaluation of HIPERLAN/2 Scalability for Mobile Broadband Systems

Evaluation of HIPERLAN/2 Scalability for Mobile Broadband Systems Evaluation of HIPERLAN/2 Scalability for Mobile Broadband Systems Ken ichi Ishii 1) A. H. Aghvami 2) 1) Networking Laboratories, NEC 4-1-1, Miyazaki, Miyamae-ku, Kawasaki 216-8, Japan Tel.: +81 ()44 86

More information

Design of a new IT Infrastructure for the Region of Nordjylland. Access Network

Design of a new IT Infrastructure for the Region of Nordjylland. Access Network Design of a new IT Infrastructure for the Region of Nordjylland Access Network David Sevilla Department of Electronic Systems Aalborg University June 2008 II Aalborg University Department of Electronic

More information

PERFORMANCE ANALYSIS OF DOWNLINK MIMO IN 2X2 MOBILE WIMAX SYSTEM

PERFORMANCE ANALYSIS OF DOWNLINK MIMO IN 2X2 MOBILE WIMAX SYSTEM PERFORMANCE ANALYSIS OF DOWNLINK MIMO IN 2X2 MOBILE WIMAX SYSTEM N.Prabakaran Research scholar, Department of ETCE, Sathyabama University, Rajiv Gandhi Road, Chennai, Tamilnadu 600119, India prabakar_kn@yahoo.co.in

More information

IEEE C802.16d-04/40. IEEE Broadband Wireless Access Working Group <

IEEE C802.16d-04/40. IEEE Broadband Wireless Access Working Group < Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group Supplement for comments from Yigal Leiba 2004-03-13 Source(s) Yigal Leiba Runcom Ltd. Hachoma 2

More information

500 Series AP and SM CAP and CSM Licensed, Reliable Wireless Connectivity

500 Series AP and SM CAP and CSM Licensed, Reliable Wireless Connectivity 500 Series AP and SM CAP 35500 and CSM 35500 Licensed, Reliable Wireless Connectivity Reliable, Cost Effective Connectivity 3.5 GHz Licensed Band OFDM nlos and NLOS Connectivity High Downlink AND Uplink

More information

Switched beam antennas in millimeter-wave band broadband wireless access networks

Switched beam antennas in millimeter-wave band broadband wireless access networks Switched beam antennas in millimeter-wave band broadband wireless access networks IEEE 802.16 Presentation Submission Template (Rev. 8.3) Document Number: IEEE S802.16-03/19 Date Submitted: 2003-07-16

More information

IEEE pc-00/04

IEEE pc-00/04 Project Title Date Submitted Source Re: Abstract Purpose Notice IEEE 802.16 Broadband Wireless Access Working Group PHY layer proposal for BWA December 24, 1999 Jay Klein Ensemble Communications, Inc.

More information

Interference management Within 3GPP LTE advanced

Interference management Within 3GPP LTE advanced Interference management Within 3GPP LTE advanced Konstantinos Dimou, PhD Senior Research Engineer, Wireless Access Networks, Ericsson research konstantinos.dimou@ericsson.com 2013-02-20 Outline Introduction

More information

Wi-Fi. Wireless Fidelity. Spread Spectrum CSMA. Ad-hoc Networks. Engr. Mian Shahzad Iqbal Lecturer Department of Telecommunication Engineering

Wi-Fi. Wireless Fidelity. Spread Spectrum CSMA. Ad-hoc Networks. Engr. Mian Shahzad Iqbal Lecturer Department of Telecommunication Engineering Wi-Fi Wireless Fidelity Spread Spectrum CSMA Ad-hoc Networks Engr. Mian Shahzad Iqbal Lecturer Department of Telecommunication Engineering Outline for Today We learned how to setup a WiFi network. This

More information

References. What is UMTS? UMTS Architecture

References. What is UMTS? UMTS Architecture 1 References 2 Material Related to LTE comes from 3GPP LTE: System Overview, Product Development and Test Challenges, Agilent Technologies Application Note, 2008. IEEE Communications Magazine, February

More information

Introduction to Wireless Networking CS 490WN/ECE 401WN Winter 2007

Introduction to Wireless Networking CS 490WN/ECE 401WN Winter 2007 Introduction to Wireless Networking CS 490WN/ECE 401WN Winter 2007 Lecture 9: WiMax and IEEE 802.16 Chapter 11 Cordless Systems and Wireless Local Loop I. Cordless Systems (Section 11.1) This section of

More information

IEEE C802.16maint-07/033

IEEE C802.16maint-07/033 Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group Some Clarifications on CIDs and SFIDs and Suggested Modifications 2007-04-17 Source(s) Dr.T.R.Padmanabhan

More information

Technical White Paper. WiMAX Modelling in Atoll 2.7.0

Technical White Paper. WiMAX Modelling in Atoll 2.7.0 February 2008 Technical White Paper WiMAX Modelling in Atoll 2.7.0 WiMAX, OFDM, and SOFDMA Modelling in Atoll This white paper describes how WiMAX (IEEE 802.16d and IEEE 802.16e) is modelled in the Atoll

More information

IEEE Broadband Wireless Access Working Group <

IEEE Broadband Wireless Access Working Group < 2003-07-16 IEEE C802.16-03/09 Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group Switched beam antennas in millimeter-wave band broadband wireless

More information

RADWIN JET PtMP Beamforming solution delivers fiber-like connectivity for residential and enterprise. 750 Mbps. PtMP solution with PtP performance

RADWIN JET PtMP Beamforming solution delivers fiber-like connectivity for residential and enterprise. 750 Mbps. PtMP solution with PtP performance RADWIN JET Point-to-MultiPoint for Service Providers Product Brochure PtMP solution with PtP performance 750 Mbps RADWIN JET PtMP Beamforming solution delivers fiber-like connectivity for residential and

More information

RADWIN JET PtMP Beamforming solution for fiber-like connectivity

RADWIN JET PtMP Beamforming solution for fiber-like connectivity RADWIN JET Point-to-MultiPoint for Private Networks Product Brochure PtMP so l with PtuPtion perform ance 750 Mb ps RADWIN JET PtMP Beamforming solution for fiber-like connectivity RADWIN JET is a disruptive

More information

THE IEEE standards (e.g., [1], e

THE IEEE standards (e.g., [1], e IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 10, OCTOBER 2010 1451 Bandwidth Recycling in IEEE 802.16 Networks David Chuck and J. Morris Chang Abstract IEEE 802.16 standard was designed to support

More information

Considerations for deploying mobile WiMAX at various frequencies

Considerations for deploying mobile WiMAX at various frequencies White Paper Considerations for deploying mobile WiMAX at various frequencies Introduction The explosive growth of the Internet over the last decade has led to an increasing demand for high-speed, ubiquitous

More information

ECS455: Chapter 6 Applications

ECS455: Chapter 6 Applications ECS455: Chapter 6 Applications 6.2 WiMAX 1 Dr.Prapun Suksompong prapun.com/ecs455 Office Hours: BKD 3601-7 Wednesday 15:30-16:30 Friday 9:30-10:30 Advanced Mobile Wirless Systems (IEEE) (Ultra Mobile Broadband)

More information

A Polling Based Approach For Delay Analysis of WiMAX/IEEE Systems

A Polling Based Approach For Delay Analysis of WiMAX/IEEE Systems A Polling Based Approach For Delay Analysis of WiMAX/IEEE 802.16 Systems Archana B T 1, Bindu V 2 1 M Tech Signal Processing, Department of Electronics and Communication, Sree Chitra Thirunal College of

More information

Performance Analysis of WiMAX under Single and Multi-Carrier Jamming

Performance Analysis of WiMAX under Single and Multi-Carrier Jamming 144 Performance Analysis of WiMAX under Single and Multi-Carrier Jamming Gurkamal Singh and Maninder Singh *Punjabi university, DEPT. of Computer science, Patiala, India Summary WiMAX is at the peak of

More information

Neha Pathak #1, Neha Bakawale *2 # Department of Electronics and Communication, Patel Group of Institution, Indore

Neha Pathak #1, Neha Bakawale *2 # Department of Electronics and Communication, Patel Group of Institution, Indore Performance evolution of turbo coded MIMO- WiMAX system over different channels and different modulation Neha Pathak #1, Neha Bakawale *2 # Department of Electronics and Communication, Patel Group of Institution,

More information

RADWIN JET PtMP Beamforming solution delivers fiber-like connectivity for residential and enterprise. 750 Mb

RADWIN JET PtMP Beamforming solution delivers fiber-like connectivity for residential and enterprise. 750 Mb RADWIN JET Point-to-MultiPoint for Service Providers Product Brochure PtMP so l with PtuPtion perform ance 750 Mb ps RADWIN JET PtMP Beamforming solution delivers fiber-like connectivity for residential

More information

WX-E - WiMAX - The Essentials for Engineers and Technicians

WX-E - WiMAX - The Essentials for Engineers and Technicians IDC Technologies - Books - 1031 Wellington Street West Perth WA 6005 Phone: +61 8 9321 1702 - Email: books@idconline.com WX-E - WiMAX - The Essentials for Engineers and Technicians Price: $65.95 Ex Tax:

More information

Motorola Wireless Broadband Technical Brief OFDM & NLOS

Motorola Wireless Broadband Technical Brief OFDM & NLOS technical BRIEF TECHNICAL BRIEF Motorola Wireless Broadband Technical Brief OFDM & NLOS Splitting the Data Stream Exploring the Benefits of the Canopy 400 Series & OFDM Technology in Reaching Difficult

More information

CS 294-7: Wireless Local Area Networks. Professor Randy H. Katz CS Division University of California, Berkeley Berkeley, CA

CS 294-7: Wireless Local Area Networks. Professor Randy H. Katz CS Division University of California, Berkeley Berkeley, CA CS 294-7: Wireless Local Area Networks Professor Randy H. Katz CS Division University of California, Berkeley Berkeley, CA 94720-1776 1996 1 Desirable Features Ability to operate worldwide Minimize power

More information

Prevailing National Regulations shall apply in case of VoIP. Fixed: Usage with a fixed CPE at a single location.

Prevailing National Regulations shall apply in case of VoIP. Fixed: Usage with a fixed CPE at a single location. 1.0 Introduction 1.1 WiMAX Customer Premises Equipment (CPE) supports Ethernet and VoIP connections to deliver Broadband Wireless Access (BWA) services. Outdoor CPEs are used for fixed applications and

More information

L-DACS1/2 Data Link Analysis Part I: Functional Analysis

L-DACS1/2 Data Link Analysis Part I: Functional Analysis L-DACS1/2 Data Link Analysis Part I: Functional Analysis Raj Jain Jain@ACM.ORG Presentation to Boeing February 4, 2010 1 Overview Application Aeronautical Datalink Evolution Spectrum Implications of Channel

More information