IEEE Standard : Broadband Wireless Access for New Opportunities.

Size: px
Start display at page:

Download "IEEE Standard : Broadband Wireless Access for New Opportunities."

Transcription

1 IEEE Standard : 1 Broadband Wireless Access for New Opportunities

2 IEEE Standard : 2 Broadband Wireless Access for New Opportunities Workshop on Nationwide Internet Access & Online Applications Dhaka, Bangladesh May 2004 Roger B. Marks (US) National Institute of Standards and Technology Boulder, Colorado, USA Chair, IEEE Working Group

3 Outline Wireless Metropolitan Area Networks Broadband Wireless Access IEEE Standards and IEEE 802 IEEE Working Group IEEE Air Interface Standard IEEE : Air Interface (MAC and GHz PHY) P802.16a: Amendment, 2-11 GHz (finished) Licensed License-Exempt P REVd: revision 3 WiMAX Forum coordinating interoperability testing Interoperability documentation in development P802.16e: Mobile Enhancement

4 Broadband Access to Stationary Sites The Last Mile Fast local connection to network 4 Business and residential customers seek it Data Voice Video distribution Real-time videoconferencing etc. Network operators seek it High-capacity cable/fiber to every user is expensive Construction costs do not follow Moore s Law

5 WirelessMAN: Wireless Metropolitan Area Network 5 Basestation SOHO customer Residential customer Multi-tenant customers Core network Source: Nokia Networks Basestation repeater SME customer

6 6

7 Centimeter-Wave Bands for Wireless MAN 7 International 3.5 GHz; 10.5 GHz; etc/ U.S.: MMDS & ITFS GHZ Korea 2.3 GHz Non-Line-of-Sight

8 8 License-Exempt Bands for Wireless MAN GHz (U-NII) 2.4 GHz License-Exempt: Wireless LANs GHz

9 Properties of IEEE Standard Broad bandwidth Up to 134 Mbit/s in 28 MHz channel (in GHz air interface) Supports multiple services simultaneously with full QoS Efficiently transport IPv4, IPv6, ATM, Ethernet, etc. Bandwidth on demand (frame by frame) MAC designed for efficient used of spectrum Comprehensive, modern, and extensible security Supports multiple frequency allocations from 2-66 GHz ODFM and OFDMA for non-line-of-sight applications TDD and FDD Link adaptation: Adaptive modulation and coding Subscriber by subscriber, burst by burst, uplink and downlink Point-to-multipoint topology, with mesh extensions Support for adaptive antennas and space-time coding Extensions to mobility are coming next. Is this 4G? 9

10 IEEE History 10 Initial Development: Meet every two months: Session #1: July Session #31/May 2004: Shenzhen, China Future Sessions Session #32/Jul 2004: Portland, Oregon, USA Session #33/Sep 2004: Seoul, Korea Session #34/Nov 2004: San Antonia, Texas, USA

11 The World Wants Access 11 All over the world: Users want access to networks Network operators want access to customers Broadband Wireless Access flourishes where: Many users are dissatisfied with their access Network operators need to reach customers

12 The World Wants Standards 12 Standards are at the forefront of world trade World Trade Organization rules accelerating process e.g. Chinese-language MediaView magazine is instituting a monthly column on standards In all fields of telecommunications, the world wants standards. Broadband Wireless Access is not isolated from this trend.

13 The World Wants WirelessMAN Standards Have had attendees from Australia, Belgium, Brazil, Canada, China, Finland, France, Germany, Greece, Hong Kong, Ireland, Israel, Italy, Japan, Korea (South), Netherlands, Norway, Pakistan, Russia, Singapore, Spain, Sweden, Taiwan, UK, USA Coordinated European efforts in ETSI Working with ITU-R, ITU-T Discussions with Korean TTA

14 IEEE and ETSI 14 Over 50 liaison letters between and ETSI (European Telecom Standards Institute) ETSI HIPERACCESS Above 11 GHz ETSI began first, but IEEE finished first Harmonization efforts, but no success ETSI HIPERMAN Below 11 GHz IEEE began first Healthy cooperation Harmonized with a OFDM

15 BWA/ Interest within China IEEE a Broadband Wireless Access (BWA) Standard Development and Internet Application : conference sponsored by BUPT and MII on 24 August 2001 in Beijing on the specific topic of whether to use a as the Chinese national standard for fixed broadband wireless access at 3.5 GHz (Prof. Liu Yuan An, Chair) 15

16 and ITU 16 ITU-T: SG15 SG9 ITU-R: WP 9B

17 WiMAX Forum 17 WiMAX: Worldwide Interoperability for Microwave Access Mission: To promote deployment of BWA by using a global standard and certifying interoperability of products and technologies. Principles: Support IEEE standard Propose and promote access profiles for IEEE standard Certify interoperability levels both in network and the cell Achieve global acceptance Promote use of broadband wireless access overall Developing & submitting baseline test specs Over 100 member companies

18 Start of Major Publicity 18 "At the Wireless Communications Assoc. conference in San Jose... Sriram Viswanathan, director of Intel Capital's Broadband and Wireless Networking Investments group, declared during his keynote that ' [Wi-Fi] is the first key disruption is the next.'" "IEEE spec could disrupt wireless landscape," Electronic Engineering Times, 30 January 2003

19 IEEE 802 LAN/MAN Standards Committee 19 Wired: (Ethernet) (Resilient Packet Ring) Wireless: : Wireless LAN Local Area Networks : Wireless PAN Personal Area Networks {inc. Bluetooth} : WirelessMAN TM Metropolitan Area Networks : Vehicular Mobility (new in March 2003) : Handover (new in May 2004)

20 Why IEEE 802? 20 Telecom Standardization National Political Datacom Standardization Global Open Industry-Driven 802 and IETF set the standards

21 Who are the Members? 21 Telecom Standardization Bodies Governmental Representatives Companies IEEE engineers

22 IEEE 802 Process 22 Call for Contributions Specific topics for discussion at next meeting Receive and post written contributions Discuss and debate at meeting Create draft by 75% vote Working Group Ballot IEEE "Sponsor Ballot" Ballot Responses: "Approve" (can include comments) "Disapprove": indicate what needs to be changed to bring about an "Approve" vote

23 Participation in IEEE Open process and open standards Anyone can participate in meetings Anyone can participate outside of meetings Subscribe to mailing lists and read list archives Post to mailing lists Examine documents Contribute and comment on documents Join the Sponsor Ballot Pool Vote and comment on draft standards Must join the IEEE Standards Association to vote Producers and Users must both be in ballot group

24 IEEE Air Interface Work 24 Complete Standards IEEE Std Publ: : Apr 2002 MAC GHz PHY c Profiles Publ: : Jan 2003 Active Projects P REVd Revision Complete: May 2004? P802.16e Mobile Amendment Start: Dec 2002 In WG Ballot a 2-11 GHz PHY Publ: : April 2003

25 Additional IEEE Work 25 Conformance IEEE Std /Conf GHz PICS Publ: : Aug 2003 IEEE Std /Conf GHz TSS&TP Publ: : 25 Feb 2004 Coexistence IEEE Std Publ: : Sep 2001 Revision: Publ: : Mar 2004 P802.16/Conf GHz RCT Approved: 13 May 2004 P802.16/Conf GHz PICS New in March 2004

26 IEEE Standard : 26 The WirelessMAN-SC Air Interface Published: 8 April 2002

27 Point-to-Multipoint 27 Wireless MAN: not a LAN Base Station (BS) connected to public networks BS serves Subscriber Stations (SSs) SS typically serves a building (business or residence) provide SS with first-mile access to public networks Compared to a Wireless LAN: Multimedia QoS, not only contention-based Many more users Much higher data rates Much longer distances

28 Scope of 802 Standards 28

29 MAC: Overview 29 Point-to-Multipoint Metropolitan Area Network Connection-oriented Supports difficult user environments High bandwidth, hundreds of users per channel Continuous and burst traffic Very efficient use of spectrum Protocol-Independent core (ATM, IP, Ethernet, ) Balances between stability of contentionless and efficiency of contention-based operation Flexible QoS offerings CBR, rt-vbr, nrt-vbr, BE, with granularity within classes Supports multiple PHYs

30 MAC PDU Transmission 30 MAC Message SDU 1 SDU 2 Fragmentation Packing MAC PDUs PDU 1 PDU 2 PDU 3 PDU 4 PDU 5 Concatenation Burst P FEC 1 FEC 2 FEC 3 Shortening MAC PDUs P Preamble FEC block

31 Multiple Access and Duplexing 31 On DL, SS addressed in TDM stream On UL, SS allotted a variable length TDMA slot Time-Division Duplex (TDD) DL & UL time-share the same RF channel Dynamic asymmetry SS does not transmit/receive simultaneously (low cost) Frequency-Division Duplex (FDD) Downlink & Uplink on separate RF channels Static asymmetry Half-duplex SSs supported SS does not transmit/receive simultaneously (low cost)

32 TDD Frame (10-66 GHz) 32 Frame duration: 1 ms Physical Slot (PS) = 4 symbols

33 Burst FDD Framing 33 DOWNLINK UPLINK frame Broadcast Half Duplex Terminal #1 Full Duplex Capable User Half Duplex Terminal #2 Allows scheduling flexibility

34 Adaptive PHY 34 (burst-by-burst adaptivity not shown)

35 Adaptive Burst Profiles 35 Burst profile Modulation and FEC Dynamically assigned according to link conditions Burst by burst, per subscriber station Trade-off capacity vs. robustness in real time Roughly doubled capacity for the same cell area Burst profile for downlink broadcast channel is well-known and robust Other burst profiles can be configured on the fly SS capabilities recognized at registration

36 TDD Downlink Subframe 36 DIUC: Downlink Interval Usage Code

37 Burst FDD Framing 37 DOWNLINK UPLINK frame Broadcast Half Duplex Terminal #1 Full Duplex Capable User Half Duplex Terminal #2 Allows scheduling flexibility

38 FDD Downlink Subframe 38 TDMA portion: transmits data to some half-duplex SSs (the ones scheduled to transmit earlier in the frame than they receive) Need preamble to re-sync (carrier phase)

39 Typical Uplink Subframe (TDD or FDD) 39

40 Interoperability Testing for 40 WirelessMAN-SC (10-66 GHz) IEEE P802.16c (Detailed System Profiles) Published 15 January 2003 specifies particular combinations of options used as basis of compliance testing MAC Profiles: ATM and Packet PHY Profiles: 25 & 28 MHz; TDD & FDD Test Protocols: IEEE Std /Conformance0X PICS (01) Test Suite Structure & Test Purposes (02) Radio Conformance Tests (03; almost done)

41 Amendment: 41 IEEE Standard a Medium Access Control Modifications and Additional Physical Layer Specifications for 2-11 GHz

42 802.16a PHY Alternatives: 42 Different Applications, Bandplans, and Regulatory Environments OFDM (WirelessMAN-OFDM Air Interface) 256-point FFT with TDMA (TDD/FDD) OFDMA (WirelessMAN-OFDMA Air Interface) 2048-point FFT with OFDMA (TDD/FDD) Single-Carrier (WirelessMAN-SCa Air Interface) TDMA (TDD/FDD) BPSK, QPSK, 4-QAM, 16-QAM, 64-QAM, 256-QAM Most vendors will use Frequency-Domain Equalization

43 Key a MAC Features 43 OFDM/OFDMA Support ARQ Dynamic Frequency Selection (DFS) license-exempt Adaptive Antenna System (AAS) support Mesh Mode Optional topology Subscriber-to-Subscriber communications Complex topology and messaging, but: addresses license-exempt interference scales well alternative approach to non-line-of-sight

44 Mesh-based WirelessMAN 44 Source: Nokia Networks

45 Current Work 45 Revision of IEEE Std Project P REVd Mobility: Project P802.16e Compliance documentation New (Handover)

46 IEEE Summary The IEEE WirelessMAN Air Interface, addresses worldwide needs 46 The IEEE Air Interface provides great opportunities for vendor differentiation, at both the base station and subscriber station, without compromising interoperability. Compliance & interoperability tests are coming. Mobility is the next major enhancement.

47 Free IEEE 802 Standards 47 Since May 2001, IEEE 802 standards have been available for free download. See: beginning six months after publication IEEE Std , a, c are free IEEE Std is free IEEE Std /Conformance 01 is free

48 IEEE Standard : Tutorial 48 IEEE Communications Magazine, June 2002 (available on web site)

49 Conclusion 49 IEEE WirelessMAN standards are: open in development and application addressed at worldwide markets engineered as optimized technical solutions significantly complete With test spec documents in development being enhanced for expanded opportunities

50 IEEE Resources 50 IEEE Working Group on Broadband Wireless Access info, documents, tutorials, lists, etc:

IEEE Working Group Process, Status, and Technology Session #33: Seoul, Korea 30 August 2004

IEEE Working Group Process, Status, and Technology Session #33: Seoul, Korea 30 August 2004 IEEE 802.16 Working Group Process, Status, and Technology Session #33: Seoul, Korea 30 August 2004 Roger Marks Chair IEEE 802.16 Working Group on Broadband Wireless Access Broadband Access The last mile

More information

Overview of IEEE Broadband Wireless Access Standards. Timo Smura Contents. Network topologies, frequency bands

Overview of IEEE Broadband Wireless Access Standards. Timo Smura Contents. Network topologies, frequency bands Overview of IEEE 802.16 Broadband Wireless Access Standards Timo Smura 24.02.2004 Contents Fixed Wireless Access networks Network topologies, frequency bands IEEE 802.16 standards Air interface: MAC +

More information

IEEE PROPOSED AMENDMENTS TO WORKING DOCUMENT TOWARDS PRELIMINARY DRAFT NEW RECOMMENDATION ITU-R F.[9B/BWA]

IEEE PROPOSED AMENDMENTS TO WORKING DOCUMENT TOWARDS PRELIMINARY DRAFT NEW RECOMMENDATION ITU-R F.[9B/BWA] Approved by the IEEE 802.16 WG (2004-07-15) and the IEEE 802 Executive Committee (2004-07-16). 2004-07-15 IEEE L802.16-04/25 INTERNATIONAL TELECOMMUNICATION UNION RADIOCOMMUNICATION STUDY GROUPS Document

More information

RECOMMENDATION ITU-R F Radio interface standards for broadband wireless access systems in the fixed service operating below 66 GHz

RECOMMENDATION ITU-R F Radio interface standards for broadband wireless access systems in the fixed service operating below 66 GHz Rec. ITU-R F.1763 1 RECOMMENDATION ITU-R F.1763 Radio interface standards for broadband wireless access systems in the fixed service operating below 66 GHz (Question ITU-R 236/9) (2006) 1 Introduction

More information

IEEE Project m as an IMT-Advanced Technology

IEEE Project m as an IMT-Advanced Technology 2008-09-25 IEEE L802.16-08/057r2 IEEE Project 802.16m as an IMT-Advanced Technology IEEE 802.16 Working Group on Broadband Wireless Access 1 IEEE 802.16 A Working Group: The IEEE 802.16 Working Group on

More information

Institute of Electrical and Electronics Engineers (IEEE) PROPOSED AMENDMENTS TO ANNEX 15 TO DOCUMENT 8A/202

Institute of Electrical and Electronics Engineers (IEEE) PROPOSED AMENDMENTS TO ANNEX 15 TO DOCUMENT 8A/202 2005-07-20 IEEE L802.16-05/043r1 INTERNATIONAL TELECOMMUNICATION UNION RADIOCOMMUNICATION STUDY GROUPS *** DRAFT *** Document 12 July 2005 English only Source: Annex 15 to Document 8A/202 Question: 212/8

More information

IEEE Broadband Wireless Access Working Group <

IEEE Broadband Wireless Access Working Group < Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group Proposed IEEE Contribution to ITU-R on Detailed specifications of the radio interfaces for fixed

More information

Wireless Broadband Networks

Wireless Broadband Networks Wireless Broadband Networks WLAN: Support of mobile devices, but low data rate for higher number of users What to do for a high number of users or even needed QoS support? Problem of the last mile Provide

More information

Wireless Comm. Dept. of CCL/ITRI 電通所無線通訊技術組 Overview. 工研院電通所 M100 林咨銘 2005/1/13

Wireless Comm. Dept. of CCL/ITRI 電通所無線通訊技術組 Overview. 工研院電通所 M100 林咨銘 2005/1/13 802.16 Overview 工研院電通所 M100 林咨銘 tmlin@itri.org.tw 2005/1/13 Outline Introduction 802.16 Working group WiMAX 802.16 Overview Comparison of IEEE standards Wi-Fi vs WiMAX Summary 2 Introduction Current IEEE

More information

WiMAX/ Wireless WAN Case Study: WiMAX/ W.wan.6. IEEE 802 suite. IEEE802 suite. IEEE 802 suite WiMAX/802.16

WiMAX/ Wireless WAN Case Study: WiMAX/ W.wan.6. IEEE 802 suite. IEEE802 suite. IEEE 802 suite WiMAX/802.16 W.wan.6-2 Wireless WAN Case Study: WiMAX/802.16 W.wan.6 WiMAX/802.16 IEEE 802 suite WiMAX/802.16 PHY Dr.M.Y.Wu@CSE Shanghai Jiaotong University Shanghai, China Dr.W.Shu@ECE University of New Mexico Albuquerque,

More information

Wireless WAN Case Study: WiMAX/ W.wan.6

Wireless WAN Case Study: WiMAX/ W.wan.6 Wireless WAN Case Study: WiMAX/802.16 W.wan.6 Dr.M.Y.Wu@CSE Shanghai Jiaotong University Shanghai, China Dr.W.Shu@ECE University of New Mexico Albuquerque, NM, USA W.wan.6-2 WiMAX/802.16 IEEE 802 suite

More information

Guide to Wireless Communications, Third Edition Cengage Learning Objectives

Guide to Wireless Communications, Third Edition Cengage Learning Objectives Guide to Wireless Communications, Third Edition Chapter 9 Wireless Metropolitan Area Networks Objectives Explain why wireless metropolitan area networks (WMANs) are needed Describe the components and modes

More information

PHY Layer NCHU CSE WMAN - 1

PHY Layer NCHU CSE WMAN - 1 PHY Layer NCHU CSE WMAN - 1 Multiple Access and Duplexing Time-Division Duplex (TDD) DL & UL time-share the same RF channel Dynamic asymmetry (also named as Demand Assigned Multiple Access : DAMA) Half-duplex

More information

Università degli Studi di Catania Dipartimento di Ingegneria Informatica e delle Telecomunicazioni WiMAX

Università degli Studi di Catania Dipartimento di Ingegneria Informatica e delle Telecomunicazioni WiMAX WiMAX Ing. Alessandro Leonardi Content List Introduction System Architecture IEEE 802.16 standard Comparison with other technologies Conclusions Introduction Why WiMAX? (1/2) Main problems with actual

More information

Chapter 5: WMAN - IEEE / WiMax. 5.1 Introduction and Overview 5.2 Deployment 5.3 PHY layer 5.4 MAC layer 5.5 Network Entry 5.

Chapter 5: WMAN - IEEE / WiMax. 5.1 Introduction and Overview 5.2 Deployment 5.3 PHY layer 5.4 MAC layer 5.5 Network Entry 5. Chapter 5: WMAN - IEEE 802.16 / WiMax 5.1 Introduction and Overview 5.2 Deployment 5.3 PHY layer 5.4 MAC layer 5.5 Network Entry 5.6 Mobile WiMAX 5.1 Introduction and Overview IEEE 802.16 and WiMAX IEEE

More information

Department of Computer Science Institute for System Architecture, Chair for Computer Networks

Department of Computer Science Institute for System Architecture, Chair for Computer Networks Department of Computer Science Institute for System Architecture, Chair for Computer Networks LTE, WiMAX and 4G Mobile Communication and Mobile Computing Prof. Dr. Alexander Schill http://www.rn.inf.tu-dresden.de

More information

IEEE C802.16a-02/94r1. IEEE Broadband Wireless Access Working Group <

IEEE C802.16a-02/94r1. IEEE Broadband Wireless Access Working Group < Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group OFDM sub-channelization improvement and system performance selected topics 2002-11-14 Source(s)

More information

Introduction to WiMAX Dr. Piraporn Limpaphayom

Introduction to WiMAX Dr. Piraporn Limpaphayom Introduction to WiMAX Dr. Piraporn Limpaphayom 1 WiMAX : Broadband Wireless 2 1 Agenda Introduction to Broadband Wireless Overview of WiMAX and Application WiMAX: PHY layer Broadband Wireless Channel OFDM

More information

Contents. IEEE family of standards Protocol layering TDD frame structure MAC PDU structure

Contents. IEEE family of standards Protocol layering TDD frame structure MAC PDU structure Contents Part 1: Part 2: IEEE 802.16 family of standards Protocol layering TDD frame structure MAC PDU structure Dynamic QoS management OFDM PHY layer S-72.3240 Wireless Personal, Local, Metropolitan,

More information

WiMAX Experiences and Visions

WiMAX Experiences and Visions WiMAX Experiences and Visions Dr. Wolfgang Wendler wolfgang.wendler@rsd.rohde-schwarz.com 1 Introduction to the Market 2 Mobility Wireless Landscape Fixed Walk Vehicle GSM GPRS DECT ZigBee RFID / NFC Datarates

More information

Wireless Networks. Wireless MANs. David Tipper. Wireless Wide Area Networks (WWANs) Wireless Metro Area Networks (WMANs)

Wireless Networks. Wireless MANs. David Tipper. Wireless Wide Area Networks (WWANs) Wireless Metro Area Networks (WMANs) Wireless MAN Networks David Tipper Associate Professor Graduate Telecommunications and Networking Program University of Pittsburgh Slides 17 Wireless Networks Wireless Wide Area Networks (WWANs) Cellular

More information

IEEE and Beyond Wired to the MAX Sheraton Taipei Hotel Sept. 2005

IEEE and Beyond Wired to the MAX Sheraton Taipei Hotel Sept. 2005 IEEE 802.16 and Beyond Wired to the MAX Sheraton Taipei Hotel 28-30 Sept. 2005 Ken Stanwood CEO, Vice-chair of IEEE 802.16 1 About the Speaker Ken Stanwood CEO of Vice-chair of IEEE 802.16 Co-founder of

More information

WiMAX and Non-Standard Solutions

WiMAX and Non-Standard Solutions Unit 14 WiMAX and Non-Standard Solutions Developed by: Ermanno Pietrosemoli, EsLaREd Creative Commons License: Attribution Non-Commercial Share-Alike 3.0 Objectives Describe WiMAX technology, its motivation

More information

IEEE MAC and PHY Specifications for Broadband WMAN

IEEE MAC and PHY Specifications for Broadband WMAN IEEE 802.16 MAC and PHY Specifications for Broadband WMAN 國立中興大學資工系曾學文 Tel : (04)22840497 ext. 908 E-mail: hstseng@nchu.edu.tw NCHU CSE WMAN - 1 Resources Part Source : Roger B. Marks, National Institute

More information

Broadband Wireless Access: A Brief Introduction to IEEE and WiMAX

Broadband Wireless Access: A Brief Introduction to IEEE and WiMAX Broadband Wireless Access: A Brief Introduction to IEEE 802.16 and WiMAX Prof. Dave Michelson davem@ece.ubc.ca UBC Radio Science Lab 26 April 2006 1 Introduction The IEEE 802.16/WiMAX standard promises

More information

IEEE c-00/40. IEEE Broadband Wireless Access Working Group <

IEEE c-00/40. IEEE Broadband Wireless Access Working Group < Project Title Date Submitted Source(s) IEEE 802.16 Broadband Wireless Access Working Group Initial PHY Layer System Proposal for Sub 11 GHz BWA 2000-10-30 Anader Benyamin-Seeyar

More information

The WiMAX e Advantage

The WiMAX e Advantage The WiMAX 802.16e Advantage An analysis of WiFi 802.11 a/b/g/n and WiMAX 802.16e technologies for license-exempt, outdoor broadband wireless applications. White Paper 2 Objective WiMAX and WiFi are technologies

More information

IEEE Working Group on Broadband Wireless Access.

IEEE Working Group on Broadband Wireless Access. 2001-04-03 IEEE 802.16l-01/10r1 (DRAFT 5) IEEE 802.16 Working Group on Broadband Wireless Access Mr. Robert Jones Director of the Radiocommunication Bureau International Telecommunication Union Radiocommunication

More information

Radio interface standards of vehicle-tovehicle and vehicle-to-infrastructure communications for Intelligent Transport System applications

Radio interface standards of vehicle-tovehicle and vehicle-to-infrastructure communications for Intelligent Transport System applications Recommendation ITU-R M.2084-0 (09/2015) Radio interface standards of vehicle-tovehicle and vehicle-to-infrastructure communications for Intelligent Transport System applications M Series Mobile, radiodetermination,

More information

Performance Evaluation of IEEE e (Mobile WiMAX) in OFDM Physical Layer

Performance Evaluation of IEEE e (Mobile WiMAX) in OFDM Physical Layer Performance Evaluation of IEEE 802.16e (Mobile WiMAX) in OFDM Physical Layer BY Prof. Sunil.N. Katkar, Prof. Ashwini S. Katkar,Prof. Dattatray S. Bade ( VidyaVardhini s College Of Engineering And Technology,

More information

Global BWA Activities in ITU

Global BWA Activities in ITU Global BWA Activities in ITU Regional Seminar on Broadband Wireless Access for rural and remote areas for the Americas F. Leite, Deputy-Director, ITU-BR A. Hashimoto, Chairman, ITU-R WP 9B Mapping of Wireless

More information

Deploying WiMAX Certified Broadband Wireless Access Systems

Deploying WiMAX Certified Broadband Wireless Access Systems Cristian Patachia-Sultanoiu Deploying WiMAX Certified Broadband Wireless Access Systems Author Cristian Patachia Sultanoiu Telecommunications Department of Electronics and Telecommunications Faculty, Politehnica

More information

Politecnico di Milano Facoltà di Ingegneria dell Informazione

Politecnico di Milano Facoltà di Ingegneria dell Informazione Politecnico di Milano Facoltà di Ingegneria dell Informazione WI-3 Wireless Metropolitan Area Networks (WMAN) Wireless Internet Prof. Antonio Capone Broadband Wireless Access (BWA) Core Network o o Wireless

More information

EC 551 Telecommunication System Engineering Mohamed Khedr

EC 551 Telecommunication System Engineering Mohamed Khedr EC 551 Telecommunication System Engineering Mohamed Khedr http://webmail.aast.edu/~khedr Syllabus Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week

More information

IEEE Broadband Wireless Access Working Group < Initial PHY Layer System Proposal for Sub 11 GHz BWA

IEEE Broadband Wireless Access Working Group <  Initial PHY Layer System Proposal for Sub 11 GHz BWA Project Title Date Submitted Source(s) Re: Abstract Purpose Notice Release Patent Policy and Procedures IEEE 802.16 Broadband Wireless Access Working Group Initial PHY Layer System

More information

IEEE L /001r2. Proposal by Roberto Macchi

IEEE L /001r2. Proposal by Roberto Macchi Proposal by Roberto Macchi Dear Jose and Giulio, I had a chat with Marianna on the BRAN contribution (BRAN39d058r1) to 802.16 for further contributing to WP9B for the finalisation of PDNRF.BWA. I understood

More information

Performance Analysis of WiMAX Physical Layer Model using Various Techniques

Performance Analysis of WiMAX Physical Layer Model using Various Techniques Volume-4, Issue-4, August-2014, ISSN No.: 2250-0758 International Journal of Engineering and Management Research Available at: www.ijemr.net Page Number: 316-320 Performance Analysis of WiMAX Physical

More information

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1 US 20070042773A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0042773 A1 Alcorn (43) Pub. Date: Feb. 22, 2007 (54) BROADBAND WIRELESS Publication Classification COMMUNICATION

More information

Improving the Data Rate of OFDM System in Rayleigh Fading Channel Using Spatial Multiplexing with Different Modulation Techniques

Improving the Data Rate of OFDM System in Rayleigh Fading Channel Using Spatial Multiplexing with Different Modulation Techniques 2009 International Symposium on Computing, Communication, and Control (ISCCC 2009) Proc.of CSIT vol.1 (2011) (2011) IACSIT Press, Singapore Improving the Data Rate of OFDM System in Rayleigh Fading Channel

More information

Tutorial on to 802. Outline (1)

Tutorial on to 802. Outline (1) Tutorial on 80. to 80 Prepared by Vic Hayes, Chair IEEE P80. One of the founders and chair from the beginning (September 990) Lucent Technologies Copyright 996 IEEE, All rights reserved. This contains

More information

[Raghuwanshi*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

[Raghuwanshi*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY PERFORMANCE ANALYSIS OF INTEGRATED WIFI/WIMAX MESH NETWORK WITH DIFFERENT MODULATION SCHEMES Mr. Jogendra Raghuwanshi*, Mr. Girish

More information

IEEE C802.16d-03/24r0. IEEE Broadband Wireless Access Working Group <

IEEE C802.16d-03/24r0. IEEE Broadband Wireless Access Working Group < Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group WirelessMAN-SCa Errata and System Profiles 2003-03-07 Source(s) Bob Nelson MacPhy Modems Inc. 1104

More information

License Exempt Spectrum and Advanced Technologies. Marianna Goldhammer Director Strategic Technologies

License Exempt Spectrum and Advanced Technologies. Marianna Goldhammer Director Strategic Technologies License Exempt Spectrum and Advanced Technologies Marianna Goldhammer Director Strategic Technologies Contents BWA Market trends Power & Spectral Ingredients for Successful BWA Deployments Are regulations

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.1 Wireless Networks A computer network using wireless data connections to connect different nodes is known as wireless network. Wireless networking is a method using which costly

More information

Module 4: Wireless Metropolitan and Wide Area Networks

Module 4: Wireless Metropolitan and Wide Area Networks Module 4: Wireless Metropolitan and Wide Area Networks SMD161 Wireless Mobile Networks Kaustubh S. Phanse Department of Computer Science and Electrical Engineering Luleå University of Technology Lecture

More information

PERFORMANCE ANALYSIS OF DOWNLINK MIMO IN 2X2 MOBILE WIMAX SYSTEM

PERFORMANCE ANALYSIS OF DOWNLINK MIMO IN 2X2 MOBILE WIMAX SYSTEM PERFORMANCE ANALYSIS OF DOWNLINK MIMO IN 2X2 MOBILE WIMAX SYSTEM N.Prabakaran Research scholar, Department of ETCE, Sathyabama University, Rajiv Gandhi Road, Chennai, Tamilnadu 600119, India prabakar_kn@yahoo.co.in

More information

Liaison Report from ARIB BWA Subcommittee

Liaison Report from ARIB BWA Subcommittee Liaison Report from ARIB BWA Subcommittee IEEE 802.16 Presentation Submission Template (Rev. 9) Document Number: IEEE L802.16-08/001 Date Submitted: 2008-01-11 Source: Takashi Shono Voice: Intel Corporation

More information

IEEE C802.16a-02/46. IEEE Broadband Wireless Access Working Group <

IEEE C802.16a-02/46. IEEE Broadband Wireless Access Working Group < 2002-04-17 IEEE C802.16a-02/46 Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group A Contribution to 802.16a: MAC Frame Sizes 2002-04-17 Source(s) Re:

More information

VISHVESHWARAIAH TECHNOLOGICAL UNIVERSITY S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY

VISHVESHWARAIAH TECHNOLOGICAL UNIVERSITY S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY VISHVESHWARAIAH TECHNOLOGICAL UNIVERSITY S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY A seminar report on WiMAX Submitted by RONAK KOTAK 2SD06CS076 8 th semester DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

More information

WiMAX: , e, WiBRO Introduction to WiMAX Measurements

WiMAX: , e, WiBRO Introduction to WiMAX Measurements Products: R&S FSQ, R&S SMU, R&S SMJ, R&S SMATE WiMAX: 802.16-2004, 802.16e, WiBRO Introduction to WiMAX Measurements Application Note 1EF57 The new WiMAX radio technology worldwide interoperability for

More information

IEEE Working Group on Broadband Wireless Access (BWA)

IEEE Working Group on Broadband Wireless Access (BWA) IEEE 802.16 2003-07-21 IEEE 802.16-03/32 03/32 Working Group on Broadband Wireless Access (BWA) Welcome IEEE 802.16 Working Group on Broadband Wireless Access 802.16 Session #26 Opening Plenary 21 July

More information

Overview of Mobile WiMAX Technology

Overview of Mobile WiMAX Technology Overview of Mobile WiMAX Technology Esmael Dinan, Ph.D. April 17, 2009 1 Outline Part 1: Introduction to Mobile WiMAX Part 2: Mobile WiMAX Architecture Part 3: MAC Layer Technical Features Part 4: Physical

More information

WirelessMAN. Phillip Barber Chief Scientist, Huawei Technologies

WirelessMAN. Phillip Barber Chief Scientist, Huawei Technologies 802.16 WirelessMAN Phillip Barber Chief Scientist, Huawei Technologies IEEE 802 Standards Education Workshop: The World of IEEE 802 Standards November 30, 2009 Honolulu, Hawaii, USA Disclaimer At lectures,

More information

Design of a new IT Infrastructure for the Region of Nordjylland. Access Network

Design of a new IT Infrastructure for the Region of Nordjylland. Access Network Design of a new IT Infrastructure for the Region of Nordjylland Access Network David Sevilla Department of Electronic Systems Aalborg University June 2008 II Aalborg University Department of Electronic

More information

IEEE Broadband Wireless Access Working Group < Extended IE format for concurrent transmission of bursts

IEEE Broadband Wireless Access Working Group <  Extended IE format for concurrent transmission of bursts Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group Extended IE format for concurrent transmission of bursts 2004-03-17 Source(s) Re: Christian Hoymann

More information

IEEE C802.16d-04/26

IEEE C802.16d-04/26 2004-03-11 IEEE C802.16d-04/26 Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group Changes to Focused Contention in OFDM-256 Mode 2004-03-11 Source(s)

More information

IEEE C802.16h-06/074. IEEE Broadband Wireless Access Working Group <

IEEE C802.16h-06/074. IEEE Broadband Wireless Access Working Group < Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group Uncoordinated Coexistence Protocol (UCP) 2006-09-17 Source(s) Paul Piggin NextWave Broadband Inc.

More information

Mobile Communication Systems. Part 7- Multiplexing

Mobile Communication Systems. Part 7- Multiplexing Mobile Communication Systems Part 7- Multiplexing Professor Z Ghassemlooy Faculty of Engineering and Environment University of Northumbria U.K. http://soe.ac.uk/ocr Contents Multiple Access Multiplexing

More information

IEEE Broadband Wireless Access Working Group <http://ieee802.org/16>

IEEE Broadband Wireless Access Working Group <http://ieee802.org/16> Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group Consideration of technical issues to support WG Letter Ballot 13 comments against the consolidated

More information

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE Overview 18-759: Wireless Networks Lecture 9: OFDM, WiMAX, LTE Dina Papagiannaki & Peter Steenkiste Departments of Computer Science and Electrical and Computer Engineering Spring Semester 2009 http://www.cs.cmu.edu/~prs/wireless09/

More information

Department of Computer Science Institute for System Architecture, Chair for Computer Networks

Department of Computer Science Institute for System Architecture, Chair for Computer Networks Department of Computer Science Institute for System Architecture, Chair for Computer Networks LTE, WiMAX and 4G Mobile Communication and Mobile Computing Prof. Dr. Alexander Schill http://www.rn.inf.tu-dresden.de

More information

IEEE Broadband Wireless Access Working Group < Discuss the MAC messages supporting the CSI, such as DCD, DL-MAP etc.

IEEE Broadband Wireless Access Working Group <  Discuss the MAC messages supporting the CSI, such as DCD, DL-MAP etc. Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group MAC Messages supporting the CSI 2006-11-10 Source(s) Wu Xuyong, Huawei Huawei Industrial Base, Bantian,

More information

ETSI SMG#24 TDoc SMG2 898 / 97 Madrid, Spain December 15-19, 1997 Source: SMG2. Concept Group Delta WB-TDMA/CDMA: Evaluation Summary

ETSI SMG#24 TDoc SMG2 898 / 97 Madrid, Spain December 15-19, 1997 Source: SMG2. Concept Group Delta WB-TDMA/CDMA: Evaluation Summary ETSI SMG#24 TDoc SMG2 898 / 97 Madrid, Spain December 15-19, 1997 Source: SMG2 Concept Group Delta WB-TDMA/CDMA: Evaluation Summary Introduction In the procedure to define the UMTS Terrestrial Radio Access

More information

LTE systems: overview

LTE systems: overview LTE systems: overview Luca Reggiani LTE overview 1 Outline 1. Standard status 2. Signal structure 3. Signal generation 4. Physical layer procedures 5. System architecture 6. References LTE overview 2 Standard

More information

Chapter 1 INTRODUCTION

Chapter 1 INTRODUCTION Introduction to Wireless & Mobile Systems Chapter 1 INTRODUCTION 1 The History of Mobile Radio Communication (1/4) 1880: Hertz Initial demonstration of practical radio communication 1897: Marconi Radio

More information

Technical Aspects of LTE Part I: OFDM

Technical Aspects of LTE Part I: OFDM Technical Aspects of LTE Part I: OFDM By Mohammad Movahhedian, Ph.D., MIET, MIEEE m.movahhedian@mci.ir ITU regional workshop on Long-Term Evolution 9-11 Dec. 2013 Outline Motivation for LTE LTE Network

More information

IEEE C /07. IEEE Broadband Wireless Access Working Group <

IEEE C /07. IEEE Broadband Wireless Access Working Group < Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group Interference scenarios in 2.4GHz and 5.8GHz UNII band LE Ad-hoc output 2004-05-10 Source(s) Marianna

More information

IEEE C802.16h-06/071. IEEE Broadband Wireless Access Working Group <

IEEE C802.16h-06/071. IEEE Broadband Wireless Access Working Group < Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group P802.16h Working Document structure clarification 2006-09-17 Source(s) Paul Piggin NextWave Broadband

More information

The sensible guide to y

The sensible guide to y The sensible guide to 802.11y On September 26th, IEEE 802.11y-2008, an amendment to the IEEE 802.11-2007 standard, was approved for publication. 3650 Mhz The 802.11y project was initiated in response to

More information

WiMAX Forum und Standardisierung breitbandiger funkbasierter Zugangssysteme für feste und mobile Nutzer

WiMAX Forum und Standardisierung breitbandiger funkbasierter Zugangssysteme für feste und mobile Nutzer ITG 7.2 Öffentliche Diskussionssitzung Beyond 3G - Zukünftige Entwicklung mobiler Funksysteme 17.11.2005, Ulm WiMAX Forum und Standardisierung breitbandiger funkbasierter Zugangssysteme für feste und mobile

More information

5 GHz, and WiMax

5 GHz, and WiMax 5 GHz, 802.16 and WiMax Abdus Salam ICTP, February 2004 School on Digital Radio Communications for Research and Training in Developing Countries Ermanno Pietrosemoli Latin American Networking School (Fundación

More information

Background: Cellular network technology

Background: Cellular network technology Background: Cellular network technology Overview 1G: Analog voice (no global standard ) 2G: Digital voice (again GSM vs. CDMA) 3G: Digital voice and data Again... UMTS (WCDMA) vs. CDMA2000 (both CDMA-based)

More information

Modelling and Performances Analysis of WiMAX/IEEE Wireless MAN OFDM Physical Downlink

Modelling and Performances Analysis of WiMAX/IEEE Wireless MAN OFDM Physical Downlink Modelling and Performances Analysis of WiMAX/IEEE 802.16 Wireless MAN OFDM Physical Downlink Fareda Ali Elmaryami M. Sc Student, Zawia University, Faculty of Engineering/ EE Department, Zawia, Libya, Faredaali905@yahoo.com

More information

IEEE Broadband Wireless Access Working Group < P802.16h Working Document structure and purpose clarification

IEEE Broadband Wireless Access Working Group <  P802.16h Working Document structure and purpose clarification Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group P802.16h Working Document structure and purpose clarification 2006-09-25 Source(s) Paul Piggin NextWave

More information

OBJECTIVES. Understand the basic of Wi-MAX standards Know the features, applications and advantages of WiMAX

OBJECTIVES. Understand the basic of Wi-MAX standards Know the features, applications and advantages of WiMAX OBJECTIVES Understand the basic of Wi-MAX standards Know the features, applications and advantages of WiMAX INTRODUCTION WIMAX the Worldwide Interoperability for Microwave Access, is a telecommunications

More information

TDD and FDD Wireless Access Systems

TDD and FDD Wireless Access Systems WHITE PAPER WHITE PAPER Coexistence of TDD and FDD Wireless Access Systems In the 3.5GHz Band We Make WiMAX Easy TDD and FDD Wireless Access Systems Coexistence of TDD and FDD Wireless Access Systems In

More information

ECS 455 Chapter 1 Introduction

ECS 455 Chapter 1 Introduction ECS 455 Chapter 1 Introduction 1.3 Spectrum Allocation 1 Dr.Prapun prapun.com/ecs455 Office Hours: BKD, 6th floor of Sirindhralai building Tuesday 14:20-15:20 Wednesday 14:20-15:20 Friday 9:15-10:15 Electromagnetic

More information

WINNER+ Miia Mustonen VTT Technical Research Centre of Finland. Slide 1. Event: CWC & VTT GIGA Seminar 2008 Date: 4th of December 2008

WINNER+ Miia Mustonen VTT Technical Research Centre of Finland. Slide 1. Event: CWC & VTT GIGA Seminar 2008 Date: 4th of December 2008 Process and Requirements for IMT-Advanced Miia Mustonen VTT Technical Research Centre of Finland Slide 1 Outline Definitions Process and time schedule of IMT-Advanced Minimum requirements Technical Performance

More information

Solutions. Innovation in Microwave Communications. Backhauling WiMAX on Wide Channel TDD

Solutions. Innovation in Microwave Communications. Backhauling WiMAX on Wide Channel TDD Backhauling WiMAX on Wide Channel TDD White Paper Created August 2008 Index 1 Introduction............................................................ 2 2 TDD needs less spectrum than licensed FDD...................................

More information

Chapter 1 INTRODUCTION

Chapter 1 INTRODUCTION Chapter 1 INTRODUCTION 1 The History of Mobile Radio Communication (1/3) 1880: Hertz Initial demonstration of practical radio communication 1897: Marconi Radio transmission to a tugboat over an 18 mi path

More information

Cognitive Cellular Systems in China Challenges, Solutions and Testbed

Cognitive Cellular Systems in China Challenges, Solutions and Testbed ITU-R SG 1/WP 1B WORKSHOP: SPECTRUM MANAGEMENT ISSUES ON THE USE OF WHITE SPACES BY COGNITIVE RADIO SYSTEMS (Geneva, 20 January 2014) Cognitive Cellular Systems in China Challenges, Solutions and Testbed

More information

UCP simulation: Approach and Initial Results

UCP simulation: Approach and Initial Results UCP simulation: Approach and Initial Results IEEE 802.16 Presentation Submission Template (Rev. 8.3) Document Number: IEEE C802.16h-07/019r1 Date Submitted: 2007-01-16 Source: Paul Piggin Voice: 1 858

More information

A two Layer Guaranteed and Sustained Rate based Scheduler for IEEE based WiMAX Networks

A two Layer Guaranteed and Sustained Rate based Scheduler for IEEE based WiMAX Networks A two Layer Guaranteed and Sustained Rate based Scheduler for IEEE 802.16-2009 based WiMAX Networks Volker Richter, Rico Radeke, and Ralf Lehnert Technische Universität Dresden Dresden, Mommsenstrasse

More information

Analysis Of Wimax Connectivity In Rural And Urban Area Using Propagation Model

Analysis Of Wimax Connectivity In Rural And Urban Area Using Propagation Model Analysis Of Wimax Connectivity In Rural And Urban Area Using Propagation Model Mr. Dube R. R. Miss. Dhanashetti A. G. W.I.T, Solapur W.I.T, Solapur Abstract Worldwide Interoperability of Microwave Access

More information

Introduction to Wireless Networking CS 490WN/ECE 401WN Winter 2007

Introduction to Wireless Networking CS 490WN/ECE 401WN Winter 2007 Introduction to Wireless Networking CS 490WN/ECE 401WN Winter 2007 Lecture 9: WiMax and IEEE 802.16 Chapter 11 Cordless Systems and Wireless Local Loop I. Cordless Systems (Section 11.1) This section of

More information

21 January 2001 C802.16aP- 02/02

21 January 2001 C802.16aP- 02/02 Document Number: C802.16aP-02/02 Title: PHY Nomenclature Date Submitted: 2002-01-22 Source: David Trinkwon Venue: Session #17, Levi, January 2002 Base Document: C802.16a-02/02 Purpose: Presentation to

More information

Optimizing WiMAX: Mitigating Co-Channel Interference for Maximum Spectral Efficiency

Optimizing WiMAX: Mitigating Co-Channel Interference for Maximum Spectral Efficiency Optimizing WiMAX: Mitigating Co-Channel Interference for Maximum Spectral Efficiency ABDUL QADIR ANSARI*, ABDUL LATEEF MEMON**, AND IMRAN ALI QURESHI** RECEIVED ON 14.03.2016 ACCEPTED ON 11.05.2016 ABSTRACT

More information

IEEE C802.16d-03/23

IEEE C802.16d-03/23 0-0-0 IEEE C0.d-0/ Project IEEE 0. Broadband Wireless Access Working Group Title Profiles for WirelessMAN-OFDM and WirelessHUMAN(-OFDM) Date Submitted 0-0-0 Source(s) Re: Abstract Purpose

More information

IEEE C802.16h-05/001. IEEE Broadband Wireless Access Working Group <

IEEE C802.16h-05/001. IEEE Broadband Wireless Access Working Group < 2005-01-20 IEEE C802.16h-05/001 Project IEEE 802.16 Broadband Wireless Access Working Group Title Detailed scope of IEEE 802.16h Date Submitted Source(s) 2005-01-20 Mariana Goldhamer

More information

COMPILED BY : - GAUTAM SINGH STUDY MATERIAL TELCOM What is Wi-Fi?

COMPILED BY : - GAUTAM SINGH STUDY MATERIAL TELCOM What is Wi-Fi? What is Wi-Fi? WiFi stands for Wireless Fidelity. WiFiIt is based on the IEEE 802.11 family of standards and is primarily a local area networking (LAN) technology designed to provide in-building broadband

More information

WORLDWIDE INTEROPERABILITY FOR MICROWAVE ACCESS (WIMAX)

WORLDWIDE INTEROPERABILITY FOR MICROWAVE ACCESS (WIMAX) WORLDWIDE INTEROPERABILITY FOR MICROWAVE ACCESS (WIMAX) WiMAX is coming to fix this need and deliver new broadband solutions for all the ISPs and WIPSs that was harassed by the users needs of counting

More information

WiMAX Standardization

WiMAX Standardization WiMAX Standardization FUJITSU LABORATORIES LTD Michiharu Nakamura Introduction Mobile WiMAX is a system that provide Broadband wireless access in Metropolitan area Standardization of Mobile WiMAX takes

More information

ECS455: Chapter 6 Applications

ECS455: Chapter 6 Applications ECS455: Chapter 6 Applications 6.2 WiMAX 1 Dr.Prapun Suksompong prapun.com/ecs455 Office Hours: BKD 3601-7 Wednesday 15:30-16:30 Friday 9:30-10:30 Advanced Mobile Wirless Systems (IEEE) (Ultra Mobile Broadband)

More information

2002/10/28 IEEE /58

2002/10/28 IEEE /58 Comment # 330 Submitted by: Tal Kaitz Member Starting Page # 10 Related to comment 11 (and also to comments 162, 166, 167) Starting Line # Fig/Table# Section 2002/10/10 The 256 OFDM system can be greatly

More information

4G WiMAX Networks (IEEE Standards)

4G WiMAX Networks (IEEE Standards) 4G WiMAX Networks (IEEE 802.16 Standards) Chandni Chaudhary # # Electronics & Communication, Gujarat Technological University Gujarat, India. Chandni.1406@gmail.com ABSTRACT This paper gives an overview

More information

IEEE C802.16h-07/013. IEEE Broadband Wireless Access Working Group <

IEEE C802.16h-07/013. IEEE Broadband Wireless Access Working Group < Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group Changes to the Sections 6.3.2.3.62 Re:Base Station Descriptor message 2007-01-11 Source(s) Re: John

More information

Effective Bandwidth Utilization in WiMAX Network

Effective Bandwidth Utilization in WiMAX Network Effective Bandwidth Utilization in WiMAX Network 1 Mohamed I. Yousef, 2 Mohamed M. Zahra, 3 Ahmed S. Shalaby 1 Professor, 2 Associate Professor, 3 Lecturer Department of Electrical Engineering, Faculty

More information

IEEE C /008. IEEE Broadband Wireless Access Working Group <

IEEE C /008. IEEE Broadband Wireless Access Working Group < Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group Interference scenarios in 2.4GHz and 5.8GHz UNII band 2006-01-09 Source(s) Mariana Goldhamer Alvarion

More information

Cordless Systems and Wireless Local Loop. Cordless System Operating Environments. Design Considerations for Cordless Standards

Cordless Systems and Wireless Local Loop. Cordless System Operating Environments. Design Considerations for Cordless Standards CSE5807 Wireless and personal communications systems / FIT3024 Internetworking and wireless communications Cordless Systems and Wireless Local Loop Week 7. Cordless systems and wireless local loop. Chapter

More information

2 nd Generation OFDM for , Session #11

2 nd Generation OFDM for , Session #11 2 nd Generation OFDM for 802.16.3, Session #11 IEEE 802.16 Presentation Submission Template (Rev. 8) Document Number: IEEE 802.16.3c-01/07 Date Submitted: 2000-01/17 Source: Dr. Robert M. Ward Jr. Voice:

More information