Reflection height of daytime tweek atmospherics during the solar eclipse of 22 July 2009

Size: px
Start display at page:

Download "Reflection height of daytime tweek atmospherics during the solar eclipse of 22 July 2009"

Transcription

1 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi: /2012ja018151, 2012 Reflection height of daytime tweek atmospherics during the solar eclipse of 22 July 2009 Hiroyo Ohya, 1 Fuminori Tsuchiya, 2 Hiroyuki Nakata, 1 Kazuo Shiokawa, 3 Yoshizumi Miyoshi, 3 Kozo Yamashita, 4 and Yukihiro Takahashi 5 Received 24 July 2012; revised 11 September 2012; accepted 3 October 2012; published 14 November [1] We report multipoint observations of daytime tweek atmospherics during the solar eclipse of 22 July Sixteen and sixty-three tweek atmospherics were observed at Moshiri and Kagoshima, Japan, where the magnitudes of the solar eclipse were and 0.966, respectively. This was the first observation of tweek atmospherics during a low-magnitude eclipse (0.458). The average and standard deviation of the reflection height were km at Moshiri and km at Kagoshima. The reflection height at Moshiri was almost the same as that for normal nighttime conditions in July ( km) in spite of the low magnitude of the eclipse. The reflection height at Kagoshima seems be divided into two parts: propagation across the total solar eclipse path and propagation in the partial solar eclipse path. During the eclipse, we also observed the phase variation in the LF transmitter signals. The average change in the phase delay of the LF signals was 109 for the paths that crossed the eclipse path and 27 for the paths that did not cross the eclipse path. Assuming a normal daytime height for LF waves of 65 km, a ray tracing analysis indicates that the variations in phase correspond to a height increase of 5 6 km for the paths across the eclipse and 1 2 km for partial eclipse paths. The wide range of estimated tweek reflection heights at Kagoshima also suggests a difference in electron density in the lower ionosphere between total and partial solar eclipses. Citation: Ohya, H., F. Tsuchiya, H. Nakata, K. Shiokawa, Y. Miyoshi, K. Yamashita, and Y. Takahashi (2012), Reflection height of daytime tweek atmospherics during the solar eclipse of 22 July 2009, J. Geophys. Res., 117,, doi: /2012ja Introduction [2] Tweek atmospherics ( khz) are very low frequency (VLF)/extremely low frequency (ELF) waves originating from lightning discharges. The tweeks propagate in the Earth-ionosphere waveguide. Tweeks can be observed only at nighttime owing to strong attenuation in the daytime ionosphere. However, a few researchers have reported observations of tweeks during daytime solar eclipses [Burton and Boardman, 1933; Reeve and Rycroft, 1972; Singh et al., 2011]. Burton and Boardman [1933] first reported observations of tweeks in the USA during the solar eclipse of 1 Graduate School of Engineering, Chiba University, Chiba, Japan. 2 Graduate School of Science, Tohoku University, Sendai, Japan. 3 Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Japan. 4 Department of Electrical Engineering, Salesian Polytechnic, Tokyo, Japan. 5 Graduate School of Science, Hokkaido University, Sapporo, Japan. Corresponding author: H. Ohya, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba , Japan. (ohya@faculty.chiba-u.jp) American Geophysical Union. All Rights Reserved /12/2012JA August The cut-off frequency of the tweeks changed from 2300 to 1800 Hz around the time of maximum totality. The minimum peak of the cut-off frequency occurred 7 min after totality. The change in the cut-off frequency corresponded to a change in reflection height from 65 to 83 km. Reeve and Rycroft [1972] reported that tweek reflection height varied from 69 km at the beginning of the solar eclipse (14:30 LT) of 7 March 1970 to 76 km at totality (15:35 LT), on the basis of observations in Newfoundland, Canada (47.75 N, W). At the end of the eclipse (16:30 LT), the reflection height recovered down to 69 km. Singh et al. [2011], from observations at Allahabad and Nainital, India, during the 22 July 2009 solar eclipse, reported that tweek reflection height rose from 89 km to about km at maximum totality and then fell to 87 km at the end of eclipse. Such daytime tweek occurrences are the result of a decrease in electron density in the D-region ionosphere due to the solar eclipse. [3] Guha et al. [20110] reported from intensity of VLF sferics during two solar eclipses of 22 July 2009, and 15 January 2010 that the intensity at six discrete frequencies (4, 7, 9, 11, 14, and 16.5 khz) increased (the average, 4.5 db) from mean normal level during both solar eclipses. They calculated that the virtual reflection height (H ) of D-region 1of9

2 Table 1. Summary of LF Transmitter and Receiver Details Station Latitude Longitude Transmitter/Receiver Frequency (khz) BPC 34.5 N E Transmitter 68.5 Fukushima 37.4 N E Transmitter 40.0 Saga 33.5 N E Transmitter 60.0 Rikubetsu 43.5 N E Receiver - Tainan 23.1 N E Receiver - Zao 38.1 N E Receiver - height-electron density model [Cummer et al., 1998] increased by 4.85 km during the solar eclipse of 22 July, [4] Several studies using VLF/LF/MF transmitter signals have also examined the lower ionosphere during solar eclipses [e.g., Bracewell, 1952; Crary and Schneible, 1965; Lynn, 1981; Abraham et al., 1998; Clilverd et al., 2001; Guha et al., 2010; De et al., 2011]. Bracewell [1952] first reported solar eclipse effects on VLF transmitter signals, sent from Rugby (16 khz) to Cambridge in the UK. Crary and Schneible [1965] and Lynn [1981] reported increases in amplitude of 1 3 db and decreases in phase of Reflection height rose by 3 11 km. The peak of amplitude occurred 2 7 min before maximum solar obscuration, while the maximum phase changes occurred 1 7 min after maximum solar obscuration. Abraham et al. [1998] reported using ionospheric radio wave absorption (2.5 MHz, A1 technique) that the absorption decreased by 18 db at the totality during the solar eclipse of 24 October Clilverd et al. [2001] found that the amplitude showed positive changes for path lengths <2,000 km and negative changes for path lengths >10,000 km using 17 paths (16 24 khz). The phase showed negative shifts during the eclipse regardless of the path length. The effective ionospheric height and scale height parameters, H and b,ofwait s model were 79 km and 0.5 km 1, respectively, at maximum totality, whereas H and b were 71 km and 0.43 km 1 for usual daytime conditions [Wait and Spies, 1964]. Guha et al. [2010] showed a decrease (3.2 db) in the amplitude of VLF transmitter signals (18.2 khz) in India at the peak of the total solar eclipse of 22 July De et al. [2011] also reported a decrease in the amplitude of VLF/LF transmitter signals from Australia (19.8 khz) and Japan (40 khz) to India during the same solar eclipse. [5] Rocket measurements also have been performed during solar eclipses [Ulwick, 1972; Mechtly et al., 1969, 1972]. For rocket measurements at Cassino, Brazil, during an eclipse of 12 November 1966, H and b were estimated to be 80 km and 0.5 km 1, respectively [Ulwick, 1972]. Mechtly et al. [1969] reported, based on Langmuir probe observations on board a rocket experiment during a solar eclipse of 12 November 1966 that the electron densities at 82 km were 800, 400, 300, and 100 cm 3 at full sun (two hours after totality), at 2.5% visibility of the solar disk, at second contact (the total eclipse starts), and at third contact (the total eclipse ends), respectively. Mechtly et al. [1972], based on observations at Wallops Island, USA, reported that reflection height changed by 8 km and that electron density in the lower ionosphere decreased for 1 2 min after totality. [6] Ionozondes have also been adopted to investigate ionospheric effects associated with solar eclipses. Chandra et al. [2007] reported that a reduction of about 20% in the lowest frequency of ordinary mode (f min ) of ionograms was observed over Ahmedabad, India on the solar eclipse day of 11 August, The reduction in the f min indicates a decrease in D-region ionization. [7] In this study, we investigated the D- and lower E region ionospheric response during the solar eclipse of 22 July 2009 using tweek atmospherics observed at two stations, one having high and one having low solar eclipse magnitude. The tweek observation sites were Moshiri (44.37 N, E; magnitude of eclipse: 0.458) and Kagoshima (31.48 N, E; magnitude of eclipse: 0.966), Japan. Until this study, tweeks had not been observed at stations at which the eclipse magnitude was low. So far, the lowest magnitude of eclipse during which tweeks were observed was 0.85 [Singh et al., 2011]. We also observed the phase of LF transmitter signals both across and not across the eclipse path. The LF transmitter and receiver stations are shown in Table 1. Using the tweeks and LF transmitter signals, we documented the D- and lower E region responses during a low partial solar eclipse. 2. Observation Systems [8] The total solar eclipse occurred on 22 July Figure 1 shows our observation sites, propagation paths of LF transmitter signals, and the solar eclipse path. The solid lines in the figure indicate the paths of the LF transmitter signals that propagated across the solar eclipse path; the dotted lines show those that did not propagate across it. The path of the Moon s umbral shadow began in India at 00:53 UT and crossed China. After leaving China, the eclipse path crossed the Kita-ioh Islands (25.42 N, E), Japan, at 01:56 UT (10:56 LT, LT = UT + 9 h) and then curved southeast over the Pacific Ocean. [9] From 21 to 23 July 2009, VLF radio waves including tweeks were continuously observed at Kagoshima, Japan, from 00:00 UT (09:00 LT) to 04:00 UT (13:00 LT) to investigate solar eclipse effects, while a routine observation mode was performed at Moshiri. For the routine observation mode, only the 2-min intervals at min and min of every hour were recorded. Tweeks usually cannot be observed in the daytime because of strong absorption of VLF waves caused by solar ionization of the ionosphere. The appearance of tweeks at Moshiri and Kagoshima during the daytime solar eclipse indicates a decrease in the electron density in the D- and lower E regions. [10] Tweeks were received with two-turn triangular loop antennas. The antenna at Kagoshima was m in size and the one at Moshiri was m. Tweek signals were amplified by a pre-amplifier and a main amplifier. The analog tweek signals were digitized using a 16-bit A/D converter with a 20-kHz sampling frequency. The signals (0 10 khz) were digitally recorded on hard disks. Tweek reflection height and propagation distance were analyzed using an automated procedure of spectral fitting to estimate the cut-off frequency [Ohya et al., 2006, 2011]. The source location of the tweeks could not be estimated because only one magnetic component was observed at Kagoshima. In general, however, 78% of all lightning occurs within 30 latitude [Christian et al., 2003], so many of the tweeks are expected to have occurred in the equatorial region and propagated across the eclipse path. [11] The amplitude and phase of LF transmitter signals were received at Rikubetsu and Zao in Japan and Tainan in 2of9

3 Figure 1. Map of the VLF/LF stations used in this study. The transmitter sites of LF signals are FUK, SAG, and BPC stations. The receiver sites are RIK, ZAO, and TNN stations. The solid blue lines indicate the paths of LF transmitter signals that propagated across the solar eclipse path; the dotted blue lines show those that did not propagate across it. Tweeks were observed at MSR and KAG stations. The time on the path of the total solar eclipse (the red lines) is in UT. Taiwan (Table 1). Figure 1 shows a map of the propagation paths of the LF transmitter signals. Solid and dotted lines indicate paths transverse and paths not transverse to the eclipse path, respectively. The frequencies of the LF transmitter signals were 40.0 khz (wavelength = 7.5 km) from Fukushima (FUK) and 60.0 khz (5.0 km) from Saga (SAG) in Japan and 68.5 khz (4.4 km) from China (BPC). We observed the amplitude and phase of these signals with monopole antennas of about 2 m length. The data were amplified by a main amplifier and then digitized using a 16-bit A/D converter with a 200-kHz sampling frequency. The waveform data were converted to a spectrum by FFT and amplitudes and phases at transmitter frequencies are recorded on hard disks with a time resolution of 0.1 s. The amplitude showed the composition of direct and reflected waves. In this study, however, we do not discuss amplitude because the phase of LF transmitter signals is more sensitive than amplitude for studying vertical variation in the ionosphere [Davies, 1969]. The JJY time code (the call sign of a LF time signal radio station in Japan) was adopted for adjusting the time. The Tainan station is one of the Asia VLF Observation Network (AVON) system sites [Ohya et al., 2010]. 3. Results 3.1. Tweek Atmospherics [12] Figures 2a and 2b show examples of dynamic spectra of tweek atmospherics observed during the solar eclipse at Moshiri (00:51:27 UT) and Kagoshima (01:33:24 UT), Japan, respectively. Clear decreasing frequency trends, which are the typical signature of tweeks, are seen in these events. The white dots in the spectra show power peaks that were used for spectral fitting to determine the reflection height [Ohya et al., 2008]. The durations of the tweek signals shown in Figures 2a and 2b were 5.4 ms and 8.0 ms, respectively. The durations of the tweek signals at Moshiri and Kagoshima during the solar eclipse ranged from 5.7 to 21.1 ms and ms, respectively, which is much shorter than the usual nighttime duration (about 50 ms). [13] Figures 3a and 3b show the reflection heights of the tweeks obtained at Moshiri and Kagoshima, Japan, during the solar eclipse, respectively. Sixteen and sixty-three tweek atmospherics were observed at Moshiri and Kagoshima, where the magnitudes of the solar eclipse were and 0.966, respectively. This was the first observation of tweek atmospherics at a low eclipse magnitude (0.458). Tweeks were continuously observed at Kagoshima during the solar eclipse. No tweeks were simultaneously received at both sites. Tweeks were not observed on both 21 and 23 July 2009 at both Moshiri and Kagoshima during these local times. In Figure 3a, three solid vertical lines indicate the beginning time (01:07:51 UT), peak time (02:10:52 UT), and end time (03:13:43 UT) of the solar eclipse. The average and standard deviation of the tweek reflection height through the solar eclipse was km at Moshiri. The reflection height at Moshiri was almost the same as that for normal nighttime in July ( km) in spite of the low magnitude of the eclipse. At 47 min before the beginning of the solar eclipse at Moshiri, the first tweek was observed. The last tweek was observed 97 min after the end time of the solar eclipse. 3of9

4 [15] Figures 4a and 4b show the number of automatically analyzed tweeks per every 2-min interval during the solar eclipse at Moshiri and Kagoshima, respectively. Note that measurements were performed continuously at Kagoshima but were only taken during the 2-min intervals of min and min of every hour at Moshiri. The 2-min interval observation is normal operation, and the intervals were chosen because of huge data amount (about 5 MB per two minutes). We did not perform continuous observations at Moshiri, because we did not expect that tweeks could be received at such low eclipse magnitude. The vertical lines are the same as those in Figures 3a and 3b. At Moshiri, the number of tweeks was zero at peak eclipse time, with peaks occurring around the beginning and end times of the eclipse. On the other hand, sharp peaks in the number of tweeks occurred near the time of the total eclipse at Kagoshima LF Transmitter Signals [16] Figure 5 shows variations in the phase of LF transmitter signals received at Tainan (TNN) from (a) BPC, China Figure 2. Waveforms and dynamic spectra of tweek atmospherics observed during the solar eclipse (a) at Moshiri (00:51:27 UT) and (b) at Kagoshima (01:33:24 UT), Japan. [14] In Figure 3b, a solid vertical line indicates the peak time (01:57:45 UT) of the solar eclipse at Kagoshima. The beginning and end times were 00:37:31 UT and 03:21:20 UT, respectively. Tweek signals were also observed before and after the solar eclipse at Kagoshima, but these could not be analyzed because of a poorer signal-to-noise ratio than occurred at Moshiri. The average and standard deviation of the tweek reflection height through the solar eclipse at Kagoshima were km. The average and standard deviation of normal July nighttime reflection height are km, obtained from tweek observations at Kagoshima in during magnetically quiet times [Ohya et al., 2011]. The tweek reflection height for Kagoshima during the eclipse was much lower than this value. At 01:00 01:40 UT, tweek reflection heights were higher than 100 km, although they were estimated in a wide range of km at 01:40 02:20 UT at around the peak eclipse time. Figure 3. Reflection heights of all tweek atmospherics observed at (a) Moshiri and (b) Kagoshima, Japan, during the solar eclipse. The three solid vertical lines in Figure 3a indicate the beginning time (01:07:51 UT), peak time (02:10:52 UT), and end time (03:13:43 UT) of the solar eclipse. The solid vertical line in Figure 3b indicates the peak time (01:57:45 UT) of the solar eclipse at Kagoshima. 4of9

5 Figure 4. Number of automatically analyzed tweeks per 2-min interval at (a) Moshiri and (b) Kagoshima during the solar eclipse. The vertical lines are the same as in Figures 3a and 3b. (68.5 khz), (b) Saga (SAG, 60.0 khz), and (c) Fukushima (FUK, 40.0 khz). Black, red, and blue lines indicate the phases of LF transmitter signals on a day before the solar eclipse (20 July 2009), the day of the solar eclipse (22 July), and the day after the solar eclipse (23 July), respectively. The SAG transmitter signal did not operate on 21 July. The two vertical lines in each panel indicate the start and end times of the total solar eclipse over each propagation path. All paths propagate across the eclipse path. The propagation distances of (a), (b), and (c) are km, km, and km, respectively. For all propagation paths, large variations in phase (average: 109 ) were seen only on the day of the solar eclipse. The variations in phase were seen from the western propagation path (BPC TNN) to the eastern path (FUK TNN), according to the motion of the Moon s umbral shadow. The velocity of the peak from the BPC TNN path to the FUK TNN path was estimated to be km/s, which was consistent with the velocity of the Moon s umbral shadow (1.0 km/s) [Espenak and Anderson, 2008]. As shown in Figure 5a, time differences existed between the peak of the phase and the eclipse maximum. The phase of BPC TNN started to change at about 00:45 UT (09:45 LT) and then peaked at 01:38 UT (10:38 LT). The maximum difference in the phase was about 135 at 01:38 UT. The peak time of the solar eclipse over the BPC TNN path was from 01:28 UT (10:28 LT) to 01:33 UT (10:33 LT). The difference in the peak times was about 7 10 min. As seen in Figure 5b, the maximum difference in the phase for the SAG TNN signals was 127, and the delay of the peak time of the LF phase was ~6 min. In Figure 5c, the LF phase variation in FUK TNN is similar to that of the SAG TNN phase path in Figure 5b. The maximum difference in the phase was 65 at 02:00 UT (11:00 LT). The totality time of the solar eclipse along the propagation path was from 01:50 UT (10:50 LT) to 01:57 UT (10:57 LT). The time difference between the phase peak and the total solar eclipse was 3 10 min. Accordingly, the differences between the peak time for the LF phase and the total solar eclipse were ~10 min for the BPC TNN and FUK TNN paths. [17] Figure 6 shows the variations in the phase of the LF transmitter signals received at Rikubetsu (RIK), Japan, that did not propagate across the solar eclipse path from (a) BPC, (b) SAG, and (c) FUK. In the same way as for Figure 5, black, red, and blue lines indicate the phases of LF transmitter signals on the day before the solar eclipse (20 July 2009), on the day of the solar eclipse (22 July), and on the day after the solar eclipse (23 July), respectively. The lengths of the paths were (a) km, (b) km, and (c) km, respectively. Variations in the phase (average: 27 ) for these paths were observed but were much smaller than those of the paths that propagated across the eclipse path. As shown in Figure 6a, the phase started to vary at about 01:00 UT (10:00 LT) and then peaked at about 01:52 UT (10:52 LT). The maximum difference in the phase reached 32. Then, the phase began and continued to recover. The phase of the SAG RIK transmitter signals (Figure 6b) started to vary at about 01:15 UT (10:15 LT) and then peaked at about Figure 5. Variations in the phase of LF transmitter signals that propagated across the solar eclipse path for the (a) BPC TNN, (b) SAG TNN, and (c) FUK TNN paths. The black, red, and blue lines show variations in the phase on 20, 22, and 23 July 2009, respectively. The three vertical lines indicate the beginning, peak, and end time of the solar eclipse over each path. 5of9

6 we discuss possible causes and implications of the observed tweeks and LF phase variations. Figure 6. Variations in the phase of LF transmitter signals that did not propagate across the solar eclipse path for the (a) BPC RIK, (b) SAG RIK, and (c) FUK RIK paths. The black, red, and blue lines show variations in the phase on 20, 22, and 23 July 2009, respectively. 02:07 UT (11:07 LT). The maximum difference in phase was about 30. As shown in Figure 6c, the phase of FUK RIK started to vary at 01:10 UT (10:10 LT) and then peaked at 02:06 UT (11:06 LT). The maximum difference in the phase was 18. The results of the LF transmitter signals are summarized in Table 2. The variations in LF reflection height variations in Table 2 are discussed in Section Discussion [18] Both the appearance of tweeks and a phase delay of LF transmitter signals indicate a significant decrease in electron density (increase of reflection height) in the D- and lower E region ionosphere during the solar eclipse [e.g., Reeve and Rycroft, 1972; Clilverd et al., 2001]. We can investigate the difference of variations in height during the solar eclipse using tweek and LF transmitter signal observations. The tweeks reflect at slightly lower heights than those of LF transmitter signals, because the cut-off frequency of tweeks is lower than the LF transmitter signals. The propagation path lengths of both tweeks and LF transmitter signals are long, although the path location is different. So wide area of the lower ionosphere at low and midlatitudes can be monitored through tweeks and LF transmitter signals. Here 4.1. Tweek Atmospherics [19] Sixteen and sixty-three tweek atmospherics were observed at Moshiri and Kagoshima, Japan, where the magnitudes of the solar eclipse at the station were and 0.966, respectively. This is the first observation of tweek atmospherics for such a low-magnitude eclipse (0.458). In previous studies, tweeks had been observed only at sites where the magnitude of the eclipse was greater than 0.85 [Burton and Boardman,1933; Reeve and Rycroft, 1972; Singh et al., 2011]. In addition, two and seven tweeks were analyzed at Moshiri in the 1 2hperiod before and after the solar eclipse, respectively. [20] We compared the occurrence time of the tweeks with lightning distribution data from the World Wide Lightning Location Network (WWLLN) [Lay et al., 2004]. Figures 7a and 7b show the lightning distribution detected by WWLLN at 00:20 00:22 UT and 04:50 04:52 UT, respectively. The 00:20 00:22 UT and 04:50 04:52 UT intervals are the time periods during which the first and last tweeks were observed at Moshiri, respectively. At those times, the partial eclipse occurred at sunrise (sunset). We could not estimate the propagation distance by fitting the frequency dispersion curves of these tweeks because the duration of the tweek signals was very short. The figures show that several lightning events occurred in and near the partial eclipse region. These lightning events are a possible origin of the tweeks, although the detection rate of WWLLN is ~10.3% [Abarca et al., 2010]. The present results indicate that even with a partial eclipse, the electron density in the D-region decreases sufficiently for tweeks to propagate over thousands of kilometers. [21] The average and standard deviation of the tweek reflection height through the solar eclipse were 94.9 km 13.7 km at Moshiri and 87.2 km 12.9 km at Kagoshima. These average reflection heights are in agreement with those of previous studies of tweeks during solar eclipses [Burton and Boardman, 1933; Reeve and Rycroft, 1972; Singh et al., 2011]. The normal July nighttime average and standard deviation tweek reflection height are 96.7 km 12.6 km at Kagoshima, according to 35-year statistics [Ohya et al., 2011]. [22] We estimated the electron density from the tweek reflection height based on the International Reference Ionosphere (IRI) 2007 model. The electron density n e (cm 3 )at the tweek reflection height can be estimated from the following equation: n e ¼ 1: cf H 2h ; ð1þ Table 2. Summary for Results of LF Transmitter Signals Transmitter-Receiver Frequency (khz) Distance (km) Maximum Obscuration (%) Phase (deg) Height (km) Time Delay (min) BPC-Tainan Saga-Tainan Fukushima-Tainan BPC-Rikubetsu BPC-Zao Saga-Rikubetsu Saga-Zao Fukushima-Rikubetsu of9

7 Figure 7. Lightning distribution detected by WWLLN at (a) 00:20 00:22 UT and at (b) 04:50 04:52 UT. The 00:20 00:22 UT and 04:50 04:52 UT intervals are the 2-min periods during which the first and last tweeks were observed at Moshiri, respectively. where c is the light velocity, f H is the electron gyrofrequency, and h is the reflection height of tweeks for the first-order mode [Ohya et al., 2003]. Here we assumed f H = 1.1 MHz because we received tweeks from lightning discharges that occurred mainly in low-latitude and equatorial regions. The value of 1.1 MHz was taken from the International Geomagnetic Reference Field (IGRF) model. From the IRI (2007) model, the electron density at an altitude of 100 km at 02:00 UT is cm 3. The average tweek reflection height of 87.2 km during the solar eclipse corresponds to an electron density of 23 cm 3 according to equation (1). If the shape of the electron density-altitude profile of the IRI (2007) model is assumed to be the same as that for normal nighttime, the estimated electron density would be cm 3 at an altitude of 100 km. It is estimated to be cm 3 from the normal nighttime reflection height. That is, from tweek analysis, the electron density in the lower E region is estimated to have decreased from cm 3 to cm 3 at an altitude of 100 km during the solar eclipse, but the electron density did not reach the normal nighttime level of cm 3. [23] The average and standard deviation of the tweek reflection height through the solar eclipse were 94.9 km 13.7 km at Moshiri and 87.2 km 12.9 km at Kagoshima. The maximum reflection height at Moshiri (113.5 km) was also different from that at Kagoshima (128.9 km) during the solar eclipse. The difference in the average and maximum reflection heights between Moshiri and Kagoshima was caused by the difference in relative location between the tweek propagation path and the Moon s umbral shadow. We could not estimate the direction of tweek propagation in this research because only one magnetic component was measured at each site. However, the present result does show that the tweek reflection height depends not simply on the magnitude of the eclipse at the observation sites but also on the condition of the ionosphere along tweek propagation paths. [24] As seen in Figure 3, the standard deviation of the tweek reflection height for the solar eclipse was 13.7 km at Moshiri and 12.9 km at Kagoshima. This deviation was much larger than that found (1 2 km) in previous studies [Reeve and Rycroft, 1972; Singh et al., 2011]. However, the deviation was comparable with that for normal nighttime conditions (12.6 km) at Kagoshima, Japan. [25] The durations of the tweek signals at Moshiri and Kagoshima during the solar eclipse ranged from 5.7 to 21.1 ms and ms, respectively, which is much shorter than the usual nighttime duration (about 50 ms). The short duration of tweek signals might be caused by the larger attenuation of tweek signals during the daytime, consistent with the above discussion of the electron density. [26] No tweeks were simultaneously received at Moshiri and Kagoshima. The main reason is that simultaneous observation time was short to be 4 min in one hour. Tweeks were continuously observed at Kagoshima, while a routine observation of 2-min per 30 min was performed at Moshiri. The other reason may be that the attenuation of tweek signals at Moshiri would be significantly larger than that at Kagoshima under the low partial solar eclipse. If the location of the lightning (the origin of tweeks) could be too close to Kagoshima, the characteristic dispersion of tweeks could not be seen at Kagoshima, due to short propagation distance, while it could be seen at Moshiri. Such situation may cause the tweeks that was received only at Moshiri, but not at Kagoshima LF Transmitter Signals [27] The LF transmitter signal propagates horizontally in the wave duct between the ground and the D-layer of the ionosphere [Davies, 1969]. On the basis of the observed phase variations in LF transmitter signals, we calculated the height variation of the duct by a geometrical method [Jacobson et al., 2009]. If we assume that the duct height before the solar eclipse was 65 km based on the IRI (2007) model, the changes in the height along BPC TNN (across the eclipse path), SAG TNN (across), SAG RIK (not across), and SAG ZAO (not across) would be km, km, km, and km, respectively. Therefore, the changes in height of the LF paths that crossed the eclipse path were 3 5 kmlarger than those that did not cross the eclipse path. [28] On 22 July, a magnetic storm (minimum Dst index: 78 nt) occurred 5 h after the solar eclipse at 07:00 UT. However, magnetic field variation was quiet during the 7of9

8 eclipse (Dst index: 4 nt). Because large phase variations in LF transmitter signals were not observed during the storm, it is unlikely that the observed phase variation was caused by the magnetic storm. [29] For the case in which the LF transmitter signals did not propagate across the eclipse path and when h = 65 km was assumed, the maximum increases of the reflection height for the BPC RIK, SAG RIK, and FUK RIK signals were calculated by ray tracing to be 0.72 km, 1.15 km, and 1.06 km, respectively. The height changes were smaller than those for the paths that propagated across the eclipse path. [30] As shown in Figure 5, the time delay of the phase peak of LF transmitter signals after totality was 2 10 min. Previous studies also showed a similar time delay of 4 7 min [Sen Gupta et al., 1980; Lynn, 1981; Mendes Da Costa et al., 1995]. We speculated that the following two factors might have caused the time delay: the electron production rate of the partial solar eclipse after totality and the electron loss rate by recombination. The electron production rate by solar ionization at 65 km was estimated to be ~1 cm 3 s 1 [Tohmatsu, 1990]. In an actual partial solar eclipse, the electron production rate would be much less than that for normal daytime conditions. We estimated recombination rates based on the equations of Sheehan and St.-Maurice [2004]. If the electron temperature at 65 km is assumed to be 220 K based on the Mass Spectrometer Incoherent Scatter 90 (MSIS90) model, the efficient recombination coefficients (a eff ) with O 2 + and NO + are cm 3 s 1 and cm 3 s 1, respectively. From the IRI (2007) model, the electron density at an altitude of 65 km at 02:00 UT is cm 3. The loss rate by recombination is a eff n 2 e [Brekke, 1997], and the loss rates for O 2 + and NO + are cm 3 s 1 and cm 3 s 1, respectively. The balance between the production of electrons by solar ionization in the partial solar eclipse after totality and the electron loss by recombination could have caused the observed time delay of the LF transmitter phase after the total eclipse. 5. Conclusions [31] This paper reports multipoint observations of daytime tweek atmospherics during the solar eclipse of 22 July Sixteen and sixty-three tweek atmospherics were observed at Moshiri and Kagoshima, Japan, where the magnitude of the solar eclipse was and 0.966, respectively. This was the first reported observation of tweek atmospherics for a lowmagnitude eclipse (0.458). The observed features are summarized as follows. [32] 1. The average and standard deviation of the reflection height at Moshiri and Kagoshima were km and km, respectively. The reflection height at Moshiri was almost the same as that for normal nighttime in July ( km) in spite of the low magnitude of the eclipse. [33] 2. During the eclipse, we also observed the phase variation in the LF transmitter signals. The average change in the phase delay of the LF transmitter signals was 109 for the paths that crossed the eclipse path and 27 for the paths that did not cross the eclipse path. Time delays of 2 10 min occurred from the eclipse maximum to the peak of the phase variation. [34] Both the appearance of tweeks and the phase delay of the LF transmitter signals indicate a decrease in the electron density in the D- and lower E regions. Assuming a normal daytime height for the LF waves of 65 km, a ray tracing analysis indicates that the variations in the phase correspond to height increases of 5 6 km for the paths that cross the eclipse and 1 2 km for the partial eclipse paths. The wide range ( km) of estimated tweek reflection heights at Kagoshima also suggests a difference in electron density in the D- and lower E region ionosphere between total and partial solar eclipses. The balance between electron production by solar ionization in the partial solar eclipse after totality and electron loss by recombination could cause the observed time delay of the LF transmitter phase after the total eclipse. [35] Acknowledgments. We are grateful to M. Satoh, Y. Katoh, Y. Hamaguchi, Y. Yamamoto, M. Sera and Y. Ikegami, of the Solar- Terrestrial Environment Laboratory (STEL), Nagoya University, Japan, for their technical support of the continuous VLF/ELF measurements during the solar eclipse. This work was supported by Project 2 and the cooperative research program of STEL. We thank A. B. Chen of National Cheng Kung University for the operational support of the Asia VLF Observation Network (AVON) project in Tainan, Taiwan. [36] Robert Lysak thanks the reviewers for their assistance in evaluating this paper. References Abarca, S. F., K. L. Corbosiero, and T. J. Galarneau Jr. (2010), An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth, J. Geophys. Res., 115, D18206, doi: /2009jd Abraham, S., S. K. Dhaka, N. Nath, and K. L. Baluja (1998), Ionospheric absorption on October 24, 1995 solar eclipse, Geophys. Res. Lett., 25(15), , doi: /98gl Bracewell, R. N. (1952), Theory of formation of an ionospheric layer below E layer based on eclipse and solar flare effects at 16 kc/sec, J. Atmos. Terr. Phys., 2, , doi: / (52) Brekke, A. (1997), Physics of the Upper Polar Atmosphere, Praxis, Chichester, U. K. Burton, E. T., and E. M. Boardman (1933), Effects of solar eclipse on audio frequency atmospherics, Nature, 131, 81 82, doi: /131081a0. Chandra, H., S. Sharma, P. D. Lele, G. Rajaram, and A. Hanchinal (2007), Ionospheric measurements during the total solar eclipse of 11 August 1999, Earth Planets Space, 59, Christian, H. J., et al. (2003), Global frequency and distribution of lightning as observed from space by the Optical Transient Detector, J. Geophys. Res., 108(D1), 4005, doi: /2002jd Clilverd, M. A., C. J. Rodger, N. R. Thomson, J. Lichtenberger, P. Steinbach, P. Cannon, and M. J. Angling (2001), Total solar eclipse effects on VLF signals: Observations and modeling, Radio Sci., 36(4), , doi: / 2000RS Crary, J. H., and D. E. Schneible (1965), Effect of the eclipse of 20 July 1963 on VLF signals propagating over short paths, J. Res. Natl. Bur. Stand. U.S., Sect. D, 69, Cummer, S. A., U. S. Inan, and T. F. Bell (1998), Ionospheric D region remote sensing using VLF radio atmospherics, Radio Sci., 33(6), , doi: /98rs Davies, K. (1969), Ionospheric Radio Waves, Blaisdell, Waltham, Mass. De, B. K., S. S. De, B. Bandyopadhyay, P. Pal, R. Ali, S. Paul, and P. K. Goswami (2011), Effects of a solar eclipse on the propagation of VLF- LF signals: Observations and results, Terr. Atmos. Oceanic Sci., 22(4), , doi: /tao (aa). Espenak, F., and J. Anderson (2008), Total solar eclipse of 22 July 2009, NASA Eclipse Rep., NASA/TP Guha, A., B. K. De, R. Roy, and A. Choudhury (2010), Response of the equatorial lower ionosphere to the total solar eclipse of 22 July 2009 during sunrise transition period studied using VLF signal, J. Geophys. Res., 115, A11302, doi: /2009ja Jacobson, A. R., X.-M. Shao, and R. Holzworth (2009), Full-wave reflection of lightning long-wave radio pulses from the ionospheric D region: Numerical model, J. Geophys. Res., 114, A03303, doi: / 2008JA Lay, E. H., R. H. Holzworth, C. J. Rodger, J. N. Thomas, O. Pinto Jr., and R. L. Dowden (2004), WWLL global lightning detection system: 8of9

9 Regional validation study in Brazil, Geophys. Res. Lett., 31, L03102, doi: /2003gl Lynn, K. J. W. (1981), The total solar eclipse of 23 October 1976 observed at VLF, J. Atmos. Terr. Phys., 43(12), , doi: / (81) Mechtly, E. A., K. Seino, and L. G. Smith (1969), Lower ionosphere electron densities measured during the solar eclipse of November 12, 1966, Radio Sci., 4(4), , doi: /rs004i004p Mechtly, E. A., C. F. Sechrist, and L. G. Smith (1972), Electron loss coefficients for the D-region of the ionosphere from rocket measurements during the eclipses of March 1970 and November 1966, J. Atmos. Terr. Phys., 34, , doi: / (72) Mendes Da Costa, A., N. M. Paes Leme, and L. Rizzo Piazza (1995), Lower ionosphere effect observed during the 30 June 1992 total solar eclipse, J. Atmos. Terr. Phys., 57, 13 17, doi: / (93)e0021-z. Ohya, H., M. Nishino, Y. Murayama, and K. Igarashi (2003), Equivalent electron densities at reflection heights of tweek atmospherics in the lowmiddle latitude D-region ionosphere, Earth Planets Space, 55, Ohya, H., M. Nishino, Y. Murayama, K. Igarashi, and A. Saito (2006), Using tweek atmospherics to measure the response of the low-middle latitude D-region ionosphere to a magnetic storm, J. Atmos. Sol. Terr. Phys., 68, , doi: /j.jastp Ohya, H., K. Shiokawa, and Y. Miyoshi (2008), Development of an automatic procedure to estimate the reflection height of tweek atmospherics, Earth Planets Space, 60, Ohya, H., F. Tsuchiya, K. Yamashita, Y. Takahashi, and T. Adachi (2010), Tweek reflection height observed by VLF observation network system in Southeast Asia, paper presented at 2010 Asia-Pacific Radio Science Conference, Int. Union of Radio Sci., Toyama, Japan. Ohya, H., K. Shiokawa, and Y. Miyoshi (2011), Long-term variations in tweek reflection height in the D and lower E regions of the ionosphere, J. Geophys. Res., 116, A10322, doi: /2011ja Reeve, C. D., and M. J. Rycroft (1972), The eclipsed lower ionosphere as investigated by natural very low frequency radio signals, J. Atmos. Terr. Phys., 34, , doi: / (72) Sen Gupta, A. S., G. K. Goel, and B. S. Mathur (1980), Effect of the 16 February 1980 solar eclipse on VLF propagation, J. Atmos. Terr. Phys., 42, , doi: / (80) Sheehan, C. H., and J. P. St.-Maurice (2004), Dissociative recombination of N 2 +,O 2 +, and NO + : Rate coefficients for ground state and vibrationally excited ions, J. Geophys. Res., 109, A03302, doi: /2003ja Singh, R., B. Veenadhari, A. K. Maurya, M. B. Cohen, S. Kumar, R. Selvakumaran, P. Pant, A. K. Singh, and U. S. Inan (2011), D-region ionosphere response to the total solar eclipse of 22 July 2009 deduced from ELF-VLF tweek observations in the Indian sector, J. Geophys. Res., 116, A10301, doi: /2011ja Tohmatsu, T. (1990), Compendium of Aeronomy, Terra Sci., Tokyo. Ulwick, J. C. (1972), Eclipse rocket measurements of charged particle concentrations, J. Atmos. Terr. Phys., 34, , doi: / (72) Wait, J. R., and K. P. Spies (1964), Characteristics of the Earth-ionosphere waveguide for VLF radio waves, technical note, 300 pp., Nat. Bur. of Stand., Gaithersburg, Md. 9of9

D region ionosphere response to the total solar eclipse of 22 July 2009 deduced from ELF VLF tweek observations in the Indian sector

D region ionosphere response to the total solar eclipse of 22 July 2009 deduced from ELF VLF tweek observations in the Indian sector JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi:10.1029/2011ja016641, 2011 D region ionosphere response to the total solar eclipse of 22 July 2009 deduced from ELF VLF tweek observations in the Indian

More information

Nighttime D-region equivalent electron density determined from tweek sferics observed in the South Pacific Region

Nighttime D-region equivalent electron density determined from tweek sferics observed in the South Pacific Region Earth Planets Space, 61, 905 911, 2009 Nighttime D-region equivalent electron density determined from tweek sferics observed in the South Pacific Region Sushil Kumar 1, Anil Deo 2, and V. Ramachandran

More information

Azimuthal dependence of VLF propagation

Azimuthal dependence of VLF propagation JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 118, 1 5, doi:.0/jgra.533, 013 Azimuthal dependence of VLF propagation M. L. Hutchins, 1 Abram R. Jacobson, 1 Robert H. Holzworth, 1 and James B. Brundell

More information

Midlatitude daytime D region ionosphere variations measured from radio atmospherics

Midlatitude daytime D region ionosphere variations measured from radio atmospherics JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2010ja015715, 2010 Midlatitude daytime D region ionosphere variations measured from radio atmospherics Feng Han 1 and Steven A. Cummer 1 Received

More information

Daytime ionospheric D region sharpness derived from VLF radio atmospherics

Daytime ionospheric D region sharpness derived from VLF radio atmospherics JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi:10.1029/2010ja016299, 2011 Daytime ionospheric D region sharpness derived from VLF radio atmospherics Feng Han, 1 Steven A. Cummer, 1 Jingbo Li, 1 and Gaopeng

More information

Some studies of solar flare effects on the propagation of sferics and a transmitted signal

Some studies of solar flare effects on the propagation of sferics and a transmitted signal Indian Journal of Radio & Space Physics Vol. 38, October 2009, pp. 260-265 Some studies of solar flare effects on the propagation of sferics and a transmitted signal B K De 1, S S De 2,*, B Bandyopadhyay

More information

Nighttime D region electron density measurements from ELF- VLF tweek radio atmospherics recorded at low latitudes

Nighttime D region electron density measurements from ELF- VLF tweek radio atmospherics recorded at low latitudes JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2012ja017876, 2012 Nighttime D region electron density measurements from ELF- VLF tweek radio atmospherics recorded at low latitudes Ajeet K. Maurya,

More information

Research Letter Waveguide Parameters of 19.8 khz Signal Propagating over a Long Path

Research Letter Waveguide Parameters of 19.8 khz Signal Propagating over a Long Path Research Letters in Physics Volume 29, Article ID 216373, 4 pages doi:1.1155/29/216373 Research Letter Waveguide Parameters of 19.8 khz Signal Propagating over a Long Path Sushil Kumar School of Engineering

More information

Radio Science. Estimate of a D region ionospheric electron density profile from MF radio wave observations by the S rocket

Radio Science. Estimate of a D region ionospheric electron density profile from MF radio wave observations by the S rocket RESEARCH ARTICLE Key Points: Observed the MF radio wave propagation characteristics in the ionospheric D region The polarized mode waves propagation characteristics obtained by analyzing the observed waveform

More information

Daytime modelling of VLF radio waves over land and sea, comparison with data from DEMETER Satellite

Daytime modelling of VLF radio waves over land and sea, comparison with data from DEMETER Satellite Daytime modelling of VLF radio waves over land and sea, comparison with data from DEMETER Satellite S. G. Meyer 1,2, A. B. Collier 1,2, C. J. Rodger 3 1 SANSA Space Science, Hermanus, South Africa 2 School

More information

Signature of the 29 March 2006 eclipse on the ionosphere over an equatorial station

Signature of the 29 March 2006 eclipse on the ionosphere over an equatorial station JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2006ja012197, 2007 Signature of the 29 March 2006 eclipse on the ionosphere over an equatorial station J. O. Adeniyi, 1,2 S. M. Radicella, 1 I. A.

More information

Study of the morphology of the low-latitude D region ionosphere using the method of tweeks observed at Buon Ma Thuot, Dak Lak

Study of the morphology of the low-latitude D region ionosphere using the method of tweeks observed at Buon Ma Thuot, Dak Lak Vietnam Journal of Earth Sciences, 38(4), 37-338, DOI: 10.1565/0866-7187/38/4/8794 (VAST) Vietnam Academy of Science and Technology Vietnam Journal of Earth Sciences http://www.vjs.ac.vn/index.php/jse

More information

The Effect of Geomagnetic Storm in the Ionosphere using N-h Profiles.

The Effect of Geomagnetic Storm in the Ionosphere using N-h Profiles. The Effect of Geomagnetic Storm in the Ionosphere using N-h Profiles. J.C. Morka * ; D.N. Nwachuku; and D.A. Ogwu. Physics Department, College of Education, Agbor, Nigeria E-mail: johnmorka84@gmail.com

More information

This is a repository copy of Effect of the total solar eclipse of March 20, 2015, on VLF/LF propagation.

This is a repository copy of Effect of the total solar eclipse of March 20, 2015, on VLF/LF propagation. This is a repository copy of Effect of the total solar eclipse of March 2, 215, on VLF/LF propagation. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/13216/ Version: Accepted

More information

Midlatitude nighttime D region ionosphere variability on hourly to monthly time scales

Midlatitude nighttime D region ionosphere variability on hourly to monthly time scales JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2010ja015437, 2010 Midlatitude nighttime D region ionosphere variability on hourly to monthly time scales Feng Han 1 and Steven A. Cummer 1 Received

More information

CONSTRUCTING A LOW-COST ELF/VLF REMOTE SENSING TO OBSERVE TWEEK SFERICS GENERATED BY LIGHTNING DISCHARGES

CONSTRUCTING A LOW-COST ELF/VLF REMOTE SENSING TO OBSERVE TWEEK SFERICS GENERATED BY LIGHTNING DISCHARGES CONSTRUCTING A LOW-COST ELF/VLF REMOTE SENSING TO OBSERVE TWEEK SFERICS GENERATED BY LIGHTNING DISCHARGES Le MINH TAN, Marjan MARBOUTI and Keyvan GHANBARI Department of Physics, Faculty of Natural Science

More information

SPACE WEATHER SIGNATURES ON VLF RADIO WAVES RECORDED IN BELGRADE

SPACE WEATHER SIGNATURES ON VLF RADIO WAVES RECORDED IN BELGRADE Publ. Astron. Obs. Belgrade No. 80 (2006), 191-195 Contributed paper SPACE WEATHER SIGNATURES ON VLF RADIO WAVES RECORDED IN BELGRADE DESANKA ŠULIĆ1, VLADIMIR ČADEŽ2, DAVORKA GRUBOR 3 and VIDA ŽIGMAN4

More information

Nighttime D region electron density profiles and variabilities inferred from broadband measurements using VLF radio emissions from lightning

Nighttime D region electron density profiles and variabilities inferred from broadband measurements using VLF radio emissions from lightning JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2005ja011308, 2006 Nighttime D region electron density profiles and variabilities inferred from broadband measurements using VLF radio emissions

More information

A technique for calculating ionospheric Doppler shifts from standard ionograms suitable for scientific, HF communication, and OTH radar applications

A technique for calculating ionospheric Doppler shifts from standard ionograms suitable for scientific, HF communication, and OTH radar applications RADIO SCIENCE, VOL. 44,, doi:10.1029/2009rs004210, 2009 A technique for calculating ionospheric Doppler shifts from standard ionograms suitable for scientific, HF communication, and OTH radar applications

More information

Nighttime Ionospheric D-region Parameters. from VLF Phase and Amplitude

Nighttime Ionospheric D-region Parameters. from VLF Phase and Amplitude Nighttime Ionospheric D-region Parameters from VLF Phase and Amplitude Neil R. Thomson, Mark A. Clilverd, and Wayne M. McRae Physics Department, University of Otago, Dunedin, New Zealand Physical Sciences

More information

Examination of Three Empirical Atmospheric Models

Examination of Three Empirical Atmospheric Models Examination of Three Empirical Atmospheric Models A Presentation Given to The Department of Physics Utah State University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

More information

1. Introduction. 2. Materials and Methods

1. Introduction. 2. Materials and Methods A Study On The Detection Of Solar Flares And Its Effects On The Daytime Fluctuation Of VLF Amplitude And Geomagnetic Variation Using A Signal Of 22.10 KHz Transmitted From England And Received At Kiel

More information

An error analysis on nature and radar system noises in deriving the phase and group velocities of vertical propagation waves

An error analysis on nature and radar system noises in deriving the phase and group velocities of vertical propagation waves Earth Planets Space, 65, 911 916, 2013 An error analysis on nature and radar system noises in deriving the phase and group velocities of vertical propagation waves C. C. Hsiao 1,J.Y.Liu 1,2,3, and Y. H.

More information

Subionospheric early VLF perturbations observed at Suva: VLF detection of red sprites in the day?

Subionospheric early VLF perturbations observed at Suva: VLF detection of red sprites in the day? Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2007ja012734, 2008 Subionospheric early VLF perturbations observed at Suva: VLF detection of red sprites in the day?

More information

PREDICTION AND MEASUREMENT OF LONG RANGE PROPAGATION OF LF STANDARD FREQUENCY

PREDICTION AND MEASUREMENT OF LONG RANGE PROPAGATION OF LF STANDARD FREQUENCY PREDICTION AND MEASUREMENT OF LONG RANGE PROPAGATION OF LF STANDARD FREQUENCY TSUCHIYA Shigeru National Institute of Information and Communications Technology --1 Nukui-kita, oganei, 1-795 Japan Phone:

More information

RECOMMENDATION ITU-R P Prediction of sky-wave field strength at frequencies between about 150 and khz

RECOMMENDATION ITU-R P Prediction of sky-wave field strength at frequencies between about 150 and khz Rec. ITU-R P.1147-2 1 RECOMMENDATION ITU-R P.1147-2 Prediction of sky-wave field strength at frequencies between about 150 and 1 700 khz (Question ITU-R 225/3) (1995-1999-2003) The ITU Radiocommunication

More information

Measurement of VLF propagation perturbations during the January 4, 2011 Partial Solar Eclipse

Measurement of VLF propagation perturbations during the January 4, 2011 Partial Solar Eclipse Measurement of VLF propagation perturbations during the January 4, 2011 Partial Solar Eclipse by Lionel Loudet 1 January 2011 Contents Abstract...1 Introduction...1 Background...2 VLF Signal Propagation...2

More information

Anomalous behaviour of very low frequency signals during the earthquake events

Anomalous behaviour of very low frequency signals during the earthquake events Indian Journal of Radio & Space Physics Vol 43, December 2014, pp 333-339 Anomalous behaviour of very low frequency signals during the earthquake events T Madhavi Latha 1,$,*, P Peddi Naidu 2, D N Madhusudhana

More information

Vertical group and phase velocities of ionospheric waves derived from the MU radar

Vertical group and phase velocities of ionospheric waves derived from the MU radar Click Here for Full Article Vertical group and phase velocities of ionospheric waves derived from the MU radar J. Y. Liu, 1,2 C. C. Hsiao, 1,6 C. H. Liu, 1 M. Yamamoto, 3 S. Fukao, 3 H. Y. Lue, 4 and F.

More information

Solar eclipse effects of 22 July 2009 on Sporadic-E

Solar eclipse effects of 22 July 2009 on Sporadic-E Ann. Geophys., 28, 353 357, 2010 Author(s) 2010. This work is distributed under the Creative Commons Attribution 3.0 License. Annales Geophysicae Solar eclipse effects of 22 July 2009 on Sporadic-E G.

More information

Investigation of electron density profile in the lower ionosphere by SRP-4 rocket experiment

Investigation of electron density profile in the lower ionosphere by SRP-4 rocket experiment Earth Planets Space, 57, 879 884, 25 Investigation of electron density profile in the lower ionosphere by SRP-4 rocket experiment K. Ishisaka 1, T. Okada 1, J. Hawkins 2, S. Murakami 1, T. Miyake 1, Y.

More information

HF signatures of powerful lightning recorded on DEMETER

HF signatures of powerful lightning recorded on DEMETER JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2008ja013323, 2008 HF signatures of powerful lightning recorded on DEMETER M. Parrot, 1,2 U. Inan, 3 N. Lehtinen, 3 E. Blanc, 4 and J. L. Pinçon

More information

World coverage for single station lightning detection

World coverage for single station lightning detection RADIO SCIENCE, VOL. 46,, doi:10.1029/2010rs004600, 2011 World coverage for single station lightning detection C. Mackay 1 and A. C. Fraser Smith 1 Received 8 December 2010; revised 3 March 2011; accepted

More information

RemoteSensingofMidUpperAtmosphereusingELFVLFWaves Strictly as per the compliance and regulations of:

RemoteSensingofMidUpperAtmosphereusingELFVLFWaves Strictly as per the compliance and regulations of: Global Journal of Science Frontier Research: A Physics and Space Science Volume 18 Issue 10 Version 1.0 Year 2018 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals

More information

Ground-based network observations for investigation of the inner magnetosphere

Ground-based network observations for investigation of the inner magnetosphere Ground-based network observations for investigation of the inner magnetosphere Shiokawa, K. 1, Y. Miyoshi 1, K. Keika 2, M. Connors 3, A. Kadokura 4, T. Nagatsuma 5, N. Nishitani 1, H. Ohya 6, F. Tsuchiya

More information

Low Latitude - Sferics, Tweeks and Whistlers: Present Understanding and Future Prospective. B. Veenadhari, Rajesh Singh, SushilKumar and Ajeet Maurya

Low Latitude - Sferics, Tweeks and Whistlers: Present Understanding and Future Prospective. B. Veenadhari, Rajesh Singh, SushilKumar and Ajeet Maurya Low Latitude - Sferics, Tweeks and Whistlers: Present Understanding and Future Prospective B. Veenadhari, Rajesh Singh, SushilKumar and Ajeet Maurya Sharjah-Stanford AWESOME VLF workshop University of

More information

Low Latitude Ionospheric D-region Dependence on Solar Zenith Angle

Low Latitude Ionospheric D-region Dependence on Solar Zenith Angle 1 1 2 3 Low Latitude Ionospheric D-region Dependence on Solar Zenith Angle Neil R. Thomson, 1 Mark A. Clilverd 2 and Craig J. Rodger 1 4 5 6 1 Physics Department, University of Otago, Dunedin, New Zealand.

More information

JOURNAL OF GEOMAGNETISM AND GEOELECTRICITY VOL. 21, N0. 1, Schumann Resonances and Worldwide Thunderstorm Activity

JOURNAL OF GEOMAGNETISM AND GEOELECTRICITY VOL. 21, N0. 1, Schumann Resonances and Worldwide Thunderstorm Activity JOURNAL OF GEOMAGNETISM AND GEOELECTRICITY VOL. 21, N0. 1, 1969 Schumann Resonances and Worldwide Thunderstorm Activity Diurnal Variations of the Resonant Power of Natural Noises in the Earth-Ionosphere

More information

Ionospheric effects of whistler waves from rocket-triggered lightning

Ionospheric effects of whistler waves from rocket-triggered lightning GEOPHYSICAL RESEARCH LETTERS, VOL. 38,, doi:10.1029/2011gl049869, 2011 Ionospheric effects of whistler waves from rocket-triggered lightning B. R. T. Cotts, 1 M. Gołkowski, 1 and R. C. Moore 2 Received

More information

VLF-LF PROPAGATION MEASUREMENTS DURING THE 11 AUGUST 1999 SOLAR ECLIPSE. R. Fleury, P. Lassudrie-Duchesne ABSTRACT INTRODUCTION EXPERIMENTAL RESULTS

VLF-LF PROPAGATION MEASUREMENTS DURING THE 11 AUGUST 1999 SOLAR ECLIPSE. R. Fleury, P. Lassudrie-Duchesne ABSTRACT INTRODUCTION EXPERIMENTAL RESULTS VLF-LF PROPAGATON MEASUREMENTS DURNG THE 11 AUGUST 1999 SOLAR ECLPSE R. Fleury, P. Lassudrie-Duchesne Ecole Nationale Suptrieure des TClCcommunications de Bretagne, France ABSTRACT A survey of the VLF-LF

More information

NON-TYPICAL SERIES OF QUASI-PERIODIC VLF EMISSIONS

NON-TYPICAL SERIES OF QUASI-PERIODIC VLF EMISSIONS NON-TYPICAL SERIES OF QUASI-PERIODIC VLF EMISSIONS J. Manninen 1, N. Kleimenova 2, O. Kozyreva 2 1 Sodankylä Geophysical Observatory, Finland, e-mail: jyrki.manninen@sgo.fi; 2 Institute of Physics of the

More information

Relative detection efficiency of the World Wide Lightning Location Network

Relative detection efficiency of the World Wide Lightning Location Network RADIO SCIENCE, VOL. 47,, doi:10.1029/2012rs005049, 2012 Relative detection efficiency of the World Wide Lightning Location Network M. L. Hutchins, 1 R. H. Holzworth, 1 J. B. Brundell, 2 and C. J. Rodger

More information

EFFECTS IN THE VARIATIONS OF THE AMPLITUDE OF LOW- FREQUENCY RADIO SIGNALS AND ATMOSPHERICS PASSING OVER THE EPICENTER OF DEEP EARTHQUAKES

EFFECTS IN THE VARIATIONS OF THE AMPLITUDE OF LOW- FREQUENCY RADIO SIGNALS AND ATMOSPHERICS PASSING OVER THE EPICENTER OF DEEP EARTHQUAKES EFFECTS IN THE VARIATIONS OF THE AMPLITUDE OF LOW- FREQUENCY RADIO SIGNALS AND ATMOSPHERICS PASSING OVER THE EPICENTER OF DEEP EARTHQUAKES V.A. Mullayarov, V.V. Argunov, L.M. Abzaletdinova Yu.G. Shafer

More information

Nighttime sporadic E measurements on an oblique path along the midlatitude trough

Nighttime sporadic E measurements on an oblique path along the midlatitude trough RADIO SCIENCE, VOL. 46,, doi:10.1029/2010rs004507, 2011 Nighttime sporadic E measurements on an oblique path along the midlatitude trough A. J. Stocker 1 and E. M. Warrington 1 Received 25 August 2010;

More information

On the generation mechanism of terminator times in subionospheric VLF/LF propagation and its possible application to seismogenic effects

On the generation mechanism of terminator times in subionospheric VLF/LF propagation and its possible application to seismogenic effects Nat. Hazards Earth Syst. Sci., 8, 129 134, 28 www.nat-hazards-earth-syst-sci.net/8/129/28/ Author(s) 28. This work is licensed under a Creative Commons License. Natural Hazards and Earth System Sciences

More information

The low latitude ionospheric effects of the April 2000 magnetic storm near the longitude 120 E

The low latitude ionospheric effects of the April 2000 magnetic storm near the longitude 120 E Earth Planets Space, 56, 67 612, 24 The low latitude ionospheric effects of the April 2 magnetic storm near the longitude 12 E Libo Liu 1, Weixing Wan 1,C.C.Lee 2, Baiqi Ning 1, and J. Y. Liu 2 1 Institute

More information

SMART SENSING OF MAGNETOSPHERIC PLASMA BY MEANS OF WHISTLER MODE SIGNALS OBSERVED AT A LOW LATITUDE INDIAN GROUND STATION SRINAGAR (L = 1.

SMART SENSING OF MAGNETOSPHERIC PLASMA BY MEANS OF WHISTLER MODE SIGNALS OBSERVED AT A LOW LATITUDE INDIAN GROUND STATION SRINAGAR (L = 1. International Journal of Physics and Research (IJPR) ISSN 2250-0030 Vol. 3, Issue 1, Mar 2013, 11-16 TJPRC Pvt. Ltd. SMART SENSING OF MAGNETOSPHERIC PLASMA BY MEANS OF WHISTLER MODE SIGNALS OBSERVED AT

More information

ALTITUDE PROFILES OF ELECTRON DENSITY DURING LEP EVENTS FROM VLF MONITORING OF THE LOWER IONOSPHERE

ALTITUDE PROFILES OF ELECTRON DENSITY DURING LEP EVENTS FROM VLF MONITORING OF THE LOWER IONOSPHERE The Sharjah-Stanford AWESOME VLF Workshop Sharjah, UAE, Feb 22-24, 2010. ALTITUDE PROFILES OF ELECTRON DENSITY DURING LEP EVENTS FROM VLF MONITORING OF THE LOWER IONOSPHERE Desanka Šulić 1 and Vladimir

More information

High-frequency radio wave absorption in the D- region

High-frequency radio wave absorption in the D- region Utah State University From the SelectedWorks of David Smith Spring 2017 High-frequency radio wave absorption in the D- region David Alan Smith, Utah State University This work is licensed under a Creative

More information

Study of small scale plasma irregularities. Đorđe Stevanović

Study of small scale plasma irregularities. Đorđe Stevanović Study of small scale plasma irregularities in the ionosphere Đorđe Stevanović Overview 1. Global Navigation Satellite Systems 2. Space weather 3. Ionosphere and its effects 4. Case study a. Instruments

More information

Investigation of height gradient in vertical plasma drift at equatorial ionosphere using multifrequency HF Doppler radar

Investigation of height gradient in vertical plasma drift at equatorial ionosphere using multifrequency HF Doppler radar JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2004ja010641, 2004 Investigation of height gradient in vertical plasma drift at equatorial ionosphere using multifrequency HF Doppler radar S. R.

More information

DEVELOPMENT OF THE NEW ELF/VLF RECEIVER FOR DETECTING THE SUDDEN IONOSPHERIC DISTURBANCES

DEVELOPMENT OF THE NEW ELF/VLF RECEIVER FOR DETECTING THE SUDDEN IONOSPHERIC DISTURBANCES DEVELOPMENT OF THE NEW ELF/VLF RECEIVER FOR DETECTING THE SUDDEN IONOSPHERIC DISTURBANCES Le MINH TAN 1, Keyvan GHANBARI 2 1 Department of Physics, Faculty of Natural Science and Technology, Tay Nguyen

More information

In Situ Measurements of Electrodynamics Above Thunderstorms: Past Results and Future Directions

In Situ Measurements of Electrodynamics Above Thunderstorms: Past Results and Future Directions In Situ Measurements of Electrodynamics Above Thunderstorms: Past Results and Future Directions Jeremy N. Thomas 1,2, Robert H. Holzworth 2, and Michael P. McCarthy 2 1. Physics Program, Bard High School

More information

SEMEP. Search for ElectroMagnetic Earthquake Precursors

SEMEP. Search for ElectroMagnetic Earthquake Precursors Page: 1 of 11 SEMEP Search for ElectroMagnetic Earthquake Precursors Identification of ionospheric perturbations connected to seismicity from the analysis VLF/LF signals on the DEMETER satellite Deliverable

More information

Lightning stroke distance estimation from single station observation and validation with WWLLN data

Lightning stroke distance estimation from single station observation and validation with WWLLN data Ann. Geophys., 5, 59 57, 7 www.ann-geophys.net/5/59/7/ European Geosciences Union 7 Annales Geophysicae Lightning stroke distance estimation from single station observation and validation with WWLLN data

More information

VLF & ULF Signals, Receivers & Antennas - Listening to the sounds of the atmosphere

VLF & ULF Signals, Receivers & Antennas - Listening to the sounds of the atmosphere VLF & ULF Signals, Receivers & Antennas - Listening to the sounds of the atmosphere A presentation to Manly-Warringah Radio Society from Geoff Osborne VK2TGO VLF & ULF Signals, Receivers and Antennas 1.

More information

Dependence of Some Features of VLF Sferics on Source and Propagation Parameters

Dependence of Some Features of VLF Sferics on Source and Propagation Parameters Bulg. J. Phys. 37 (2010) 24 36 Dependence of Some Features of VLF Sferics on Source and Propagation Parameters B.K. De 1, S. Debnath 1, P. Pal 1, S.S. De 2, B. Bandyopadhyay 2, A. Bhowmick 1, S. Paul 2,

More information

Ionospheric multiple stratifications and irregularities induced by the 2011 off the Pacific coast of Tohoku Earthquake

Ionospheric multiple stratifications and irregularities induced by the 2011 off the Pacific coast of Tohoku Earthquake LETTER Earth Planets Space, 63, 869 873, 2011 Ionospheric multiple stratifications and irregularities induced by the 2011 off the Pacific coast of Tohoku Earthquake Takashi Maruyama 1, Takuya Tsugawa 1,

More information

Study of the Ionosphere Irregularities Caused by Space Weather Activity on the Base of GNSS Measurements

Study of the Ionosphere Irregularities Caused by Space Weather Activity on the Base of GNSS Measurements Study of the Ionosphere Irregularities Caused by Space Weather Activity on the Base of GNSS Measurements Iu. Cherniak 1, I. Zakharenkova 1,2, A. Krankowski 1 1 Space Radio Research Center,, University

More information

Ionospheric D region remote sensing using VLF radio atmospherics

Ionospheric D region remote sensing using VLF radio atmospherics Published in Radio Science, 33, 78 79, November December 998. Copyright 998 by the Americal Geophysical Union. Further distribution is not allowed. Ionospheric D region remote sensing using VLF radio atmospherics

More information

Precursors of earthquakes in the line-of-sight propagation on VHF band

Precursors of earthquakes in the line-of-sight propagation on VHF band Precursors of earthquakes in the line-of-sight propagation on VHF band K. Motojima 1 1 Dept. Electronic Eng., Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Gunma, Japan Abstract. This paper was intended

More information

Deducing Locations and Charge Moment Changes of Lightning Discharges by ELF Network Observations in Japan

Deducing Locations and Charge Moment Changes of Lightning Discharges by ELF Network Observations in Japan B IEEJ Transactions on Power and Energy Vol.133 No.12 pp.994 1000 DOI: 10.1541/ieejpes.133.994 12B09 Deducing Locations and Charge Moment Changes of Lightning Discharges by ELF Network Observations in

More information

Study of solar flare induced D-region ionosphere changes using VLF amplitude observations at a low latitude site

Study of solar flare induced D-region ionosphere changes using VLF amplitude observations at a low latitude site Indian Journal of Radio & Space Physics Vol. 43, June 2014, pp 197-204 Study of solar flare induced D-region ionosphere changes using VLF amplitude observations at a low latitude site L M Tan 1,$,*, N

More information

Models of ionospheric VLF absorption of powerful ground based transmitters

Models of ionospheric VLF absorption of powerful ground based transmitters GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2012gl054437, 2012 Models of ionospheric VLF absorption of powerful ground based transmitters M. B. Cohen, 1 N. G. Lehtinen, 1 and U. S. Inan 1,2 Received

More information

Study of Very Low Frequency (VLF) Phenomena at Maitri, Antarctica

Study of Very Low Frequency (VLF) Phenomena at Maitri, Antarctica Nineteenth Indian Expedition to Antarctica, Scientific Report, 2004 Department of Ocean Development, Technical Publication No. 17, pp 107-114 Study of Very Low Frequency (VLF) Phenomena at Maitri, Antarctica

More information

Chapter 6 Propagation

Chapter 6 Propagation Chapter 6 Propagation Al Penney VO1NO Objectives To become familiar with: Classification of waves wrt propagation; Factors that affect radio wave propagation; and Propagation characteristics of Amateur

More information

Rec. ITU-R P RECOMMENDATION ITU-R P *

Rec. ITU-R P RECOMMENDATION ITU-R P * Rec. ITU-R P.682-1 1 RECOMMENDATION ITU-R P.682-1 * PROPAGATION DATA REQUIRED FOR THE DESIGN OF EARTH-SPACE AERONAUTICAL MOBILE TELECOMMUNICATION SYSTEMS (Question ITU-R 207/3) Rec. 682-1 (1990-1992) The

More information

MIDLATITUDE D REGION VARIATIONS MEASURED FROM BROADBAND RADIO ATMOSPHERICS

MIDLATITUDE D REGION VARIATIONS MEASURED FROM BROADBAND RADIO ATMOSPHERICS MIDLATITUDE D REGION VARIATIONS MEASURED FROM BROADBAND RADIO ATMOSPHERICS by Feng Han Department of Electrical and Computer Engineering Duke University Date: Approved: Steven A. Cummer, Advisor David

More information

Chapter 1: Telecommunication Fundamentals

Chapter 1: Telecommunication Fundamentals Chapter 1: Telecommunication Fundamentals Block Diagram of a communication system Noise n(t) m(t) Information (base-band signal) Signal Processing Carrier Circuits s(t) Transmission Medium r(t) Signal

More information

Ionospheric effect of HF surface wave over-the-horizon radar

Ionospheric effect of HF surface wave over-the-horizon radar RADIO SCIENCE, VOL. 41,, doi:10.1029/2005rs003323, 2006 Ionospheric effect of HF surface wave over-the-horizon radar Huotao Gao, 1 Geyang Li, 1 Yongxu Li, 1 Zijie Yang, 1 and Xiongbin Wu 1 Received 25

More information

Radio tomography based on satellite beacon experiment and FORMOSAT- 3/COSMIC radio occultation

Radio tomography based on satellite beacon experiment and FORMOSAT- 3/COSMIC radio occultation Radio tomography based on satellite beacon experiment and FORMOSAT- 3/COSMIC radio occultation Mamoru Yamamoto (1), Smitha V. Thampi (2), Charles Lin (3) (1) RISH, Kyoto University, Japan (2) Space Physics

More information

Early VLF perturbations caused by lightning EMP-driven dissociative attachment

Early VLF perturbations caused by lightning EMP-driven dissociative attachment GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L21807, doi:10.1029/2008gl035358, 2008 Early VLF perturbations caused by lightning EMP-driven dissociative attachment R. A. Marshall, 1 U. S. Inan, 1 and T. W. Chevalier

More information

Ground based measurements of ionospheric turbulence manifestations induced by the VLF transmitter ABSTRACT

Ground based measurements of ionospheric turbulence manifestations induced by the VLF transmitter ABSTRACT Ground based measurements of ionospheric turbulence manifestations induced by the VLF transmitter Dmitry S. Kotik, 1 Fedor I. Vybornov, 1 Alexander V. Ryabov, 1 Alexander V. Pershin 1 and Vladimir A. Yashnov

More information

Chapter 2 Analysis of Polar Ionospheric Scintillation Characteristics Based on GPS Data

Chapter 2 Analysis of Polar Ionospheric Scintillation Characteristics Based on GPS Data Chapter 2 Analysis of Polar Ionospheric Scintillation Characteristics Based on GPS Data Lijing Pan and Ping Yin Abstract Ionospheric scintillation is one of the important factors that affect the performance

More information

HAARP Generated ELF/VLF Waves for Magnetospheric Probing. Mark Gołkowski

HAARP Generated ELF/VLF Waves for Magnetospheric Probing. Mark Gołkowski HAARP Generated ELF/VLF Waves for Magnetospheric Probing Mark Gołkowski University of Colorado Denver M.B. Cohen, U. S. Inan, D. Piddyachiy Stanford University RF Ionospheric Workshop 20 April 2010 Outline

More information

Ionospheric Propagation

Ionospheric Propagation Ionospheric Propagation Page 1 Ionospheric Propagation The ionosphere exists between about 90 and 1000 km above the earth s surface. Radiation from the sun ionizes atoms and molecules here, liberating

More information

Monitoring Solar flares by Radio Astronomy

Monitoring Solar flares by Radio Astronomy Monitoring Solar flares by Radio Astronomy Presented at the RASC Sunshine Coast Centre, February 8th, 2013, 7:30 pm Mike Bradley, RASC Sunshine Coast Centre Solar flares Solar flares occur when sunspots

More information

Modeling and Subionospheric VLF perturbations caused by direct and indirect effects of lightning

Modeling and Subionospheric VLF perturbations caused by direct and indirect effects of lightning Modeling and Subionospheric VLF perturbations caused by direct and indirect effects of lightning Prepared by Benjamin Cotts Stanford University, Stanford, CA IHY Workshop on Advancing VLF through the Global

More information

RFI Monitoring and Analysis at Decameter Wavelengths. RFI Monitoring and Analysis

RFI Monitoring and Analysis at Decameter Wavelengths. RFI Monitoring and Analysis Observatoire de Paris-Meudon Département de Radio-Astronomie CNRS URA 1757 5, Place Jules Janssen 92195 MEUDON CEDEX " " Vincent CLERC and Carlo ROSOLEN E-mail adresses : Carlo.rosolen@obspm.fr Vincent.clerc@obspm.fr

More information

Earthquake Analysis over the Equatorial

Earthquake Analysis over the Equatorial Earthquake Analysis over the Equatorial Region by Using the Critical Frequency Data and Geomagnetic Index Earthquake Analysis over the Equatorial Region by Using the Critical Frequency Data and Geomagnetic

More information

Experimental Observations of ELF/VLF Wave Generation Using Optimized Beam-Painting

Experimental Observations of ELF/VLF Wave Generation Using Optimized Beam-Painting Experimental Observations of ELF/VLF Wave Generation Using Optimized Beam-Painting R. C. Moore Department of Electrical and Computer Engineering University of Florida, Gainesville, FL 32611. Abstract Observations

More information

OVERVIEW OF LIGHTNING OBSERVATION NETWORK WITH ELF VLF ELECTROMAGNETIC MEASUREMENTS OVER TOKYO METROPOLITAN AREA

OVERVIEW OF LIGHTNING OBSERVATION NETWORK WITH ELF VLF ELECTROMAGNETIC MEASUREMENTS OVER TOKYO METROPOLITAN AREA GEOGRAPHICAL REPORTS OF TOKYO METROPOLITAN UNIVERSITY 49 (2014) 13 22 OVERVIEW OF LIGHTNING OBSERVATION NETWORK WITH ELF VLF ELECTROMAGNETIC MEASUREMENTS OVER TOKYO METROPOLITAN AREA HAMADA Jun-Ichi, Kozo

More information

Data Analysis for Lightning Electromagnetics

Data Analysis for Lightning Electromagnetics Data Analysis for Lightning Electromagnetics Darwin Goei, Department of Electrical and Computer Engineering Advisor: Steven A. Cummer, Assistant Professor Abstract Two projects were conducted in my independent

More information

VARIATIONS OF VLF SIGNALS RECEIVED ON DEMETER SATELLITE. IN ASSOCIATION WITH SEISMICITY A. Rozhnoi 1, M. Solovieva 1, Molchanov O.

VARIATIONS OF VLF SIGNALS RECEIVED ON DEMETER SATELLITE. IN ASSOCIATION WITH SEISMICITY A. Rozhnoi 1, M. Solovieva 1, Molchanov O. VARIATIONS OF VLF SIGNALS RECEIVED ON DEMETER SATELLITE IN ASSOCIATION WITH SEISMICITY A. Rozhnoi 1, M. Solovieva 1, Molchanov O. 1 1 Institute of the Earth Physics, RAS, Bolshaya Gruzinskaya 10, Moscow,

More information

Daytime Mid-Latitude D-region Parameters at Solar Minimum from Short Path VLF Phase and Amplitude

Daytime Mid-Latitude D-region Parameters at Solar Minimum from Short Path VLF Phase and Amplitude 1 Daytime Mid-Latitude D-region Parameters at Solar Minimum from Short Path VLF Phase and Amplitude Neil R. Thomson Physics Department, University of Otago, Dunedin, New Zealand Mark A. Clilverd British

More information

NUMERICAL MODELING OF MULTIMODE TWEEK-ATMOSPHERICS IN THE EARTH-IONOSPHERE WAVEGUIDE

NUMERICAL MODELING OF MULTIMODE TWEEK-ATMOSPHERICS IN THE EARTH-IONOSPHERE WAVEGUIDE ISSN 60 (Print), ISSN (Online) безпека на залізничному транспорті, 0, 8 УДК 0.88. T. M. SERDYUK cand. tech. sc., associate prof., Dnepropetrovsk National University of Railway Transport named after akad.

More information

An enhancement of the ionospheric sporadic-e layer in response to negative polarity cloud-to-ground lightning

An enhancement of the ionospheric sporadic-e layer in response to negative polarity cloud-to-ground lightning GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L05815, doi:10.1029/2007gl031909, 2008 An enhancement of the ionospheric sporadic-e layer in response to negative polarity cloud-to-ground lightning C. J. Davis 1

More information

Ionospheric Propagation

Ionospheric Propagation Ionospheric Nick Massey VA7NRM 1 Electromagnetic Spectrum Radio Waves are a form of Electromagnetic Radiation Visible Light is also a form of Electromagnetic Radiation Radio Waves behave a lot like light

More information

High time resolution observations of HF cross-modulation within the D region ionosphere

High time resolution observations of HF cross-modulation within the D region ionosphere GEOPHYSICAL RESEARCH LETTERS, VOL. 4, 1912 1916, doi:1.12/grl.5391, 213 High time resolution observations of HF cross-modulation within the D region ionosphere J. Langston 1 andr.c.moore 1 Received 17

More information

Long-range tracking of thunderstorms using sferic measurements

Long-range tracking of thunderstorms using sferic measurements JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. D21, 4553, doi:10.1029/2001jd002008, 2002 Long-range tracking of thunderstorms using sferic measurements T. G. Wood and U. S. Inan STAR Laboratory, Stanford

More information

A generation mechanism of chorus emissions using BWO theory

A generation mechanism of chorus emissions using BWO theory Journal of Physics: Conference Series A generation mechanism of chorus emissions using BWO theory To cite this article: Ashutosh K Singh et al 2010 J. Phys.: Conf. Ser. 208 012067 View the article online

More information

ELECTROMAGNETIC PROPAGATION (ALT, TEC)

ELECTROMAGNETIC PROPAGATION (ALT, TEC) ELECTROMAGNETIC PROPAGATION (ALT, TEC) N. Picot CNES, 18 Av Ed Belin, 31401 Toulouse, France Email : Nicolas.Picot@cnes.fr ABSTRACT For electromagnetic propagation, the ionosphere plays a key role. This

More information

Storms in Earth s ionosphere

Storms in Earth s ionosphere Storms in Earth s ionosphere Archana Bhattacharyya Indian Institute of Geomagnetism IISF 2017, WSE Conclave; Anna University, Chennai Earth s Ionosphere Ionosphere is the region of the atmosphere in which

More information

Lightning-associated VLF perturbations observed at low latitude: Occurrence and scattering characteristics

Lightning-associated VLF perturbations observed at low latitude: Occurrence and scattering characteristics Earth Planets Space, 65, 25 37, 2013 Lightning-associated VLF perturbations observed at low latitude: Occurrence and scattering characteristics Sushil Kumar and Abhikesh Kumar School of Engineering and

More information

Lightning-driven electric fields measured in the lower ionosphere: Implications for transient luminous events

Lightning-driven electric fields measured in the lower ionosphere: Implications for transient luminous events Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2008ja013567, 2008 Lightning-driven electric fields measured in the lower ionosphere: Implications for transient luminous

More information

Determination of the correlation distance for spaced antennas on multipath HF links and implications for design of SIMO and MIMO systems.

Determination of the correlation distance for spaced antennas on multipath HF links and implications for design of SIMO and MIMO systems. Determination of the correlation distance for spaced antennas on multipath HF links and implications for design of SIMO and MIMO systems. Hal J. Strangeways, School of Electronic and Electrical Engineering,

More information

Modeling the ionospheric response to the 28 October 2003 solar flare due to coupling with the thermosphere

Modeling the ionospheric response to the 28 October 2003 solar flare due to coupling with the thermosphere RADIO SCIENCE, VOL. 44,, doi:10.1029/2008rs004081, 2009 Modeling the ionospheric response to the 28 October 2003 solar flare due to coupling with the thermosphere David J. Pawlowski 1 and Aaron J. Ridley

More information

A method for automatic scaling of F1 critical frequencies from ionograms

A method for automatic scaling of F1 critical frequencies from ionograms RADIO SCIENCE, VOL. 43,, doi:10.1029/2007rs003723, 2008 A method for automatic scaling of F1 critical frequencies from ionograms Michael Pezzopane 1 and Carlo Scotto 1 Received 4 July 2007; revised 3 October

More information

Diurnal Variation of VLF Radio Wave Signal Strength at 19.8 and 24 khz Received at Khatav India (16 o 46ʹN, 75 o 53ʹE)

Diurnal Variation of VLF Radio Wave Signal Strength at 19.8 and 24 khz Received at Khatav India (16 o 46ʹN, 75 o 53ʹE) Research & Reviews: Journal of Space Science & Technology ISSN: 2321-2837 (Online), ISSN: 2321-6506 V(Print) Volume 6, Issue 2 www.stmjournals.com Diurnal Variation of VLF Radio Wave Signal Strength at

More information

Frequency-Agile Distributed-Sensor System (FADSS) Deployment in the Western United States: VLF Results

Frequency-Agile Distributed-Sensor System (FADSS) Deployment in the Western United States: VLF Results Frequency-Agile Distributed-Sensor System (FADSS) Deployment in the Western United States: VLF Results ABSTRACT D. D. Rice, J. V. Eccles, J. J. Sojka, J. W. Raitt, Space Environment Corporation 221 N.

More information