Digital Communication Systems Third year communications Midterm exam (15 points)

Size: px
Start display at page:

Download "Digital Communication Systems Third year communications Midterm exam (15 points)"

Transcription

1 Name: Section: BN: Digital Communication Systems Third year communications Midterm exam (15 points) May 2011 Time: 1.5 hours 1- Determine if the following sentences are true of false (correct answer 0.5 point, wrong or no answer 0).: 1 Any Random process consists of infinite number of RVs. One random variable at True each time instant 2 If X(t)=cos(2*pi*t+theta) is a R.P., where theta takes two values (0,pi) with equal False probabilities. Then X(t=1/4) is a R.V. that can take two values only with equal probabilities. [It will only take one value, which is 0] 3 The mean of X(t) in (2) is cos(2*pi*t+pi/2) [The mean is 0] False 4 X(t) in (2) is stationary [non stationary as the pdf of the R.V at different time False instants is not the same] 5 Any random process should start at inf and end at +inf [The temperature False random process that we take in the first lecture] 6 Power Spectral Density (PSD) exists for all R.Ps [only for stationary R.P] False 7 Any periodic stationary random process should have tones in its PSD True 8 When a stationary R.P passes by a time variant system, the output R.P will still be False stationary. [because it is time variant, not time invariant] 9 Matched filter (M.F.) is used to remove the effect of noise from the signal [it only maximizes the SNR after the filter, but there no filter that removes the effect of noise] False 10 When the M.F. of the signal is multiplied by a real number, it will still be a True matched filter 11 For the same received signal to noise ratio, the M.F. is the best filter that will True result in the minimum BER. [because it maximizes the SNR after the filter] 12 Intersymbol interference is the interference due to the transmission of two False symbols on the real and imaginary components at the same time [wrong definition] 13 If there is infinite BW channel, no external interference and no noise effect, then False the maximum symbol rate on this channel is 1M symbols/second [no limit] 14 The power of unfiltered AWGN is infinity True 15 When sending a raised cosine signal from the transmitter through a channel with False δ(t) impulse response and receiving it with a MF, the system will have zero ISI 1 / 5

2 [square root raised cosine should be transmitted. The conv between raised cosine at the transmitter and its MF at the receiver will not give zero ISI] 16 When sending a sinc signal with zero crossings at multiples of the symbol duration from the transmitter through a channel with impulse response = δ(t)+ δ(t- T/4) and receiving it with a M.F., the system will have zero ISI [channel effect should be removed by an equalizer] False 2 / 5

3 2- Fill in the missing parts of the code (2.5 points, any mistake = -0.5 points.) : It is required to generate an ensemble that consists of 500 waveforms, each containing 100 bits, for the polar NRZ line code and compute its statistical mean. The sampling time of the waveforms is 10ms, and the bit duration is 100ms. %% Polar NRZ code clear num_samples_per_bit = 10; % the sampling time is 10 ms, and the bit duration is 70 ms num_bits = 100; % number of bits per waveform total_samples = num_samples_per_bit * (num_bits);% total number of samples in the waveform s1=ones(1,num_samples_per_bit); % logic '1' is mapped to +1, but this will be repeated 7 times to be sent as a symbol s0=-ones(1,num_samples_per_bit);% logic '0' is mapped to -1, but this will be repeated 7 times to be sent as a symbol %%% generate num_bits symbols tot_syms = []; num_waveforms = 500; % generate the waveforms with random initial shift for v=1:num_waveforms % loop over all waveforms random_shift = randint(1,1,[0 num_samples_per_bit-1]); % the random initial shift syms_to_transmit = []; for u=1:(num_bits+1) if(rand>0.5) s = s1; else s=s0; end; %send s1 or s0 with probability 50% if(u==1) % for the first bit, shift the transmitted symbol to the left by random_shift samples s=s(random_shift+1:end);% take the last 7-random_shift samples elseif(u==num_bits)% at the last bit, take only the first random_shift samples s=s(1:random_shift);% take the first random_shift samples end; syms_to_transmit = [syms_to_transmit s]; end tot_syms=[tot_syms ;syms_to_transmit]; end % for copyright purposes, part of the previous code was taken from a report % from last year's students and edited in it. ensemble_mean = sum(tot_syms)/num_waveforms; 3 / 5

4 3- Answer the following questions: 1- (3 points) Can these signals be the output of a signal passed by its M.F. (ignore the noise effect)? The signal has a symbol duration = T. Justify your answer. A 0 2T t No, for few reasons: 1- The output of the MF is the result of the convolution between two energy limited signals and it is not possible to have sharp edges at 0 and 2T 2- The M.F freq response is { H * (f)exp(-j2πft) }, Hence the freq response of the output of the M.F is H(f) 2 exp(- j2πft). That means that, by ignoring the linear phase which only represents the delay of the output signal by (T), the spectrum of the output of the matched filter should be +ve, because the term H(f) 2 is +ve. However, the response of the previous rect pulse is sinc in the frequency domain, which has both +ve and ve parts. A 0 T 2T t No, for few reasons: 1- The output of the MF is the result of the convolution between two energy limited signals and it is not possible to have sharp edges at 0 2- The M.F freq response is { H * (f)exp(-j2πft) }, Hence the result of the output of the M.F is H(f) 2 exp(-j2πft). That means that, by ignoring the linear phase which only represents the delay of the output signal by (T), the spectrum of the output of the matched filter should be even, because, for real signals, H(f) = H * (-f). Hence H(f) 2 = H(-f) 2, which means that it is both real and even. So, the output of the matched filter in the time domain should also be real and even function, shifted by (T). The function shown in the figure is not an even function shifted by (T), so it is not possible to be the output of a matched filter Try any real g(t) in MATLAB that has any shape and convolve it with its matched filter to verify that the output of the matched filter is an even function shifted at (T) 4 / 5

5 2- (2.5 points) An analog signal of bandwidth of 10 khz is sampled at a rate of 24 khz, quantized into 256 levels and coded using M-ary multi-amplitude pulses satisfying the Nyquist criterion with a roll-off factor 0.2. A 30 khz one sided bandwidth total of 60 khz in both positive and negative frequencies is available to transmit the data. Determine the smallest acceptable M? You should be able to solve this easy question! Note that the 10kHz at the first sentence will not be used Try to solve it! I guess you should understand this hint! 5 / 5

QUESTION BANK SUBJECT: DIGITAL COMMUNICATION (15EC61)

QUESTION BANK SUBJECT: DIGITAL COMMUNICATION (15EC61) QUESTION BANK SUBJECT: DIGITAL COMMUNICATION (15EC61) Module 1 1. Explain Digital communication system with a neat block diagram. 2. What are the differences between digital and analog communication systems?

More information

EE390 Final Exam Fall Term 2002 Friday, December 13, 2002

EE390 Final Exam Fall Term 2002 Friday, December 13, 2002 Name Page 1 of 11 EE390 Final Exam Fall Term 2002 Friday, December 13, 2002 Notes 1. This is a 2 hour exam, starting at 9:00 am and ending at 11:00 am. The exam is worth a total of 50 marks, broken down

More information

EE3723 : Digital Communications

EE3723 : Digital Communications EE3723 : Digital Communications Week 11, 12: Inter Symbol Interference (ISI) Nyquist Criteria for ISI Pulse Shaping and Raised-Cosine Filter Eye Pattern Equalization (On Board) 01-Jun-15 Muhammad Ali Jinnah

More information

EE5713 : Advanced Digital Communications

EE5713 : Advanced Digital Communications EE573 : Advanced Digital Communications Week 4, 5: Inter Symbol Interference (ISI) Nyquist Criteria for ISI Pulse Shaping and Raised-Cosine Filter Eye Pattern Error Performance Degradation (On Board) Demodulation

More information

Principles of Baseband Digital Data Transmission

Principles of Baseband Digital Data Transmission Principles of Baseband Digital Data Transmission Prof. Wangrok Oh Dept. of Information Communications Eng. Chungnam National University Prof. Wangrok Oh(CNU) / 3 Overview Baseband Digital Data Transmission

More information

Exam in 1TT850, 1E275. Modulation, Demodulation and Coding course

Exam in 1TT850, 1E275. Modulation, Demodulation and Coding course Exam in 1TT850, 1E275 Modulation, Demodulation and Coding course EI, TF, IT programs 16th of August 2004, 14:00-19:00 Signals and systems, Uppsala university Examiner Sorour Falahati office: 018-471 3071

More information

Lab 3.0. Pulse Shaping and Rayleigh Channel. Faculty of Information Engineering & Technology. The Communications Department

Lab 3.0. Pulse Shaping and Rayleigh Channel. Faculty of Information Engineering & Technology. The Communications Department Faculty of Information Engineering & Technology The Communications Department Course: Advanced Communication Lab [COMM 1005] Lab 3.0 Pulse Shaping and Rayleigh Channel 1 TABLE OF CONTENTS 2 Summary...

More information

Revision of Wireless Channel

Revision of Wireless Channel Revision of Wireless Channel Quick recap system block diagram CODEC MODEM Wireless Channel Previous three lectures looked into wireless mobile channels To understand mobile communication technologies,

More information

Objectives. Presentation Outline. Digital Modulation Lecture 03

Objectives. Presentation Outline. Digital Modulation Lecture 03 Digital Modulation Lecture 03 Inter-Symbol Interference Power Spectral Density Richard Harris Objectives To be able to discuss Inter-Symbol Interference (ISI), its causes and possible remedies. To be able

More information

Digital Communication System

Digital Communication System Digital Communication System Purpose: communicate information at certain rate between geographically separated locations reliably (quality) Important point: rate, quality spectral bandwidth requirement

More information

Contents. 7.1 Line Coding. Dr. Ali Muqaibel [Principles of Digital Transmission ]

Contents. 7.1 Line Coding. Dr. Ali Muqaibel [Principles of Digital Transmission ] Contents 7.1 Line Coding... 1 Performance Criteria of Line Codes... 4 Advanced Examples in Line Coding: High Density Bipolar (HDBN)... 5 7. Power Spectral Density of Line Codes... 5 7.3 Pulse shaping and

More information

TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY An Overview of Modulation Techniques: chapter 3.1 3.3.1 2 Introduction (3.1) Analog Modulation Amplitude Modulation Phase and

More information

Exercises for chapter 2

Exercises for chapter 2 Exercises for chapter Digital Communications A baseband PAM system uses as receiver filter f(t) a matched filter, f(t) = g( t), having two choices for transmission filter g(t) g a (t) = ( ) { t Π =, t,

More information

TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY 2 Basic Definitions Time and Frequency db conversion Power and dbm Filter Basics 3 Filter Filter is a component with frequency

More information

Text Book: Simon Haykin & Michael Moher,

Text Book: Simon Haykin & Michael Moher, Qassim University College of Engineering Electrical Engineering Department Electronics and Communications Course: EE322 Digital Communications Prerequisite: EE320 Text Book: Simon Haykin & Michael Moher,

More information

Problems from the 3 rd edition

Problems from the 3 rd edition (2.1-1) Find the energies of the signals: a) sin t, 0 t π b) sin t, 0 t π c) 2 sin t, 0 t π d) sin (t-2π), 2π t 4π Problems from the 3 rd edition Comment on the effect on energy of sign change, time shifting

More information

Lab course Analog Part of a State-of-the-Art Mobile Radio Receiver

Lab course Analog Part of a State-of-the-Art Mobile Radio Receiver Communication Technology Laboratory Wireless Communications Group Prof. Dr. A. Wittneben ETH Zurich, ETF, Sternwartstrasse 7, 8092 Zurich Tel 41 44 632 36 11 Fax 41 44 632 12 09 Lab course Analog Part

More information

Chapter 2: Signal Representation

Chapter 2: Signal Representation Chapter 2: Signal Representation Aveek Dutta Assistant Professor Department of Electrical and Computer Engineering University at Albany Spring 2018 Images and equations adopted from: Digital Communications

More information

Comm 502: Communication Theory

Comm 502: Communication Theory Comm 50: Communication Theory Prof. Dean of the faculty of IET The German University in Cairo 1 COMM 50: Communication Theory Instructor: Ahmed El-Mahdy Office : C3.319 Lecture Time: Sat. nd Slot Office

More information

Digital Communication System

Digital Communication System Digital Communication System Purpose: communicate information at required rate between geographically separated locations reliably (quality) Important point: rate, quality spectral bandwidth, power requirements

More information

Objectives. Presentation Outline. Digital Modulation Revision

Objectives. Presentation Outline. Digital Modulation Revision Digital Modulation Revision Professor Richard Harris Objectives To identify the key points from the lecture material presented in the Digital Modulation section of this paper. What is in the examination

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2003 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

Effects of Fading Channels on OFDM

Effects of Fading Channels on OFDM IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719, Volume 2, Issue 9 (September 2012), PP 116-121 Effects of Fading Channels on OFDM Ahmed Alshammari, Saleh Albdran, and Dr. Mohammad

More information

Communications I (ELCN 306)

Communications I (ELCN 306) Communications I (ELCN 306) c Samy S. Soliman Electronics and Electrical Communications Engineering Department Cairo University, Egypt Email: samy.soliman@cu.edu.eg Website: http://scholar.cu.edu.eg/samysoliman

More information

Theory of Telecommunications Networks

Theory of Telecommunications Networks Theory of Telecommunications Networks Anton Čižmár Ján Papaj Department of electronics and multimedia telecommunications CONTENTS Preface... 5 1 Introduction... 6 1.1 Mathematical models for communication

More information

Handout 11: Digital Baseband Transmission

Handout 11: Digital Baseband Transmission ENGG 23-B: Principles of Communication Systems 27 8 First Term Handout : Digital Baseband Transmission Instructor: Wing-Kin Ma November 7, 27 Suggested Reading: Chapter 8 of Simon Haykin and Michael Moher,

More information

Wireless Communication Systems Laboratory Lab#1: An introduction to basic digital baseband communication through MATLAB simulation Objective

Wireless Communication Systems Laboratory Lab#1: An introduction to basic digital baseband communication through MATLAB simulation Objective Wireless Communication Systems Laboratory Lab#1: An introduction to basic digital baseband communication through MATLAB simulation Objective The objective is to teach students a basic digital communication

More information

PULSE SHAPING AND RECEIVE FILTERING

PULSE SHAPING AND RECEIVE FILTERING PULSE SHAPING AND RECEIVE FILTERING Pulse and Pulse Amplitude Modulated Message Spectrum Eye Diagram Nyquist Pulses Matched Filtering Matched, Nyquist Transmit and Receive Filter Combination adaptive components

More information

Module 4. Signal Representation and Baseband Processing. Version 2 ECE IIT, Kharagpur

Module 4. Signal Representation and Baseband Processing. Version 2 ECE IIT, Kharagpur Module 4 Signal Representation and Baseband Processing Lesson 1 Nyquist Filtering and Inter Symbol Interference After reading this lesson, you will learn about: Power spectrum of a random binary sequence;

More information

Biomedical Signals. Signals and Images in Medicine Dr Nabeel Anwar

Biomedical Signals. Signals and Images in Medicine Dr Nabeel Anwar Biomedical Signals Signals and Images in Medicine Dr Nabeel Anwar Noise Removal: Time Domain Techniques 1. Synchronized Averaging (covered in lecture 1) 2. Moving Average Filters (today s topic) 3. Derivative

More information

The figures and the logic used for the MATLAB are given below.

The figures and the logic used for the MATLAB are given below. MATLAB FIGURES & PROGRAM LOGIC: Transmitter: The figures and the logic used for the MATLAB are given below. Binary Data Sequence: For our project we assume that we have the digital binary data stream.

More information

I-Q transmission. Lecture 17

I-Q transmission. Lecture 17 I-Q Transmission Lecture 7 I-Q transmission i Sending Digital Data Binary Phase Shift Keying (BPSK): sending binary data over a single frequency band Quadrature Phase Shift Keying (QPSK): sending twice

More information

Downloaded from 1

Downloaded from  1 VII SEMESTER FINAL EXAMINATION-2004 Attempt ALL questions. Q. [1] How does Digital communication System differ from Analog systems? Draw functional block diagram of DCS and explain the significance of

More information

SAMPLING THEORY. Representing continuous signals with discrete numbers

SAMPLING THEORY. Representing continuous signals with discrete numbers SAMPLING THEORY Representing continuous signals with discrete numbers Roger B. Dannenberg Professor of Computer Science, Art, and Music Carnegie Mellon University ICM Week 3 Copyright 2002-2013 by Roger

More information

Handout 13: Intersymbol Interference

Handout 13: Intersymbol Interference ENGG 2310-B: Principles of Communication Systems 2018 19 First Term Handout 13: Intersymbol Interference Instructor: Wing-Kin Ma November 19, 2018 Suggested Reading: Chapter 8 of Simon Haykin and Michael

More information

Implementation of Digital Signal Processing: Some Background on GFSK Modulation

Implementation of Digital Signal Processing: Some Background on GFSK Modulation Implementation of Digital Signal Processing: Some Background on GFSK Modulation Sabih H. Gerez University of Twente, Department of Electrical Engineering s.h.gerez@utwente.nl Version 5 (March 9, 2016)

More information

Fundamentals of Digital Communication

Fundamentals of Digital Communication Fundamentals of Digital Communication Network Infrastructures A.A. 2017/18 Digital communication system Analog Digital Input Signal Analog/ Digital Low Pass Filter Sampler Quantizer Source Encoder Channel

More information

UNIT TEST I Digital Communication

UNIT TEST I Digital Communication Time: 1 Hour Class: T.E. I & II Max. Marks: 30 Q.1) (a) A compact disc (CD) records audio signals digitally by using PCM. Assume the audio signal B.W. to be 15 khz. (I) Find Nyquist rate. (II) If the Nyquist

More information

a) Abasebanddigitalcommunicationsystemhasthetransmitterfilterg(t) thatisshowninthe figure, and a matched filter at the receiver.

a) Abasebanddigitalcommunicationsystemhasthetransmitterfilterg(t) thatisshowninthe figure, and a matched filter at the receiver. DIGITAL COMMUNICATIONS PART A (Time: 60 minutes. Points 4/0) Last Name(s):........................................................ First (Middle) Name:.................................................

More information

Lab/Project Error Control Coding using LDPC Codes and HARQ

Lab/Project Error Control Coding using LDPC Codes and HARQ Linköping University Campus Norrköping Department of Science and Technology Erik Bergfeldt TNE066 Telecommunications Lab/Project Error Control Coding using LDPC Codes and HARQ Error control coding is an

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2004 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2005 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

Fund. of Digital Communications Ch. 3: Digital Modulation

Fund. of Digital Communications Ch. 3: Digital Modulation Fund. of Digital Communications Ch. 3: Digital Modulation Klaus Witrisal witrisal@tugraz.at Signal Processing and Speech Communication Laboratory www.spsc.tugraz.at Graz University of Technology November

More information

Lecture 10 Performance of Communication System: Bit Error Rate (BER) EE4900/EE6720 Digital Communications

Lecture 10 Performance of Communication System: Bit Error Rate (BER) EE4900/EE6720 Digital Communications EE4900/EE6720: Digital Communications 1 Lecture 10 Performance of Communication System: Bit Error Rate (BER) Block Diagrams of Communication System Digital Communication System 2 Informatio n (sound, video,

More information

MSK has three important properties. However, the PSD of the MSK only drops by 10log 10 9 = 9.54 db below its midband value at ft b = 0.

MSK has three important properties. However, the PSD of the MSK only drops by 10log 10 9 = 9.54 db below its midband value at ft b = 0. Gaussian MSK MSK has three important properties Constant envelope (why?) Relatively narrow bandwidth Coherent detection performance equivalent to that of QPSK However, the PSD of the MSK only drops by

More information

2.1 BASIC CONCEPTS Basic Operations on Signals Time Shifting. Figure 2.2 Time shifting of a signal. Time Reversal.

2.1 BASIC CONCEPTS Basic Operations on Signals Time Shifting. Figure 2.2 Time shifting of a signal. Time Reversal. 1 2.1 BASIC CONCEPTS 2.1.1 Basic Operations on Signals Time Shifting. Figure 2.2 Time shifting of a signal. Time Reversal. 2 Time Scaling. Figure 2.4 Time scaling of a signal. 2.1.2 Classification of Signals

More information

1. Clearly circle one answer for each part.

1. Clearly circle one answer for each part. TB 10-15 / Exam Style Questions 1 EXAM STYLE QUESTIONS Covering Chapters 10-15 of Telecommunication Breakdown 1. Clearly circle one answer for each part. (a) TRUE or FALSE: For two rectangular impulse

More information

Comm 502: Communication Theory. Lecture 4. Line Coding M-ary PCM-Delta Modulation

Comm 502: Communication Theory. Lecture 4. Line Coding M-ary PCM-Delta Modulation Comm 502: Communication Theory Lecture 4 Line Coding M-ary PCM-Delta Modulation PCM Decoder PCM Waveform Types (Line Coding) Representation of binary sequence into the electrical signals that enter the

More information

Experiment # 5 Baseband Pulse Transmission

Experiment # 5 Baseband Pulse Transmission ECE 417 c 2017 Bruno Korst CommLab Name: Experiment # 5 Baseband Pulse Transmission Experiment Date: Student No.: Day of the week: Time: Name: Student No.: Grade: / 10 CHANNEL BIT SOURCE EYE DIAGRAM TX

More information

Communication Channels

Communication Channels Communication Channels wires (PCB trace or conductor on IC) optical fiber (attenuation 4dB/km) broadcast TV (50 kw transmit) voice telephone line (under -9 dbm or 110 µw) walkie-talkie: 500 mw, 467 MHz

More information

SPREAD SPECTRUM (SS) SIGNALS FOR DIGITAL COMMUNICATIONS

SPREAD SPECTRUM (SS) SIGNALS FOR DIGITAL COMMUNICATIONS Dr. Ali Muqaibel SPREAD SPECTRUM (SS) SIGNALS FOR DIGITAL COMMUNICATIONS VERSION 1.1 Dr. Ali Hussein Muqaibel 1 Introduction Narrow band signal (data) In Spread Spectrum, the bandwidth W is much greater

More information

Chapter-2 SAMPLING PROCESS

Chapter-2 SAMPLING PROCESS Chapter-2 SAMPLING PROCESS SAMPLING: A message signal may originate from a digital or analog source. If the message signal is analog in nature, then it has to be converted into digital form before it can

More information

END-OF-YEAR EXAMINATIONS ELEC321 Communication Systems (D2) Tuesday, 22 November 2005, 9:20 a.m. Three hours plus 10 minutes reading time.

END-OF-YEAR EXAMINATIONS ELEC321 Communication Systems (D2) Tuesday, 22 November 2005, 9:20 a.m. Three hours plus 10 minutes reading time. END-OF-YEAR EXAMINATIONS 2005 Unit: Day and Time: Time Allowed: ELEC321 Communication Systems (D2) Tuesday, 22 November 2005, 9:20 a.m. Three hours plus 10 minutes reading time. Total Number of Questions:

More information

Communication Systems

Communication Systems Electrical Engineering Communication Systems Comprehensive Theory with Solved Examples and Practice Questions Publications Publications MADE EASY Publications Corporate Office: 44-A/4, Kalu Sarai (Near

More information

Chapter 9. Digital Communication Through Band-Limited Channels. Muris Sarajlic

Chapter 9. Digital Communication Through Band-Limited Channels. Muris Sarajlic Chapter 9 Digital Communication Through Band-Limited Channels Muris Sarajlic Band limited channels (9.1) Analysis in previous chapters considered the channel bandwidth to be unbounded All physical channels

More information

Columbia University. Principles of Communication Systems ELEN E3701. Spring Semester May Final Examination

Columbia University. Principles of Communication Systems ELEN E3701. Spring Semester May Final Examination 1 Columbia University Principles of Communication Systems ELEN E3701 Spring Semester- 2006 9 May 2006 Final Examination Length of Examination- 3 hours Answer All Questions Good Luck!!! I. Kalet 2 Problem

More information

Line Coding for Digital Communication

Line Coding for Digital Communication Line Coding for Digital Communication How do we transmit bits over a wire, RF, fiber? Line codes, many options Power spectrum of line codes, how much bandwidth do they take Clock signal and synchronization

More information

Nyquist's criterion. Spectrum of the original signal Xi(t) is defined by the Fourier transformation as follows :

Nyquist's criterion. Spectrum of the original signal Xi(t) is defined by the Fourier transformation as follows : Nyquist's criterion The greatest part of information sources are analog, like sound. Today's telecommunication systems are mostly digital, so the most important step toward communicating is a signal digitization.

More information

Satellite Communications: Part 4 Signal Distortions & Errors and their Relation to Communication Channel Specifications. Howard Hausman April 1, 2010

Satellite Communications: Part 4 Signal Distortions & Errors and their Relation to Communication Channel Specifications. Howard Hausman April 1, 2010 Satellite Communications: Part 4 Signal Distortions & Errors and their Relation to Communication Channel Specifications Howard Hausman April 1, 2010 Satellite Communications: Part 4 Signal Distortions

More information

Digital Signal Analysis

Digital Signal Analysis Digital Signal Analysis Objectives - Provide a digital modulation overview - Review common digital radio impairments Digital Modulation Overview Signal Characteristics to Modify Polar Display / IQ Relationship

More information

Communication Systems

Communication Systems Electronics Engineering Communication Systems Comprehensive Theory with Solved Examples and Practice Questions Publications Publications MADE EASY Publications Corporate Office: 44-A/4, Kalu Sarai (Near

More information

Problem Sheets: Communication Systems

Problem Sheets: Communication Systems Problem Sheets: Communication Systems Professor A. Manikas Chair of Communications and Array Processing Department of Electrical & Electronic Engineering Imperial College London v.11 1 Topic: Introductory

More information

COMMUNICATION SYSTEMS

COMMUNICATION SYSTEMS COMMUNICATION SYSTEMS 4TH EDITION Simon Hayhin McMaster University JOHN WILEY & SONS, INC. Ш.! [ BACKGROUND AND PREVIEW 1. The Communication Process 1 2. Primary Communication Resources 3 3. Sources of

More information

DIGITAL COMMUNICATIONS SYSTEMS. MSc in Electronic Technologies and Communications

DIGITAL COMMUNICATIONS SYSTEMS. MSc in Electronic Technologies and Communications DIGITAL COMMUNICATIONS SYSTEMS MSc in Electronic Technologies and Communications Bandpass binary signalling The common techniques of bandpass binary signalling are: - On-off keying (OOK), also known as

More information

1.Explain the principle and characteristics of a matched filter. Hence derive the expression for its frequency response function.

1.Explain the principle and characteristics of a matched filter. Hence derive the expression for its frequency response function. 1.Explain the principle and characteristics of a matched filter. Hence derive the expression for its frequency response function. Matched-Filter Receiver: A network whose frequency-response function maximizes

More information

Matched filter. Contents. Derivation of the matched filter

Matched filter. Contents. Derivation of the matched filter Matched filter From Wikipedia, the free encyclopedia In telecommunications, a matched filter (originally known as a North filter [1] ) is obtained by correlating a known signal, or template, with an unknown

More information

EE 4440 Comm Theory Lab 5 Line Codes

EE 4440 Comm Theory Lab 5 Line Codes EE 4440 Comm Theory Lab 5 Line Codes Purpose: The purpose of this lab is to investigate the properties of various line codes. Specific parameters investigated will be wave shape, bandwidth, and transparency.

More information

ECE461: Digital Communications Lecture 9: Modeling the Wireline Channel: Intersymbol Interference

ECE461: Digital Communications Lecture 9: Modeling the Wireline Channel: Intersymbol Interference ECE461: Digital Communications Lecture 9: Modeling the Wireline Channel: Intersymbol Interference Introduction We are now ready to begin communicating reliably over our first physical medium: the wireline

More information

ICOM - Introduction to Communications

ICOM - Introduction to Communications Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2018 230 - ETSETB - Barcelona School of Telecommunications Engineering 739 - TSC - Department of Signal Theory and Communications

More information

ELT Receiver Architectures and Signal Processing Fall Mandatory homework exercises

ELT Receiver Architectures and Signal Processing Fall Mandatory homework exercises ELT-44006 Receiver Architectures and Signal Processing Fall 2014 1 Mandatory homework exercises - Individual solutions to be returned to Markku Renfors by email or in paper format. - Solutions are expected

More information

Detection and Estimation of Signals in Noise. Dr. Robert Schober Department of Electrical and Computer Engineering University of British Columbia

Detection and Estimation of Signals in Noise. Dr. Robert Schober Department of Electrical and Computer Engineering University of British Columbia Detection and Estimation of Signals in Noise Dr. Robert Schober Department of Electrical and Computer Engineering University of British Columbia Vancouver, August 24, 2010 2 Contents 1 Basic Elements

More information

! Multi-Rate Filter Banks (con t) ! Data Converters. " Anti-aliasing " ADC. " Practical DAC. ! Noise Shaping

! Multi-Rate Filter Banks (con t) ! Data Converters.  Anti-aliasing  ADC.  Practical DAC. ! Noise Shaping Lecture Outline ESE 531: Digital Signal Processing! (con t)! Data Converters Lec 11: February 16th, 2017 Data Converters, Noise Shaping " Anti-aliasing " ADC " Quantization "! Noise Shaping 2! Use filter

More information

145M Final Exam Solutions page 1 May 11, 2010 S. Derenzo R/2. Vref. Address encoder logic. Exclusive OR. Digital output (8 bits) V 1 2 R/2

145M Final Exam Solutions page 1 May 11, 2010 S. Derenzo R/2. Vref. Address encoder logic. Exclusive OR. Digital output (8 bits) V 1 2 R/2 UNIVERSITY OF CALIFORNIA College of Engineering Electrical Engineering and Computer Sciences Department 145M Microcomputer Interfacing Lab Final Exam Solutions May 11, 2010 1.1 Handshaking steps: When

More information

Amplitude Modulation, II

Amplitude Modulation, II Amplitude Modulation, II Single sideband modulation (SSB) Vestigial sideband modulation (VSB) VSB spectrum Modulator and demodulator NTSC TV signsals Quadrature modulation Spectral efficiency Modulator

More information

Revision of Lecture 2

Revision of Lecture 2 Revision of Lecture 2 Pulse shaping Tx/Rx filter pair Design of Tx/Rx filters (pulse shaping): to achieve zero ISI and to maximise received signal to noise ratio Combined Tx/Rx filters: Nyquist system

More information

ECE 4600 Communication Systems

ECE 4600 Communication Systems ECE 4600 Communication Systems Dr. Bradley J. Bazuin Associate Professor Department of Electrical and Computer Engineering College of Engineering and Applied Sciences Course Topics Course Introduction

More information

Signal Processing Techniques for Software Radio

Signal Processing Techniques for Software Radio Signal Processing Techniques for Software Radio Behrouz Farhang-Boroujeny Department of Electrical and Computer Engineering University of Utah c 2007, Behrouz Farhang-Boroujeny, ECE Department, University

More information

UNIT I Source Coding Systems

UNIT I Source Coding Systems SIDDHARTH GROUP OF INSTITUTIONS: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code: DC (16EC421) Year & Sem: III-B. Tech & II-Sem Course & Branch: B. Tech

More information

Signal Processing Summary

Signal Processing Summary Signal Processing Summary Jan Černocký, Valentina Hubeika {cernocky,ihubeika}@fit.vutbr.cz DCGM FIT BUT Brno, ihubeika@fit.vutbr.cz FIT BUT Brno Signal Processing Summary Jan Černocký, Valentina Hubeika,

More information

Wireless Channel Propagation Model Small-scale Fading

Wireless Channel Propagation Model Small-scale Fading Wireless Channel Propagation Model Small-scale Fading Basic Questions T x What will happen if the transmitter - changes transmit power? - changes frequency? - operates at higher speed? Transmit power,

More information

Wideband Channel Characterization. Spring 2017 ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1

Wideband Channel Characterization. Spring 2017 ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1 Wideband Channel Characterization Spring 2017 ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1 Wideband Systems - ISI Previous chapter considered CW (carrier-only) or narrow-band signals which do NOT

More information

EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss

EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss Introduction Small-scale fading is used to describe the rapid fluctuation of the amplitude of a radio

More information

The University of Texas at Austin Dept. of Electrical and Computer Engineering Final Exam

The University of Texas at Austin Dept. of Electrical and Computer Engineering Final Exam The University of Texas at Austin Dept. of Electrical and Computer Engineering Final Exam Date: December 18, 2017 Course: EE 313 Evans Name: Last, First The exam is scheduled to last three hours. Open

More information

Multi-Path Fading Channel

Multi-Path Fading Channel Instructor: Prof. Dr. Noor M. Khan Department of Electronic Engineering, Muhammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN Ph: +9 (51) 111-878787, Ext. 19 (Office), 186 (Lab) Fax: +9

More information

Small-Scale Fading I PROF. MICHAEL TSAI 2011/10/27

Small-Scale Fading I PROF. MICHAEL TSAI 2011/10/27 Small-Scale Fading I PROF. MICHAEL TSAI 011/10/7 Multipath Propagation RX just sums up all Multi Path Component (MPC). Multipath Channel Impulse Response An example of the time-varying discrete-time impulse

More information

DSP First. Laboratory Exercise #7. Everyday Sinusoidal Signals

DSP First. Laboratory Exercise #7. Everyday Sinusoidal Signals DSP First Laboratory Exercise #7 Everyday Sinusoidal Signals This lab introduces two practical applications where sinusoidal signals are used to transmit information: a touch-tone dialer and amplitude

More information

Digital Modulation Schemes

Digital Modulation Schemes Digital Modulation Schemes 1. In binary data transmission DPSK is preferred to PSK because (a) a coherent carrier is not required to be generated at the receiver (b) for a given energy per bit, the probability

More information

Chapter 3 Data Transmission COSC 3213 Summer 2003

Chapter 3 Data Transmission COSC 3213 Summer 2003 Chapter 3 Data Transmission COSC 3213 Summer 2003 Courtesy of Prof. Amir Asif Definitions 1. Recall that the lowest layer in OSI is the physical layer. The physical layer deals with the transfer of raw

More information

EXPERIMENT WISE VIVA QUESTIONS

EXPERIMENT WISE VIVA QUESTIONS EXPERIMENT WISE VIVA QUESTIONS Pulse Code Modulation: 1. Draw the block diagram of basic digital communication system. How it is different from analog communication system. 2. What are the advantages of

More information

S Transmission Methods in Telecommunication Systems (5 cr) Tutorial 4/2007 (Lectures 6 and 7)

S Transmission Methods in Telecommunication Systems (5 cr) Tutorial 4/2007 (Lectures 6 and 7) S-7.1140 Transmission Methods in Telecommunication Systems (5 cr) Tutorial 4/007 (Lectures 6 and 7) 1 1. Line Codes / Johtokoodit Sketch beneath each other line codes Manchester, Differential Manchester

More information

QUESTION BANK (VI SEM ECE) (DIGITAL COMMUNICATION)

QUESTION BANK (VI SEM ECE) (DIGITAL COMMUNICATION) QUESTION BANK (VI SEM ECE) (DIGITAL COMMUNICATION) UNIT-I: PCM & Delta modulation system Q.1 Explain the difference between cross talk & intersymbol interference. Q.2 What is Quantization error? How does

More information

Sixth Semester B.E. Degree Examination, May/June 2010 Digital Communication Note: Answer any FIVEfull questions, selecting at least TWO questionsfrom each part. PART-A a. With a block diagram, explain

More information

Problem Sheet 1 Probability, random processes, and noise

Problem Sheet 1 Probability, random processes, and noise Problem Sheet 1 Probability, random processes, and noise 1. If F X (x) is the distribution function of a random variable X and x 1 x 2, show that F X (x 1 ) F X (x 2 ). 2. Use the definition of the cumulative

More information

Data Communications and Networks

Data Communications and Networks Data Communications and Networks Abdul-Rahman Mahmood http://alphapeeler.sourceforge.net http://pk.linkedin.com/in/armahmood abdulmahmood-sss twitter.com/alphapeeler alphapeeler.sourceforge.net/pubkeys/pkey.htm

More information

Channel. Muhammad Ali Jinnah University, Islamabad Campus, Pakistan. Multi-Path Fading. Dr. Noor M Khan EE, MAJU

Channel. Muhammad Ali Jinnah University, Islamabad Campus, Pakistan. Multi-Path Fading. Dr. Noor M Khan EE, MAJU Instructor: Prof. Dr. Noor M. Khan Department of Electronic Engineering, Muhammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN Ph: +9 (51) 111-878787, Ext. 19 (Office), 186 (Lab) Fax: +9

More information

Muhammad Ali Jinnah University, Islamabad Campus, Pakistan. Fading Channel. Base Station

Muhammad Ali Jinnah University, Islamabad Campus, Pakistan. Fading Channel. Base Station Fading Lecturer: Assoc. Prof. Dr. Noor M Khan Department of Electronic Engineering, Muhammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN Ph: +9 (51) 111-878787, Ext. 19 (Office), 186 (ARWiC

More information

What if the bandpass and complex baseband signals are random processes? How are their statistics (autocorrelation, power density) related?

What if the bandpass and complex baseband signals are random processes? How are their statistics (autocorrelation, power density) related? .3 Bandpass Random Processes [P4.1.4].3-1 What if the bandpass and complex baseband signals are random processes? How are their statistics (autocorrelation, power density) related?.3.1 Complex Random Processes

More information

Jitter in Digital Communication Systems, Part 1

Jitter in Digital Communication Systems, Part 1 Application Note: HFAN-4.0.3 Rev.; 04/08 Jitter in Digital Communication Systems, Part [Some parts of this application note first appeared in Electronic Engineering Times on August 27, 200, Issue 8.] AVAILABLE

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 121 FINAL EXAM

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 121 FINAL EXAM Name: UNIVERSIY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Professor David se EECS 121 FINAL EXAM 21 May 1997, 5:00-8:00 p.m. Please write answers on

More information

Using Raised Cosine Filter to Reduce Inter Symbol Interference in OFDM with BPSK Technique

Using Raised Cosine Filter to Reduce Inter Symbol Interference in OFDM with BPSK Technique Using Raised Cosine Filter to Reduce Inter Symbol Interference in OFDM with BPSK Technique Khalid Aslam 1,*, Bodiuzzaman Molla 2, Md. Jashim uddin 3,Prof. Wlodek Kulesza 4 1 MSc EE Manager / Kundekonsulent

More information