# Implementation of Digital Signal Processing: Some Background on GFSK Modulation

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Implementation of Digital Signal Processing: Some Background on GFSK Modulation Sabih H. Gerez University of Twente, Department of Electrical Engineering Version 5 (March 9, 2016) This document provides some background information on GFSK modulation on behalf of student exercises for the course Implementation of Digital Signal Processing as taught at the University of Twente 1. 1 Principle Gaussian frequency shift keying (GFSK) is a modulation method for digital communication found in many standards such as Bluetooth, DECT and Wavenis. Digital communication amounts to translating symbols from a discrete alphabet into a signal that the transmitting side can send into a transmission medium and from which the receiving side can recover the original symbols. In the context of this example, the alphabet has only two symbols 0 and 1. When the alphabet consists of just two symbols, the symbols are called bits. The modulation method is a variant of frequency modulation (FM) of some carrier frequency ω c. 2 Frequency shift keying (FSK) conveys information by decreasing the carrier frequency for the duration of a 0 symbol and increasing the frequency for the duration of a 1 symbol. If one applies Gaussian filtering to the square-wave signal that would shift the carrier frequency, one gets GFSK. The models presented here are restricted to the digital part of the entire communication system using an intermediate frequency ω IF as carrier frequency. In a real-life system, the signals traveling between antennas have a (much) higher carrier frequency, the so-called radio frequency ω RF. Analog circuits are normally used for upconversion to RF at the transmitter and downconversion to IF at the receiver. An analog-to-digital converter (ADC) at the receiver side, brings the signal back to the digital domain. The discussion below leaves out the RF part of the signal processing chain and pretends that the communication takes place at IF. 2 Transmitter The transmitted signal s(t) can be described by a cosine at ω IF with a time-dependent phase: s(t) = A cos(ω IF t + φ(t)) (1) 1 gerezsh/vlsidsp/index.html 2 In this document the term frequency is sloppily used for what is actually the angular frequency ω: ω = 2πf. 1

2 In this formula, A is the signal s amplitude which is constant as the modulation only affects phase. φ(t) is derived from the bits that are transmitted: φ(t) = hπ t a i γ(τ it)dτ h is the modulation index: the larger the value, the wider the bandwidth occupied around the carrier. A frequently encountered case is: h = 0.5. Note that the case h = 0 represents an unmodulated carrier. a i is a sequence of numbers: +1 if the ith bit is 1 and 1 if that bit is 0. γ(t) is the frequency pulse. If no Gaussian filter would be applied (FSK instead of GFSK), the frequency pulse would be rectangular: 1 in the interval [0, ] and 0 outside this interval, where is the duration of one symbol. So, ignoring the sign of a i, the phase contribution of one symbol would be hπ. Continuing the reasoning, transmitting a continuous series of 1 s during 1 second would amount to a total phase shift of hπ. Note that the total phase shift in one second is equal to the angular frequency shift. The real frequency shift is then h. This means that the instantaneous frequency of an FSK signal is either f IF h or f IF + h ignoring the effects of switching between the two frequencies (f IF = ω IF 2π ). The Gaussian filter smoothens the shape of the frequency pulse and makes it wider than one symbol period (this causes intersymbol interference). The goal is to avoid the high frequencies caused by switching. When the sequence to be transmitted contains multiple equal bits, the effect of filtering dies out and the extreme instantaneous frequencies mentioned for FSK are reached. Otherwise, the frequency swing around ω IF is smaller. i The Gaussian filter is given by: g(t) = 1 2πσ e 1 2 ( t σ )2 where σ is related to the filter s 3-dB bandwidth B: ln2 σ = 2πB Note that the Gaussian filter s impulse response spans from to. For practical implementations, the span has to be limited. 3 Noise, SNR, and BER The communication channel is the connection between transmitter and receiver. Distortion of the signal by the channel affects the quality of the received signal. The considered design models so-called additive white Gaussian noise (AWGN) as the only source of distortion. If n(t) is the noise signal, the noisy signal s n (t) can simply be expressed as: s n (t) = s(t) + n(t) Note that the model does not introduce any attenuation to the signal. The noise is parameterized by the signal-to-noise ratio (SNR) which is the quotient of the signal power and the noise power (often expressed in db). In the model, the signal strength is kept constant and the noise power is chosen that corresponds to the given SNR. 2

3 When designing the GFSK receiver, the bit-error rate (BER), viz. the number of wrongly detected bits divided by the total number of transmitted bits, is the measure of quality. The design goal is to make the receiver as cheap as possible, for example in terms of logic gates in an ASIC realization, while satisfying the BER requirements. 4 Receiver A common method to extract the transmitted bits from the modulated signal is to shift the signal to baseband (to reduce the carrier frequency to zero), to filter the signal and then apply a so-called delay and multiply transformation. These steps will be explained in short below. First, the signal as described in Equation 1 will be rewritten to: s(t) = A cos((ω IF + ω d )t) Here, ω d is the instantaneous frequency offset due to modulation (remember that frequency is the time derivative of phase, so ω d = d dt φ(t)). So, if one would be able to know ω d for a specific symbol period, one would be able to know the value of the bit from the sign of ω d : ω d > 0 would mean that a 1 was received and ω d < 0 that a 0 was received. In order to eliminate ω IF, one can multiply s(t) with an unmodulated sine and cosine: i m (t) = s(t) cos(ω IF t) q m (t) = s(t) sin(ω IF t) This is called mixing. The two signals i m (t) and q m (t) are called the in-phase and quadrature components of the new signal. Following the product rules of trigonometry, one then gets: i m (t) = A 2 (cos((2ω IF + ω d )t) + cos(ω d t)) q m (t) = A 2 ( sin((2ω IF + ω d )t) + sin(ω d t)) The interpretation of these formulae is that both i m (t) and q m (t) will now contain the original signal twice: once around center frequency 2ω IF and once around center frequency 0. The signal component around 2ω IF can be removed by low-pass filtering to obtain: i l (t) = A 2 cos(ω dt) q l (t) = A 2 sin(ω dt) The delay-and-multiply operation is a classical technique for FM demodulation [1]. It amounts to computing: d(t) = q l (t) i l (t T) i l (t) q l (t T) Applying once again the product rules for sines and cosines, one finds: d(t) = A2 4 sin(ω d T) 3

5 The reference design takes a pragmatic approach on synchronization and decision. It has a block called the slicer for this purpose. Only the four samples of the symbol itself are considered. For the sake of simplicity, no samples of neighboring symbols are taken into account in spite of the presence of intersymbol interference. The four samples are added and then the sign of the sum is checked. Adding the four samples instead of inspecting just one, makes the decision more robust in the presence of noise. The hardware does not perform synchronization. Synchronization is supposed to be performed by an external hardware unit that provides a parameter called slicer offset which is an integer in the range from 0 to 3. The slicer continually adds the last four samples that it has received, but only updates its output when an internal modulo-4 counter has a value equal to slicer offset. As the output of the slicer only changes once in 4 samples, its output can be downsampled once again resulting in an output stream consisting of bits: one bit is delivered for each transmitted bit. References [1] J.H. Park. An FM detector for low S/N. IEEE Transactions on Communication Technology, COM- 18(2): , April [2] J.M.P. Langlois, D. Al-Khalili, and R.J. Inkol. Polyphase filter approach for high performance, FPGA-based quadrature demodulation. Journal of VLSI Signal Processing, 32: ,

### Code No: R Set No. 1

Code No: R05220405 Set No. 1 II B.Tech II Semester Regular Examinations, Apr/May 2007 ANALOG COMMUNICATIONS ( Common to Electronics & Communication Engineering and Electronics & Telematics) Time: 3 hours

### EE3723 : Digital Communications

EE3723 : Digital Communications Week 11, 12: Inter Symbol Interference (ISI) Nyquist Criteria for ISI Pulse Shaping and Raised-Cosine Filter Eye Pattern Equalization (On Board) 01-Jun-15 Muhammad Ali Jinnah

### Digital Communication System

Digital Communication System Purpose: communicate information at certain rate between geographically separated locations reliably (quality) Important point: rate, quality spectral bandwidth requirement

### PLC2 FPGA Days Software Defined Radio

PLC2 FPGA Days 2011 - Software Defined Radio 17 May 2011 Welcome to this presentation of Software Defined Radio as seen from the FPGA engineer s perspective! As FPGA designers, we find SDR a very exciting

### EE5713 : Advanced Digital Communications

EE573 : Advanced Digital Communications Week 4, 5: Inter Symbol Interference (ISI) Nyquist Criteria for ISI Pulse Shaping and Raised-Cosine Filter Eye Pattern Error Performance Degradation (On Board) Demodulation

### TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY 2 Basic Definitions Time and Frequency db conversion Power and dbm Filter Basics 3 Filter Filter is a component with frequency

Communication Technology Laboratory Wireless Communications Group Prof. Dr. A. Wittneben ETH Zurich, ETF, Sternwartstrasse 7, 8092 Zurich Tel 41 44 632 36 11 Fax 41 44 632 12 09 Lab course Analog Part

### Digital Communication System

Digital Communication System Purpose: communicate information at required rate between geographically separated locations reliably (quality) Important point: rate, quality spectral bandwidth, power requirements

### TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY An Overview of Modulation Techniques: chapter 3.1 3.3.1 2 Introduction (3.1) Analog Modulation Amplitude Modulation Phase and

### On-off keying, which consists of keying a sinusoidal carrier on and off with a unipolar binary signal

Bandpass signalling Thus far only baseband signalling has been considered: an information source is usually a baseband signal. Some communication channels have a bandpass characteristic, and will not propagate

### Chapter 3 Communication Concepts

Chapter 3 Communication Concepts 1 Sections to be covered 3.1 General Considerations 3.2 Analog Modulation 3.3 Digital Modulation 3.4 Spectral Regrowth 3.7 Wireless Standards 2 Chapter Outline Modulation

### Problems from the 3 rd edition

(2.1-1) Find the energies of the signals: a) sin t, 0 t π b) sin t, 0 t π c) 2 sin t, 0 t π d) sin (t-2π), 2π t 4π Problems from the 3 rd edition Comment on the effect on energy of sign change, time shifting

### Revision of Wireless Channel

Revision of Wireless Channel Quick recap system block diagram CODEC MODEM Wireless Channel Previous three lectures looked into wireless mobile channels To understand mobile communication technologies,

### Digital Modulation Schemes

Digital Modulation Schemes 1. In binary data transmission DPSK is preferred to PSK because (a) a coherent carrier is not required to be generated at the receiver (b) for a given energy per bit, the probability

### Chapter 3. Amplitude Modulation Fundamentals

Chapter 3 Amplitude Modulation Fundamentals Topics Covered 3-1: AM Concepts 3-2: Modulation Index and Percentage of Modulation 3-3: Sidebands and the Frequency Domain 3-4: AM Power 3-5: Single-Sideband

### Outline. Communications Engineering 1

Outline Introduction Signal, random variable, random process and spectra Analog modulation Analog to digital conversion Digital transmission through baseband channels Signal space representation Optimal

### Communication Theory

Communication Theory Adnan Aziz Abstract We review the basic elements of communications systems, our goal being to motivate our study of filter implementation in VLSI. Specifically, we review some basic

### Lecture 13. Introduction to OFDM

Lecture 13 Introduction to OFDM Ref: About-OFDM.pdf Orthogonal frequency division multiplexing (OFDM) is well-known to be effective against multipath distortion. It is a multicarrier communication scheme,

### Data Conversion Circuits & Modulation Techniques. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur

Data Conversion Circuits & Modulation Techniques Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur Data Conversion Circuits 2 Digital systems are being used

### Signals and Systems Lecture 9 Communication Systems Frequency-Division Multiplexing and Frequency Modulation (FM)

Signals and Systems Lecture 9 Communication Systems Frequency-Division Multiplexing and Frequency Modulation (FM) April 11, 2008 Today s Topics 1. Frequency-division multiplexing 2. Frequency modulation

### B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering)

Code: 13A04404 R13 B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering) Time: 3 hours Max. Marks: 70 PART A

### Chapter 2 Direct-Sequence Systems

Chapter 2 Direct-Sequence Systems A spread-spectrum signal is one with an extra modulation that expands the signal bandwidth greatly beyond what is required by the underlying coded-data modulation. Spread-spectrum

### Data Communications & Computer Networks

Data Communications & Computer Networks Chapter 3 Data Transmission Fall 2008 Agenda Terminology and basic concepts Analog and Digital Data Transmission Transmission impairments Channel capacity Home Exercises

### Exercises for chapter 2

Exercises for chapter Digital Communications A baseband PAM system uses as receiver filter f(t) a matched filter, f(t) = g( t), having two choices for transmission filter g(t) g a (t) = ( ) { t Π =, t,

### Lab 3.0. Pulse Shaping and Rayleigh Channel. Faculty of Information Engineering & Technology. The Communications Department

Faculty of Information Engineering & Technology The Communications Department Course: Advanced Communication Lab [COMM 1005] Lab 3.0 Pulse Shaping and Rayleigh Channel 1 TABLE OF CONTENTS 2 Summary...

### Revision of Lecture 3

Revision of Lecture 3 Modulator/demodulator Basic operations of modulation and demodulation Complex notations for modulation and demodulation Carrier recovery and timing recovery This lecture: bits map

### Introduction to Amplitude Modulation

1 Introduction to Amplitude Modulation Introduction to project management. Problem definition. Design principles and practices. Implementation techniques including circuit design, software design, solid

### a) Abasebanddigitalcommunicationsystemhasthetransmitterfilterg(t) thatisshowninthe figure, and a matched filter at the receiver.

DIGITAL COMMUNICATIONS PART A (Time: 60 minutes. Points 4/0) Last Name(s):........................................................ First (Middle) Name:.................................................

### Outline. EECS 3213 Fall Sebastian Magierowski York University. Review Passband Modulation. Constellations ASK, FSK, PSK.

EECS 3213 Fall 2014 L12: Modulation Sebastian Magierowski York University 1 Outline Review Passband Modulation ASK, FSK, PSK Constellations 2 1 Underlying Idea Attempting to send a sequence of digits through

### MAS 160/510 Additional Notes: Modulation

MAS 160/510 Additional Notes: Modulation From Amplitude Modulation to Frequency Modulation As usually implemented, FM uses much more bandwidth than AM. You ll note, for instance, that FM radio stations

### (Refer Slide Time: 3:11)

Digital Communication. Professor Surendra Prasad. Department of Electrical Engineering. Indian Institute of Technology, Delhi. Lecture-2. Digital Representation of Analog Signals: Delta Modulation. Professor:

### Spread Spectrum (SS) is a means of transmission in which the signal occupies a

SPREAD-SPECTRUM SPECTRUM TECHNIQUES: A BRIEF OVERVIEW SS: AN OVERVIEW Spread Spectrum (SS) is a means of transmission in which the signal occupies a bandwidth in excess of the minimum necessary to send

### Communication Channels

Communication Channels wires (PCB trace or conductor on IC) optical fiber (attenuation 4dB/km) broadcast TV (50 kw transmit) voice telephone line (under -9 dbm or 110 µw) walkie-talkie: 500 mw, 467 MHz

### PULSE SHAPING AND RECEIVE FILTERING

PULSE SHAPING AND RECEIVE FILTERING Pulse and Pulse Amplitude Modulated Message Spectrum Eye Diagram Nyquist Pulses Matched Filtering Matched, Nyquist Transmit and Receive Filter Combination adaptive components

EC744 Wireless Communication Fall 2008 Mohamed Essam Khedr Department of Electronics and Communications Wireless Communication Fading Modulation Syllabus Tentatively Week 1 Week 2 Week 3 Week 4 Week 5

### Outline / Wireless Networks and Applications Lecture 3: Physical Layer Signals, Modulation, Multiplexing. Cartoon View 1 A Wave of Energy

Outline 18-452/18-750 Wireless Networks and Applications Lecture 3: Physical Layer Signals, Modulation, Multiplexing Peter Steenkiste Carnegie Mellon University Spring Semester 2017 http://www.cs.cmu.edu/~prs/wirelesss17/

### DATA INTEGRATION MULTICARRIER REFLECTOMETRY SENSORS

Report for ECE 4910 Senior Project Design DATA INTEGRATION IN MULTICARRIER REFLECTOMETRY SENSORS Prepared by Afshin Edrissi Date: Apr 7, 2006 1-1 ABSTRACT Afshin Edrissi (Cynthia Furse), Department of

### Digital data (a sequence of binary bits) can be transmitted by various pule waveforms.

Chapter 2 Line Coding Digital data (a sequence of binary bits) can be transmitted by various pule waveforms. Sometimes these pulse waveforms have been called line codes. 2.1 Signalling Format Figure 2.1

### AN FPGA IMPLEMENTATION OF ALAMOUTI S TRANSMIT DIVERSITY TECHNIQUE

AN FPGA IMPLEMENTATION OF ALAMOUTI S TRANSMIT DIVERSITY TECHNIQUE Chris Dick Xilinx, Inc. 2100 Logic Dr. San Jose, CA 95124 Patrick Murphy, J. Patrick Frantz Rice University - ECE Dept. 6100 Main St. -

### Encoding and Framing. Questions. Signals: Analog vs. Digital. Signals: Periodic vs. Aperiodic. Attenuation. Data vs. Signal

Questions Encoding and Framing Why are some links faster than others? What limits the amount of information we can send on a link? How can we increase the capacity of a link? EECS 489 Computer Networks

### Wireless PHY: Modulation and Demodulation

Wireless PHY: Modulation and Demodulation Y. Richard Yang 09/11/2012 Outline Admin and recap Amplitude demodulation Digital modulation 2 Admin Assignment 1 posted 3 Recap: Modulation Objective o Frequency

### Chapter 3 Data Transmission COSC 3213 Summer 2003

Chapter 3 Data Transmission COSC 3213 Summer 2003 Courtesy of Prof. Amir Asif Definitions 1. Recall that the lowest layer in OSI is the physical layer. The physical layer deals with the transfer of raw

### Modulation is the process of impressing a low-frequency information signal (baseband signal) onto a higher frequency carrier signal

Modulation is the process of impressing a low-frequency information signal (baseband signal) onto a higher frequency carrier signal Modulation is a process of mixing a signal with a sinusoid to produce

### ELEC3242 Communications Engineering Laboratory Frequency Shift Keying (FSK)

ELEC3242 Communications Engineering Laboratory 1 ---- Frequency Shift Keying (FSK) 1) Frequency Shift Keying Objectives To appreciate the principle of frequency shift keying and its relationship to analogue

### EISCAT_3D Digital Beam-Forming and Multi-Beaming

EISCAT_3D Digital Beam-Forming and Multi-Beaming The phased array principle: Arrange matters such that the signals from all antennas R1 Rn are in phase at the wavefront W Constructive interference in a

### COMMUNICATION SYSTEMS-II (In continuation with Part-I)

MODULATING A SIGNAL COMMUNICATION SYSTEMS-II (In continuation with Part-I) TRANSMITTING SIGNALS : In order to transmit the original low frequency baseband message efficiently over long distances, the signal

### Research on DQPSK Carrier Synchronization based on FPGA

Journal of Information Hiding and Multimedia Signal Processing c 27 ISSN 273-422 Ubiquitous International Volume 8, Number, January 27 Research on DQPSK Carrier Synchronization based on FPGA Shi-Jun Kang,

### ANALOG (DE)MODULATION

ANALOG (DE)MODULATION Amplitude Modulation with Large Carrier Amplitude Modulation with Suppressed Carrier Quadrature Modulation Injection to Intermediate Frequency idealized system Software Receiver Design

### Communications I (ELCN 306)

Communications I (ELCN 306) c Samy S. Soliman Electronics and Electrical Communications Engineering Department Cairo University, Egypt Email: samy.soliman@cu.edu.eg Website: http://scholar.cu.edu.eg/samysoliman

### Encoding and Framing

Encoding and Framing EECS 489 Computer Networks http://www.eecs.umich.edu/~zmao/eecs489 Z. Morley Mao Tuesday Nov 2, 2004 Acknowledgement: Some slides taken from Kurose&Ross and Katz&Stoica 1 Questions

### PULSE CODE MODULATION TELEMETRY Properties of Various Binary Modulation Types

PULSE CODE MODULATION TELEMETRY Properties of Various Binary Modulation Types Eugene L. Law Telemetry Engineer Code 1171 Pacific Missile Test Center Point Mugu, CA 93042 ABSTRACT This paper discusses the

### Chapter 4. Part 2(a) Digital Modulation Techniques

Chapter 4 Part 2(a) Digital Modulation Techniques Overview Digital Modulation techniques Bandpass data transmission Amplitude Shift Keying (ASK) Phase Shift Keying (PSK) Frequency Shift Keying (FSK) Quadrature

Superheterodyne AM Radio Receiver Since the inception of the AM radio, it spread widely due to its ease of use and more importantly, it low cost. The low cost of most AM radios sold in the market is due

### ECE 630: Statistical Communication Theory

ECE 630: Statistical Communication Theory Dr. B.-P. Paris Dept. Electrical and Comp. Engineering George Mason University Last updated: January 23, 2018 2018, B.-P. Paris ECE 630: Statistical Communication

### Chapter 7. Multiple Division Techniques

Chapter 7 Multiple Division Techniques 1 Outline Frequency Division Multiple Access (FDMA) Division Multiple Access (TDMA) Code Division Multiple Access (CDMA) Comparison of FDMA, TDMA, and CDMA Walsh

### Lecture 3 Concepts for the Data Communications and Computer Interconnection

Lecture 3 Concepts for the Data Communications and Computer Interconnection Aim: overview of existing methods and techniques Terms used: -Data entities conveying meaning (of information) -Signals data

### QUESTION BANK SUBJECT: DIGITAL COMMUNICATION (15EC61)

QUESTION BANK SUBJECT: DIGITAL COMMUNICATION (15EC61) Module 1 1. Explain Digital communication system with a neat block diagram. 2. What are the differences between digital and analog communication systems?

### Application of Fourier Transform in Signal Processing

1 Application of Fourier Transform in Signal Processing Lina Sun,Derong You,Daoyun Qi Information Engineering College, Yantai University of Technology, Shandong, China Abstract: Fourier transform is a

### Real-Time Digital Down-Conversion with Equalization

Real-Time Digital Down-Conversion with Equalization February 20, 2019 By Alexander Taratorin, Anatoli Stein, Valeriy Serebryanskiy and Lauri Viitas DOWN CONVERSION PRINCIPLE Down conversion is basic operation

### CHAPTER 2 DIGITAL MODULATION

2.1 INTRODUCTION CHAPTER 2 DIGITAL MODULATION Referring to Equation (2.1), if the information signal is digital and the amplitude (lv of the carrier is varied proportional to the information signal, a

### Digital Signal Analysis

Digital Signal Analysis Objectives - Provide a digital modulation overview - Review common digital radio impairments Digital Modulation Overview Signal Characteristics to Modify Polar Display / IQ Relationship

### Amplitude Frequency Phase

Chapter 4 (part 2) Digital Modulation Techniques Chapter 4 (part 2) Overview Digital Modulation techniques (part 2) Bandpass data transmission Amplitude Shift Keying (ASK) Phase Shift Keying (PSK) Frequency

### EECS 122: Introduction to Computer Networks Encoding and Framing. Questions

EECS 122: Introduction to Computer Networks Encoding and Framing Computer Science Division Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley, CA 94720-1776

### Chapter 2 Channel Equalization

Chapter 2 Channel Equalization 2.1 Introduction In wireless communication systems signal experiences distortion due to fading [17]. As signal propagates, it follows multiple paths between transmitter and

### Angle Modulated Systems

Angle Modulated Systems Angle of carrier signal is changed in accordance with instantaneous amplitude of modulating signal. Two types Frequency Modulation (FM) Phase Modulation (PM) Use Commercial radio

### Elements of Communication System Channel Fig: 1: Block Diagram of Communication System Terminology in Communication System

Content:- Fundamentals of Communication Engineering : Elements of a Communication System, Need of modulation, electromagnetic spectrum and typical applications, Unit V (Communication terminologies in communication

### Presentation Outline. Advisors: Dr. In Soo Ahn Dr. Thomas L. Stewart. Team Members: Luke Vercimak Karl Weyeneth. Karl. Luke

Bradley University Department of Electrical and Computer Engineering Senior Capstone Project Presentation May 2nd, 2006 Team Members: Luke Vercimak Karl Weyeneth Advisors: Dr. In Soo Ahn Dr. Thomas L.

### Jitter Measurements using Phase Noise Techniques

Jitter Measurements using Phase Noise Techniques Agenda Jitter Review Time-Domain and Frequency-Domain Jitter Measurements Phase Noise Concept and Measurement Techniques Deriving Random and Deterministic

### Speech, music, images, and video are examples of analog signals. Each of these signals is characterized by its bandwidth, dynamic range, and the

Speech, music, images, and video are examples of analog signals. Each of these signals is characterized by its bandwidth, dynamic range, and the nature of the signal. For instance, in the case of audio

### Chapter 14 MODULATION INTRODUCTION

Chapter 14 MODULATION INTRODUCTION As we have seen in previous three chapters, different types of media need different types of electromagnetic signals to carry information from the source to the destination.

### Channelization and Frequency Tuning using FPGA for UMTS Baseband Application

Channelization and Frequency Tuning using FPGA for UMTS Baseband Application Prof. Mahesh M.Gadag Communication Engineering, S. D. M. College of Engineering & Technology, Dharwad, Karnataka, India Mr.

### Multi-carrier Modulation and OFDM

3/28/2 Multi-carrier Modulation and OFDM Prof. Luiz DaSilva dasilval@tcd.ie +353 896-366 Multi-carrier systems: basic idea Typical mobile radio channel is a fading channel that is flat or frequency selective

### Chapter 3 Data and Signals

Chapter 3 Data and Signals 3.2 To be transmitted, data must be transformed to electromagnetic signals. 3-1 ANALOG AND DIGITAL Data can be analog or digital. The term analog data refers to information that

### THIS work focus on a sector of the hardware to be used

DISSERTATION ON ELECTRICAL AND COMPUTER ENGINEERING 1 Development of a Transponder for the ISTNanoSAT (November 2015) Luís Oliveira luisdeoliveira@tecnico.ulisboa.pt Instituto Superior Técnico Abstract

### Fundamentals of Digital Communication

Fundamentals of Digital Communication Network Infrastructures A.A. 2017/18 Digital communication system Analog Digital Input Signal Analog/ Digital Low Pass Filter Sampler Quantizer Source Encoder Channel

### ELT Receiver Architectures and Signal Processing Fall Mandatory homework exercises

ELT-44006 Receiver Architectures and Signal Processing Fall 2014 1 Mandatory homework exercises - Individual solutions to be returned to Markku Renfors by email or in paper format. - Solutions are expected

### Lecture 6. Angle Modulation and Demodulation

Lecture 6 and Demodulation Agenda Introduction to and Demodulation Frequency and Phase Modulation Angle Demodulation FM Applications Introduction The other two parameters (frequency and phase) of the carrier

### Chapter 3. Data Transmission

Chapter 3 Data Transmission Reading Materials Data and Computer Communications, William Stallings Terminology (1) Transmitter Receiver Medium Guided medium (e.g. twisted pair, optical fiber) Unguided medium

### Lecture Fundamentals of Data and signals

IT-5301-3 Data Communications and Computer Networks Lecture 05-07 Fundamentals of Data and signals Lecture 05 - Roadmap Analog and Digital Data Analog Signals, Digital Signals Periodic and Aperiodic Signals

### The Real Facts of Life

The Real Facts of Life Phil Karn, karn@ka9q.net June 13, 2001 The problems in Harold Walker s latest essay, amusingly titled The Facts of Life, start with his very first line: Digital Modulation is usually

### 1. Motivation. 2. Periodic non-gaussian noise

. Motivation One o the many challenges that we ace in wireline telemetry is how to operate highspeed data transmissions over non-ideal, poorly controlled media. The key to any telemetry system design depends

### Terminology (1) Chapter 3. Terminology (3) Terminology (2) Transmitter Receiver Medium. Data Transmission. Direct link. Point-to-point.

Terminology (1) Chapter 3 Data Transmission Transmitter Receiver Medium Guided medium e.g. twisted pair, optical fiber Unguided medium e.g. air, water, vacuum Spring 2012 03-1 Spring 2012 03-2 Terminology

### Mobile & Wireless Networking. Lecture 2: Wireless Transmission (2/2)

192620010 Mobile & Wireless Networking Lecture 2: Wireless Transmission (2/2) [Schiller, Section 2.6 & 2.7] [Reader Part 1: OFDM: An architecture for the fourth generation] Geert Heijenk Outline of Lecture

### A LOW-COST SOFTWARE-DEFINED TELEMETRY RECEIVER

A LOW-COST SOFTWARE-DEFINED TELEMETRY RECEIVER Michael Don U.S. Army Research Laboratory Aberdeen Proving Grounds, MD ABSTRACT The Army Research Laboratories has developed a PCM/FM telemetry receiver using

### Amplitude Modulation, II

Amplitude Modulation, II Single sideband modulation (SSB) Vestigial sideband modulation (VSB) VSB spectrum Modulator and demodulator NTSC TV signsals Quadrature modulation Spectral efficiency Modulator

### RESEARCH ON METHODS FOR ANALYZING AND PROCESSING SIGNALS USED BY INTERCEPTION SYSTEMS WITH SPECIAL APPLICATIONS

Abstract of Doctorate Thesis RESEARCH ON METHODS FOR ANALYZING AND PROCESSING SIGNALS USED BY INTERCEPTION SYSTEMS WITH SPECIAL APPLICATIONS PhD Coordinator: Prof. Dr. Eng. Radu MUNTEANU Author: Radu MITRAN

### Objectives. Presentation Outline. Digital Modulation Revision

Digital Modulation Revision Professor Richard Harris Objectives To identify the key points from the lecture material presented in the Digital Modulation section of this paper. What is in the examination

### CS434/534: Topics in Networked (Networking) Systems

CS434/534: Topics in Networked (Networking) Systems Wireless Foundation: Modulation and Demodulation Yang (Richard) Yang Computer Science Department Yale University 208A Watson Email: yry@cs.yale.edu http://zoo.cs.yale.edu/classes/cs434/

### Exercise 3-2. Digital Modulation EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. PSK digital modulation

Exercise 3-2 Digital Modulation EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with PSK digital modulation and with a typical QPSK modulator and demodulator. DISCUSSION

### Appendix B. Design Implementation Description For The Digital Frequency Demodulator

Appendix B Design Implementation Description For The Digital Frequency Demodulator The DFD design implementation is divided into four sections: 1. Analog front end to signal condition and digitize the

### RF/IF Terminology and Specs

RF/IF Terminology and Specs Contributors: Brad Brannon John Greichen Leo McHugh Eamon Nash Eberhard Brunner 1 Terminology LNA - Low-Noise Amplifier. A specialized amplifier to boost the very small received

### two computers. 2- Providing a channel between them for transmitting and receiving the signals through it.

1. Introduction: Communication is the process of transmitting the messages that carrying information, where the two computers can be communicated with each other if the two conditions are available: 1-

### TE 302 DISCRETE SIGNALS AND SYSTEMS. Chapter 1: INTRODUCTION

TE 302 DISCRETE SIGNALS AND SYSTEMS Study on the behavior and processing of information bearing functions as they are currently used in human communication and the systems involved. Chapter 1: INTRODUCTION

Radio Receiver Architectures and Analysis Robert Wilson December 6, 01 Abstract This article discusses some common receiver architectures and analyzes some of the impairments that apply to each. 1 Contents

### Recap of Last 2 Classes

Recap of Last 2 Classes Transmission Media Analog versus Digital Signals Bandwidth Considerations Attentuation, Delay Distortion and Noise Nyquist and Shannon Analog Modulation Digital Modulation What

### Pilot-Assisted DFT Window Timing/ Frequency Offset Synchronization and Subcarrier Recovery 5.1 Introduction

5 Pilot-Assisted DFT Window Timing/ Frequency Offset Synchronization and Subcarrier Recovery 5.1 Introduction Synchronization, which is composed of estimation and control, is one of the most important

### Basic Concepts in Data Transmission

Basic Concepts in Data Transmission EE450: Introduction to Computer Networks Professor A. Zahid A.Zahid-EE450 1 Data and Signals Data is an entity that convey information Analog Continuous values within

### Satellite Communications: Part 4 Signal Distortions & Errors and their Relation to Communication Channel Specifications. Howard Hausman April 1, 2010

Satellite Communications: Part 4 Signal Distortions & Errors and their Relation to Communication Channel Specifications Howard Hausman April 1, 2010 Satellite Communications: Part 4 Signal Distortions