VK3UM Atmosphere Attenuation Calculator. Table of Contents

Size: px
Start display at page:

Download "VK3UM Atmosphere Attenuation Calculator. Table of Contents"

Transcription

1 Table of Contents Over View 2 Menu Options 2 Input Variables 5 Input application data. 7 Screen Display Calculations 11 Reference ITU Graphs 13 Terrestrial Dry Air [O²] and W V [H²O] Attenuation 14 Zenith Dry Air [O²] and W V [H²O] Attenuation 16 Rain Attenuation 18 Slant Paths 19 Acknowledgement 21 References 22 Author 23 Page 1

2 Atmosphere Absorption Attenuation [Attenuation by atmospheric Gasses] Electromagnetic waves are absorbed in the atmosphere according to wavelength. Two compounds are responsible for the majority of signal absorption, Oxygen (O ² ) and water vapor (H ² O). The first peak occurs at 22 GHz due to water vapor, and the second at 63 GHz due to oxygen. The actual amount of water vapour and Oxygen in the atm osphere normally declines with an increase in altitude because of the decrease in pressure. Total attenuation through the atmosphere at any frequency, through unobstructed atmosphere, is the sum of free space path loss, attenuation caused by oxygen absorption, and attenuation caused by water vapour absorption. Rain attenuation, when present adds an additional element. Total path attenuation = Attenuation Free Space Path Loss + Attenuation caused by Oxygen + Attenuation due to Water vapour + Attenuation due to Rain. This program [Atmosphere] calculates the absorption attenuation at Microwave frequencies for both terrestrial and slant paths for Amateur frequencies from GHz. The calculations applied in this program are based upon the International Telecommunication Union (ITU) recommended methods as listed in the Referenc e section of this Document. The program has been written primly as a supplement to my EME Calculator Program to refine overall loss calculations for frequencies above 10 GHz where these factors become a significant. refer.. The EMECalc program available for download from This program has been designed to be best viewed under Windows XP Style. This can be set from the Desk Top by Properties/Display Properties/ Appearance and then choose Windows XP Style. Menu Options Save default Data All the parameters that appear on the sc reen will be saved and will be used when the program is run again. The following message will be displayed on its completion. Page 2

3 Change Display Accuracy The calculation displayed accuracy may be changed as desired by clicking on the required decimal points. The display below indicates 3 decimal digits will be displayed. On Screen Help Display This allows for the time the on screen help messages (yellow) are displayed. Reset Screen Size Resets the Screen size to the default dimensions. Cloud yearly % location maps Select the Cloud Columnar content map that is appropriate to your loc ation. Then adjust the slider commensurate with you location. Page 3

4 Help Displays this Help File About Provides the Build version and date of the software. Exit Soft Exit from this program Version The software version of this software. Page 4

5 Input Variables Temperature in c. Pressure in hpa. Frequency in GHz. Humidity in %. Distance in kms [for Terrestrial calculations]. Elevation in degrees [for Slant Attenuation]. Rain precipitation rates in mm/h [for both terrestrial and Slant attenuation c alculations]. Selectable Polarisation [horizontal, vertical, circular]. Calculations provided. Terrestrial Dry Air Attenuation in db per kilometres at Sea Level. Water Vapour attenuation in db per kilometres at Sea Level. Total attenuation of Dry Air and Water Vapour in db per kilometres at Sea Level. Total combined attenuation over a path length per kilometres as input by the user Rain Attenuation for horizontal, vertical or circular polarisations at various rain precipitation rates. Path Aperture Loss. Page 5

6 Slant Attenuation for both (independent) Home and Dx Stations Dry Air Attenuation in db per kilometres at Sea Level. Water Vapour attenuation in db per kilometres at Sea Level. Dry Air height in kilometres. [refer Rec. ITU-R P.676-7] Wet Vapour height in kilometres. [refer Rec. ITU-R P.676-7] Dry Air attenuation at height in db at zenith. Water Vapour attenuation at height in db at zenith. Total Attenuation (Dry Air + Water Vapour) at zenith. Total Attenuation (Dry Air + Water Vapour) at user selected Elevation angle. (5-90 ) Rain Attenuation for horizontal, vertical or circular polarisations at various rain precipitation rates. Fog Attenuation at various fog distance visibility distanc es. Cloud Attenuation at a specific Cloud Columnar content. Added attenuation to Earth Moon Earth (EME) path. Page 6

7 Input application data. The following input variables may be changed to suit your application. Use the Up/Down arrows to change the parameter as required. Temperature : Humidity : Pressure The combination of the humidity and the temperature will give the water vapour density in grams per cubic centimeter. By clicking on the Water vapour Density label you can change to Ice Vapour Density. Frequency Selectable for all Amateur Bands from 10 GHz to 241 GHz. The 100 GHz option is provided to check measurements against known values. Note. Although the frequencies of 10, 24 and 47 GHz are shown in the display the ac tual frequencies used in the program are , and GHz. Rain and Polarisation (Relevant to Rain attenuation.) Cloud Columnar Content. Click on this button to select the Average Year % Liquid Water m aps. which will reveal this panel Page 7

8 Choose the Cloud yearly % map applicable to your location and time of year. Note the value and adjust the Cloud Columnar Slider to this value. The value of Cloud attenuation will be provides as well as the specific H²O attenuation coefficient. Height above Sea Level. This option is currently not incorporated in the program overall end calculations. It provides the temperature (in centigrade and Kelvin), pressure (in hpa) and water vapour content (in g/cm³) commensurate with the reference standard atmosphere at selectable heights above sea level (HASL) adjustable by the arrow keys. First click on the Ref Latitude and season button to reveal the Reference Latitude Panel. Choose the Latitude applicable to your location and the season applicable to your time of year. Note that the Season selection only applies to latitudes greater than ± 22 from the equator. The data will be computed as shown in the following panel. Reference ITU Recommendation P Standard Temperature k Standard pressure hpa Calculations as per pages 4-6 (inc) Distance Page 8

9 Adjust for Terrestrial applications. The 3 adjustment arrows provide for x100, x10 and x1 variations. The Free Space Path Loss is calculated from the Distance and frequency selected. Elevation Adjust for the angle of the slope path for Space applications [eg EME] through the atmosphere. Default is Zenith [90 ] and variable down to 5 degrees. Additional Features. Save Default Data. Click on this to save your set up that will load at start of the program. On Screen Display Accuracy It should be noted however that the maximum accuracy of the calculated values is approximately 10% and to utilise the higher resolution provided is not an indic ation of increased accuracy. This value may be saved as part of you default start up values. On Screen Help Delay This option provides the selection of the time that the on screen help display shows the message under the cursor (where provided). It may be varied from off (no message displayed to a maximum of 8 seconds). This value may be saved as part of you default start up values. Help.. About.. Exit.. Version Help provides this help information. Page 9

10 About Provides the Author details, Build number and Date. Exit Provides a safe Exit from the program. Version The on screen version number of the Program release. Page 10

11 Screen Display Calculations Calculations Terrestrial Attenuation Free Space Path Loss (aperture Loss) for the path distance selected Dry Air Attenuation (O ² ) in db per kilometres at Sea Level. Water Vapour attenuation (H ² O) in db per kilometres at Sea Level. Total attenuation of Dry Air and Water Vapour in db per kilometres (as selected by the user) at Sea Level. Total combined attenuation [O + H O] over the path length as chosen by the user. ² ² Rain Attenuation for either horizontal, vertical or circular polarisations as selected.. Slant Attenuation (for both Home and Dx Stations) Page 11

12 Dry Air Attenuation (O ² ) in db per kilometres at Sea Level. Water Vapour attenuation (H ² O) in db per kilometres at Sea Level. Dry Air (O ² ) equivalent height in kilometres. Wet Vapour (H ² O) equivalent height in kilometres. Dry Air attenuation (O ² ) at equivalent height in db at zenith. Water Vapour attenuation (H ² O) at equivalent height in db at zenith. Total Attenuation (Dry Air + Water Vapour) at zenith. Total Attenuation (Dry Air + Water Vapour) at user selected Elevation angle. (5-90 ) Rain Attenuation for either horizontal, vertical or circular polarisations as selected. Fog Attenuation. Cloud Attenuation. Additional attenuation added to Earth Moon Earth (EME) path, and the Home and Dx Station added combined losses. The Home and Dx Station Total additional Loss values are those to be inserted into the VK3UM EMECalc program which will then provide the additional accuracy of calculations for frequencies above (including) 10 GHz Current Moon Distance When the program is started the current Moon distance, path loss and phase values are calculated. The current Moon distance will be shown as above and the slider will show its position. The slider may be varied as required (from Perigee to Apogee) and may also can be reset to the current (local computer time) Moon Distance. Page 12

13 Reference ITU Graphs The included graphs provide a means of checking the programs calculated values to those of the ITU recommended calculation procedure. It should be noted that the computed figures may [in some cases], be within 10% of the theoretical values due to the nature of the applicable formulae commensurate with the c urve form fit procedures used. Page 13

14 Terrestrial Dry Air [O ² ] and Water Vapour [H ² O] Attenuation This graph is from ITU RECOMMENDATION ITU-R P.676-7, "Attenuation by atmospheric gases." [Page 16] The graph provides the attenuation values at terrestrial paths for both Dry Air, Water Vapour and the combined total for an Atmospheric pressure of 1013 hpa, a temperature of 15 c and a water vapour c ontent of 7.5 g/cm³. Page 14

15 Page 15

16 Zenith Dry Air [O ² ] and Water Vapour [H ² O] Attenuation This graph is from ITU RECOMMENDATION ITU-R P.676-7, "Attenuation by atmospheric gases." [Page 19] The graph provides the attenuation values at zenith for both Dry Air, Water Vapour and the combined total for an Atmospheric pressure of 1013 hpa, a temperature of 15 c and a water vapour c ontent of 7.5 g/cm³. Page 16

17 Page 17

18 Rain Attenuation This graph is an extract from the "PROPOSED REVISION TO RECOMMENDATION ITU-R P.838". [page 13] The proposed changes have been applied in this program. -o- Page 18

19 Slant Paths Page 19

20 Page 20

21 Acknowledgement I wish to acknowledge the considerable help from John Drew VK5DJ in converting many of the complex mathematical expressions into the Pascal language, and also Dr Mike Willis G0MJW for his assistance in obtaining the latest ITU Recommendations (as a member of the Study Group directly involved) as well as his valued suggestions and help with some of the complex calculation scripts. Page 21

22 References International Telecommunication Union Publications ITU-R P Attenuation by Atmospheric Gases. ITU-R P Attenuation Due to Clouds and Fog. ITU-R P Propagation data and prediction methods required for the design of Earth-space telecommunication systems ITU-R P Specific attenuation model for rain for use in prediction methods. ITU-R P Water vapour: surface density and total columnar content. ITU-R P The Radio Reflective Index : its formula and reflectivity data. Page 22

23 Author This program has been written by Doug McArthur [VK3UM]. Web Site Contact... tikaluna at bigpond.com First draft concept release July First Beta restricted release September 2011 Program written with the Delphi 2007 platform in the Pascal language. Page 23

24 Index GHz option 7 - A - About 13 Additional attenuation 11 Additional Features 7 Amateur Bands 7 Apature Loss 11 Atmosphere Absorption Attenuation 2 Attenuation by Atmospheric Gases. 22 Attenuation Due to Clouds and Fog C - Change Display Accuracy 13 Cloud Attenuation 11 Cloud Columnar Content 7 Cloud Columnar Slider 7 Cloud yearly % location maps 13 Current Moon Distance 11 - D - design of Earth-space telecommunication systems 22 Distance 7 Doug McArthur 23 Dry Air Attenuation 11 - E - Electromagnetic waves 2 Elevation 7 EME Calculator Program 2 EMECalc 2 Exit 13 - F - Fog Attenuation 11 Free Space Path Loss 7, 11 Frequency 7 - H - Page 24

25 Height above Sea Level. 7 Help 13 Help.. About.. Exit.. Version 7 Home and Dx Station added combined losses 11 Home and Dx Station Total additional Loss 11 Humidity 7 - I - Ice Vapour Density 7 input variables 7, 5 International Telecommunication Union (ITU) 2 ITU-R P ITU-R P ITU-R P ITU-R P ITU-R P L - Lattitude 7 - M - maximum accuracy 7 Menu Options 2 - O - On Screen Display Accuracy 7 On Screen Help Delay 7 onscreen help display 7 Oxygen (O²) 2 - P - Polarisation 7 Pressure 7 - R - Rain 7 Rain Attenuation 11 Ref Lat and season 7 Reference Latitude Panel 7 Reset Screen Size 13 - S - Save default Data 13 Save Default Data. 7 season 7 Slant Attenuation 11 Slant Paths 19 Page 25

26 slope path 7 Space applications 7 Specific attenuation model for rain 22 specific H²O attenuation coefficient 7 - T - Temperature 7 Terrestrial Attenuation 11 The Radio Reflective Index 22 Total attenuation of Dry Air and Water Vapour 11 Total combined attenuation 11 - W - water vapor (H²O) 2 Water vapour 22 Water Vapour attenuation 11 water vapour density 7 - Z - Zenith [90 ] 7 - [ - [Attenuation by atmospheric Gasses Page 26

RECOMMENDATION ITU-R F.1404*

RECOMMENDATION ITU-R F.1404* Rec. ITU-R F.1404 1 RECOMMENDATION ITU-R F.1404* Rec. ITU-R F.1404 MINIMUM PROPAGATION ATTENUATION DUE TO ATMOSPHERIC GASES FOR USE IN FREQUENCY SHARING STUDIES BETWEEN SYSTEMS IN THE FIXED SERVICE AND

More information

Atmospheric Effects. Attenuation by Atmospheric Gases. Atmospheric Effects Page 1

Atmospheric Effects. Attenuation by Atmospheric Gases. Atmospheric Effects Page 1 Atmospheric Effects Page 1 Atmospheric Effects Attenuation by Atmospheric Gases Uncondensed water vapour and oxygen can be strongly absorptive of radio signals, especially at millimetre-wave frequencies

More information

Outlines. Attenuation due to Atmospheric Gases Rain attenuation Depolarization Scintillations Effect. Introduction

Outlines. Attenuation due to Atmospheric Gases Rain attenuation Depolarization Scintillations Effect. Introduction PROPAGATION EFFECTS Outlines 2 Introduction Attenuation due to Atmospheric Gases Rain attenuation Depolarization Scintillations Effect 27-Nov-16 Networks and Communication Department Loss statistics encountered

More information

Temperature and Water Vapor Density Effects On Weather Satellite

Temperature and Water Vapor Density Effects On Weather Satellite Temperature and Water Vapor Density Effects On Weather Satellite H. M. Aljlide 1, M. M. Abousetta 2 and Amer R. Zerek 3 1 Libyan Academy of Graduate Studies, Tripoli, Libya, heba.0000@yahoo.com 2 Tripoli

More information

Estimation of Rain attenuation and Ionospheric delay at a Low-Latitude Indian Station

Estimation of Rain attenuation and Ionospheric delay at a Low-Latitude Indian Station Estimation of Rain attenuation and Ionospheric delay at a Low-Latitude Indian Station Amita Gaur 1, Som Kumar Sharma 2 1 Vellore Institute of Technology, Vellore, India 2 Physical Research Laboratory,

More information

Water vapour: surface density and total columnar content

Water vapour: surface density and total columnar content Recommendation ITU-R P.836-6 (12/2017) Water vapour: surface density and total columnar content P Series Radiowave propagation ii Rec. ITU-R P.836-6 Foreword The role of the Radiocommunication Sector is

More information

RECOMMENDATION ITU-R S.733-1* (Question ITU-R 42/4 (1990))**

RECOMMENDATION ITU-R S.733-1* (Question ITU-R 42/4 (1990))** Rec. ITU-R S.733-1 1 RECOMMENDATION ITU-R S.733-1* DETERMINATION OF THE G/T RATIO FOR EARTH STATIONS OPERATING IN THE FIXED-SATELLITE SERVICE (Question ITU-R 42/4 (1990))** Rec. ITU-R S.733-1 (1992-1993)

More information

Guide to the application of the propagation methods of Radiocommunication Study Group 3

Guide to the application of the propagation methods of Radiocommunication Study Group 3 Recommendation ITU-R P.1144-6 (02/2012) Guide to the application of the propagation methods of Radiocommunication Study Group 3 P Series Radiowave propagation ii Rec. ITU-R P.1144-6 Foreword The role of

More information

II. ATTENUATION DUE TO ATMOSPHERIC

II. ATTENUATION DUE TO ATMOSPHERIC Tropospheric Influences on Satellite Communications in Tropical Environment: A Case Study of Nigeria Ayantunji B.G, ai-unguwa H., Adamu A., and Orisekeh K. Abstract Among other atmospheric regions, ionosphere,

More information

Modification of Earth-Space Rain Attenuation Model for Earth- Space Link

Modification of Earth-Space Rain Attenuation Model for Earth- Space Link IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 2, Ver. VI (Mar - Apr. 2014), PP 63-67 Modification of Earth-Space Rain Attenuation

More information

RECOMMENDATION ITU-R P Attenuation by atmospheric gases

RECOMMENDATION ITU-R P Attenuation by atmospheric gases Rec. ITU-R P.676-6 1 RECOMMENDATION ITU-R P.676-6 Attenuation by atmospheric gases (Question ITU-R 01/3) (1990-199-1995-1997-1999-001-005) The ITU Radiocommunication Assembly, considering a) the necessity

More information

RECOMMENDATION ITU-R P The radio refractive index: its formula and refractivity data

RECOMMENDATION ITU-R P The radio refractive index: its formula and refractivity data Rec. ITU-R P.453-8 1 RECOMMENDATION ITU-R P.453-8 The radio refractive index: its formula and refractivity data (Question ITU-R 201/3) The ITU Radiocommunication Assembly, (1970-1986-1990-1992-1994-1995-1997-1999-2001)

More information

RECOMMENDATION ITU-R P Propagation data and prediction methods required for the design of Earth-space telecommunication systems

RECOMMENDATION ITU-R P Propagation data and prediction methods required for the design of Earth-space telecommunication systems Rec. ITU-R P.618-8 1 RECOMMENDATION ITU-R P.618-8 Propagation data and prediction methods required for the design of Earth-space telecommunication systems (Question ITU-R 06/3) (1986-1990-199-1994-1995-1997-1999-001-003)

More information

Impact of Atmospheric Gases on Fixed Satellite Communication Link at Ku, Ka and V Bands in Nigeria

Impact of Atmospheric Gases on Fixed Satellite Communication Link at Ku, Ka and V Bands in Nigeria International Journal of Engineering and Technology Volume 2 No. 2, February, 2012 Impact of Atmospheric Gases on Fixed Satellite Communication Link at Ku, Ka and V Bands in Nigeria 1 Temidayo V. Omotosho,

More information

WATER VAPOR ATTENUATION STUDIES FOR KA AND V BAND FREQUENCIES OVER A TROPICAL REGION

WATER VAPOR ATTENUATION STUDIES FOR KA AND V BAND FREQUENCIES OVER A TROPICAL REGION IJCRR Vol 5 issue 5 Section: General Sciences Category: Research Received on: 27//3 Revised on: 6/2/3 Accepted on: 9/3/3 WATER VAPOR ATTENUATION STUDIES FOR KA AND V BAND FREQUENCIES OVER A G.Venkata Chalapathi,2,

More information

RECOMMENDATION ITU-R P Propagation data and prediction methods required for the design of Earth-space telecommunication systems

RECOMMENDATION ITU-R P Propagation data and prediction methods required for the design of Earth-space telecommunication systems Rec. ITU-R P.618-9 1 RECOMMENDATION ITU-R P.618-9 Propagation data and prediction methods required for the design of Earth-space telecommunication systems (Question ITU-R 06/3) (1986-1990-199-1994-1995-1997-1999-001-003-007)

More information

Rec. ITU-R P RECOMMENDATION ITU-R P *

Rec. ITU-R P RECOMMENDATION ITU-R P * Rec. ITU-R P.682-1 1 RECOMMENDATION ITU-R P.682-1 * PROPAGATION DATA REQUIRED FOR THE DESIGN OF EARTH-SPACE AERONAUTICAL MOBILE TELECOMMUNICATION SYSTEMS (Question ITU-R 207/3) Rec. 682-1 (1990-1992) The

More information

Attenuation due to clouds and fog

Attenuation due to clouds and fog Recommendation ITU-R P.840-7 (1/017) Attenuation due to clouds and fog P Series Radiowave propagation ii Rec. ITU-R P.840-7 Foreword The role of the Radiocommunication Sector is to ensure the rational,

More information

RECOMMENDATION ITU-R P The radio refractive index: its formula and refractivity data

RECOMMENDATION ITU-R P The radio refractive index: its formula and refractivity data Rec. ITU-R P.453-9 1 RECOMMENDATION ITU-R P.453-9 The radio refractive index: its formula and refractivity data (Question ITU-R 201/3) The ITU Radiocommunication Assembly, (1970-1986-1990-1992-1994-1995-1997-1999-2001-2003)

More information

The radio refractive index: its formula and refractivity data

The radio refractive index: its formula and refractivity data Recommendation ITU-R P.453-13 (12/2017) The radio refractive index: its formula and refractivity data P Series Radiowave propagation ii Rec. ITU-R P.453-13 Foreword The role of the Radiocommunication Sector

More information

Satellite TVRO G/T calculations

Satellite TVRO G/T calculations Satellite TVRO G/T calculations From: http://aa.1asphost.com/tonyart/tonyt/applets/tvro/tvro.html Introduction In order to understand the G/T calculations, we must start with some basics. A good starting

More information

The VK3UM Radiation and System Performance Calculator

The VK3UM Radiation and System Performance Calculator The VK3UM Radiation and System Performance Calculator 1. Disclaimer... 2 2. Background... 2 3. Calculations... 2 4. Features... 2 5. Default Parameters... 3 6. Parameter Description... 4 7. On Axis Exclusion

More information

VK3UM Impedance Calculator. Table of Contents

VK3UM Impedance Calculator. Table of Contents Table of Contents Concentric Tube Ratio 3 Centered Strip Line 5 Quarter Wave transition. 6 Coaxial Lengths 7 VSWR Calculator. 8 Dish Reflection Coefficient 10 Convert Fractions to a decimal value. 12 Author

More information

Altimeter Range Corrections

Altimeter Range Corrections Altimeter Range Corrections Schematic Summary Corrections Altimeters Range Corrections Altimeter range corrections can be grouped as follows: Atmospheric Refraction Corrections Sea-State Bias Corrections

More information

Attenuation by atmospheric gases

Attenuation by atmospheric gases Recommendation ITU-R P.676-8 (10/009) Attenuation by atmospheric gases P Series Radioave propagation ii Rec. ITU-R P.676-8 Foreord The role of the Radiocommunication Sector is to ensure the rational, equitable,

More information

Interpretation and Classification of P-Series Recommendations in ITU-R

Interpretation and Classification of P-Series Recommendations in ITU-R Int. J. Communications, Network and System Sciences, 2016, 9, 117-125 Published Online May 2016 in SciRes. http://www.scirp.org/journal/ijcns http://dx.doi.org/10.4236/ijcns.2016.95010 Interpretation and

More information

Atmospheric propagation

Atmospheric propagation Atmospheric propagation Johannes Böhm EGU and IVS Training School on VLBI for Geodesy and Astrometry Aalto University, Finland March 2-5, 2013 Outline Part I. Ionospheric effects on microwave signals (1)

More information

Impact of Rain Attenuation for Satellite Links at C, Ku, K, Ka and mm Bands in Karachi

Impact of Rain Attenuation for Satellite Links at C, Ku, K, Ka and mm Bands in Karachi 2017, TextRoad Publication ISSN: 2090-4274 Journal of Applied Environmental and Biological Sciences www.textroad.com Impact of Rain Attenuation for Satellite Links at C, Ku, K, Ka and mm Bands in Karachi

More information

Adapted from Dr. Joe Montana (George mason University) Dr. James

Adapted from Dr. Joe Montana (George mason University) Dr. James ink Budget Adapted from Dr. Joe Montana (George mason University) Dr. James W. apean course notes Dr. Jeremy Allnutt course notes And some internet resources + Tim Pratt book 1 ink Power Budget Tx EIRP

More information

DIELECTRIC PROPERTIES OF SUSPENDED WATER DROPLETS AND THEIR EFFECT ON MILLIMETER WAVE PROPAGATION

DIELECTRIC PROPERTIES OF SUSPENDED WATER DROPLETS AND THEIR EFFECT ON MILLIMETER WAVE PROPAGATION DIELECTRIC PROPERTIES OF SUSPENDED ATER DROPLETS AND THEIR EFFECT ON MILLIMETER AVE PROPAGATION Yosef Golovachev 1, Ariel Etinger 1, Gad A. Pinhasi and Yosef Pinhasi 1 1 Dept. of Electrical and Electronic

More information

Akio Oniyama 1 and Tetsuo Fukunaga 2 PASCO CORPORATION Nakano, Nakano-ku, Tokyo, Japan

Akio Oniyama 1 and Tetsuo Fukunaga 2 PASCO CORPORATION Nakano, Nakano-ku, Tokyo, Japan SpaceOps Conferences 16-20 May 2016, Daejeon, Korea SpaceOps 2016 Conference 10.2514/6.2016-2434 A Case Study of the Data Downlink Methodology for Earth Observation Satellite Akio Oniyama 1 and Tetsuo

More information

ECE Satellite Radar TRMM Precipitation Radar Cloud mm Radar - Cloudsat. Tropical Rainfall Measuring Mission

ECE Satellite Radar TRMM Precipitation Radar Cloud mm Radar - Cloudsat. Tropical Rainfall Measuring Mission Tropical Rainfall Measuring Mission ECE 583 18 Satellite Radar TRMM Precipitation Radar Cloud mm Radar - Cloudsat -TRMM includes 1st spaceborne weather radar - performs cross-track scan to get 3-D view

More information

Attenuation by atmospheric gases

Attenuation by atmospheric gases Recommendation ITU-R P.676-0 (09/03) Attenuation by atmospheric gases P Series Radioave propagation ii Rec. ITU-R P.676-0 Foreord The role of the Radiocommunication Sector is to ensure the rational, equitable,

More information

RECOMMENDATION ITU-R SA.364-5* PREFERRED FREQUENCIES AND BANDWIDTHS FOR MANNED AND UNMANNED NEAR-EARTH RESEARCH SATELLITES (Question 132/7)

RECOMMENDATION ITU-R SA.364-5* PREFERRED FREQUENCIES AND BANDWIDTHS FOR MANNED AND UNMANNED NEAR-EARTH RESEARCH SATELLITES (Question 132/7) Rec. ITU-R SA.364-5 1 RECOMMENDATION ITU-R SA.364-5* PREFERRED FREQUENCIES AND BANDWIDTHS FOR MANNED AND UNMANNED NEAR-EARTH RESEARCH SATELLITES (Question 132/7) Rec. ITU-R SA.364-5 (1963-1966-1970-1978-1986-1992)

More information

SG3 Software, Databanks and Testing Procedures

SG3 Software, Databanks and Testing Procedures ITU WORKSHOP Overview of activities of ITU-R Study Group 3 on radiowave propagation: (The Hague, 10 April 2014) SG3 Software, Databanks and Testing Procedures Antonio Martellucci Carlo Riva International

More information

h max 20 TX Ionosphere d 1649 km Radio and Optical Wave Propagation Prof. L. Luini, July 1 st, 2016 SURNAME AND NAME ID NUMBER SIGNATURE

h max 20 TX Ionosphere d 1649 km Radio and Optical Wave Propagation Prof. L. Luini, July 1 st, 2016 SURNAME AND NAME ID NUMBER SIGNATURE Radio and Optical Wave Propagation Prof. L. Luini, July st, 06 3 4 do not write above SURNAME AND NAME ID NUMBER SIGNATURE Exercise Making reference to the figure below, the transmitter TX, working at

More information

Research Article Comparison of Measured Rain Attenuation in the GHz Band with Predictions by the ITU-R Model

Research Article Comparison of Measured Rain Attenuation in the GHz Band with Predictions by the ITU-R Model Antennas and Propagation Volume 202, Article ID 45398, 5 pages doi:0.55/202/45398 Research Article Comparison of Measured Rain Attenuation in the 2.25 GHz Band with Predictions by the ITU-R Model Dong

More information

Propagation for Space Applications

Propagation for Space Applications Propagation for Space Applications by Bertram Arbesser-Rastburg Chairman ITU-R SG3 Invited talk at LAPC 2014, Loughborough, UK bertram@arbesser.org Abstract:The presentation covers the key propagation

More information

ITU-R Rec. P618-8 gives the following expression for the atmospheric noise temperature as seen by the receiving antenna:

ITU-R Rec. P618-8 gives the following expression for the atmospheric noise temperature as seen by the receiving antenna: ITU-R Rec. P68-8 gives the following expression for the atmospheric noise temperature as seen by the receiving antenna: T atm L T 0 atm m 0 T m is the effective temperature (K) of the atmosphere, a common

More information

Experiments with Tropo-Scatter on 24 GHz

Experiments with Tropo-Scatter on 24 GHz Experiments with Tropo-Scatter on 24 GHz By Rex Moncur VK7MO and David Smith VK3HZ While it is possible to readily work up to around 200 km on 24 GHz with line of sight propagation between mountains, those

More information

The Tropospheric Scintillation Prediction of Earth-to-Satellite Link for Bangladeshi Climatic Condition

The Tropospheric Scintillation Prediction of Earth-to-Satellite Link for Bangladeshi Climatic Condition SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 12, No. 3, October 2015, 263-273 UDC: 551.510.52:52.658]:629.783(549.3) DOI: 10.2298/SJEE1503263H The Tropospheric Scintillation Prediction of Earth-to-Satellite

More information

Microwave Sounding. Ben Kravitz October 29, 2009

Microwave Sounding. Ben Kravitz October 29, 2009 Microwave Sounding Ben Kravitz October 29, 2009 What is Microwave Sounding? Passive sensor in the microwave to measure temperature and water vapor Technique was pioneered by Ed Westwater (c. 1978) Microwave

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Radar measured rain attenuation with proposed Z-R relationship at a tropical location Author(s) Yeo,

More information

RECOMMENDATION ITU-R P Prediction of sky-wave field strength at frequencies between about 150 and khz

RECOMMENDATION ITU-R P Prediction of sky-wave field strength at frequencies between about 150 and khz Rec. ITU-R P.1147-2 1 RECOMMENDATION ITU-R P.1147-2 Prediction of sky-wave field strength at frequencies between about 150 and 1 700 khz (Question ITU-R 225/3) (1995-1999-2003) The ITU Radiocommunication

More information

Technical Note: Path Align-R Wireless Supporting Information

Technical Note: Path Align-R Wireless Supporting Information Technical Note: Path Align-R Wireless Supporting Information Free-space Loss The Friis free-space propagation equation is commonly used to determine the attenuation of a signal due to spreading of the

More information

Passive Microwave Sensors LIDAR Remote Sensing Laser Altimetry. 28 April 2003

Passive Microwave Sensors LIDAR Remote Sensing Laser Altimetry. 28 April 2003 Passive Microwave Sensors LIDAR Remote Sensing Laser Altimetry 28 April 2003 Outline Passive Microwave Radiometry Rayleigh-Jeans approximation Brightness temperature Emissivity and dielectric constant

More information

Dept. of ECE, K L University, Vaddeswaram, Guntur, Andhra Pradesh, India. 3. Consultant, NOTACHI EleKtronic Technologies, Andhra Pradesh, India 1

Dept. of ECE, K L University, Vaddeswaram, Guntur, Andhra Pradesh, India. 3. Consultant, NOTACHI EleKtronic Technologies, Andhra Pradesh, India 1 Volume 115 No. 7 17, 471-476 ISSN: 1311- (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ESTIMATION OF REFLECTIVITY AND CLOUD ATTENUATION IN TROPICAL REGIONS ijpam.eu Govardhani.Immadi

More information

Microwave-Radiometer

Microwave-Radiometer Microwave-Radiometer Figure 1: History of cosmic background radiation measurements. Left: microwave instruments, right: background radiation as seen by the corresponding instrument. Picture: NASA/WMAP

More information

Propagation data and prediction methods required for the design of Earth-space telecommunication systems

Propagation data and prediction methods required for the design of Earth-space telecommunication systems Recommendation ITU-R P.68- (07/05) Propagation data and prediction methods required for the design of Earth-space telecommunication systems P Series Radiowave propagation ii Rec. ITU-R P.68- Foreword The

More information

Earth Station Coordination

Earth Station Coordination 1 Overview Radio spectrum is a scarce resource that should be used as efficiently as possible. This can be achieved by re-using the spectrum many times - having many systems operate simultaneously on the

More information

Application Note No. 7 Radio Link Calculations (Link_Calc.xls)

Application Note No. 7 Radio Link Calculations (Link_Calc.xls) TIL-TEK Application Note No. 7 Radio Link Calculations (Link_Calc.xls) The following application note describes the application and utilization of the Link_Calc.xls worksheet. Link_Calc.xls is an interactive

More information

Study of Factors which affect the Calculation of Co- Channel Interference in a Radio Link

Study of Factors which affect the Calculation of Co- Channel Interference in a Radio Link International Journal of Electronic and Electrical Engineering. ISSN 0974-2174 Volume 8, Number 2 (2015), pp. 103-111 International Research Publication House http://www.irphouse.com Study of Factors which

More information

Effects of tropospheric refraction on radiowave propagation

Effects of tropospheric refraction on radiowave propagation Recommendation ITU-R P.834-7 (1/215) Effects of tropospheric refraction on radiowave propagation P Series Radiowave propagation ii Rec. ITU-R P.834-7 Foreword The role of the Radiocommunication Sector

More information

Sw earth Dw Direct wave GRw Ground reflected wave Sw Surface wave

Sw earth Dw Direct wave GRw Ground reflected wave Sw Surface wave WAVE PROPAGATION By Marcel H. De Canck, ON5AU Electromagnetic radio waves can propagate in three different ways between the transmitter and the receiver. 1- Ground waves 2- Troposphere waves 3- Sky waves

More information

Point to point Radiocommunication

Point to point Radiocommunication Point to point Radiocommunication SMS4DC training seminar 7 November 1 December 006 1 Technical overview Content SMS4DC Software link calculation Exercise 1 Point-to-point Radiocommunication Link A Radio

More information

RECOMMENDATION ITU-R SA.1628

RECOMMENDATION ITU-R SA.1628 Rec. ITU-R SA.628 RECOMMENDATION ITU-R SA.628 Feasibility of sharing in the band 35.5-36 GHZ between the Earth exploration-satellite service (active) and space research service (active), and other services

More information

RECOMMENDATION ITU-R P Guide to the application of the propagation methods of Radiocommunication Study Group 3

RECOMMENDATION ITU-R P Guide to the application of the propagation methods of Radiocommunication Study Group 3 Rec. ITU-R P.1144-2 1 RECOMMENDATION ITU-R P.1144-2 Guide to the application of the propagation methods of Radiocommunication Study Group 3 (1995-1999-2001) The ITU Radiocommunication Assembly, considering

More information

Notice of coordination procedure required under spectrum access licences for the 2.6 GHz band

Notice of coordination procedure required under spectrum access licences for the 2.6 GHz band Notice of coordination procedure required under spectrum access licences for the 2.6 GHz band Coordination with aeronautical radionavigation radar in the 2.7 GHz band Notice Publication date: 1 March 2013

More information

Radio Propagation Fundamentals

Radio Propagation Fundamentals Radio Propagation Fundamentals Concept of Electromagnetic Wave Propagation Mechanisms Modes of Propagation Propagation Models Path Profiles Link Budget Fading Channels Electromagnetic (EM) Waves EM Wave

More information

Polarization orientation of the electric field vector with respect to the earth s surface (ground).

Polarization orientation of the electric field vector with respect to the earth s surface (ground). Free space propagation of electromagnetic waves is often called radio-frequency (rf) propagation or simply radio propagation. The earth s atmosphere, as medium introduces losses and impairments to the

More information

Experimental study of rain induced effects on microwave propagation at 20 and 30 GHz

Experimental study of rain induced effects on microwave propagation at 20 and 30 GHz Invited Paper Experimental study of rain induced effects on microwave propagation at 2 and 3 GHz LS Hudiara Department of Electronics Technology, Guru Nanak Dev University, Amritsar, India hudiarais@yahoo.com

More information

Propagation Modelling White Paper

Propagation Modelling White Paper Propagation Modelling White Paper Propagation Modelling White Paper Abstract: One of the key determinants of a radio link s received signal strength, whether wanted or interfering, is how the radio waves

More information

Math Labs. Activity 1: Rectangles and Rectangular Prisms Using Coordinates. Procedure

Math Labs. Activity 1: Rectangles and Rectangular Prisms Using Coordinates. Procedure Math Labs Activity 1: Rectangles and Rectangular Prisms Using Coordinates Problem Statement Use the Cartesian coordinate system to draw rectangle ABCD. Use an x-y-z coordinate system to draw a rectangular

More information

William Stallings Data and Computer Communications 7 th Edition. Chapter 4 Transmission Media

William Stallings Data and Computer Communications 7 th Edition. Chapter 4 Transmission Media William Stallings Data and Computer Communications 7 th Edition Chapter 4 Transmission Media Overview Guided - wire Unguided - wireless Characteristics and quality determined by medium and signal For guided,

More information

Bistatic remote sensing of the atmosphere and surface using GNSS occultations signals

Bistatic remote sensing of the atmosphere and surface using GNSS occultations signals Bistatic remote sensing of the atmosphere and surface using GNSS occultations signals Alexander Pavelyev 1, Kefei Zhang 2, Stanislav Matyugov 1, Yuei-An Liou 4, Oleg Yakovlev 1, Igor Kucherjavenkov 1,

More information

Two Years Characterization of Concurrent Ku-band Rain Attenuation and Tropospheric Scintillation in Bandung, Indonesia using JCSAT3

Two Years Characterization of Concurrent Ku-band Rain Attenuation and Tropospheric Scintillation in Bandung, Indonesia using JCSAT3 Two Years Characterization of Concurrent Ku-band Rain Attenuation and Tropospheric Scintillation in Bandung, Indonesia using JCSAT3 F2A.5 Joko Suryana Utoro S Department of Electrical Engineering, Institute

More information

CRITICAL FREQUENCY By Marcel H. De Canck, ON5AU

CRITICAL FREQUENCY By Marcel H. De Canck, ON5AU CRITICAL FREQUENCY By Marcel H. De Canck, ON5AU Before reading onward, it would be good to refresh your knowledge about refraction rules in the section on Refraction of the earlier "Wave Propagation Direction

More information

The VK3UM Radiation and System Performance Calculator

The VK3UM Radiation and System Performance Calculator The VK3UM Radiation and System Performance Calculator 1. Disclaimer... 3 2. Background... 3 3. Program Aim... 3 4. Screen Options... 4 5. Features... 5 6. Default Parameters... 6 7. Parameter Descriptions...

More information

Antennas and Propagation. Chapter 5

Antennas and Propagation. Chapter 5 Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

PART 1 RECOMMENDATION ITU-R P.1144 GUIDE TO THE APPLICATION OF THE PROPAGATION METHODS OF RADIOCOMMUNICATION STUDY GROUP 3

PART 1 RECOMMENDATION ITU-R P.1144 GUIDE TO THE APPLICATION OF THE PROPAGATION METHODS OF RADIOCOMMUNICATION STUDY GROUP 3 Rec. ITU-R P.1144 1 PART 1 SECTION P-A: TEXTS OF GENERAL INTEREST Rec. ITU-R P.1144 RECOMMENDATION ITU-R P.1144 GUIDE TO THE APPLICATION OF THE PROPAGATION METHODS OF RADIOCOMMUNICATION STUDY GROUP 3 (1995)

More information

Wide Range Propagation Model. Report on Modelling of Rain Attenuation

Wide Range Propagation Model. Report on Modelling of Rain Attenuation Wide Range Propagation Model Report on Modelling of Rain Attenuation th December 28 Table of Contents Introduction...3 Weaknesses of current approaches...5 Not using the full rain distribution...5 Testing

More information

Recommendation ITU-R SF.1843 (10/2007)

Recommendation ITU-R SF.1843 (10/2007) Recommendation ITU-R SF.1843 (10/2007) Methodology for determining the power level for high altitude platform stations ground to facilitate sharing with space station receivers in the bands 47.2-47.5 GHz

More information

Earth Exploration-Satellite Service (EESS) - Passive Spaceborne Remote Sensing

Earth Exploration-Satellite Service (EESS) - Passive Spaceborne Remote Sensing Earth Exploration-Satellite Service (EESS) - Passive Spaceborne Remote Sensing John Zuzek Vice-Chairman ITU-R Study Group 7 ITU/WMO Seminar on Spectrum & Meteorology Geneva, Switzerland 16-17 September

More information

Antennas and Propagation. Chapter 5

Antennas and Propagation. Chapter 5 Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

RECOMMENDATION ITU-R P Characteristics of precipitation for propagation modelling

RECOMMENDATION ITU-R P Characteristics of precipitation for propagation modelling Rec. ITU-R P.837-4 1 RECOMMENDATION ITU-R P.837-4 Characteristics of precipitation for propagation modelling (Question ITU-R 21/3) (1992-1994-1999-21-23) The ITU Radiocommunication Assembly, considering

More information

November 24, 2010xx. Introduction

November 24, 2010xx. Introduction Path Analysis XXXXXXXXX Ref Number: XXXXXXX Introduction This report is an analysis of the proposed XXXXXXXXX network between XXXXXXX and XXXXXXX. The primary aim was to investigate the frequencies and

More information

VHF and Microwave Propagation Characteristics of Ducts

VHF and Microwave Propagation Characteristics of Ducts 1 VHF and Microwave Propagation Characteristics of s Andrew L. Martin, VK3KAQ Abstract Measurements from many years of amateur radio observations together with commercial microwave propagation studies

More information

E-BAND WIRELESS TECHNOLOGY OVERVIEW

E-BAND WIRELESS TECHNOLOGY OVERVIEW OVERVIEW EXECUTIVE SUMMARY The 71-76 and 81-86 GHz bands (widely known as e-band ) are permitted worldwide for ultra-high capacity point-to-point communications. E-band wireless systems are available that

More information

Analysis of some tropospheric openings on 47GHz and 24GHz

Analysis of some tropospheric openings on 47GHz and 24GHz Analysis of some tropospheric openings on 47GHz and 24GHz Matthieu F4BUC DX are always good opportunities to investigate propagation phenomena, especially when they are exceptional. During November 2006

More information

Session2 Antennas and Propagation

Session2 Antennas and Propagation Wireless Communication Presented by Dr. Mahmoud Daneshvar Session2 Antennas and Propagation 1. Introduction Types of Anttenas Free space Propagation 2. Propagation modes 3. Transmission Problems 4. Fading

More information

Future Satellite TLC systems: the challenge of using very high frequency bands

Future Satellite TLC systems: the challenge of using very high frequency bands 5 th International Multi-Topic ICT Conference 25-27 April 2018 Mehran University Jamshoro - Pakistan Future Satellite TLC systems: the challenge of using very high frequency bands Lorenzo Luini Dipartimento

More information

Factors affecting the choice of frequency bands for space research service deep-space (space-to-earth) telecommunication links

Factors affecting the choice of frequency bands for space research service deep-space (space-to-earth) telecommunication links Report ITU-R SA.2167 (09/2009) Factors affecting the choice of frequency bands for space research service deep-space (space-to-earth) telecommunication links SA Series Space applications and meteorology

More information

Antennas and Propagation

Antennas and Propagation CMPE 477 Wireless and Mobile Networks Lecture 3: Antennas and Propagation Antennas Propagation Modes Line of Sight Transmission Fading in the Mobile Environment Introduction An antenna is an electrical

More information

SATELLIT COMMUNICATION

SATELLIT COMMUNICATION QUESTION BANK FOR SATELLITE COMMUNICATION UNIT I 1) Explain Kepler s laws. What are the fords that give rise to these laws? 2) Explain how a satellite is located with respect to earth. 3) Describe antenna

More information

Determination of Propagation Path Loss and Contour Map for Adaba FM Radio Station in Akure Nigeria

Determination of Propagation Path Loss and Contour Map for Adaba FM Radio Station in Akure Nigeria International Journal of Science and Technology Volume 2 No. 9, September, 2013 Determination of Propagation Path Loss and Contour Map for Adaba FM Radio Station in Akure Nigeria Oyetunji S. A, Alowolodu

More information

MODULE 9 LECTURE NOTES 1 PASSIVE MICROWAVE REMOTE SENSING

MODULE 9 LECTURE NOTES 1 PASSIVE MICROWAVE REMOTE SENSING MODULE 9 LECTURE NOTES 1 PASSIVE MICROWAVE REMOTE SENSING 1. Introduction The microwave portion of the electromagnetic spectrum involves wavelengths within a range of 1 mm to 1 m. Microwaves possess all

More information

Propagation of free space optical links in Singapore

Propagation of free space optical links in Singapore Indian Journal of Radio & Space Physics Vol 42, June 2013, pp 182-186 Propagation of free space optical links in Singapore S V B Rao $,*, J T Ong #, K I Timothy & D Venugopal School of EEE (Blk S2), Nanyang

More information

CHAPTER 2 DETAILS RELATING TO THE CONTENTS OF THE COLUMNS OF PART I-S AND OF SPECIAL SECTIONS AR11/C AND RES33/C OF THE WEEKLY CIRCULAR

CHAPTER 2 DETAILS RELATING TO THE CONTENTS OF THE COLUMNS OF PART I-S AND OF SPECIAL SECTIONS AR11/C AND RES33/C OF THE WEEKLY CIRCULAR IV 2 1 CHAPTER 2 DETAILS RELATING TO THE CONTENTS OF THE COLUMNS OF PART I-S AND OF SPECIAL SECTIONS AR11/C AND RES33/C OF THE WEEKLY CIRCULAR NOTE: Tables referred to in the present Chapter 2 appear in

More information

Satellite Signals and Communications Principles. Dr. Ugur GUVEN Aerospace Engineer (P.hD)

Satellite Signals and Communications Principles. Dr. Ugur GUVEN Aerospace Engineer (P.hD) Satellite Signals and Communications Principles Dr. Ugur GUVEN Aerospace Engineer (P.hD) Principle of Satellite Signals In essence, satellite signals are electromagnetic waves that travel from the satellite

More information

Antennas and Propagation

Antennas and Propagation Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman Antennas & Propagation CSG 250 Fall 2007 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception

More information

Frequency bands and bandwidths used for satellite passive remote sensing

Frequency bands and bandwidths used for satellite passive remote sensing Recommendation ITU-R RS.515-5 (08/2012) Frequency bands and bandwidths used for satellite passive remote sensing RS Series Remote sensing systems ii Rec. ITU-R RS.515-5 Foreword The role of the Radiocommunication

More information

T. Siva Priya * and T. Nizhanthi Faculty of Engineering, Multimedia University, Jalan Multimedia, Cyberjaya 63100, Selangor, Malaysia

T. Siva Priya * and T. Nizhanthi Faculty of Engineering, Multimedia University, Jalan Multimedia, Cyberjaya 63100, Selangor, Malaysia Progress In Electromagnetics Research B, Vol. 45, 37 56, 2012 A STUDY ON THE EFFECTS OF RAIN ATTENUA- TION FOR AN X-BAND SATELLITE SYSTEM OVER MALAYSIA T. Siva Priya * and T. Nizhanthi Faculty of Engineering,

More information

Notice of aeronautical radar coordination. Coordination procedure for air traffic control radar - notice issued to 3.

Notice of aeronautical radar coordination. Coordination procedure for air traffic control radar - notice issued to 3. Coordination procedure for air traffic control radar - notice issued to 3.4 GHz Licensees Publication Date: 12 April 2018 Contents Section 1. Introduction 1 2. The procedure 3 1. Introduction 1.1 This

More information

Tutorial 1: Install Forecaster HD (Win XP, Vista, 7, 8)

Tutorial 1: Install Forecaster HD (Win XP, Vista, 7, 8) Tutorial 1: Install Forecaster HD (Win XP, Vista, 7, 8) Download Forecaster HD (FHD) from Community s website http://www.communitypro.com/productlist/135-forecaster-ceiling-system-software Open Setup.exe

More information

Co-Channel Interference Analysis of Point to Point mm-wave Radio Links

Co-Channel Interference Analysis of Point to Point mm-wave Radio Links Co-Channel Interference Analysis of Point to Point mm-wave Radio Links Xu Mingdong and Peter Nuechter Research and Advanced Development, HUBER+SUHNER AG, CH-8330 Pfäffikon ZH, Switzerland Now with Communications

More information

On the opportunistic use of geostationary satellite signals to estimate rain rate in the purpose of radar calibration

On the opportunistic use of geostationary satellite signals to estimate rain rate in the purpose of radar calibration ERAD - THE SEVENTH EUROEAN CONFERENCE ON RADAR IN METEOROOGY AND HYDROOGY On the opportunistic use of geostationary satellite signals to estimate rain rate in the purpose of radar calibration aurent Barthès,

More information

Rec. ITU-R P RECOMMENDATION ITU-R P PROPAGATION BY DIFFRACTION. (Question ITU-R 202/3)

Rec. ITU-R P RECOMMENDATION ITU-R P PROPAGATION BY DIFFRACTION. (Question ITU-R 202/3) Rec. ITU-R P.- 1 RECOMMENDATION ITU-R P.- PROPAGATION BY DIFFRACTION (Question ITU-R 0/) Rec. ITU-R P.- (1-1-1-1-1-1-1) The ITU Radiocommunication Assembly, considering a) that there is a need to provide

More information

ECE 6390: Satellite Communications and Navigation Systems TEST 2 (Fall 2010)

ECE 6390: Satellite Communications and Navigation Systems TEST 2 (Fall 2010) Name: GTID: ECE 6390: Satellite Communications and Navigation Systems TEST 2 (Fall 2010) Please read all instructions before continuing with the test. This is a closed notes, closed book, closed friend,

More information

Antennas and Propagation

Antennas and Propagation Mobile Networks Module D-1 Antennas and Propagation 1. Introduction 2. Propagation modes 3. Line-of-sight transmission 4. Fading Slides adapted from Stallings, Wireless Communications & Networks, Second

More information