Experimental study of rain induced effects on microwave propagation at 20 and 30 GHz

Size: px
Start display at page:

Download "Experimental study of rain induced effects on microwave propagation at 20 and 30 GHz"

Transcription

1 Invited Paper Experimental study of rain induced effects on microwave propagation at 2 and 3 GHz LS Hudiara Department of Electronics Technology, Guru Nanak Dev University, Amritsar, India hudiarais@yahoo.com ABSTRACT Rain induced attenuation degrades the performance of communication systems. Thus the knowledge of rain-induced attenuation at the frequency of operation is necessary to design a reliable communication system at a particular location. Attenuation of radio waves by rain depends on the shape, size and distribution of raindrops and rate of rainfall (mmlhr). Hence this research work has been undertaken to study rain-induced effects on microwave propagation at 2 and 3 GHz at Amritsar for planning future earth-space communication links at these frequencies. Present research work envisaged collection of propagation data over line of sight links, radiometric data and meteorological data in the form of rainfall and raindrop size distribution. The data thus collected, using proposed experimental setup, have been analyzed for developing empirical models which are required to develop a statistical model for the prediction of rain induced slant path attenuation for our location which will help us to design an efficient and reliable terrestrial and satellite communication systems which will work for % of time. Keywords: Radiometer, Rain attenuation, microwave propagation, Slant path attenuation, reduction factor, rain fall rate and microwave communication link. 1. INTRODUCTION Microwave links operating at frequencies above about 1 GHz are severely affected by the presence of rain over the link path, more so, in the tropical region because of the high intensity of rain and large raindrops. The efficient design of reliable communication link requires the knowledge of rain fade margin to be provided in the system design to overcome the losses in the signal strength due to rain over the path [1]. Hence there is a need for the development of reliable and accurate propagation model for attenuation prediction at the operating frequency of the system. Currently existing prediction methods based on experimental observation are reasonably accurate for temperate latitudes [2]. When these models are applied to tropical, high rainfall zones, they give unsatisfactory results. Therefore to develop accurate rain attenuation prediction models at 2 and 3GHz an experimental study was undertaken at Guru Nanak Dev University, Amritsar, (India). A line of sight link at 19.4 and GHz was established at, Amritsar (31 36'E 74 54'N), which is m above sea level. The length of LOS link was 2.29Km. A zenith looking radiometer-operating atl9.9ghz was also installed for radiometric measurements. All the measuring instruments were housed in air-conditioned huts. Tipping bucket rain gauges have been used for measuring rainfall and distrometer has been used for measuring the size and number of raindrops falling over a particular time of interval. Following data were collected over a period of two years for developing various empirical models. 1. Rain attenuation data at 19.4 and GHz over LOS link. 2. Radiometric data using zenith looking radiometer. 3. Meterological data in the form of rainfall rate and rain drop size distribution. Empirical models based on experimental observation have been compared with the existing models highlighting point of agreement and disagreement. These models will be extremely useful in predicting various rain induced effects on the propagation of microwaves at 2 and 3 GHz, which can be taken care off while designing a microwave communication link for terrestrial or space to earth- path at these frequencies. 35 Microwave and Optical Technology 23, edited by Jaromír Pištora, Kamil Postava, Miroslav Hrabovský, Banmali S. Rawat, Proceedings of SPIE Vol (SPIE, Bellingham, WA, 24) X/4/$15 doi: /

2 2. ANALYSIS OF EXPERIMENTAL DATA The experimental data were collected for a period of two years, during 2 and 21. Data were collected during winter and monsoon rains on round-the-clock basis. Data on rainfall rate and raindrop size collected using co-located rain gauges and Distrometer have been analyzed for annual rain rate (R) statistics and rain drop size distribution (RDSD) respectively. Raindrop size data have also been analyzed for specific attenuation (a db/km). Rainfall rate and raindrop sizes distribution are the two important parameters required for rain attenuation data analysis. Rain attenuation data collected over line of sight links at 2 and 3 GHz have been analyzed for cumulative attenuation statistics and path length reduction factor (r). Radiometric data, using zenith looking radiometer were also collected to predict zenith attenuation statistics and effective rain height (HR). Finally an algorithm has been developed for predicting slant path attenuation at 2 & 3 GHz. 2.1 Rain rate statistics The point rainfall intensity was measured with tipping bucket rain gauge, which usually provides good approximation to the instantaneous rain rates. The rain gauge uses a 12 inches diameter orifice and a tipping bucket mechanism coupled to a mercury switch. The buckets are calibrated to make one tip for each.254mm of rainfall. As one-bucket fills and tips, the second bucket starts collecting water. At the time oftip a magnet moves and momentarily closes the mercury switch, which is electrically connected to event marker of the stripline chart recorder where each event is recorded. The time between the two tips gives rate of rainfall. The rain rate (mm/hr) at a particular instant is calculated, by measuring the distance between the two tips, as follow: R (mm/hr) = (.254 x)/ d (1) where d is the distance in mm, between the two tips and x is the speed ofthe chart in mm/hr. The point rainfall data for the winter and monsoon seasons for the year 2 & 21 have been analyzed for the cumulative rain statistics for the whole year. Table 1 summarizes the data on rate of rainfall exceeding various percentage of time for rain zone L (which includes Amritsar) as given by ITU-R [3] with measured values ofrain rate exceeding same percentage of time. Table 1 Rain Climate Zone L and measured Rain Intensity exceeded (mm/hr) % time rain rate exceeded Measured Rain rate (mm /hr) 2 21 ITLJ-R (L) Comparison of table 1 shows year-to-year variability of the rain rate statistics. It has been observed from table 1 that there is a wide difference between the measured values of rate of rainfall exceeding small percentages of time as compared with ITU-R values. Therefore, the applications of ITU-R values, for rain rate, are likely to give erroneous results when applied for this location. Proc. of SPIE Vol

3 2.2 Rain-induced specific attenuation Measurements on rain attenuation on terrestrial and space to earth path and the rate of rain fall by earlier observations [4] led to the following relation between specific attenuation a (db/km) and rate ofrain fall R (mmlhr) as a=arb (2) where a & b are functions of frequency, rain temperature, refractive index ofraindrops and RDSD. In the present study Medhurst technique has been adopted for the evaluation of specific attenuation based on rain drop size data collected by distrometer. The method is based on the proportion of the total volume of water reaching the ground, which consists of drops of different diameter interval D1, and the attenuation caused by one drop per cubic cm with uniform drop diameter D for each rain rate. The specific attenuation [5] canbe written as a = P ( dd x 1 6 V D3 ) pd1 db/km (3) Di where P is the rain rate (mmlhr), ddi is the loss/km for a rain concentration of one drop per cubic cm with a uniform drop diameter of D (cm). pd1 is the proportion of the total volume of water reaching the ground consisting of drops whose diameters fall in the interval centered on D cm. Specific attenuation at 2 and 3 GHz have been evaluated at different rain rates by using above equation. It is worth noting here that the rain rate is based on 1-minute integration time data collected by distrometer. An empirical relation obtained from the regression analysis over specific attenuation values calculated at various rain rates has resulted in the following models 2O O.71R''154 (4) a3 O.186R' 478 (5) 3. ANALYSIS OF RADIOMETRIC DATA The sky noise being received by the radiometer and recorded on strip line chart in terms of voltage was converted to antenna temperature, Ta using calibration curves obtained for the radiometer using hot and cold loads. The antenna temperature is further converted in to excess path attenuation values. The path attenuation, Ar, can be found using [6] Ar =1 log (Tm Tcs) 1 (Tm Ta) db (6) where Tm is the effective medium temperature, Tcs is the cosmic noise temperature (3 K) and Ta is the radiometric antenna temperature. The excess path attenuation due to rain over the attenuation value under the clear sky condition is found by measuring the sky noise temperature (Antenna temperature), Ta' and Ta" under the clear sky and rainy conditions respectively. Therefore the excess path attenuation due to rain is given by Ar =1 log (Tm Ta')I ( Tm Ta") db (7) In the present work the medium temperature, Tm, has been taken as 295 k for 1% of time, a reasonable average of measured surface temperature for rainy period ofobservation [8]. For percentage times above 1%, 285 k has been taken to calculate the zenith path attenuation during fogy days and in clear sky. Since scattering losses are assumed negligible, the attenuation that has been calculated from the zenith sky noise temperature measurement only takes into account nonscattering losses that are mainly due to absorption of energy by raindrops. Using equations (7), the zenith attenuation values have been calculated from measured sky noise temperature at various rain rates. Seventy-five rainy days have been taken from the two-year data to determine the relationship between attenuation and rain rate as shown in fig. 1. A regression analysis of the measured data yields the following best-fit curve equation. Ar =.4873 R 798 (8) 352 Proc. of SPIE Vol. 5445

4 On the basis of results shown in fig. 1, it is concluded that attenuation up to approximately 1 8 db can be calculated accurately from sky noise measured by radiometer at rain up to rain rates of 11 mm/hr. Zenith attenuation is well correlated with rain rate and can be estimated from regression analysis which has been obtained from the scattered values of measured zenith attenuation. 25 Rain Rain Rain height intensity attenuation km mm/hr db Average :. 2 C C.C a- C w N Rain rate (mm/hr) Table 2- Values ofattenuation and rain height over Amritsar for the year 21 at 19.9 GHz Fig. 1 Scatter plot ofzenith Path Attenuation verses rain rate 3.1 Effective rain height Effective rain height is one of the parameters for the prediction of slant-path attenuation. The simple vertical structure assumes that rainfall is uniform from the ground to the "rain height" HR. The effective rain height at various rain rates R (mm/hr) has been calculated using the experimentally measured Zenith path attenuation and specific attenuation at a given rain rate using the relation given below Hr = Ar/ ar (9) where Ar and a are the total zenith attenuation and specific attenuation due to rain at rain rate R (mm/hr). The dependence of effective rain height on rain rate is also illustrated in Table 2. It has been found that the average value of the effective rain height estimated from the measured data is found to be 3 km during year 2 & 3.45 km during year 21 at Amritsar, which is in good agreement with the mean rain height given by ITU -R [7]. 4. ANALYSIS OF LOS DATA The rain attenuation data collected over line of sight (LOS) link have been analyzed for cumulative attenuation statistics. Attenuation data have been collected for 2632 minute in the year 21 to determine relationship between rain induced attenuation and rainfall rate. Fig. 2 & 3 shows the plot ofrain attenuation versus rate ofrainfall at 19.4 GHz and GHz respectively. Finding the mean attenuation for specified rain rate and rejecting attenuation data falling outside the 99% confidence refine the data plotted in fig. 2 & 3. Regression analysis over the measured values of rain attenuation gives best fit curve equations and are compared with that obtained by using MP model [8] and ITU-R model [3] for rain attenuation at the same rain rates. It is observed from figure 2 that the attenuation values at GHz over the path measured for all rain rates, over estimates the ITU-R model. The predicted model is in good agreement with that of MP model up to the rain rate of 5-6 mm/hr. The measured values of attenuation corresponding to the rain rates more than 5 mm/hr underestimate MP model. It is also observed from fig. 3 that the attenuation values at GHz corresponding to the rain rates more than 5 mm/hr underestimate MP model. This finding is due to the fact that the rainfall rate up to 5 mm/hr can be considered uniform along the entire path and the instantaneous attenuation values measured at the receiving end can be related to the Proc. of SPIE Vol

5 point rainfall rate measured at that instant (it can again be justified by taking measured specific attenuation value at these rain rates). As the rain rate increases the non-uniformity of rain increases. Due to non-uniformity of rain over the path, the instantaneous attenuation value measured at the receiving end cannot be related to the average point rain intensity measured at that instant. Thus the non-uniformity of rain along the horizontal path is accounted for, by using reduction factor to convert the physical path length to an effective path length a E7 D,)n C 6 V.2 : 25 5 C 4 2 Cu.c Rain Rain rate (mm/hr) rate (mmlhr) 2 Fig. 2 Rain attenuation at 19.4 GHz as a function ofrain rate Rain rate (mm/hr) Fig. 3 Rain attenuation at GHz as a function ofrain rate 4.1 Path length reduction factor Path length reduction factor (r) has been derived at various rain rates from the experimental data on rain attenuation over LOS path and experimental specific attenuation values at same rain rates, using the relation r=a/al (1) where A is the observed attenuation over LOS path, a is the specific attenuation (db/km) as derived earlier from experimental data on drop size distribution. L is the actual path length of LOS link (2.29 km in this case). By substituting the measured values of A and a, in equation 1, the values of r at various rain rates has been calculated for vertical polarization at two frequencies and are given in table 3. It is observed that the value of r reduces with increase in rain rate. Table 3- Average Value ofpath Length Reduction Factor Reduction (r) Average value factor 354 Proc. of SPIE Vol. 5445

6 5. SLANT-PATH ATTENUATION PREDICTION Slant-path attenuation at an elevation angle consists of determining the effective path length through the rain and multiplying by the specific attenuation of the rain appropriate for the region under consideration. A model is presented that describes the relevant statistics of rain attenuation on satellite link (at 2 & 3 GHz) for this location. This model can also be applicable for any location for which there is a long-term data record of rainfall statistics is available. The following location dependent parameters are required for determining the statistics of slant path rain attenuation. 1. Location dependent rain rate statistics R (P%), from table The specific attenuation, a at rain rate R, from equations 4 & The effective rain height, HR, from table 2. The implementation of the model is straightforward and can be used on any small desktop computer with the ability to read the database disk. 6. CONCLUSION Rain-induced effects on microwave propagation at 2 & 3 GHz at Amritsar have been experimentally studied. Rain induced attenuation degrades the performance of communication systems. Therefore its quantitative measurements are required for planning and engineering of future communication systems at these frequencies. This paper summaries the results obtained from experimentally measured data, collected over LOS links at 19.4 & GHz, Zenith looking radiometer at 19.9 GHz and data on rain rate and rain drop size distribution. Empirical models based on experimental data have been developed and compared with the existing models highlighting points of agreement and disagreement and a suitable explanation has also been given. REFERENCES [1] F.C. Medeirosfilho, R.S.Cole and A.D.Sarma: "Millimeter-wave rain induced attenuation: theory and experiments" TEE Proceedings Microwave Antennas Propagation, vol.133, pt.h,pp ,1986. [2] ITU-R recommendation P "propagation data and prediction methods required for Earth-space telecommunication systems" 21 [3] ITU-R recommendation P "Characteristics ofprecipitation for propagation modelling" 21. [4] R.L. Olsen, D.V Rogers and D.B. Hodge. "The arb relation in the calculation of rain attenuation" IEEE Trans. of Antenna Propagation., vol. AP-26, pp ,1978. [5] R.G. Medhurst, 'Rainfall attenuation of centimeter waves: Comparison of theory and measurement', IEEE Transaction on Antenna & Propagation, vol. AP-13, 1965, pp [6] The Tnt. J. of Satellite Communication, vol.8, No. 3, pp , 199. [7] ITU-R recommendation P "Rain height model for prediction methods" 21. [8] R. L. Olsen, D. V. Rogers and D. B. Hodge, "The ar relation in the calculation of rain attenuation," IEEE Trans. Antennas Propagation, Vol. 26, 1978, pp Proc. of SPIE Vol

Impact of Rain Attenuation for Satellite Links at C, Ku, K, Ka and mm Bands in Karachi

Impact of Rain Attenuation for Satellite Links at C, Ku, K, Ka and mm Bands in Karachi 2017, TextRoad Publication ISSN: 2090-4274 Journal of Applied Environmental and Biological Sciences www.textroad.com Impact of Rain Attenuation for Satellite Links at C, Ku, K, Ka and mm Bands in Karachi

More information

Rain Attenuation Prediction Model for Tropical V-band Satellite Earth link

Rain Attenuation Prediction Model for Tropical V-band Satellite Earth link 2011 International Conference on Telecommunication Technology and Applications Proc.of CSIT vol.5 (2011) (2011) IACSIT Press, Singapore Rain Attenuation Prediction Model for Tropical V-band Satellite Earth

More information

Propagation of free space optical links in Singapore

Propagation of free space optical links in Singapore Indian Journal of Radio & Space Physics Vol 42, June 2013, pp 182-186 Propagation of free space optical links in Singapore S V B Rao $,*, J T Ong #, K I Timothy & D Venugopal School of EEE (Blk S2), Nanyang

More information

Outlines. Attenuation due to Atmospheric Gases Rain attenuation Depolarization Scintillations Effect. Introduction

Outlines. Attenuation due to Atmospheric Gases Rain attenuation Depolarization Scintillations Effect. Introduction PROPAGATION EFFECTS Outlines 2 Introduction Attenuation due to Atmospheric Gases Rain attenuation Depolarization Scintillations Effect 27-Nov-16 Networks and Communication Department Loss statistics encountered

More information

Atmospheric Effects. Attenuation by Atmospheric Gases. Atmospheric Effects Page 1

Atmospheric Effects. Attenuation by Atmospheric Gases. Atmospheric Effects Page 1 Atmospheric Effects Page 1 Atmospheric Effects Attenuation by Atmospheric Gases Uncondensed water vapour and oxygen can be strongly absorptive of radio signals, especially at millimetre-wave frequencies

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Radar measured rain attenuation with proposed Z-R relationship at a tropical location Author(s) Yeo,

More information

Modification of Earth-Space Rain Attenuation Model for Earth- Space Link

Modification of Earth-Space Rain Attenuation Model for Earth- Space Link IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 2, Ver. VI (Mar - Apr. 2014), PP 63-67 Modification of Earth-Space Rain Attenuation

More information

Research Article Microwave Attenuation and Prediction of Rain Outage for Wireless Networks in Pakistan s Tropical Region

Research Article Microwave Attenuation and Prediction of Rain Outage for Wireless Networks in Pakistan s Tropical Region Microwave Science and Technology Volume 211, rticle ID 714927, 6 pages doi:1.1155/211/714927 Research rticle Microwave ttenuation and Prediction of Rain Outage for Wireless Networks in Pakistan s Tropical

More information

RECOMMENDATION ITU-R P Guide to the application of the propagation methods of Radiocommunication Study Group 3

RECOMMENDATION ITU-R P Guide to the application of the propagation methods of Radiocommunication Study Group 3 Rec. ITU-R P.1144-2 1 RECOMMENDATION ITU-R P.1144-2 Guide to the application of the propagation methods of Radiocommunication Study Group 3 (1995-1999-2001) The ITU Radiocommunication Assembly, considering

More information

ESTIMATION OF EFFECT OF TROPOSPHERE RAIN ON RADIO LINK IN TROPICAL ENVIRONMENT

ESTIMATION OF EFFECT OF TROPOSPHERE RAIN ON RADIO LINK IN TROPICAL ENVIRONMENT VOL. 1, NO. 17, SEPTEMBER 17 ISSN 119- -17 Asian Research Publishing Network (ARPN). All rights reserved. ESTIMATION OF EFFECT OF TROPOSPHERE RAIN ON RADIO LINK IN TROPICAL ENVIRONMENT Govardhani Immadi

More information

Propagation for Space Applications

Propagation for Space Applications Propagation for Space Applications by Bertram Arbesser-Rastburg Chairman ITU-R SG3 Invited talk at LAPC 2014, Loughborough, UK bertram@arbesser.org Abstract:The presentation covers the key propagation

More information

Frequency Diversity Improvement Factor for Rain Fade Mitigation in Malaysia

Frequency Diversity Improvement Factor for Rain Fade Mitigation in Malaysia 2015 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE) 19-20 December 2015, BUET, Dhaka, Bangladesh Frequency Diversity Improvement Factor for Rain Fade Mitigation in

More information

Research Article Comparison of Measured Rain Attenuation in the GHz Band with Predictions by the ITU-R Model

Research Article Comparison of Measured Rain Attenuation in the GHz Band with Predictions by the ITU-R Model Antennas and Propagation Volume 202, Article ID 45398, 5 pages doi:0.55/202/45398 Research Article Comparison of Measured Rain Attenuation in the 2.25 GHz Band with Predictions by the ITU-R Model Dong

More information

Australian Journal of Basic and Applied Sciences

Australian Journal of Basic and Applied Sciences AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com Comparison of Different Empirical Conversion Methods from 60-minute to 1-minute Integration

More information

Rain precipitation in terrestrial and satellite radio links

Rain precipitation in terrestrial and satellite radio links Paper Rain precipitation in terrestrial and satellite radio links Jan Bogucki and Ewa Wielowieyska Abstract This paper covers unavailability of terrestrial and satellite line-of-sight radio links due to

More information

Temperature and Water Vapor Density Effects On Weather Satellite

Temperature and Water Vapor Density Effects On Weather Satellite Temperature and Water Vapor Density Effects On Weather Satellite H. M. Aljlide 1, M. M. Abousetta 2 and Amer R. Zerek 3 1 Libyan Academy of Graduate Studies, Tripoli, Libya, heba.0000@yahoo.com 2 Tripoli

More information

Rain attenuation using Ka and Ku band frequency beacons at Delhi Earth Station

Rain attenuation using Ka and Ku band frequency beacons at Delhi Earth Station Indian Journal of Radio & Space Physics Vol 44, March 2015, pp 45-50 Rain attenuation using Ka and Ku band frequency beacons at Delhi Earth Station M R Sujimol 1,$,*, Rajat Acharya 2, Gajendra Singh 1

More information

PART 1 RECOMMENDATION ITU-R P.1144 GUIDE TO THE APPLICATION OF THE PROPAGATION METHODS OF RADIOCOMMUNICATION STUDY GROUP 3

PART 1 RECOMMENDATION ITU-R P.1144 GUIDE TO THE APPLICATION OF THE PROPAGATION METHODS OF RADIOCOMMUNICATION STUDY GROUP 3 Rec. ITU-R P.1144 1 PART 1 SECTION P-A: TEXTS OF GENERAL INTEREST Rec. ITU-R P.1144 RECOMMENDATION ITU-R P.1144 GUIDE TO THE APPLICATION OF THE PROPAGATION METHODS OF RADIOCOMMUNICATION STUDY GROUP 3 (1995)

More information

Alpesh H. Dafda 1, Dr. Kishor G. Maradia 2 ABSTRACT I. INTRODUCTION II. STUDY LOCATION AND DATA COLLECTION. India

Alpesh H. Dafda 1, Dr. Kishor G. Maradia 2 ABSTRACT I. INTRODUCTION II. STUDY LOCATION AND DATA COLLECTION. India 17 IJSRSET Volume 3 Issue 6 Print ISSN: 2395-199 Online ISSN : 2394-499 Themed Section: Engineering and Technology Monthly variation in Rainfall Attenuation for Ka band Satellite Communication for monsoon

More information

Wide Range Propagation Model. Report on Modelling of Rain Attenuation

Wide Range Propagation Model. Report on Modelling of Rain Attenuation Wide Range Propagation Model Report on Modelling of Rain Attenuation th December 28 Table of Contents Introduction...3 Weaknesses of current approaches...5 Not using the full rain distribution...5 Testing

More information

Akio Oniyama 1 and Tetsuo Fukunaga 2 PASCO CORPORATION Nakano, Nakano-ku, Tokyo, Japan

Akio Oniyama 1 and Tetsuo Fukunaga 2 PASCO CORPORATION Nakano, Nakano-ku, Tokyo, Japan SpaceOps Conferences 16-20 May 2016, Daejeon, Korea SpaceOps 2016 Conference 10.2514/6.2016-2434 A Case Study of the Data Downlink Methodology for Earth Observation Satellite Akio Oniyama 1 and Tetsuo

More information

Measurement of Wet Antenna Losses on 26 GHz Terrestrial Microwave Link in Malaysia

Measurement of Wet Antenna Losses on 26 GHz Terrestrial Microwave Link in Malaysia Wireless Pers Commun DOI 10.1007/s11277-010-0182-6 Measurement of Wet Antenna Losses on 26 GHz Terrestrial Microwave Link in Malaysia S. K. A. Rahim A. Y. Abdulrahman T. A. Rahman M. R. Ul Islam Springer

More information

ANALYSIS EFFECT OF WATER ON A KA-BAND ANTENNA

ANALYSIS EFFECT OF WATER ON A KA-BAND ANTENNA Progress In Electromagnetics Research Letters, Vol. 9, 49 57, 2009 ANALYSIS EFFECT OF WATER ON A KA-BAND ANTENNA J. S. Mandeep Jabatan Kejuruteraan Elektrik, Elektronik, and Sistem Fakuliti Kejuruteraan

More information

RAIN ATTENUATION EFFECTS ON SIGNAL PROPAGATION AT W/V-BAND FREQUENCIES

RAIN ATTENUATION EFFECTS ON SIGNAL PROPAGATION AT W/V-BAND FREQUENCIES University of New Mexico UNM Digital Repository Electrical and Computer Engineering ETDs Engineering ETDs Fall 11-7-2016 RAIN ATTENUATION EFFECTS ON SIGNAL PROPAGATION AT W/V-BAND FREQUENCIES Nadine Daoud

More information

Rec. ITU-R P RECOMMENDATION ITU-R P *

Rec. ITU-R P RECOMMENDATION ITU-R P * Rec. ITU-R P.682-1 1 RECOMMENDATION ITU-R P.682-1 * PROPAGATION DATA REQUIRED FOR THE DESIGN OF EARTH-SPACE AERONAUTICAL MOBILE TELECOMMUNICATION SYSTEMS (Question ITU-R 207/3) Rec. 682-1 (1990-1992) The

More information

Prediction Method for Rain Rate and Rain Propagation Attenuation for K-Band Satellite Communications Links in Tropical Areas

Prediction Method for Rain Rate and Rain Propagation Attenuation for K-Band Satellite Communications Links in Tropical Areas J. ICT Res. Appl., Vol. 8, No. 2, 2014, 85-96 85 Prediction Method for Rain Rate and Rain Propagation Attenuation for K-Band Satellite Communications Links in Tropical Areas Baso Maruddani 1, Adit Kurniawan

More information

DEVELOPMENT AND IMPLEMENTATION OF AN ATTENUATION CORRECTION ALGORITHM FOR CASA OFF THE GRID X-BAND RADAR

DEVELOPMENT AND IMPLEMENTATION OF AN ATTENUATION CORRECTION ALGORITHM FOR CASA OFF THE GRID X-BAND RADAR DEVELOPMENT AND IMPLEMENTATION OF AN ATTENUATION CORRECTION ALGORITHM FOR CASA OFF THE GRID X-BAND RADAR S98 NETWORK Keyla M. Mora 1, Leyda León 1, Sandra Cruz-Pol 1 University of Puerto Rico, Mayaguez

More information

Reduce and Control the Impact of Rain Attenuation for Ku Band in Sudan

Reduce and Control the Impact of Rain Attenuation for Ku Band in Sudan Reduce and Control the Impact of Rain Attenuation for Ku Band in Sudan Israa Osman Ishag 1, Ashraf Gasim Elsid Abdalla 2 and Amin Babiker A/nabi Mustafa 3 1 College of Engineering Al Neelain University,

More information

ESTIMATION OF RAIN ATTENUATION AT MICROWAVE BANDS IN NIGERIA

ESTIMATION OF RAIN ATTENUATION AT MICROWAVE BANDS IN NIGERIA JOURNAL OF RADIO ELECTRONICS (ZHURNAL RADIOELEKTRONIKI), ISSN 684-79, N8, 208 DOI.30898/684-79.208.8.8 ESTIMATION OF RAIN ATTENUATION AT MICROWAVE BANDS IN NIGERIA G. A. Akinyemi, J. A. Falade 2 and L.

More information

RECOMMENDATION ITU-R P Acquisition, presentation and analysis of data in studies of tropospheric propagation

RECOMMENDATION ITU-R P Acquisition, presentation and analysis of data in studies of tropospheric propagation Rec. ITU-R P.311-10 1 RECOMMENDATION ITU-R P.311-10 Acquisition, presentation and analysis of data in studies of tropospheric propagation The ITU Radiocommunication Assembly, considering (1953-1956-1959-1970-1974-1978-1982-1990-1992-1994-1997-1999-2001)

More information

Research Article Calculation of Effective Earth Radius and Point Refractivity Gradient in UAE

Research Article Calculation of Effective Earth Radius and Point Refractivity Gradient in UAE Antennas and Propagation Volume 21, Article ID 2457, 4 pages doi:1.1155/21/2457 Research Article Calculation of Effective Earth Radius and Point Refractivity Gradient in UAE Abdulhadi Abu-Almal and Kifah

More information

II. ATTENUATION DUE TO ATMOSPHERIC

II. ATTENUATION DUE TO ATMOSPHERIC Tropospheric Influences on Satellite Communications in Tropical Environment: A Case Study of Nigeria Ayantunji B.G, ai-unguwa H., Adamu A., and Orisekeh K. Abstract Among other atmospheric regions, ionosphere,

More information

RECOMMENDATION ITU-R P Prediction of sky-wave field strength at frequencies between about 150 and khz

RECOMMENDATION ITU-R P Prediction of sky-wave field strength at frequencies between about 150 and khz Rec. ITU-R P.1147-2 1 RECOMMENDATION ITU-R P.1147-2 Prediction of sky-wave field strength at frequencies between about 150 and 1 700 khz (Question ITU-R 225/3) (1995-1999-2003) The ITU Radiocommunication

More information

ITU-R Rec. P618-8 gives the following expression for the atmospheric noise temperature as seen by the receiving antenna:

ITU-R Rec. P618-8 gives the following expression for the atmospheric noise temperature as seen by the receiving antenna: ITU-R Rec. P68-8 gives the following expression for the atmospheric noise temperature as seen by the receiving antenna: T atm L T 0 atm m 0 T m is the effective temperature (K) of the atmosphere, a common

More information

RECOMMENDATION ITU-R S.733-1* (Question ITU-R 42/4 (1990))**

RECOMMENDATION ITU-R S.733-1* (Question ITU-R 42/4 (1990))** Rec. ITU-R S.733-1 1 RECOMMENDATION ITU-R S.733-1* DETERMINATION OF THE G/T RATIO FOR EARTH STATIONS OPERATING IN THE FIXED-SATELLITE SERVICE (Question ITU-R 42/4 (1990))** Rec. ITU-R S.733-1 (1992-1993)

More information

On the opportunistic use of geostationary satellite signals to estimate rain rate in the purpose of radar calibration

On the opportunistic use of geostationary satellite signals to estimate rain rate in the purpose of radar calibration ERAD - THE SEVENTH EUROEAN CONFERENCE ON RADAR IN METEOROOGY AND HYDROOGY On the opportunistic use of geostationary satellite signals to estimate rain rate in the purpose of radar calibration aurent Barthès,

More information

E-BAND WIRELESS TECHNOLOGY OVERVIEW

E-BAND WIRELESS TECHNOLOGY OVERVIEW OVERVIEW EXECUTIVE SUMMARY The 71-76 and 81-86 GHz bands (widely known as e-band ) are permitted worldwide for ultra-high capacity point-to-point communications. E-band wireless systems are available that

More information

AN ESTIMATE OF INTERFERENCE EFFECT ON HORIZONTALLY POLARIZED SIGNAL TRANSMISSION IN THE TROPICAL LOCATIONS: A COMPARISON OF RAIN-CELL MODELS

AN ESTIMATE OF INTERFERENCE EFFECT ON HORIZONTALLY POLARIZED SIGNAL TRANSMISSION IN THE TROPICAL LOCATIONS: A COMPARISON OF RAIN-CELL MODELS Progress In Electromagnetics Research C, Vol. 3, 67 79, 2008 AN ESTIMATE OF INTERFERENCE EFFECT ON HORIZONTALLY POLARIZED SIGNAL TRANSMISSION IN THE TROPICAL LOCATIONS: A COMPARISON OF RAIN-CELL MODELS

More information

MEASUREMENT OF RAIN ATTENUATION FOR KU BAND SATELLITE SIGNAL IN TROPICAL ENVIRONMENT USING DAH, SAM MODELS

MEASUREMENT OF RAIN ATTENUATION FOR KU BAND SATELLITE SIGNAL IN TROPICAL ENVIRONMENT USING DAH, SAM MODELS VOL. 1, NO. 4, MARCH 215 ISSN 1819-668 26-215 Asian Research Publishing Network (ARPN). All rights reserved. MEASUREMENT OF RAIN ATTENUATION FOR KU BAND SATELLITE SIGNAL IN TROPICAL ENVIRONMENT USING DAH,

More information

RECOMMENDATION ITU-R P Propagation data and prediction methods required for the design of Earth-space telecommunication systems

RECOMMENDATION ITU-R P Propagation data and prediction methods required for the design of Earth-space telecommunication systems Rec. ITU-R P.618-8 1 RECOMMENDATION ITU-R P.618-8 Propagation data and prediction methods required for the design of Earth-space telecommunication systems (Question ITU-R 06/3) (1986-1990-199-1994-1995-1997-1999-001-003)

More information

Study of Factors which affect the Calculation of Co- Channel Interference in a Radio Link

Study of Factors which affect the Calculation of Co- Channel Interference in a Radio Link International Journal of Electronic and Electrical Engineering. ISSN 0974-2174 Volume 8, Number 2 (2015), pp. 103-111 International Research Publication House http://www.irphouse.com Study of Factors which

More information

Rain Rate Distributions for Microwave Link Design Based on Long Term Measurement in Malaysia

Rain Rate Distributions for Microwave Link Design Based on Long Term Measurement in Malaysia Indonesian Journal of Electrical Engineering and Computer Science Vol. 10, No. 3, June 2018, pp. 1023~1029 ISSN: 2502-4752, DOI: 10.11591/ijeecs.v10.i3.pp1023-1029 1023 Rain Rate Distributions for Microwave

More information

Characterizing Atmospheric Turbulence and Instrumental Noise Using Two Simultaneously Operating Microwave Radiometers

Characterizing Atmospheric Turbulence and Instrumental Noise Using Two Simultaneously Operating Microwave Radiometers Characterizing Atmospheric Turbulence and Instrumental Noise Using Two Simultaneously Operating Microwave Radiometers Tobias Nilsson, Gunnar Elgered, and Lubomir Gradinarsky Onsala Space Observatory Chalmers

More information

SG3 Software, Databanks and Testing Procedures

SG3 Software, Databanks and Testing Procedures ITU WORKSHOP Overview of activities of ITU-R Study Group 3 on radiowave propagation: (The Hague, 10 April 2014) SG3 Software, Databanks and Testing Procedures Antonio Martellucci Carlo Riva International

More information

Estimation of Rain attenuation and Ionospheric delay at a Low-Latitude Indian Station

Estimation of Rain attenuation and Ionospheric delay at a Low-Latitude Indian Station Estimation of Rain attenuation and Ionospheric delay at a Low-Latitude Indian Station Amita Gaur 1, Som Kumar Sharma 2 1 Vellore Institute of Technology, Vellore, India 2 Physical Research Laboratory,

More information

Protection Ratio Calculation Methods for Fixed Radiocommunications Links

Protection Ratio Calculation Methods for Fixed Radiocommunications Links Protection Ratio Calculation Methods for Fixed Radiocommunications Links C.D.Squires, E. S. Lensson, A. J. Kerans Spectrum Engineering Australian Communications and Media Authority Canberra, Australia

More information

Microwave interference due to rain scatter at Ku and Ka - bands in Akure, South West, Nigeria

Microwave interference due to rain scatter at Ku and Ka - bands in Akure, South West, Nigeria Global Advanced Research Journal of Physical and Applied Sciences Vol. (3) pp. 047-068, November, 013 Available online http://www.garj.org/garjpas/index.htm Copyright 013 Global Advanced Research Journals

More information

RECOMMENDATION ITU-R P Propagation data and prediction methods required for the design of Earth-space telecommunication systems

RECOMMENDATION ITU-R P Propagation data and prediction methods required for the design of Earth-space telecommunication systems Rec. ITU-R P.618-9 1 RECOMMENDATION ITU-R P.618-9 Propagation data and prediction methods required for the design of Earth-space telecommunication systems (Question ITU-R 06/3) (1986-1990-199-1994-1995-1997-1999-001-003-007)

More information

Propagation curves for aeronautical mobile and radionavigation services using the VHF, UHF and SHF bands

Propagation curves for aeronautical mobile and radionavigation services using the VHF, UHF and SHF bands Recommendation ITU-R P.528-3 (02/2012) Propagation curves for aeronautical mobile and radionavigation services using the VHF, UHF and SHF bands P Series Radiowave propagation ii Rec. ITU-R P.528-3 Foreword

More information

Dept. of ECE, K L University, Vaddeswaram, Guntur, Andhra Pradesh, India. 3. Consultant, NOTACHI EleKtronic Technologies, Andhra Pradesh, India 1

Dept. of ECE, K L University, Vaddeswaram, Guntur, Andhra Pradesh, India. 3. Consultant, NOTACHI EleKtronic Technologies, Andhra Pradesh, India 1 Volume 115 No. 7 17, 471-476 ISSN: 1311- (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ESTIMATION OF REFLECTIVITY AND CLOUD ATTENUATION IN TROPICAL REGIONS ijpam.eu Govardhani.Immadi

More information

Rainfall Rate Distribution for LOS Radio Systems in Botswana

Rainfall Rate Distribution for LOS Radio Systems in Botswana Rainfall Rate Distribution for LOS Radio Systems in Botswana Chrispin T. Mulangu, Pius A. Owolawi, and Thomas J.O. Afullo, Senior Member, SAIEE Abstract The estimated cumulative distributions (CDFs) of

More information

UNIT Derive the fundamental equation for free space propagation?

UNIT Derive the fundamental equation for free space propagation? UNIT 8 1. Derive the fundamental equation for free space propagation? Fundamental Equation for Free Space Propagation Consider the transmitter power (P t ) radiated uniformly in all the directions (isotropic),

More information

1. Terrestrial propagation

1. Terrestrial propagation Rec. ITU-R P.844-1 1 RECOMMENDATION ITU-R P.844-1 * IONOSPHERIC FACTORS AFFECTING FREQUENCY SHARING IN THE VHF AND UHF BANDS (30 MHz-3 GHz) (Question ITU-R 218/3) (1992-1994) Rec. ITU-R PI.844-1 The ITU

More information

Raindrop size distribution profiling by laser distrometer and rain attenuation of centimeter radio waves

Raindrop size distribution profiling by laser distrometer and rain attenuation of centimeter radio waves Indian Journal of Radio & Space Physics Vol. 38, April 2009, pp. 80-85 Raindrop size distribution profiling by laser distrometer and rain attenuation of centimeter radio waves M Saikia $,*, M Devi, A K

More information

INTRODUCTION TO RF PROPAGATION

INTRODUCTION TO RF PROPAGATION INTRODUCTION TO RF PROPAGATION John S. Seybold, Ph.D.,WILEY- 'interscience JOHN WILEY & SONS, INC. Preface XIII 1. Introduction 1.1 Frequency Designations 1 1.2 Modes of Propagation 3 1.2.1 Line-of-Sight

More information

Radio Propagation Fundamentals

Radio Propagation Fundamentals Radio Propagation Fundamentals Concept of Electromagnetic Wave Propagation Mechanisms Modes of Propagation Propagation Models Path Profiles Link Budget Fading Channels Electromagnetic (EM) Waves EM Wave

More information

The Tropospheric Scintillation Prediction of Earth-to-Satellite Link for Bangladeshi Climatic Condition

The Tropospheric Scintillation Prediction of Earth-to-Satellite Link for Bangladeshi Climatic Condition SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 12, No. 3, October 2015, 263-273 UDC: 551.510.52:52.658]:629.783(549.3) DOI: 10.2298/SJEE1503263H The Tropospheric Scintillation Prediction of Earth-to-Satellite

More information

Technical Note: Path Align-R Wireless Supporting Information

Technical Note: Path Align-R Wireless Supporting Information Technical Note: Path Align-R Wireless Supporting Information Free-space Loss The Friis free-space propagation equation is commonly used to determine the attenuation of a signal due to spreading of the

More information

Measurement of Rain Attenuation in Terahertz Wave Range

Measurement of Rain Attenuation in Terahertz Wave Range Wireless Engineering and Technology, 2011, 2, 119-124 doi:10.4236/wet.2011.23017 Published Online July 2011 (http://www.scirp.org/journal/wet) 119 Measurement of Rain Attenuation in Terahertz Wave Range

More information

Two Years Characterization of Concurrent Ku-band Rain Attenuation and Tropospheric Scintillation in Bandung, Indonesia using JCSAT3

Two Years Characterization of Concurrent Ku-band Rain Attenuation and Tropospheric Scintillation in Bandung, Indonesia using JCSAT3 Two Years Characterization of Concurrent Ku-band Rain Attenuation and Tropospheric Scintillation in Bandung, Indonesia using JCSAT3 F2A.5 Joko Suryana Utoro S Department of Electrical Engineering, Institute

More information

DESIGN OF SATELLITE LINKS FOR Ka-BAND NETWORK IN NEPAL. Presented By Amrita Khakurel Nepal

DESIGN OF SATELLITE LINKS FOR Ka-BAND NETWORK IN NEPAL. Presented By Amrita Khakurel Nepal DESIGN OF SATELLITE LINKS FOR Ka-BAND NETWORK IN NEPAL Presented By Amrita Khakurel Nepal 1 To design Ka-band network links by logically selecting technologies and optimizing scarce resources. To depict

More information

RECOMMENDATION ITU-R F.1404*

RECOMMENDATION ITU-R F.1404* Rec. ITU-R F.1404 1 RECOMMENDATION ITU-R F.1404* Rec. ITU-R F.1404 MINIMUM PROPAGATION ATTENUATION DUE TO ATMOSPHERIC GASES FOR USE IN FREQUENCY SHARING STUDIES BETWEEN SYSTEMS IN THE FIXED SERVICE AND

More information

Performance Analysis of Rain Fades on Microwave Earth-to-Satellite Links in Bangladesh

Performance Analysis of Rain Fades on Microwave Earth-to-Satellite Links in Bangladesh International Journal of Engineering and Technology Volume 4 No. 7, July, 14 Performance Analysis of ain Fades on Microwave Earth-to-Satellite inks in Bangladesh Khandaker ubaba Bashar, Mohammad Mahfujur

More information

h max 20 TX Ionosphere d 1649 km Radio and Optical Wave Propagation Prof. L. Luini, July 1 st, 2016 SURNAME AND NAME ID NUMBER SIGNATURE

h max 20 TX Ionosphere d 1649 km Radio and Optical Wave Propagation Prof. L. Luini, July 1 st, 2016 SURNAME AND NAME ID NUMBER SIGNATURE Radio and Optical Wave Propagation Prof. L. Luini, July st, 06 3 4 do not write above SURNAME AND NAME ID NUMBER SIGNATURE Exercise Making reference to the figure below, the transmitter TX, working at

More information

Comparism of Attenuation Effect of Rainfall on Television Signal With/Without (Atpc) Automatic Transmit Power Control

Comparism of Attenuation Effect of Rainfall on Television Signal With/Without (Atpc) Automatic Transmit Power Control IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 06, Issue 03 (March. 2016), V2 PP 04-08 www.iosrjen.org Comparism of Attenuation Effect of Rainfall on Television Signal

More information

Guide to the application of the propagation methods of Radiocommunication Study Group 3

Guide to the application of the propagation methods of Radiocommunication Study Group 3 Recommendation ITU-R P.1144-6 (02/2012) Guide to the application of the propagation methods of Radiocommunication Study Group 3 P Series Radiowave propagation ii Rec. ITU-R P.1144-6 Foreword The role of

More information

Site Diversity Gain at the Equator: Radar-Derived Results and Modeling in Singapore

Site Diversity Gain at the Equator: Radar-Derived Results and Modeling in Singapore INTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS AND NETWORKING Published online xxx in Wiley Online Library (wileyonlinelibrary.com). Site Diversity Gain at the Equator: Radar-Derived Results and Modeling

More information

EEG 816: Radiowave Propagation 2009

EEG 816: Radiowave Propagation 2009 Student Matriculation No: Name: EEG 816: Radiowave Propagation 2009 Dr A Ogunsola This exam consists of 5 problems. The total number of pages is 5, including the cover page. You have 2.5 hours to solve

More information

RECOMMENDATION ITU-R P Attenuation by atmospheric gases

RECOMMENDATION ITU-R P Attenuation by atmospheric gases Rec. ITU-R P.676-6 1 RECOMMENDATION ITU-R P.676-6 Attenuation by atmospheric gases (Question ITU-R 01/3) (1990-199-1995-1997-1999-001-005) The ITU Radiocommunication Assembly, considering a) the necessity

More information

INTERNATIONAL TELECOMMUNICATION UNION HANDBOOK HANDBOOK ON EARTH-SPACE PROPAGATION

INTERNATIONAL TELECOMMUNICATION UNION HANDBOOK HANDBOOK ON EARTH-SPACE PROPAGATION INTERNATIONAL TELECOMMUNICATION UNION HANDBOOK HANDBOOK ON EARTH-SPACE PROPAGATION Radiocommunication Bureau Geneva, 1996 HANDBOOK RADIOWAVE PROPAGATION INFORMATION FOR PREDICTIONS FOR EARTH-TO-SPACE

More information

Rain attenuation characteristics - An observational study over LOS microwave link at 11 GHz*

Rain attenuation characteristics - An observational study over LOS microwave link at 11 GHz* I,ll'! IndianJournalofRadio& SpacePhysics Vol.23,April1994,pp. 130-134 Rain attenuation characteristics - An observational study over LOS microwave link at 11 GH* K I Timothy,SanjaySharma,A K Barbara&

More information

Acquisition, presentation and analysis of data in studies of radiowave propagation

Acquisition, presentation and analysis of data in studies of radiowave propagation Recommendation ITU-R P.311-17 (12/2017) Acquisition, presentation and analysis of data in studies of radiowave propagation P Series Radiowave propagation ii Rec. ITU-R P.311-17 Foreword The role of the

More information

RECOMMENDATION ITU-R SA.1628

RECOMMENDATION ITU-R SA.1628 Rec. ITU-R SA.628 RECOMMENDATION ITU-R SA.628 Feasibility of sharing in the band 35.5-36 GHZ between the Earth exploration-satellite service (active) and space research service (active), and other services

More information

Performance Evaluation of A Modified Time Diversity Gain Model For Rain Fade Mitigation In South-South Nigeria

Performance Evaluation of A Modified Time Diversity Gain Model For Rain Fade Mitigation In South-South Nigeria Research Paper American Journal of Engineering Research (AJER) 2018 American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-7, Issue-9, pp-64-70 www.ajer.org Open Access

More information

Design of Ka-Band Satellite Links in Indonesia

Design of Ka-Band Satellite Links in Indonesia Design of Ka-Band Satellite Links in Indonesia Zulfajri Basri Hasanuddin International Science Index, Electronics and Communication Engineering waset.org/publication/9999249 Abstract There is an increasing

More information

Point to point Radiocommunication

Point to point Radiocommunication Point to point Radiocommunication SMS4DC training seminar 7 November 1 December 006 1 Technical overview Content SMS4DC Software link calculation Exercise 1 Point-to-point Radiocommunication Link A Radio

More information

November 24, 2010xx. Introduction

November 24, 2010xx. Introduction Path Analysis XXXXXXXXX Ref Number: XXXXXXX Introduction This report is an analysis of the proposed XXXXXXXXX network between XXXXXXX and XXXXXXX. The primary aim was to investigate the frequencies and

More information

Rain rate modeling of 1 min from various integration times in South Korea

Rain rate modeling of 1 min from various integration times in South Korea DOI 10.1186/s40064-016-2062-3 RESEARCH Open Access Rain rate modeling of 1 min from various integration times in South Korea Sujan Shrestha 1, Jung Jin Park 2 and Dong You Choi 1* *Correspondence: dychoi@chosun.ac.kr

More information

T. Siva Priya * and T. Nizhanthi Faculty of Engineering, Multimedia University, Jalan Multimedia, Cyberjaya 63100, Selangor, Malaysia

T. Siva Priya * and T. Nizhanthi Faculty of Engineering, Multimedia University, Jalan Multimedia, Cyberjaya 63100, Selangor, Malaysia Progress In Electromagnetics Research B, Vol. 45, 37 56, 2012 A STUDY ON THE EFFECTS OF RAIN ATTENUA- TION FOR AN X-BAND SATELLITE SYSTEM OVER MALAYSIA T. Siva Priya * and T. Nizhanthi Faculty of Engineering,

More information

Microwave-Radiometer

Microwave-Radiometer Microwave-Radiometer Figure 1: History of cosmic background radiation measurements. Left: microwave instruments, right: background radiation as seen by the corresponding instrument. Picture: NASA/WMAP

More information

Rec. ITU-R P RECOMMENDATION ITU-R P PROPAGATION BY DIFFRACTION. (Question ITU-R 202/3)

Rec. ITU-R P RECOMMENDATION ITU-R P PROPAGATION BY DIFFRACTION. (Question ITU-R 202/3) Rec. ITU-R P.- 1 RECOMMENDATION ITU-R P.- PROPAGATION BY DIFFRACTION (Question ITU-R 0/) Rec. ITU-R P.- (1-1-1-1-1-1-1) The ITU Radiocommunication Assembly, considering a) that there is a need to provide

More information

Satellite TVRO G/T calculations

Satellite TVRO G/T calculations Satellite TVRO G/T calculations From: http://aa.1asphost.com/tonyart/tonyt/applets/tvro/tvro.html Introduction In order to understand the G/T calculations, we must start with some basics. A good starting

More information

Osogbo, Nigeria 3, 4 Department of Electrical, Electronic and System Engineering 3,4 Institute of Space Science, University Kebangsaan Malaysia,

Osogbo, Nigeria 3, 4 Department of Electrical, Electronic and System Engineering 3,4 Institute of Space Science, University Kebangsaan Malaysia, T. V. Omotosho 1, O. O. Obiyemi 2, J. S. Mandeep 3, M. Abdullah 4, S. A. Akinwumi 5, A. A. Willoughby 6 O. O. Ometan 7, M. O. Adewusi 8 1 Department of Physics, Covenant University Ota, Nigeria 2 Department

More information

A Terrestrial Multiple-Receiver Radio Link Experiment at 10.7 GHz - Comparisons of Results with Parabolic Equation Calculations

A Terrestrial Multiple-Receiver Radio Link Experiment at 10.7 GHz - Comparisons of Results with Parabolic Equation Calculations RADIOENGINEERING, VOL. 19, NO. 1, APRIL 2010 117 A Terrestrial Multiple-Receiver Radio Link Experiment at 10.7 GHz - Comparisons of Results with Parabolic Equation Calculations Pavel VALTR 1, Pavel PECHAC

More information

GSJ: VOLUME 6, ISSUE 2, FEBRUARY GSJ: Volume 6, Issue 2, February 2018, Online: ISSN

GSJ: VOLUME 6, ISSUE 2, FEBRUARY GSJ: Volume 6, Issue 2, February 2018, Online: ISSN GSJ: VOLUME 6, ISSUE 2, FEBRUARY 2018 290 GSJ: Volume 6, Issue 2, February 2018, Online: ISSN 2320-9186 MITIGATION OF RAIN ATTENUATION IN A FIXED WIRELESS MICROWAVE LINK USING AN ADAPTIVE TRANSMIT POWER

More information

Reducing Propagation Losses in Ku-Band Satellite Communication Using ITU-R Model

Reducing Propagation Losses in Ku-Band Satellite Communication Using ITU-R Model Reducing Propagation Losses in Ku-Band Satellite Communication Using ITU-R J. J. Biebuma Department of Electronic & Computer Engineering, University of Port Harcourt, Port Harcourt, Nigeria B.O.Omijeh

More information

Experiments with Tropo-Scatter on 24 GHz

Experiments with Tropo-Scatter on 24 GHz Experiments with Tropo-Scatter on 24 GHz By Rex Moncur VK7MO and David Smith VK3HZ While it is possible to readily work up to around 200 km on 24 GHz with line of sight propagation between mountains, those

More information

Research Article Characterization of Rain Specific Attenuation and Frequency Scaling Method for Satellite Communication in South Korea

Research Article Characterization of Rain Specific Attenuation and Frequency Scaling Method for Satellite Communication in South Korea Hindawi International Journal of Antennas and Propagation Volume 217, Article ID 8694748, 16 pages https://doi.org/1.1155/217/8694748 Research Article Characterization of Rain Specific Attenuation and

More information

Polarization orientation of the electric field vector with respect to the earth s surface (ground).

Polarization orientation of the electric field vector with respect to the earth s surface (ground). Free space propagation of electromagnetic waves is often called radio-frequency (rf) propagation or simply radio propagation. The earth s atmosphere, as medium introduces losses and impairments to the

More information

Radio Science, Volume 32, Number 5, Pages , September-October 1997

Radio Science, Volume 32, Number 5, Pages , September-October 1997 Radio Science, Volume 32, Number 5, Pages 1861-1866, September-October 1997 Scintillation and simultaneous rain attenuation at 12.5 GHz to satellite Olympus Emilio Matricciani, Mario Maud, and Carlo Riva

More information

Conversion of annual statistics to worst-month statistics

Conversion of annual statistics to worst-month statistics Recommendation ITU-R P.84-5 (09/206) Conversion of annual statistics to worst-month statistics P Series Radiowave propagation ii Rec. ITU-R P.84-5 Foreword The role of the Radiocommunication Sector is

More information

Propagation prediction techniques and data required for the design of trans-horizon radio-relay systems

Propagation prediction techniques and data required for the design of trans-horizon radio-relay systems Recommendation ITU-R P.617- (0/01) Propagation prediction techniques and data required for the design of trans-horizon radio-relay systems P Series Radiowave propagation ii Rec. ITU-R P.617- Foreword The

More information

RECOMMENDATION ITU-R P ATTENUATION IN VEGETATION. (Question ITU-R 202/3)

RECOMMENDATION ITU-R P ATTENUATION IN VEGETATION. (Question ITU-R 202/3) Rec. ITU-R P.833-2 1 RECOMMENDATION ITU-R P.833-2 ATTENUATION IN VEGETATION (Question ITU-R 2/3) Rec. ITU-R P.833-2 (1992-1994-1999) The ITU Radiocommunication Assembly considering a) that attenuation

More information

WATER VAPOR ATTENUATION STUDIES FOR KA AND V BAND FREQUENCIES OVER A TROPICAL REGION

WATER VAPOR ATTENUATION STUDIES FOR KA AND V BAND FREQUENCIES OVER A TROPICAL REGION IJCRR Vol 5 issue 5 Section: General Sciences Category: Research Received on: 27//3 Revised on: 6/2/3 Accepted on: 9/3/3 WATER VAPOR ATTENUATION STUDIES FOR KA AND V BAND FREQUENCIES OVER A G.Venkata Chalapathi,2,

More information

Statistical Modeling of Rain Attenuation in Tropical Terrestrial Links

Statistical Modeling of Rain Attenuation in Tropical Terrestrial Links 296 Statistical Modeling of Rain Attenuation in Tropical Terrestrial Links Fernando J. A. Andrade, Luiz A. R. da Silva Mello, Marlene S. Pontes Center for Telecommunication Studies Catholic University

More information

Building Optimal Statistical Models with the Parabolic Equation Method

Building Optimal Statistical Models with the Parabolic Equation Method PIERS ONLINE, VOL. 3, NO. 4, 2007 526 Building Optimal Statistical Models with the Parabolic Equation Method M. Le Palud CREC St-Cyr Telecommunications Department (LESTP), Guer, France Abstract In this

More information

INVESTIGATION OF KA-BAND SATELLITE COMMUNICATION PROPAGATION IN EQUATORIAL REGIONS

INVESTIGATION OF KA-BAND SATELLITE COMMUNICATION PROPAGATION IN EQUATORIAL REGIONS INVESTIGATION OF KA-BAND SATELLITE COMMUNICATION PROPAGATION IN EQUATORIAL REGIONS S. L. Jong 1, 3, H. Y. Lam 2, J. Din 3 and M. D Amico 4 1 Department of Communication Engineering, Faculty of Electrical

More information

Update of the compatibility study between RLAN 5 GHz and EESS (active) in the band MHz

Update of the compatibility study between RLAN 5 GHz and EESS (active) in the band MHz ECC Electronic Communications Committee CEPT CPG-5 PTD CPG-PTD(4)23 CPG-5 PTD #6 Luxembourg, 28 April 2 May 204 Date issued: 22 April 204 Source: Subject: France Update of the compatibility study between

More information

RECOMMENDATION ITU-R P.1410

RECOMMENDATION ITU-R P.1410 Rec. ITU-R P.1410 1 RECOMMENDATION ITU-R P.1410 PROPAGATION DATA AND PREDICTION METHODS REQUIRED FOR THE DESIGN OF TERRESTRIAL BROADBAND MILLIMETRIC RADIO ACCESS SYSTEMS OPERATING IN A FREQUENCY RANGE

More information

VK3UM Atmosphere Attenuation Calculator. Table of Contents

VK3UM Atmosphere Attenuation Calculator. Table of Contents Table of Contents Over View 2 Menu Options 2 Input Variables 5 Input application data. 7 Screen Display Calculations 11 Reference ITU Graphs 13 Terrestrial Dry Air [O²] and W V [H²O] Attenuation 14 Zenith

More information