Fully Integrated Direct Regulating Rectifier with Resonance Frequency Shift for Wireless Power Receivers

Size: px
Start display at page:

Download "Fully Integrated Direct Regulating Rectifier with Resonance Frequency Shift for Wireless Power Receivers"

Transcription

1 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.5, OCTOBER, 2017 ISSN(Print) ISSN(Online) Fully Integrated Direct Regulating Rectifier with Resonance Frequency Shift for Wireless Power Receivers Chang-Jong Yim and Shi-Hong Park * Abstract Conventional methods for controlling the load-dependent output voltage require the use of an additional voltage converter. However, these methods have issues such as increase in voltage or current at the receiver side during a low load state, use of external components, increase in chip area, and reduced efficiency. This paper proposes a receiver IC that can control the load-dependent output voltage without using any additional voltage converter. The proposed IC uses a method that shifts the resonance frequency at the receiver side in the magnetic resonance wireless power transfer system, thus solving the above mentioned issues often observed in conventional methods. The proposed IC is fabricated using a 0.13-µm 90 V BCD process, and the system transfer efficiency was 54.11% at 2.5 W. Index Terms Wireless power transfer, wireless power receiver, direct regulating rectifiers, magnetic resonance, resonance frequency shift I. INTRODUCTION In recent years, research on wireless power transfer technology has gained considerable research interest owing to the popularity of smart mobile devices and wearable devices, along with new paradigms such as the Internet of Things. Further, wireless power transfer is also expected to be utilized in electric vehicles in the future. Wireless power transfer can be achieved in two Manuscript received Aug. 12, 2016; accepted Sep. 18, 2017 Dept. of Electronics and Electrical Engineering, Dankook University, Yongin-si, Gyounggi-do, , Korea icjdream@gmail.com ways: by using the magnetic induction of coils, or by using magnetic resonance. Compared to the former, the magnetic resonance method enables long-distance power transfer and simultaneous charging of multiple devices. Further, wireless power transfer using the magnetic resonance of two coils used in an antenna allows selective transmission of power according to specific resonance frequencies. Therefore, research this method has been very active in recent years [1-3]. The wireless power receiver IC that uses existing magnetic resonance methods employs a rectifier circuit to convert the received AC power into DC power and an additional voltage regulator to control the load-dependent output voltage. Fig. 1 shows the configuration of the IC for existing wireless power receivers. In general, the output voltage is regulated using additional switching regulators [4-7]. This configuration has an advantage of reliable output voltage control under load fluctuation, as shown in Fig. 1. However, a switching regulator with complex configuration can cause problems such as the inevitable increase in internal chip area and reduced efficiency. Further, EMI noise, which occurs because of the characteristics of switching regulators, and the use of external passive components, incur limitations on various application configurations. Plus, an additional circuit is required to protect against the transient state of rectifier output voltage under no-load conditions. This paper proposes a new type of circuit to control load-dependent output voltage. In addition, a circuit that can achieve high efficiency, which is one of the most important factors in wireless power receiver ICs, high cost effectiveness, and small chip size, is proposed. Section II shows the principle of wireless power transfer using magnetic resonance. Section III shows the

2 598 CHANG-JONG YIM et al : FULLY INTEGRATED DIRECT REGULATING RECTIFIER WITH RESONANCE FREQUENCY SHIFT FOR (a) (b) Fig. 1. Configuration of existing wireless power receiver IC and output voltage, and coil current waveform. circuit description. Section IV and V show the measurement results and conclusion. II. RESONANCE FREQUENCY SHIFTING Fig. 2 shows the principle of wireless power transfer using magnetic resonance. The transmitter receiver pair has a specific resonance frequency based on the characteristics of each antenna circuit. When the resonance frequencies of the transmitter and receiver match, current is induced in the coil of the power receiver device due to magnetic resonance, as shown in Fig. 2(a) [8, 9]. On the contrary, when the resonance frequencies do not match, current is not easily induced, as shown in Fig. 2(b). Thus, a wireless power transfer device using magnetic resonance can produce selective characteristics with regard to specific resonance frequency. The received power can be regulated by shifting the resonance frequency at the receiver side using the above characteristics. For example, a wireless power transfer device that has an antenna structure of series resonance type has band-pass characteristics, as Fig. 2. Wireless power transfer using magnetic resonance. (c) shown in Fig. 2(c). If a resonance frequency (f r0 ) at the receiver side matches the transmission carrier frequency (f c ) at the transmitter side, the receiver side can induce a current. However, it does not induce a current properly if the resonance frequency at the receiver side is shifted to resonance frequency (f r1 ). In the proposed IC, the received power can be selectively controlled by shifting the resonance frequency by changing the capacitor value, which forms the coil used as an antenna in the receiver and the resonance frequency [7, 8]. III. CIRCUIT DESCRIPTION Fig. 3 shows the configuration of the wireless power receiver that uses the proposed resonance frequency shift

3 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.5, OCTOBER, (a) Continuous conduction Mode (CCM) Resonant Antenna < Receiver IC > Proposed IC Direct Regulating Rectifier Vout IR IRT CR Fig. 4. Wireless power transfer using magnetic resonance. CRS S1 IRS S2 CR CRS Control Signal Control Block Voltage Sensing (b) Discontinuous Conduction Mode(DCM) Fig. 3. IC configuration of the proposed magnetic resonance wireless power receiver (a) CCM, (b) DCM. method. The proposed IC consists of a resonant antenna including a matching capacitor C R that generates the resonance frequency in the wireless power receiver; output voltage sensing and control circuit to regulate the output voltage; a direct regulating rectifier containing switches 1 and 2; and a capacitor C RS for resonance frequency shift. A simple hysteresis control method was used to regulate the output voltage, and a control circuit was configured using a comparator that has internal hysteresis. The big difference between existing IC and proposed IC is the location of added capacitors C RS. If the added capacitors C RS are connected after resonance capacitor C R as shown in Reference [6], the resonance frequency cannot be changed due to presence of rectifier capacitor C R. This configuration only changes the current path LOAD without changing the resonant frequency. However, if the added capacitors C RS are connected before resonance capacitors C R as shown in Fig. 3, the resonance frequency is changed because the added capacitor C RS is connected in parallel with resonance capacitors C R. Therefore the added capacitor C RS can change the resonance frequency. When the S1 and S2 turn on, the equivalent capacitance is changed and the resonance frequency is shifted. Therefore the power regulation in Vout is possible by controlling S1 and S2 without power loss or heating power devices. In this paper, the maximum power is limited by the breakdown voltage of the integrated switches 1 and 2. When the output load increases, the current flowing to the receiving antenna and the drain voltage of S1 and S2 also increase. This is why the voltage rating of the MOSFET used as the switch has to exceed the maximum voltage. Fig. 4 show the operation of the wireless power receiver that uses the proposed resonance frequency shift method. When operating under full load, switches 1 and 2 are OFF. The rectifier is operated in the continuous conduction mode (CCM) and power is supplied to the loads in the normal resonance frequency band. Once the full load changes to light load due to load fluctuations, the output voltage rises. Once the output voltage reaches the threshold set to V th,upper, switches 1 and 2 are turned ON by the control circuit. Thus, the received current

4 600 CHANG-JONG YIM et al : FULLY INTEGRATED DIRECT REGULATING RECTIFIER WITH RESONANCE FREQUENCY SHIFT FOR Fig. 5. IC demonstration board for the fabricated magnetic resonance wireless power receiver. (a) flows through switches 1 and 2, and the received power is reduced by the shift of the resonance frequency. A rectifier is operated in the discontinuous conduction mode (DCM) to regulate the increased output voltage. Once the load changes to full load, the output voltage drops; if it reaches the threshold set to V th,lower, switches 1 and 2 are turned OFF by the control circuit. A rectifier is operated in the CCM and it supplies power to the load, returning to the resonance frequency band to regulate the dropped output voltage. The proposed wireless power receiver IC performs the above operations iteratively, thereby regulating the output voltage without additional regulator circuits. IV. MEASUREMENT RESULTS Vout Load current Vout Coil current 5.2V 560mA (b) 40mA to 400mA 5.3V 4.9V Fig. 5 shows a demonstration board used for testing the fabricated wireless power receiver IC. Antennas for wireless power reception comply with the antenna specifications for reception mentioned in the Rezence standard developed by the Alliance for Wireless Power (A4WP) [9]. A class-e amplifier was used as a transmitter for wireless power transmission [10]. It has a transmission frequency of 6.78 MHz. The proposed wireless power receiver IC is fabricated using a 0.13-µm 90 V BCD process, and the area of the fabricated IC was 2.5 mm 2 and it is packaged with a 4 4 quad flat nonleaded package (QFN). Fig. 6 shows the output voltage of the wireless power receiver IC and coil current used as the antenna in the experiment. Agilent DSO7104B was used as the measurement device. The data were measured using 1147A-Current Probe and N2873A-Voltage Probe. The value of the output capacitor in the experiment was 4.7 µf. Fig. 6(a) and (b) show the output voltage and coil (c) (d) Fig. 6. Wireless power receiver test results (a) Waveforms at 2 W full load condition, (b) Waveforms at 0.1 W light load condition, (c) Waveforms at mA load transient condition, (d) Waveforms at ma load transient condition.

5 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.5, OCTOBER, limited to 2.5 W due to the voltage limit of internal MOSFET. Table 1 lists the data for the proposed IC and existing wireless power transfer ICs [4-6]. The proposed IC was fabricated as a fully integrated IC, which shows smaller area and better efficiency characteristics than the existing ICs. V. CONCLUSIONS Fig. 7. Efficiency characteristic graph of the fabricated IC. Table 1. Performance comparison Proposed IC ISSCC 2015[6] ISSCC 2013[4-5] Receiver structure Direct Regulating Rectifier + Buck Direct Regulating Fully integrated Yes Yes No Carrier 6.78 MHz 6.78 MHz 6.78 MHz Area 2.5 mm mm 2 N/A Receiver Efficiency System Efficiency 87.38% 84.6% 86% 54.11% N/A 55% Max W 2.5 W 6 W 6 W Operation Frequency Shift Yes No No This paper proposes a new type of fully integrated magnetic resonance wireless power receiver IC that reduced received power and regulated output voltage by shifting the resonance frequency. The system transfer efficiency was 54.11% at 2.5 W. Compared to methods that regulated output voltage using additional regulators, the proposed receiver IC has several advantages such as reduction in internal chip area due to simple configuration, and low cost due to minimal external components. In particular, the proposed receiver IC can achieve high efficiency, which is one of the most important factors in wireless power receiver ICs. Therefore, this proposed IC is expected to provide many advantages in the implementation of various applications, such as smart devices or wearable devices. current under the (a) full load with a 2 W output requirement and (b) light load conditions with a 0.1 W output requirement. The figure indicates that the output voltage is regulated to the required voltage of 5 V under full and light load conditions. In particular, it was verified that the received power is reduced under the light load condition. The maximum drive power was 2.5 W. Fig. 6(c) and (d) show the transient characteristics of the output voltage under load changing conditions. The transient characteristics of the output voltage were within 10 µs and the maximum peak-to-peak voltage was V. This follows the voltage fluctuation caused by the use of the hysteresis control mode. Fig. 7 shows the system transfer efficiency characteristic of the fabricated IC. The blue line represents the system transfer efficiency of the transmission and receiver system under the full load condition, where 54.11% system efficiency was achieved at 2.5 W. The efficiency will increase if the output power becomes higher. However, the measure of efficiency is ACKNOWLEDGMENTS The present research was conducted by the research fund of Dankook University in REFERENCES [1] R. Tseng, et al.: Introduction to the Alliance for Wireless Power Loosely-Coupled Wireless Power Transfer System Specification Version 1.0, Wireless Power Transfer, WPT 2013, IEEE International, pp.79-83, [2] X. Lu, et al.: Wireless Charger networking for mobile devices: Fundamentals, Standards, and Applications, Wireless Communications, MWC 2015, IEEE International, Vol.22, No.2, pp , [3] P. Dubal: Rezence-Wireless Charging Standard based on Magnetic Resonance, International Journal of Advanced Research in Computer and

6 602 CHANG-JONG YIM et al : FULLY INTEGRATED DIRECT REGULATING RECTIFIER WITH RESONANCE FREQUENCY SHIFT FOR Communication Engineering, IJARCCE 2015, Vol.4, No. 12, [4] J.-H. Choi, et al.: Resonant regulating Rectifiers (3R) Operating for 6.78MHz Resonant Wireless Power Transfer (RWPT), Solid-State Circuits, IEEE Journal of, Vol.48, No.12 pp , [5] J.-H. Choi, et al.: A Resonant Regulating Rectifier (3R) operating at 6.78MHz for a 6W wireless charge with 86% efficiency, Solid-State Circuits conference, ISSCC Digest od Technical Papers. IEEE International, pp.64-65, [6] K.-G. Moh, et al.: A fully integrated 6W wireless power receiver operating at 6.78MHz with magnetic resonance coupling, Solid-State Circuits conference, ISSCC Digest of Technical Papers. IEEE International, pp.1-3, [7] K. A. Grajski, et al.: Loosely-coupled wireless power transfer: Physics, circuits, standars, Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications, IMWS-IWPT 2012, IEEE International, pp.9-14, [8] B. L. Cannon, et al.: Magnetic Resonant Coupling As a Potential Means for Wireless Power Transfer to Multiple Small Receivers, Power Electronics, IEEE Transactions on, Vol.2, No.7, pp , [9] Telecommunications Technology Association, TTAE.OT (2015), [online] tta.or.kr/. [10] M. Rooij: Performance Comparison for A4WP Class-3 Wireless Power Compliance between egan FET and MOSFET in a Class E Amplifier, international Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, PCIM Asia 2015, pp.1-8, ChangJong Yim received the B.S., M.S., degrees in the Department of Electronics & Electrical Engineering from Dankook University, Yongin-si, Korea, in 2010, 2012 respectively. From 2012, he is working toward to obtain Ph.D. degree at Dankook University. His main research interest are power ICs, automotive power ICs, wireless power transfer system, power converter circuits, gate drive IC, and integrated power electronics modules(ipems). Shihong Park received the B.S. degree in electrical engineering from Yonsei University, Seoul, Korea, in 1988, and the M.S. and Ph.D. degrees from the University of Wisconsin, Madison, in 2003 and 2004, respectively. From 1988 to 1998, he was with Samsung Electronics, Buchen, Korea, as a Senior Power IC Design Engineer. In 2004, he was a Principal Research Engineer with Fairchild Semiconductor Korea, Buchen, Korea. In March 2005, he joined the School of Electronics and Electrical Engineering, Dankook University, Seoul. His main research interests are power ICs and devices for automotive applications, LED driver circuits, power converter circuits, active gate drive topology, and integrated power electronics modules (IPEMs).

Efficient Power Conversion Corporation

Efficient Power Conversion Corporation The egan FET Journey Continues Wireless Energy Transfer Technology Drivers Michael de Rooij Efficient Power Conversion Corporation EPC - The Leader in egan FETs ECTC 2014 www.epc-co.com 1 Agenda Overview

More information

A 82.5% Power Efficiency at 1.2 mw Buck Converter with Sleep Control

A 82.5% Power Efficiency at 1.2 mw Buck Converter with Sleep Control JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.6, DECEMBER, 2016 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2016.16.6.842 ISSN(Online) 2233-4866 A 82.5% Power Efficiency at 1.2 mw

More information

BOOTSTRAP circuits are widely used in bridge inverters

BOOTSTRAP circuits are widely used in bridge inverters 300 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 20, NO. 2, MARCH 2005 A Self-Boost Charge Pump Topology for a Gate Drive High-Side Power Supply Shihong Park, Student Member, IEEE, and Thomas M. Jahns,

More information

Performance Comparison for A4WP Class-3 Wireless Power Compliance between egan FET and MOSFET in a ZVS Class D Amplifier

Performance Comparison for A4WP Class-3 Wireless Power Compliance between egan FET and MOSFET in a ZVS Class D Amplifier The egan FET Journey Continues Performance Comparison for A4WP Class-3 Wireless Power Compliance between egan FET and MOSFET in a ZVS Class D Amplifier EPC - The leader in GaN Technology www.epc-co.com

More information

Automotive Compatible Single Amplifier Multi-mode Wireless Power for Mobile Devices

Automotive Compatible Single Amplifier Multi-mode Wireless Power for Mobile Devices Automotive Compatible Single Amplifier Multi-mode Wireless Power for Mobile Devices Dr. Michael A. de Rooij Efficient Power Conversion El Segundo, U.S.A. Abstract The proliferation of wireless power products

More information

egan FETs Enable Low Power High Frequency Wireless Energy Converters M. A. de Rooij & J. T. Strydom Efficient Power Conversion

egan FETs Enable Low Power High Frequency Wireless Energy Converters M. A. de Rooij & J. T. Strydom Efficient Power Conversion The egan FET Journey Continues egan FETs Enable Low Power High Frequency Wireless Energy Converters M. A. de Rooij & J. T. Strydom Efficient Power Conversion 1 EPC - The Leader in egan FETs March, 2013

More information

Wireless Charging by Magnetic Resonance

Wireless Charging by Magnetic Resonance Francesco Carobolante Vice President Wireless Power Engineering Qualcomm Technologies, Inc. Wireless Charging by Magnetic Resonance ECTC 2014 Wireless Power Transfer Systems Convenience Wireless Charging

More information

Optimum Mode Operation and Implementation of Class E Resonant Inverter for Wireless Power Transfer Application

Optimum Mode Operation and Implementation of Class E Resonant Inverter for Wireless Power Transfer Application Optimum Mode Operation and Implementation of Class E Resonant Inverter for Wireless Power Transfer Application Monalisa Pattnaik Department of Electrical Engineering National Institute of Technology, Rourkela,

More information

A 4b/cycle Flash-assisted SAR ADC with Comparator Speed-boosting Technique

A 4b/cycle Flash-assisted SAR ADC with Comparator Speed-boosting Technique JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.18, NO.2, APRIL, 2018 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2018.18.2.281 ISSN(Online) 2233-4866 A 4b/cycle Flash-assisted SAR ADC with

More information

Introducing egan IC targeting Highly Resonant Wireless Power

Introducing egan IC targeting Highly Resonant Wireless Power Dr. M. A. de Rooij The egan FET Journey Continues Introducing egan IC targeting Highly Resonant Wireless Power Efficient Power Conversion Corporation EPC - The Leader in egan FETs www.epc-co.com 1 Agenda

More information

Michael de Rooij Efficient Power Conversion Corporation

Michael de Rooij Efficient Power Conversion Corporation The egan FET Journey Continues Performance comparison using egan FETs in 6.78 MHz class E and ZVS class D Wireless Power Transfer Michael de Rooij Efficient Power Conversion Corporation EPC - The Leader

More information

GENERALLY, a single-inductor, single-switch boost

GENERALLY, a single-inductor, single-switch boost IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 19, NO. 1, JANUARY 2004 169 New Two-Inductor Boost Converter With Auxiliary Transformer Yungtaek Jang, Senior Member, IEEE, Milan M. Jovanović, Fellow, IEEE

More information

Flexible dv=dt and di=dt Control Method for Insulated Gate Power Switches

Flexible dv=dt and di=dt Control Method for Insulated Gate Power Switches IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 39, NO. 3, MAY/JUNE 2003 657 Flexible dv=dt and di=dt Control Method for Insulated Gate Power Switches Shihong Park, Student Member, IEEE, and Thomas M.

More information

ENERGY saving through efficient equipment is an essential

ENERGY saving through efficient equipment is an essential IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 61, NO. 9, SEPTEMBER 2014 4649 Isolated Switch-Mode Current Regulator With Integrated Two Boost LED Drivers Jae-Kuk Kim, Student Member, IEEE, Jae-Bum

More information

GENERALLY speaking, to decrease the size and weight of

GENERALLY speaking, to decrease the size and weight of 532 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 24, NO. 2, FEBRUARY 2009 A Low-Consumption Regulated Gate Driver for Power MOSFET Ren-Huei Tzeng, Student Member, IEEE, and Chern-Lin Chen, Senior Member,

More information

Study of Power Loss Reduction in SEPR Converters for Induction Heating through Implementation of SiC Based Semiconductor Switches

Study of Power Loss Reduction in SEPR Converters for Induction Heating through Implementation of SiC Based Semiconductor Switches Study of Power Loss Reduction in SEPR Converters for Induction Heating through Implementation of SiC Based Semiconductor Switches Angel Marinov 1 1 Technical University of Varna, Studentska street 1, Varna,

More information

Conventional Single-Switch Forward Converter Design

Conventional Single-Switch Forward Converter Design Maxim > Design Support > Technical Documents > Application Notes > Amplifier and Comparator Circuits > APP 3983 Maxim > Design Support > Technical Documents > Application Notes > Power-Supply Circuits

More information

A Novel Technique to Reduce the Switching Losses in a Synchronous Buck Converter

A Novel Technique to Reduce the Switching Losses in a Synchronous Buck Converter A Novel Technique to Reduce the Switching Losses in a Synchronous Buck Converter A. K. Panda and Aroul. K Abstract--This paper proposes a zero-voltage transition (ZVT) PWM synchronous buck converter, which

More information

Keywords Wireless power transfer, Magnetic resonance, Electric vehicle, Parameter estimation, Secondary-side control

Keywords Wireless power transfer, Magnetic resonance, Electric vehicle, Parameter estimation, Secondary-side control Efficiency Maximization of Wireless Power Transfer Based on Simultaneous Estimation of Primary Voltage and Mutual Inductance Using Secondary-Side Information Katsuhiro Hata, Takehiro Imura, and Yoichi

More information

Michael de Rooij, Efficient Power Conversion, 909 N. Sepulveda Blvd. ste230, El Segundo CA, 90245, U.S.A.,

Michael de Rooij, Efficient Power Conversion, 909 N. Sepulveda Blvd. ste230, El Segundo CA, 90245, U.S.A., egan FET based Wireless Energy Transfer Topology Performance Comparisons Michael de Rooij, Efficient Power Conversion, 909 N. Sepulveda Blvd. ste230, El Segundo CA, 90245, U.S.A., Michael.derooij@epc-co.com

More information

A New Soft Recovery PWM Quasi-Resonant Converter With a Folding Snubber Network

A New Soft Recovery PWM Quasi-Resonant Converter With a Folding Snubber Network 456 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 49, NO. 2, APRIL 2002 A New Soft Recovery PWM Quasi-Resonant Converter With a Folding Snubber Network Jin-Kuk Chung, Student Member, IEEE, and Gyu-Hyeong

More information

A Multi-purpose Fingerprint Readout Circuit Embedding Physiological Signal Detection

A Multi-purpose Fingerprint Readout Circuit Embedding Physiological Signal Detection JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.6, DECEMBER, 2016 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2016.16.6.793 ISSN(Online) 2233-4866 A Multi-purpose Fingerprint Readout

More information

THE GROWTH of the portable electronics industry has

THE GROWTH of the portable electronics industry has IEEE POWER ELECTRONICS LETTERS 1 A Constant-Frequency Method for Improving Light-Load Efficiency in Synchronous Buck Converters Michael D. Mulligan, Bill Broach, and Thomas H. Lee Abstract The low-voltage

More information

A Solution to Simplify 60A Multiphase Designs By John Lambert & Chris Bull, International Rectifier, USA

A Solution to Simplify 60A Multiphase Designs By John Lambert & Chris Bull, International Rectifier, USA A Solution to Simplify 60A Multiphase Designs By John Lambert & Chris Bull, International Rectifier, USA As presented at PCIM 2001 Today s servers and high-end desktop computer CPUs require peak currents

More information

Power Electronics for Inductive Power Transfer Systems

Power Electronics for Inductive Power Transfer Systems Power Electronics for Inductive Power Transfer Systems George Kkelis g.kkelis13@imperial.ac.uk Power Electronics Centre Imperial Open Day, July 2015 System Overview Transmitting End Inductive Link Receiving

More information

Normally-Off Operation of AlGaN/GaN Heterojunction Field-Effect Transistor with Clamping Diode

Normally-Off Operation of AlGaN/GaN Heterojunction Field-Effect Transistor with Clamping Diode JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.2, APRIL, 2016 ISSN(Print) 1598-1657 http://dx.doi.org/10.5573/jsts.2016.16.2.221 ISSN(Online) 2233-4866 Normally-Off Operation of AlGaN/GaN

More information

Precise Analytical Solution for the Peak Gain of LLC Resonant Converters

Precise Analytical Solution for the Peak Gain of LLC Resonant Converters 680 Journal of Power Electronics, Vol. 0, No. 6, November 200 JPE 0-6-4 Precise Analytical Solution for the Peak Gain of LLC Resonant Converters Sung-Soo Hong, Sang-Ho Cho, Chung-Wook Roh, and Sang-Kyoo

More information

Adaptive Off-Time Control for Variable-Frequency, Soft-Switched Flyback Converter at Light Loads

Adaptive Off-Time Control for Variable-Frequency, Soft-Switched Flyback Converter at Light Loads 596 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 17, NO. 4, JULY 2002 Adaptive Off-Time Control for Variable-Frequency, Soft-Switched Flyback Converter at Light Loads Yuri Panov and Milan M. Jovanović,

More information

Integrated DC-DC Converter Design for Improved WCDMA Power Amplifier Efficiency in SiGe BiCMOS Technology

Integrated DC-DC Converter Design for Improved WCDMA Power Amplifier Efficiency in SiGe BiCMOS Technology Integrated DC-DC Converter Design for Improved WCDMA Power Amplifier Efficiency in SiGe BiCMOS Technology Drew Guckenberger Cornell Broadband Communications Research Lab 330 Phillips Hall, Cornell University

More information

A 10-GHz CMOS LC VCO with Wide Tuning Range Using Capacitive Degeneration

A 10-GHz CMOS LC VCO with Wide Tuning Range Using Capacitive Degeneration JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.6, NO.4, DECEMBER, 2006 281 A 10-GHz CMOS LC VCO with Wide Tuning Range Using Capacitive Degeneration Tae-Geun Yu, Seong-Ik Cho, and Hang-Geun Jeong

More information

Novel Zero-Current-Switching (ZCS) PWM Switch Cell Minimizing Additional Conduction Loss

Novel Zero-Current-Switching (ZCS) PWM Switch Cell Minimizing Additional Conduction Loss IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 49, NO. 1, FEBRUARY 2002 165 Novel Zero-Current-Switching (ZCS) PWM Switch Cell Minimizing Additional Conduction Loss Hang-Seok Choi, Student Member, IEEE,

More information

WIRELESS POWER TRANSFER PROJECT 072 STUDENT NAME : WAMALWA PAUL WAMBOKA SUPERVISOR : DR. DHARMADHIKARY EXAMINER : DR. AKUON

WIRELESS POWER TRANSFER PROJECT 072 STUDENT NAME : WAMALWA PAUL WAMBOKA SUPERVISOR : DR. DHARMADHIKARY EXAMINER : DR. AKUON WIRELESS POWER TRANSFER PROJECT 072 STUDENT NAME : WAMALWA PAUL WAMBOKA SUPERVISOR : DR. DHARMADHIKARY EXAMINER : DR. AKUON BJECTIVES AIN OBJECTIVE Develop a device for wireless power transfer, based on

More information

MODERN switching power converters require many features

MODERN switching power converters require many features IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 19, NO. 1, JANUARY 2004 87 A Parallel-Connected Single Phase Power Factor Correction Approach With Improved Efficiency Sangsun Kim, Member, IEEE, and Prasad

More information

Student Department of EEE (M.E-PED), 2 Assitant Professor of EEE Selvam College of Technology Namakkal, India

Student Department of EEE (M.E-PED), 2 Assitant Professor of EEE Selvam College of Technology Namakkal, India Design and Development of Single Phase Bridgeless Three Stage Interleaved Boost Converter with Fuzzy Logic Control System M.Pradeep kumar 1, M.Ramesh kannan 2 1 Student Department of EEE (M.E-PED), 2 Assitant

More information

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1%

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1% We are IntechOpen, the first native scientific publisher of Open Access books 3,350 108,000 1.7 M Open access books available International authors and editors Downloads Our authors are among the 151 Countries

More information

Bridgeless Cuk Power Factor Corrector with Regulated Output Voltage

Bridgeless Cuk Power Factor Corrector with Regulated Output Voltage Bridgeless Cuk Power Factor Corrector with Regulated Output Voltage Ajeesh P R 1, Prof. Dinto Mathew 2, Prof. Sera Mathew 3 1 PG Scholar, 2,3 Professors, Department of Electrical and Electronics Engineering,

More information

Highly Efficient Ultra-Compact Isolated DC-DC Converter with Fully Integrated Active Clamping H-Bridge and Synchronous Rectifier

Highly Efficient Ultra-Compact Isolated DC-DC Converter with Fully Integrated Active Clamping H-Bridge and Synchronous Rectifier Highly Efficient Ultra-Compact Isolated DC-DC Converter with Fully Integrated Active Clamping H-Bridge and Synchronous Rectifier JAN DOUTRELOIGNE Center for Microsystems Technology (CMST) Ghent University

More information

Magnetic Resonant Coupling Based Wireless Power Transfer System with In-Band Communication

Magnetic Resonant Coupling Based Wireless Power Transfer System with In-Band Communication http://dx.doi.org/10.5573/jsts.2013.13.6.562 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.13, NO.6, DECEMBER, 2013 Magnetic Resonant Coupling Based Wireless Power Transfer System with In-Band Communication

More information

A High Voltage Gain DC-DC Boost Converter for PV Cells

A High Voltage Gain DC-DC Boost Converter for PV Cells Global Science and Technology Journal Vol. 3. No. 1. March 2015 Issue. Pp. 64 76 A High Voltage Gain DC-DC Boost Converter for PV Cells Md. Al Muzahid*, Md. Fahmi Reza Ansari**, K. M. A. Salam*** and Hasan

More information

466 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 13, NO. 3, MAY A Single-Switch Flyback-Current-Fed DC DC Converter

466 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 13, NO. 3, MAY A Single-Switch Flyback-Current-Fed DC DC Converter 466 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 13, NO. 3, MAY 1998 A Single-Switch Flyback-Current-Fed DC DC Converter Peter Mantovanelli Barbosa, Member, IEEE, and Ivo Barbi, Senior Member, IEEE Abstract

More information

A 600 GHz Varactor Doubler using CMOS 65nm process

A 600 GHz Varactor Doubler using CMOS 65nm process A 600 GHz Varactor Doubler using CMOS 65nm process S.H. Choi a and M.Kim School of Electrical Engineering, Korea University E-mail : hyperleonheart@hanmail.net Abstract - Varactor and active mode doublers

More information

A Triple-Band Voltage-Controlled Oscillator Using Two Shunt Right-Handed 4 th -Order Resonators

A Triple-Band Voltage-Controlled Oscillator Using Two Shunt Right-Handed 4 th -Order Resonators JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.4, AUGUST, 2016 ISSN(Print) 1598-1657 http://dx.doi.org/10.5573/jsts.2016.16.4.506 ISSN(Online) 2233-4866 A Triple-Band Voltage-Controlled Oscillator

More information

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications WHITE PAPER High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications Written by: C. R. Swartz Principal Engineer, Picor Semiconductor

More information

S. General Topological Properties of Switching Structures, IEEE Power Electronics Specialists Conference, 1979 Record, pp , June 1979.

S. General Topological Properties of Switching Structures, IEEE Power Electronics Specialists Conference, 1979 Record, pp , June 1979. Problems 179 [22] [23] [24] [25] [26] [27] [28] [29] [30] J. N. PARK and T. R. ZALOUM, A Dual Mode Forward/Flyback Converter, IEEE Power Electronics Specialists Conference, 1982 Record, pp. 3-13, June

More information

ISSCC 2006 / SESSION 11 / RF BUILDING BLOCKS AND PLLS / 11.9

ISSCC 2006 / SESSION 11 / RF BUILDING BLOCKS AND PLLS / 11.9 ISSCC 2006 / SESSION 11 / RF BUILDING BLOCKS AND PLLS / 11.9 11.9 A Single-Chip Linear CMOS Power Amplifier for 2.4 GHz WLAN Jongchan Kang 1, Ali Hajimiri 2, Bumman Kim 1 1 Pohang University of Science

More information

GENERALLY, at higher power levels, the continuousconduction-mode

GENERALLY, at higher power levels, the continuousconduction-mode 496 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 35, NO. 2, MARCH/APRIL 1999 A New, Soft-Switched Boost Converter with Isolated Active Snubber Milan M. Jovanović, Senior Member, IEEE, and Yungtaek

More information

A UHF CMOS Variable Gain LNA with Wideband Input Impedance Matching and GSM Interoperability

A UHF CMOS Variable Gain LNA with Wideband Input Impedance Matching and GSM Interoperability JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.4, AUGUST, 2017 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2017.17.4.499 ISSN(Online) 2233-4866 A UHF CMOS Variable Gain LNA with Wideband

More information

A 120 GHz Voltage Controlled Oscillator Integrated with 1/128 Frequency Divider Chain in 65 nm CMOS Technology

A 120 GHz Voltage Controlled Oscillator Integrated with 1/128 Frequency Divider Chain in 65 nm CMOS Technology JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.14, NO.1, FEBRUARY, 2014 http://dx.doi.org/10.5573/jsts.2014.14.1.131 A 120 GHz Voltage Controlled Oscillator Integrated with 1/128 Frequency Divider

More information

Design of a Wide Input Range DC-DC Converter Suitable for Lead-Acid Battery Charging

Design of a Wide Input Range DC-DC Converter Suitable for Lead-Acid Battery Charging ENGINEER - Vol. XXXXIV, No. 04, pp, [47-53], 2011 The Institution of Engineers, Sri Lanka Design of a Wide Input Range DC-DC Converter Suitable for Lead-Acid Battery Charging M.W.D.R. Nayanasiri and J.A.K.S.Jayasinghe,

More information

LED Backlight Driving Circuits and Dimming Method

LED Backlight Driving Circuits and Dimming Method Journal of Information Display, Vol. 11, No. 4, December 2010 (ISSN 1598-0316/eISSN 2158-1606) 2010 KIDS LED Backlight Driving Circuits and Dimming Method Oh-Kyong Kwon*, Young-Ho Jung, Yong-Hak Lee, Hyun-Suk

More information

A High Power, High Quality Single-Phase AC-DC Converter for Wireless Power Transfer Applications

A High Power, High Quality Single-Phase AC-DC Converter for Wireless Power Transfer Applications A High Power, High Quality Single-Phase AC-DC Converter for Wireless Power Transfer Applications Rahimi Baharom; Abd Razak Mahmud; Mohd Khairul Mohd Salleh; Khairul Safuan Muhammad and Mohammad Nawawi

More information

IN APPLICATIONS where nonisolation, step-down conversion

IN APPLICATIONS where nonisolation, step-down conversion 3664 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 27, NO. 8, AUGUST 2012 Interleaved Buck Converter Having Low Switching Losses and Improved Step-Down Conversion Ratio Il-Oun Lee, Student Member, IEEE,

More information

Monolithic integration of GaN power transistors integrated with gate drivers

Monolithic integration of GaN power transistors integrated with gate drivers October 3-5, 2016 International Workshop on Power Supply On Chip (PwrSoC 2016) Monolithic integration of GaN power transistors integrated with gate drivers October 4, 2016 Tatsuo Morita Automotive & Industrial

More information

Recent Approaches to Develop High Frequency Power Converters

Recent Approaches to Develop High Frequency Power Converters The 1 st Symposium on SPC (S 2 PC) 17/1/214 Recent Approaches to Develop High Frequency Power Converters Location Fireworks Much snow Tokyo Nagaoka University of Technology, Japan Prof. Jun-ichi Itoh Dr.

More information

THE converter usually employed for single-phase power

THE converter usually employed for single-phase power 82 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 46, NO. 1, FEBRUARY 1999 A New ZVS Semiresonant High Power Factor Rectifier with Reduced Conduction Losses Alexandre Ferrari de Souza, Member, IEEE,

More information

INVENTION DISCLOSURE- ELECTRONICS SUBJECT MATTER IMPEDANCE MATCHING ANTENNA-INTEGRATED HIGH-EFFICIENCY ENERGY HARVESTING CIRCUIT

INVENTION DISCLOSURE- ELECTRONICS SUBJECT MATTER IMPEDANCE MATCHING ANTENNA-INTEGRATED HIGH-EFFICIENCY ENERGY HARVESTING CIRCUIT INVENTION DISCLOSURE- ELECTRONICS SUBJECT MATTER IMPEDANCE MATCHING ANTENNA-INTEGRATED HIGH-EFFICIENCY ENERGY HARVESTING CIRCUIT ABSTRACT: This paper describes the design of a high-efficiency energy harvesting

More information

GaN Power ICs at 1 MHz+: Topologies, Technologies and Performance

GaN Power ICs at 1 MHz+: Topologies, Technologies and Performance GaN Power ICs at 1 MHz+: Topologies, Technologies and Performance PSMA Industry Session, Semiconductors Dan Kinzer, CTO/COO dan.kinzer@navitassemi.com March 2017 Power Electronics: Speed & Efficiency are

More information

Soft Switched Resonant Converters with Unsymmetrical Control

Soft Switched Resonant Converters with Unsymmetrical Control IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 1 Ver. I (Jan Feb. 2015), PP 66-71 www.iosrjournals.org Soft Switched Resonant Converters

More information

Multi-Frequency Class-D Inverter for Rectifier Characterisation in High Frequency Inductive Power Transfer Systems

Multi-Frequency Class-D Inverter for Rectifier Characterisation in High Frequency Inductive Power Transfer Systems Multi-Frequency Class-D Inverter for Rectifier Characterisation in High Frequency Inductive Power Transfer Systems George Kkelis, David C. Yates, Paul D. Mitcheson Electrical & Electronic Engineering Department,

More information

1. The current-doubler rectifier can be used to double the load capability of isolated dc dc converters with bipolar secondaryside

1. The current-doubler rectifier can be used to double the load capability of isolated dc dc converters with bipolar secondaryside Highlights of the Chapter 4 1. The current-doubler rectifier can be used to double the load capability of isolated dc dc converters with bipolar secondaryside voltage. Some industry-generated papers recommend

More information

Impact of inductor current ringing in DCM on output voltage of DC-DC buck power converters

Impact of inductor current ringing in DCM on output voltage of DC-DC buck power converters ARCHIVES OF ELECTRICAL ENGINEERING VOL. 66(2), pp. 313-323 (2017) DOI 10.1515/aee-2017-0023 Impact of inductor current ringing in DCM on output voltage of DC-DC buck power converters MARCIN WALCZAK Department

More information

The power factor is a numerical parameter used to

The power factor is a numerical parameter used to Advanced Switches Boost PFC Efficiency While improved MOSFET technology can reduce switching losses in CCM PFC stages, even greater reductions in MOSFET switching losses are achieved using SiC technology

More information

A Low-Jitter Phase-Locked Loop Based on a Charge Pump Using a Current-Bypass Technique

A Low-Jitter Phase-Locked Loop Based on a Charge Pump Using a Current-Bypass Technique JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.14, NO.3, JUNE, 2014 http://dx.doi.org/10.5573/jsts.2014.14.3.331 A Low-Jitter Phase-Locked Loop Based on a Charge Pump Using a Current-Bypass Technique

More information

DC-DC Resonant converters with APWM control

DC-DC Resonant converters with APWM control IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) ISSN: 2278-1676 Volume 2, Issue 5 (Sep-Oct. 2012), PP 43-49 DC-DC Resonant converters with APWM control Preeta John 1 Electronics Department,

More information

1-13GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS

1-13GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS -3GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS Hyohyun Nam and Jung-Dong Park a Division of Electronics and Electrical Engineering, Dongguk University, Seoul E-mail

More information

Power Factor Corrected Single Stage AC-DC Full Bridge Resonant Converter

Power Factor Corrected Single Stage AC-DC Full Bridge Resonant Converter Power Factor Corrected Single Stage AC-DC Full Bridge Resonant Converter Gokul P H Mar Baselios College of Engineering Mar Ivanios Vidya Nagar, Nalanchira C Sojy Rajan Assisstant Professor Mar Baselios

More information

Modified Resonant Transition Switching for Buck Converter

Modified Resonant Transition Switching for Buck Converter Modified Resonant Transition Switching for Buck Converter Derick Mathew*, Mohanraj M*, Midhun Raju** *Power Electronics and Drives, Karunya University, Coimbatore, India **Renewable Energy Technologies,

More information

Simulation of Continuous Current Source Drivers for 1MH Boost PFC Converters

Simulation of Continuous Current Source Drivers for 1MH Boost PFC Converters Simulation of Continuous Current Source Drivers for 1MH Boost PFC Converters G.Rajendra kumar 1, S. Chandra Sekhar 2 1, 2 Department of EEE 1, 2 Anurag Engineering College, Kodad, Telangana, India. Abstract-

More information

STT-MRAM Read-circuit with Improved Offset Cancellation

STT-MRAM Read-circuit with Improved Offset Cancellation JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.3, JUNE, 2017 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2017.17.3.347 ISSN(Online) 2233-4866 STT-MRAM Read-circuit with Improved Offset

More information

A 0.95mW/1.0Gbps Spiral-Inductor Based Wireless Chip-Interconnect with Asynchronous Communication Scheme

A 0.95mW/1.0Gbps Spiral-Inductor Based Wireless Chip-Interconnect with Asynchronous Communication Scheme A 0.95mW/1.0Gbps Spiral-Inductor Based Wireless Chip-Interconnect with Asynchronous Communication Scheme Mamoru Sasaki and Atsushi Iwata Graduate School, Hiroshima University Kagamiyama 1-4-1, Higashihiroshima-shi,

More information

A Unique SEPIC converter based Power Factor Correction method with a DCM Detection Technique

A Unique SEPIC converter based Power Factor Correction method with a DCM Detection Technique IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 11, Issue 4 Ver. III (Jul. Aug. 2016), PP 01-06 www.iosrjournals.org A Unique SEPIC converter

More information

An Integrated CMOS DC-DC Converter for Battery-Operated Systems

An Integrated CMOS DC-DC Converter for Battery-Operated Systems An Integrated CMOS DC-DC Converter for Battery-Operated Systems Sang-Hwa Jung, Nam-Sung Jung, Jong-Tae Hwang and Gyu-Hyeong Cho Department of Electrical Engineering Korea Advanced Institute of Science

More information

A View From the Other Side of the Chasm

A View From the Other Side of the Chasm A View From the Other Side of the Chasm Solving the Technological Challenges Laurence McGarry, Marketing Director, IDT Wireless Power 31st Aug, 2017 1 Wireless Power: A View From The Other Side of the

More information

Multiple Output Converter Based On Modified Dickson Charge PumpVoltage Multiplier

Multiple Output Converter Based On Modified Dickson Charge PumpVoltage Multiplier Multiple Output Converter Based On Modified Dickson Charge PumpVoltage Multiplier Thasleena Mariyam P 1, Eldhose K.A 2, Prof. Thomas P Rajan 3, Rani Thomas 4 1,2 Post Graduate student, Dept. of EEE,Mar

More information

Single Phase Bridgeless SEPIC Converter with High Power Factor

Single Phase Bridgeless SEPIC Converter with High Power Factor International Journal of Emerging Engineering Research and Technology Volume 2, Issue 6, September 2014, PP 117-126 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Single Phase Bridgeless SEPIC Converter

More information

A Switched VCO-based CMOS UWB Transmitter for 3-5 GHz Radar and Communication Systems

A Switched VCO-based CMOS UWB Transmitter for 3-5 GHz Radar and Communication Systems JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.3, JUNE, 2017 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2017.17.3.326 ISSN(Online) 2233-4866 A Switched VCO-based UWB Transmitter for

More information

Vertical Integration of MM-wave MMIC s and MEMS Antennas

Vertical Integration of MM-wave MMIC s and MEMS Antennas JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.6, NO.3, SEPTEMBER, 2006 169 Vertical Integration of MM-wave MMIC s and MEMS Antennas Youngwoo Kwon, Yong-Kweon Kim, Sanghyo Lee, and Jung-Mu Kim Abstract

More information

SiC MOSFETs Based Split Output Half Bridge Inverter: Current Commutation Mechanism and Efficiency Analysis

SiC MOSFETs Based Split Output Half Bridge Inverter: Current Commutation Mechanism and Efficiency Analysis SiC MOSFETs Based Split Output Half Bridge Inverter: Current Commutation Mechanism and Efficiency Analysis Helong Li, Stig Munk-Nielsen, Szymon Bęczkowski, Xiongfei Wang Department of Energy Technology

More information

Powering Automotive Cockpit Electronics

Powering Automotive Cockpit Electronics White Paper Powering Automotive Cockpit Electronics Introduction The growth of automotive cockpit electronics has exploded over the past decade. Previously, self-contained systems such as steering, braking,

More information

A Novel Dual-Band Scheme for Magnetic Resonant Wireless Power Transfer

A Novel Dual-Band Scheme for Magnetic Resonant Wireless Power Transfer Progress In Electromagnetics Research Letters, Vol. 80, 53 59, 2018 A Novel Dual-Band Scheme for Magnetic Resonant Wireless Power Transfer Keke Ding 1, 2, *, Ying Yu 1, 2, and Hong Lin 1, 2 Abstract In

More information

High Voltage Off-Line Linear Regulator by Jimes Lei, Applications Engineering Manager

High Voltage Off-Line Linear Regulator by Jimes Lei, Applications Engineering Manager LN1 Series Application Note AN17 High Voltage Off-Line Linear Regulator by Jimes Lei, Applications Engineering Manager Introduction There are many applications for small, linear voltage regulators that

More information

A Transformer Feedback CMOS LNA for UWB Application

A Transformer Feedback CMOS LNA for UWB Application JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.6, DECEMBER, 16 ISSN(Print) 1598-1657 https://doi.org/1.5573/jsts.16.16.6.754 ISSN(Online) 33-4866 A Transformer Feedback CMOS LNA for UWB Application

More information

Low Phase Noise Series-coupled VCO using Current-reuse and Armstrong Topologies

Low Phase Noise Series-coupled VCO using Current-reuse and Armstrong Topologies JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.1, FEBRUARY, 2017 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2017.17.1.042 ISSN(Online) 2233-4866 Low Phase Noise Series-coupled VCO

More information

Wireless Communication

Wireless Communication Equipment and Instruments Wireless Communication An oscilloscope, a signal generator, an LCR-meter, electronic components (see the table below), a container for components, and a Scotch tape. Component

More information

The Quest for High Power Density

The Quest for High Power Density The Quest for High Power Density Welcome to the GaN Era Power Conversion Technology Drivers Key design objectives across all applications: High power density High efficiency High reliability Low cost 2

More information

High Efficiency Flyback Converter Technology

High Efficiency Flyback Converter Technology High Efficiency Flyback Converter Technology U. Boeke ulrich.boeke@philips.com Philips Research Laboratories Aachen, Germany Abstract - Technologies are discussed to realize a DC/DC Flyback converter with

More information

SiC Power Schottky Diodes in Power Factor Correction Circuits

SiC Power Schottky Diodes in Power Factor Correction Circuits SiC Power Schottky Diodes in Power Factor Correction Circuits By Ranbir Singh and James Richmond Introduction Electronic systems operating in the -12 V range currently utilize silicon (Si) PiN diodes,

More information

A NOVEL SOFT-SWITCHING BUCK CONVERTER WITH COUPLED INDUCTOR

A NOVEL SOFT-SWITCHING BUCK CONVERTER WITH COUPLED INDUCTOR A NOVEL SOFT-SWITCHING BUCK CONVERTER WITH COUPLED INDUCTOR Josna Ann Joseph 1, S.Bella Rose 2 PG Scholar, Karpaga Vinayaga College of Engineering and Technology, Chennai 1 Professor, Karpaga Vinayaga

More information

Entry Level Assessment Blueprint Electronics Technology

Entry Level Assessment Blueprint Electronics Technology Blueprint Test Code: 4135 / Version: 01 Specific Competencies and Skills Tested in this Assessment: Safety Practices Demonstrate safe working procedures Explain the purpose of OSHA and how it promotes

More information

Maximizing Wireless Power Performance In Constrained Environments. Michael Gotlieb Vice President of Business Development

Maximizing Wireless Power Performance In Constrained Environments. Michael Gotlieb Vice President of Business Development Maximizing Wireless Power Performance In Constrained Environments Michael Gotlieb Vice President of Business Development www.nucurrent.com Agenda Wireless Power Markets Focus of This Presentation: Constrained

More information

Evaluating and Optimizing Tradeoffs in CMOS RFIC Upconversion Mixer Design. by Dr. Stephen Long University of California, Santa Barbara

Evaluating and Optimizing Tradeoffs in CMOS RFIC Upconversion Mixer Design. by Dr. Stephen Long University of California, Santa Barbara Evaluating and Optimizing Tradeoffs in CMOS RFIC Upconversion Mixer Design by Dr. Stephen Long University of California, Santa Barbara It is not easy to design an RFIC mixer. Different, sometimes conflicting,

More information

Power Electronics for Inductive Power Transfer Systems. George Kkelis, PhD Student (Yr2) 02 Sept 2015

Power Electronics for Inductive Power Transfer Systems. George Kkelis, PhD Student (Yr2) 02 Sept 2015 Power Electronics for Inductive Power Transfer Systems George Kkelis, PhD Student (Yr) g.kkelis13@imperial.ac.uk Sept 15 Introduction IPT System Set-Up: TX DC Load Inverter Power Meter ectifier Wireless

More information

Design of Dual Mode DC-DC Buck Converter Using Segmented Output Stage

Design of Dual Mode DC-DC Buck Converter Using Segmented Output Stage Design of Dual Mode DC-DC Buck Converter Using Segmented Output Stage Bo-Kyeong Kim, Young-Ho Shin, Jin-Won Kim, and Ho-Yong Choi a Department of Semiconductor Engineering, Chungbuk National University

More information

Brief Course Description for Electrical Engineering Department study plan

Brief Course Description for Electrical Engineering Department study plan Brief Course Description for Electrical Engineering Department study plan 2011-2015 Fundamentals of engineering (610111) The course is a requirement for electrical engineering students. It introduces the

More information

Overview of Wireless Power Transfer

Overview of Wireless Power Transfer Overview of Wireless Power Transfer CHAPTER 1: Overview of Wireless Power Transfer What is Wireless Power Transfer? The transfer of electrical energy without using conductors as the transport medium Examples

More information

A Merged Interleaved Flyback PFC Converter with Active Clamp and ZVZCS

A Merged Interleaved Flyback PFC Converter with Active Clamp and ZVZCS A Merged Interleaved Flyback PFC Converter with Active Clamp and ZVZCS Mehdi Alimadadi, William Dunford Department of Electrical and Computer Engineering University of British Columbia (UBC), Vancouver,

More information

6-18 GHz MMIC Drive and Power Amplifiers

6-18 GHz MMIC Drive and Power Amplifiers JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.2, NO. 2, JUNE, 02 125 6-18 GHz MMIC Drive and Power Amplifiers Hong-Teuk Kim, Moon-Suk Jeon, Ki-Woong Chung, and Youngwoo Kwon Abstract This paper

More information

Full-Custom Design Fractional Step-Down Charge Pump DC-DC Converter with Digital Control Implemented in 90nm CMOS Technology

Full-Custom Design Fractional Step-Down Charge Pump DC-DC Converter with Digital Control Implemented in 90nm CMOS Technology Full-Custom Design Fractional Step-Down Charge Pump DC-DC Converter with Digital Control Implemented in 90nm CMOS Technology Jhon Ray M. Esic, Van Louven A. Buot, and Jefferson A. Hora Microelectronics

More information

ZERO VOLTAGE TRANSITION SYNCHRONOUS RECTIFIER BUCK CONVERTER

ZERO VOLTAGE TRANSITION SYNCHRONOUS RECTIFIER BUCK CONVERTER International Journal of Electrical and Electronics Engineering Research (IJEEER) ISSN(P): 225-155X; ISSN(E): 2278-943X Vol. 4, Issue 3, Jun 214, 75-84 TJPRC Pvt. Ltd. ZERO VOLTAGE TRANSITION SYNCHRONOUS

More information

Study On Two-stage Architecture For Synchronous Buck Converter In High-power-density Power Supplies title

Study On Two-stage Architecture For Synchronous Buck Converter In High-power-density Power Supplies title Study On Two-stage Architecture For Synchronous Buck Converter In High-power-density Computing Click to add presentation Power Supplies title Click to edit Master subtitle Tirthajyoti Sarkar, Bhargava

More information