A Novel Mixed Current and Voltage Control Scheme for Inverter Arc Welding Machines

Size: px
Start display at page:

Download "A Novel Mixed Current and Voltage Control Scheme for Inverter Arc Welding Machines"

Transcription

1 A Novel Mixed Current and Voltage Control Scheme for Inverter Arc Welding Machines Young Min Chae, Yungtaek Jang, Milan M. Jovanović, Jae Suek Gho and Gyu Ha Choe Delta Products Corporation KonKuk University Electrical Engineering Power Electronics Laboratory 93-1 Mojin-Dong Kwangjin-Gu, 511 Davis Drive, Research Triangle Park, NC 2779 Seoul, Korea, Abstract - In this paper, a novel mixed current and voltage control scheme for an inverter-controlled arc welding machine is proposed. The proposed control scheme uses both a closed-loop current controller and an open-loop voltage controller to optimize the output current and voltage waveform d on the metal transfer procedure. An experimental comparison is made between the proposed and the conventional control scheme for the full output-current range. I. INTRODUCTION Generally, Gas Metal Arc Welding (GMAW) Machines are widely used in industrial applications for joining or cutting materials. They can be classified into various types depending on the welding objectives, shielding gases, or electrodes. An integral part of most welding machines is an AC/DC rectifier, or an AC/DC/DC converter that produces a constant, low DC voltage, typically in the 2-V to 7-V range. One of the most widely employed implementation of the welding machines is the thyristor-controlled arc welding machine, which is composed of an input side transformer and thyristor rectifier. Although this type of welding machines is simple in structure and cost effective, it is bulky and heavy because it utilizes a source-side line-frequency transformer. In addition, it has an undesirable low frequency output voltage ripple caused by the thyristor rectification. The size and weight of a welding machine can be significantly reduced by employing high-frequency PWM inverter techniques. In addition, these techniques improve the welding performance due to a stable DC output voltage. However, the major drawback of the conventional inverter arc welding machines that use a simple open-loop output voltage control method is that the metal transfer procedure is determined by the magnitude of the output DC voltage and wire feeding rate [1]-[3]. In case of GMAW, the metal transfer procedure occurs either by the short-circuit metal transfer procedure (SMTP), or globular metal transfer procedure (GMTP) depending on the magnitude of the output current. In the low-output-current region, which is typically less than 25 A, the SMTP mainly occurs. Since in SMTP the arc state and short-circuit bridge state occur irregularly these transient changes of metal transfer procedure result in poor welding performance such as a heavy spatter generation and a poor bead state. On the other hand, during the GMTP, which occurs at high output currents, the metal transfer procedure is performed in the arc state without forming a short-circuit state. Because in the arc state the output voltage and current are maintained constant, the GMTP exhibits much less spatter generation and a good bead state. As a result, most of today s research in the GMAW area is focussed on the improvement of the welding performances of the SMTP. Generally, the welding performance is mainly determined by the spatter generation since excessive spatter generation prohibits continuous operation during the automatic welding process, and results in a poor predictability of the whole automatic welding system. It is well known that most spatter is generated at the instant when short-circuit bridge or arc reignition state is formed. Therefore, the spatter generation is even more pronounced in the instantaneous short-circuit metal transfer procedure (ISMTP), introduced in [1], [4] and [5]. The welding performance can be improved by the proper control of the inverter. Among the control methods proposed are the output-current slope control method and the pulsed output-current control method. Since these control methods basically ignore the welding condition of the metal transfer procedure itself, the welding procedure is performed under non-optimum conditions so that the reduction of spatter generation is limited, as described in [2] and [6]. A much better welding performance can be achieved by the instantaneous output current control, which controls the output current instantaneously d on metal transfer procedure by using the feedback current control method. However, the practical implementation of this control is complex since this control method requires the optimum output current reference waveform and also has difficulty in adjusting the gain of the current controller [3]. In this paper, a novel simple, mixed current and voltage control scheme for inverter arc welding machines is proposed that controls the output power d on the metal transfer procedure. The proposed control scheme uses both the feedback current controller and the open-loop voltage controller and its digital implementation employs 8C196KC microprocessor /1/$1. (C) 21 IEEE

2 II. INVERTER ARC WELDING MACHINE A. Circuit configuration An inverter controlled GMAW machine usually consists of a power converter unit, a wire feeder control unit, and a shielding gas flow control unit. The power converter unit serves to produce a stable DC output voltage, whereas the wire feeder unit controls the feeding rate of wire, which is directly related to the output current value. Finally the shielding gas flow unit is used to stabilize the welding performance by shielding the arc plasma from the air which causes oxidization. Typically, the power converter unit of an inverter controlled GMAW machine consists of a 3-phase rectifier, full-bridge inverter, transformer and output diode rectifier, as shown in Fig.1. In this paper, the focus is on the control method of power converter unit especially the inverter control method that improves the welding performance. B. Metal transfer procedure in GMAW Generally, the metal transfer procedure starts with the separate electrode and metal and ends when the two materials are combined by the electrical energy. Typical voltage and current waveforms for the SMTP, which exhibits the arc and short-circuit state, are shown in Fig 2. During the arc-state period, the output voltage is high (2-3 V) because the consumable electrode that is being melted by the arc plasma represents a high-impedance load (process step E in Fig. 2). Gradually, the molten electrode is enlarged and finally contacted to the metal, as shown in Fig. 2 (process steps E-H). As soon as the contact to the metal is made, a short-circuit bridge is formed that extinguishes the arc plasma (process steps H and A in Fig. 2). At the same time, the output voltage rapidly drops and the output current start to increase. Since the short-circuit current is limited by a small contact resistance the output current is large. This large output current makes the contacted area melt so that the short-circuit bridge is eventually broken and the arc plasma is ignited again, as shown in Fig. 2 (process step D and E). In the SMTP the transitions from the arc state to the shortcircuit state and vice-verse are continuously repeated, which generates a larger amount of undesirable spatter. The spatter generation can be observed and studied by a high precision camera. III. PROPOSED MIXED AND CONTROL SCHEME A. Conventional open-loop voltage control scheme In the conventional inverter controlled GMAW, the constant output voltage characteristics of the inverter is usually generated with an open-loop voltage controller. In this open-loop control, reference voltage signal v is obtained by a linear combination of the voltage and current setting signals vdial and i dial, as v k1vdial + k2i dial =, (1) where k1 and k2 are constants. Therefore, in this control, the duty ratio and the output voltage of the inverter are fixed by the magnitude of v. Recently, to improve the welding performance by preventing a rapid change of the output current, outputcurrent sensing signal i real is added to form the voltage reference signal v, as v k1vdial + k2idial + k3ireal Short-Circuit =. (2) Arc State Voltage Wire Feede Controller Gas Flow Controller Current Inverter Wire Feeder Control Signal Control Signal Welder Controller Fig. 1 Circuit configuration of inverter controlled GMAW. Fig. 2 Short-circuit metal transfer procedure in GMAW /1/$1. (C) 21 IEEE

3 Digital Controller Limiter PWM Limiter PWM V dial K1 PI V K 2 I dial Filter V C α i real K 3 K 3 i real + - V PI I Current Control Mux V Eq.(1) Filter V C α Short Arc Short Detector K Filter K V real I real (a) Control block diagram (a) Control block diagram Voltage Short Arc Voltage Short Arc Current Current I (b) Output voltage and current waveform time Fig. 3 Control block diagram and waveform of conventional GMAW. Figure 3 shows the output waveform and the control block diagram of the conventional control scheme, where k 1, k 2 and k 3 [2]. The major advantage of the open-loop voltage control scheme is the simplicity and low cost. However, since the voltage reference signal v does not contain the information about the metal transfer procedure, the desired spatter reduction cannot be achieved. B. Proposed mixed current and voltage control scheme To reduce the spatter generation, a new control scheme is proposed in this paper. The block diagram of the proposed control scheme which uses both the closed-loop current control method and the open-loop voltage control method is shown in Fig. 4(a). In this control scheme, the information about the metal transfer procedure, i.e., whether it is the arc state, or the short-circuit state, is obtained by sensing the output voltage. This information is then processed by the digital controller which generates a proper reference signal. Figure 4(b) shows the output voltage and current waveforms of the proposed control scheme. In Fig. 4(b), periods I and II represent the closed-loop current control period and the open-loop voltage control period, respectively. (I) T d (II) I : Current Control II : Voltage Control (b) Output voltage and current waveform time Fig. 4 Control block diagram and waveforms of proposed GMAW. During the arc state period, the open-loop voltage control method is used to achieve a stable output voltage and easy adjustment of controller, as it is done in the conventional inverter controlled GMAW. During the constant outputvoltage condition the electrode is melted and the molten globule is enlarged by the arc plasma heat. After the enlarged molten globule forms the short-circuit bridge, the closed-loop current controller is activated. And the output current is regulated at constant current I. Finally, with this control it is possible to reduce the spatter generation by suppressing the rapid change of the output current at the instances of the short-circuit bridge forming. To break the short-circuit bridge and also to ignite the arc plasma, the open-loop voltage controller is activated after a time delay. To achieve stable transitions between this two-control scheme and also to simplify the hardware implementation, a fully digitized controller is developed by using an 8C196KC microprocessor. With this digital control method, the optimum values for I and T d can be easily set by the software. IV. EXPERIMENTAL RESULT The characteristics of the proposed control scheme and it s welding performances are evaluated and compared with /1/$1. (C) 21 IEEE

4 the conventional control scheme experimentally. The experimental conditions are summarized in Table I. It should be noted that in Table I, delay time T d and current value I that are the parameters in the proposed control scheme are set to achieve the least spatter generation. TABLE I EXPERIMENTAL CONDITIONS OF INVERTER CONTROLLED GMAW Item Conventional Proposed CASE I V out 19 [V] 19 [V] T d=2[ms] I out 15 [A] 15 [A] I =5[A] CASE II V out 22 [V] 22 [V] T d=1[ms] I out 15 [A] 15 [A] I =7[A] CASE III V out 27 [V] 27 [V] T d=2[ms] I out 15 [A] 15 [A] I =9[A] Shielding Gas : CO 2 Distance between electrode and metal : 2. cm Figure 5 shows the output voltage and current waveform of the proposed control scheme. This figure also shows the multiplexer output waveform, which is the input signal of the digital controller. From this figure, it is possible to distinguish the voltage control and current control regions, respectively. To observe the effect of different delay times in the proposed control scheme, the experiment was performed with 1ms and 3ms delay time. The time period of the SMTP is increased as the delay time is increased because the longer delay time requires more time to break the short-circuit bridge as shown in Fig. 6. Figures 7 and 8 show the output voltage and current waveforms of the welding machines with the conventional and proposed control scheme under the same output power conditions, respectively. In both figures it is possible to observe an increased number of time periods of the SMTP as the output current increases from 15 A to 25 A. Nevertheless, the comparison of these figures also shows that the proposed control scheme exhibits more regular output voltage and current waveform than the conventional control scheme. In addition, as can be seen from Fig. 8, the proposed control scheme keeps the peak value of the output current constant, whereas the peak of the output current varies in the conventional control, as seen in Fig. 7. Also, it should be noted that ISMTP, which has a time period less than 2 ms, is frequently observed in the conventional control scheme, Fig. 7. This causes a large amount of the irregular metal transfer procedure that results in an excessive spatter generation. The proposed control scheme improves the welding performance by providing stable SMTP, i.e., it reduces spatter by eliminating the irregular, instantaneous short-circuit forming phenomenon. Fig. 5 Output waveforms of proposed GMAW. (a) delay time 1ms (b) delay time 3ms MULTIPLEXER OUTPUT 1ms/div Fig. 6 Output voltage and current waveforms of proposed GMAW. 1[V]/div 1ms/div 1ms/div /1/$1. (C) 21 IEEE

5 1ms/div 1ms/div (a) output current 15[A] (a) output current 15[A] 1ms/div ISMTP 1ms/div (b) output current 2[A] (b) output current 2[A] 1ms/div ISMTP 1ms/div (c) output current 25[A] Fig. 7 Output voltage and current waveforms of conventional GMAW. (c) output current 25[A] Fig. 8 Output voltage and current waveform of proposed GMAW /1/$1. (C) 21 IEEE

6 Figure 9 shows the trajectories of the output voltage and current waveforms of the conventional and proposed control methods. Generally, during the short-circuit metal transfer procedure the trajectories are squares with a counterclockwise orientation. If the short-circuit metal transfer procedure were maintained consistently, than all trajectories would coincide, i.e., they would form a single square. Therefore, a correlation exists between the number of inner loops and the irregularity of the metal transfer procedure. The comparison of Figs. 9(a) and (b) implies that the proposed control method shows a more stable metal transfer procedure than the conventional control method. The comparison of the spatter for the conventional and proposed inverter arc welding machines in all the output current regions is shown in Fig. 1. The proposed control scheme reduces the spatter generation more than 3 % compared to the conventional control scheme. The maximum spatter reduction was recorded at the output current of 2 A, where the spatter reduction was about 5 %. (a) Conventional control scheme V. CONCLUSION To improve the welding performance of inverter controlled GMAW machines, a new mixed voltage and current control scheme is proposed. The proposed control scheme uses both the open-loop voltage and closed-loop current controllers to adjust for the metal transfer condition. By employing closed-loop current control during the delay time when the short-circuit forming occurs, it is possible to reduce the spatter generation by stabilizing the metal transfer procedure. The experimental evaluation the proposed control scheme shows that the proposed control improves the welding performance by reducing the spatter generation by 3-5 %. REFERENCES [1] J. F. Lancaster, The Physics of Welding, Pregon Present, [2] R.L. O'Brien, Welding Handbook, AWS, vol.2, [3] Y. M. Chae, G. H. Choe, et. al., "A New Instantaneous Output Current Control Method for Inverter Arc Welding Machine IEEE, PESC 99 Records, Vol.1, p. 521, [4] H. Yamamoto, "Recent advances in inverter controlled arc welding power sources and their application", Journal of Japan Weld. Soc., Vol.58, No.4, p. 273, [5] T. Mita, et. al., "Spatter Reduction-Power Source Considerations", Journal of the Japan Welding Society, August, 199 [6] H. Yamamoto, et.al, "The Development of Welding Current Control Systems for spatter reduction", Welding International, Vol.4, No.5, p. 398, 199 Spatter (g) (b) Proposed control scheme Fig. 9 Output current and voltage trajectories of GMAW. Generated Spatter Comparison Conventional Proposed 15A 2A 25A 27A Output current (A) Fig. 1 Generated spatter quantity comparison /1/$1. (C) 21 IEEE

Manufacturing Process - I Dr. D. K. Dwivedi Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee

Manufacturing Process - I Dr. D. K. Dwivedi Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Manufacturing Process - I Dr. D. K. Dwivedi Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Module - 3 Lecture - 5 Arc Welding Power Source Part 2 Welcome students.

More information

Power Electronics. Contents

Power Electronics. Contents Power Electronics Overview Contents Electronic Devices Power, Electric, Magnetic circuits Rectifiers (1-ph, 3-ph) Converters, controlled rectifiers Inverters (1-ph, 3-ph) Power system harmonics Choppers

More information

DEVELOPMENT OF DIGITAL DC-ARC WELDING MACHINE

DEVELOPMENT OF DIGITAL DC-ARC WELDING MACHINE DEVELOPMENT OF DIGITAL DC-ARC WELDING MACHINE Ngo Manh Dung, Ba Da Park, Yeong Deug Jeong and Sang Bong Kim School of Mechanical Eng., College of Eng., Pukyong National University, San 100, Yongdang-Dong,

More information

GENERALLY, at higher power levels, the continuousconduction-mode

GENERALLY, at higher power levels, the continuousconduction-mode 496 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 35, NO. 2, MARCH/APRIL 1999 A New, Soft-Switched Boost Converter with Isolated Active Snubber Milan M. Jovanović, Senior Member, IEEE, and Yungtaek

More information

A New, Soft-Switched, High-Power-Factor Boost Converter With IGBTs

A New, Soft-Switched, High-Power-Factor Boost Converter With IGBTs IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 17, NO. 4, JULY 2002 469 A New, Soft-Switched, High-Power-Factor Boost Converter With IGBTs Yungtaek Jang, Senior Member, IEEE, and Milan M. Jovanović, Fellow,

More information

A Novel Control Method for Input Output Harmonic Elimination of the PWM Boost Type Rectifier Under Unbalanced Operating Conditions

A Novel Control Method for Input Output Harmonic Elimination of the PWM Boost Type Rectifier Under Unbalanced Operating Conditions IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 16, NO. 5, SEPTEMBER 2001 603 A Novel Control Method for Input Output Harmonic Elimination of the PWM Boost Type Rectifier Under Unbalanced Operating Conditions

More information

High Efficiency Isolated DC/DC Converter using Series Voltage Compensation. Abstract. 1. Introduction. 2. Proposed Converter

High Efficiency Isolated DC/DC Converter using Series Voltage Compensation. Abstract. 1. Introduction. 2. Proposed Converter High Efficiency Isolated DC/DC Converter using Series Voltage Compensation Jun-ichi Itoh, Satoshi Miyawaki, Nagaoka University of Technology, Japan Kazuki Iwaya, TDK-Lambda Corporation, Japan Abstract

More information

IMPORTANCE OF VSC IN HVDC

IMPORTANCE OF VSC IN HVDC IMPORTANCE OF VSC IN HVDC Snigdha Sharma (Electrical Department, SIT, Meerut) ABSTRACT The demand of electrical energy has been increasing day by day. To meet these high demands, reliable and stable transmission

More information

Design Considerations for 12-V/1.5-V, 50-A Voltage Regulator Modules

Design Considerations for 12-V/1.5-V, 50-A Voltage Regulator Modules 776 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 16, NO. 6, NOVEMBER 2001 Design Considerations for 12-V/1.5-V, 50-A Voltage Regulator Modules Yuri Panov and Milan M. Jovanović, Fellow, IEEE Abstract The

More information

II. SINGLE PHASE BOOST TYPE APFC CONVERTER

II. SINGLE PHASE BOOST TYPE APFC CONVERTER An Overview of Control Strategies of an APFC Single Phase Front End Converter Nimitha Muraleedharan 1, Dr. Devi V 2 1,2 Electrical and Electronics Engineering, NSS College of Engineering, Palakkad Abstract

More information

THE converter usually employed for single-phase power

THE converter usually employed for single-phase power 82 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 46, NO. 1, FEBRUARY 1999 A New ZVS Semiresonant High Power Factor Rectifier with Reduced Conduction Losses Alexandre Ferrari de Souza, Member, IEEE,

More information

Analysis, Design, and Performance Evaluation of Droop Current-Sharing Method

Analysis, Design, and Performance Evaluation of Droop Current-Sharing Method Analysis, Design, and Performance Evaluation of Droop CurrentSharing Method Brian T. Irving and Milan M. Jovanović Delta Products Corporation Power Electronics Laboratory P.. Box 1173 5101 Davis Drive

More information

Z-SOURCE INVERTER BASED DVR FOR VOLTAGE SAG/SWELL MITIGATION

Z-SOURCE INVERTER BASED DVR FOR VOLTAGE SAG/SWELL MITIGATION Z-SOURCE INVERTER BASED DVR FOR VOLTAGE SAG/SWELL MITIGATION 1 Arsha.S.Chandran, 2 Priya Lenin 1 PG Scholar, 2 Assistant Professor 1 Electrical & Electronics Engineering 1 Mohandas College of Engineering

More information

New Pulse Multiplication Technique Based on Six-Pulse Thyristor Converters for High-Power Applications

New Pulse Multiplication Technique Based on Six-Pulse Thyristor Converters for High-Power Applications IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 38, NO. 1, JANUARY/FEBRUARY 2002 131 New Pulse Multiplication Technique Based on Six-Pulse Thyristor Converters for High-Power Applications Sewan Choi,

More information

Improved direct torque control of induction motor with dither injection

Improved direct torque control of induction motor with dither injection Sādhanā Vol. 33, Part 5, October 2008, pp. 551 564. Printed in India Improved direct torque control of induction motor with dither injection R K BEHERA andspdas Department of Electrical Engineering, Indian

More information

Literature Review for Shunt Active Power Filters

Literature Review for Shunt Active Power Filters Chapter 2 Literature Review for Shunt Active Power Filters In this chapter, the in depth and extensive literature review of all the aspects related to current error space phasor based hysteresis controller

More information

The Development of the Buck Type Electronic Dimming Ballast for 250W MHL

The Development of the Buck Type Electronic Dimming Ballast for 250W MHL 496 Journal of Electrical Engineering & Technology, Vol. 1, No. 4, pp. 496~502, 2006 The Development of the Buck Type Electronic Dimming Ballast for 250W MHL Dong-Youl Jung* and Chong-Yeon Park Abstract

More information

Bridgeless Cuk Power Factor Corrector with Regulated Output Voltage

Bridgeless Cuk Power Factor Corrector with Regulated Output Voltage Bridgeless Cuk Power Factor Corrector with Regulated Output Voltage Ajeesh P R 1, Prof. Dinto Mathew 2, Prof. Sera Mathew 3 1 PG Scholar, 2,3 Professors, Department of Electrical and Electronics Engineering,

More information

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE Ms. K. Kamaladevi 1, N. Mohan Murali Krishna 2 1 Asst. Professor, Department of EEE, 2 PG Scholar, Department of

More information

AC Voltage and Current Sensorless Control of Three-Phase PWM Rectifiers

AC Voltage and Current Sensorless Control of Three-Phase PWM Rectifiers IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 17, NO. 6, NOVEMBER 2002 883 AC Voltage and Current Sensorless Control of Three-Phase PWM Rectifiers Dong-Choon Lee, Member, IEEE, and Dae-Sik Lim Abstract

More information

Advances in Averaged Switch Modeling

Advances in Averaged Switch Modeling Advances in Averaged Switch Modeling Robert W. Erickson Power Electronics Group University of Colorado Boulder, Colorado USA 80309-0425 rwe@boulder.colorado.edu http://ece-www.colorado.edu/~pwrelect 1

More information

Adaptive Off-Time Control for Variable-Frequency, Soft-Switched Flyback Converter at Light Loads

Adaptive Off-Time Control for Variable-Frequency, Soft-Switched Flyback Converter at Light Loads 596 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 17, NO. 4, JULY 2002 Adaptive Off-Time Control for Variable-Frequency, Soft-Switched Flyback Converter at Light Loads Yuri Panov and Milan M. Jovanović,

More information

GENERALLY, a single-inductor, single-switch boost

GENERALLY, a single-inductor, single-switch boost IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 19, NO. 1, JANUARY 2004 169 New Two-Inductor Boost Converter With Auxiliary Transformer Yungtaek Jang, Senior Member, IEEE, Milan M. Jovanović, Fellow, IEEE

More information

B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics

B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics Sr. No. Date TITLE To From Marks Sign 1 To verify the application of op-amp as an Inverting Amplifier 2 To

More information

GMAW welding and brazing of thin sheet metal using modern power sources

GMAW welding and brazing of thin sheet metal using modern power sources Schweißtechnische Lehr- und Versuchsanstalt SLV München M - Niederlassung der GSI mbh GMAW welding and brazing of thin sheet metal using modern power sources F. Zech, Dr.-Ing. H. Cramer, L. Baum INNOVATIVE

More information

A New Soft Recovery PWM Quasi-Resonant Converter With a Folding Snubber Network

A New Soft Recovery PWM Quasi-Resonant Converter With a Folding Snubber Network 456 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 49, NO. 2, APRIL 2002 A New Soft Recovery PWM Quasi-Resonant Converter With a Folding Snubber Network Jin-Kuk Chung, Student Member, IEEE, and Gyu-Hyeong

More information

A Power Electronic Transformer (PET) fed Nine-level H-Bridge Inverter for Large Induction Motor Drives

A Power Electronic Transformer (PET) fed Nine-level H-Bridge Inverter for Large Induction Motor Drives IEEE Industrial Applications Society Annual Meeting Page of 7 A Power Electronic Transformer (PET) fed Nine-level H-Bridge Inverter for Large Induction Motor Drives Rick Kieferndorf Giri Venkataramanan

More information

Inverter topologies for photovoltaic modules with p-sim software

Inverter topologies for photovoltaic modules with p-sim software Inverter topologies for photovoltaic modules with p-sim software Anand G. Acharya, Brijesh M. Patel, Kiran R. Prajapati 1. Student, M.tech, power system, SKIT, Jaipur, India, 2. Assistant Professor, ADIT,

More information

Power Electronics. Exercise: Circuit Feedback

Power Electronics. Exercise: Circuit Feedback Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik Technische Universität München Prof Dr-Ing Ralph Kennel Aricsstr 21 Email: eat@eitumde Tel: +49 (0)89 289-28358 D-80333 München Internet:

More information

Alternating current welding using four quadrant switches

Alternating current welding using four quadrant switches Alternating current welding using four quadrant switches A. NavarroCrespin, Student Member, IEEE, Rosario Casanueva, Member, IEEE, and Francisco J. Azcondo, Senior Member, IEEE Dept. Electronics Technology,

More information

POWER FACTOR CORRECTION AND HARMONIC CURRENT REDUCTION IN DUAL FEEDBACK PWM CONTROLLED AC/DC DRIVES.

POWER FACTOR CORRECTION AND HARMONIC CURRENT REDUCTION IN DUAL FEEDBACK PWM CONTROLLED AC/DC DRIVES. POWER FACTOR CORRECTION AND HARMONIC CURRENT REDUCTION IN DUAL FEEDBACK PWM CONTROLLED AC/DC DRIVES. 1 RAJENDRA PANDAY, 2 C.VEERESH,ANIL KUMAR CHAUDHARY 1, 2 Mandsaur Institute of Techno;ogy,Mandsaur,

More information

A New 3-phase Buck-Boost Unity Power Factor Rectifier with Two Independently Controlled DC Outputs

A New 3-phase Buck-Boost Unity Power Factor Rectifier with Two Independently Controlled DC Outputs A New 3-phase Buck-Boost Unity Power Factor Rectifier with Two Independently Controlled DC Outputs Y. Nishida* 1, J. Miniboeck* 2, S. D. Round* 2 and J. W. Kolar* 2 * 1 Nihon University Energy Electronics

More information

CHAPTER 5 CONTROL SYSTEM DESIGN FOR UPFC

CHAPTER 5 CONTROL SYSTEM DESIGN FOR UPFC 90 CHAPTER 5 CONTROL SYSTEM DESIGN FOR UPFC 5.1 INTRODUCTION This chapter deals with the performance comparison between a closed loop and open loop UPFC system on the aspects of power quality. The UPFC

More information

HOT SWITCHING. Capacitive Hot Switching. Power Supply Charge Exchange

HOT SWITCHING. Capacitive Hot Switching. Power Supply Charge Exchange HOT SWITCHING Hot switching is a term used to describe operations where a relay is either opened or closed while carrying a user signal. It is a parameter that can have a major impact on relay life, a

More information

SINGLE-STAGE HIGH-POWER-FACTOR SELF-OSCILLATING ELECTRONIC BALLAST FOR FLUORESCENT LAMPS WITH SOFT START

SINGLE-STAGE HIGH-POWER-FACTOR SELF-OSCILLATING ELECTRONIC BALLAST FOR FLUORESCENT LAMPS WITH SOFT START SINGLE-STAGE HIGH-POWER-FACTOR SELF-OSCILLATING ELECTRONIC BALLAST FOR FLUORESCENT S WITH SOFT START Abstract: In this paper a new solution to implement and control a single-stage electronic ballast based

More information

Increasing arc length Current [A]

Increasing arc length Current [A] Lecture 10 Arc Welding Power Source II This chapter presents the dynamic characteristics of welding power sources and classes of insulation used in windings and cables of power sources. The concept of

More information

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 14 CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 2.1 INTRODUCTION Power electronics devices have many advantages over the traditional power devices in many aspects such as converting

More information

SENSING OF METAL-TRANSFER MODE FOR PROCESS CONTROL OF GMAW

SENSING OF METAL-TRANSFER MODE FOR PROCESS CONTROL OF GMAW SENSING OF METAL-TRANSFER MODE FOR PROCESS CONTROL OF GMAW Nancy M. Carlson, John A. Johnson, and Herschel B. Smartt Idaho National Engineering Laboratory, EG&G Idaho, Inc. P.O. Box 1625 Idaho Falls, ID

More information

Brushless Motor without a Shaft-Mounted Position Sensor. Tsunehiro Endo Fumio Tajima Member Member. Summary

Brushless Motor without a Shaft-Mounted Position Sensor. Tsunehiro Endo Fumio Tajima Member Member. Summary Paper UDC 621.313.3-573: 621.316.71:681.532.8:621.382 Brushless Motor without a Shaft-Mounted Position Sensor By Tsunehiro Endo Fumio Tajima Member Member Kenichi Iizuka Member Summary Hideo Uzuhashi Non-member

More information

Stability and Dynamic Performance of Current-Sharing Control for Paralleled Voltage Regulator Modules

Stability and Dynamic Performance of Current-Sharing Control for Paralleled Voltage Regulator Modules 172 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 17, NO. 2, MARCH 2002 Stability Dynamic Performance of Current-Sharing Control for Paralleled Voltage Regulator Modules Yuri Panov Milan M. Jovanović, Fellow,

More information

P. Sivakumar* 1 and V. Rajasekaran 2

P. Sivakumar* 1 and V. Rajasekaran 2 IJESC: Vol. 4, No. 1, January-June 2012, pp. 1 5 P. Sivakumar* 1 and V. Rajasekaran 2 Abstract: This project describes the design a controller for PWM boost Rectifier. This regulates the output voltage

More information

Bridgeless Buck Converter with Average Current Mode control for Power Factor Correction and Wide Input Voltage variation

Bridgeless Buck Converter with Average Current Mode control for Power Factor Correction and Wide Input Voltage variation Bridgeless Buck Converter with Average Current Mode control for Power Factor Correction and Wide Input Voltage variation Abstract In universal-line voltage (90-264 V) applications, maintaining a high efficiency

More information

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE 98 CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE 6.1 INTRODUCTION Process industries use wide range of variable speed motor drives, air conditioning plants, uninterrupted power supply systems

More information

MODERN switching power converters require many features

MODERN switching power converters require many features IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 19, NO. 1, JANUARY 2004 87 A Parallel-Connected Single Phase Power Factor Correction Approach With Improved Efficiency Sangsun Kim, Member, IEEE, and Prasad

More information

SVPWM Rectifier-Inverter Nine Switch Topology for Three Phase UPS Applications

SVPWM Rectifier-Inverter Nine Switch Topology for Three Phase UPS Applications SVPWM Rectifier-Inverter Nine Switch Topology for Three Phase UPS Applications Kokila A Department of Electrical and Electronics Engineering Anna University, Chennai Srinivasan S Department of Electrical

More information

Open Access Research on Fast Response Characteristic of Magnetic Control Reactor

Open Access Research on Fast Response Characteristic of Magnetic Control Reactor Send Orders for Reprints to reprints@benthamscience.ae 966 The Open Automation and Control Systems Journal, 2014, 6, 966-974 Open Access Research on Fast Response Characteristic of Magnetic Control Reactor

More information

A NOVEL DEAD-BEAT CURRENT CONTROL FOR SHUNT ACTIVE POWER FILTERS

A NOVEL DEAD-BEAT CURRENT CONTROL FOR SHUNT ACTIVE POWER FILTERS A NOVEL DEAD-BEAT CURRENT CONTROL FOR SHUNT ACTIVE POWER FILTERS A. Dell'Aquila, P. Zanchetta, M. Liserre, L. Manelli, M. Marinelli Politecnico di Bari Dipartimento di Elettrotecnica ed Elettronica Via

More information

Single-Loop Control of Buck Power-Pulsation Buffer for AC-DC Converter System

Single-Loop Control of Buck Power-Pulsation Buffer for AC-DC Converter System Single-Loop Control of Buck Power-Pulsation Buffer for AC-DC Converter System Yuri Panov, Milan M. Jovanovi, and Brian T. Irving Power Electronics Laboratory Delta Products Corporation 5101 Davis Drive,

More information

Control of buck-boost chopper type AC voltage regulator

Control of buck-boost chopper type AC voltage regulator International Journal of Research in Advanced Engineering and Technology ISSN: 2455-0876; Impact Factor: RJIF 5.44 www.engineeringresearchjournal.com Volume 2; Issue 3; May 2016; Page No. 52-56 Control

More information

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 4, JULY

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 4, JULY IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 4, JULY 2008 1649 Open-Loop Control Methods for Interleaved DCM/CCM Boundary Boost PFC Converters Laszlo Huber, Member, IEEE, Brian T. Irving, and Milan

More information

UNIT-III STATOR SIDE CONTROLLED INDUCTION MOTOR DRIVE

UNIT-III STATOR SIDE CONTROLLED INDUCTION MOTOR DRIVE UNIT-III STATOR SIDE CONTROLLED INDUCTION MOTOR DRIVE 3.1 STATOR VOLTAGE CONTROL The induction motor 'speed can be controlled by varying the stator voltage. This method of speed control is known as stator

More information

A Single Phase Single Stage AC/DC Converter with High Input Power Factor and Tight Output Voltage Regulation

A Single Phase Single Stage AC/DC Converter with High Input Power Factor and Tight Output Voltage Regulation 638 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 A Single Phase Single Stage AC/DC Converter with High Input Power Factor and Tight Output Voltage Regulation A. K.

More information

ISSN Vol.03,Issue.07, August-2015, Pages:

ISSN Vol.03,Issue.07, August-2015, Pages: WWW.IJITECH.ORG ISSN 2321-8665 Vol.03,Issue.07, August-2015, Pages:1276-1281 Comparison of an Active and Hybrid Power Filter Devices THAKKALAPELLI JEEVITHA 1, A. SURESH KUMAR 2 1 PG Scholar, Dept of EEE,

More information

INTEGRATED CIRCUITS. AN1221 Switched-mode drives for DC motors. Author: Lester J. Hadley, Jr.

INTEGRATED CIRCUITS. AN1221 Switched-mode drives for DC motors. Author: Lester J. Hadley, Jr. INTEGRATED CIRCUITS Author: Lester J. Hadley, Jr. 1988 Dec Author: Lester J. Hadley, Jr. ABSTRACT The purpose of this paper is to demonstrate the use of integrated switched-mode controllers, generally

More information

ATYPICAL high-power gate-turn-off (GTO) currentsource

ATYPICAL high-power gate-turn-off (GTO) currentsource 1278 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 34, NO. 6, NOVEMBER/DECEMBER 1998 A Novel Power Factor Control Scheme for High-Power GTO Current-Source Converter Yuan Xiao, Bin Wu, Member, IEEE,

More information

Three-Phase Multi-Pulse Converter with Phase-Shifting Transformer

Three-Phase Multi-Pulse Converter with Phase-Shifting Transformer 89 International Journal of Electronics, Electrical and Computational System Three-Phase Multi-Pulse Converter with Phase-Shifting Transformer Department of Electrical Engienring MITS Gwalior Abstract-In

More information

Digitally controlled GMA power sources Heinz Hackl, Fronius International GmbH, Wels, Austria

Digitally controlled GMA power sources Heinz Hackl, Fronius International GmbH, Wels, Austria Digitally controlled GMA power sources Heinz Hackl, Fronius International GmbH, Wels, Austria 1. Introduction The ever more exacting demands nowadays being made of base and filler metals, and of materials-joining

More information

Student Department of EEE (M.E-PED), 2 Assitant Professor of EEE Selvam College of Technology Namakkal, India

Student Department of EEE (M.E-PED), 2 Assitant Professor of EEE Selvam College of Technology Namakkal, India Design and Development of Single Phase Bridgeless Three Stage Interleaved Boost Converter with Fuzzy Logic Control System M.Pradeep kumar 1, M.Ramesh kannan 2 1 Student Department of EEE (M.E-PED), 2 Assitant

More information

PULSE WIDTH MODULATION (P.W.M), A PANACEA TO PHASE CONTROL PROBLEMS IN AC TO DC CONVERTERS

PULSE WIDTH MODULATION (P.W.M), A PANACEA TO PHASE CONTROL PROBLEMS IN AC TO DC CONVERTERS PULSE WIDTH MODULATION (P.W.M), A PANACEA TO PHASE CONTROL PROBLEMS IN AC TO DC CONVERTERS Ibekwe, B.E., Department of Electrical and Electronic Engineering, Faculty of Engineering, Enugu State University

More information

Mitigation of Current Harmonics with Combined p-q and Id-IqControl Strategies for Fuzzy Controller Based 3Phase 4Wire Shunt Active Filter

Mitigation of Current Harmonics with Combined p-q and Id-IqControl Strategies for Fuzzy Controller Based 3Phase 4Wire Shunt Active Filter Mitigation of Current Harmonics with Combined p-q and Id-IqControl Strategies for Fuzzy Controller Based 3Phase 4Wire Shunt Active Filter V.Balasubramanian 1, T.Rajesh 2, T.Rama Rajeswari 3 P.G. Student,

More information

Converters with Power Factor Correction

Converters with Power Factor Correction 32 ACTA ELECTROTEHNICA Converters with Power Factor Correction Daniel ALBU, Nicolae DRĂGHICIU, Gabriela TONŢ and Dan George TONŢ Abstract Traditional diode rectifiers that are commonly used in electrical

More information

CHAPTER 3. SINGLE-STAGE PFC TOPOLOGY GENERALIZATION AND VARIATIONS

CHAPTER 3. SINGLE-STAGE PFC TOPOLOGY GENERALIZATION AND VARIATIONS CHAPTER 3. SINGLE-STAGE PFC TOPOLOG GENERALIATION AND VARIATIONS 3.1. INTRODUCTION The original DCM S 2 PFC topology offers a simple integration of the DCM boost rectifier and the PWM DC/DC converter.

More information

LINEAR MODELING OF A SELF-OSCILLATING PWM CONTROL LOOP

LINEAR MODELING OF A SELF-OSCILLATING PWM CONTROL LOOP Carl Sawtell June 2012 LINEAR MODELING OF A SELF-OSCILLATING PWM CONTROL LOOP There are well established methods of creating linearized versions of PWM control loops to analyze stability and to create

More information

Compensation of Distribution Feeder Loading With Power Factor Correction by Using D-STATCOM

Compensation of Distribution Feeder Loading With Power Factor Correction by Using D-STATCOM Compensation of Distribution Feeder Loading With Power Factor Correction by Using D-STATCOM N.Shakeela Begum M.Tech Student P.V.K.K Institute of Technology. Abstract This paper presents a modified instantaneous

More information

PI-VPI Based Current Control Strategy to Improve the Performance of Shunt Active Power Filter

PI-VPI Based Current Control Strategy to Improve the Performance of Shunt Active Power Filter PI-VPI Based Current Control Strategy to Improve the Performance of Shunt Active Power Filter B.S.Nalina 1 Ms.V.J.Vijayalakshmi 2 Department Of EEE Department Of EEE 1 PG student,skcet, Coimbatore, India

More information

ACTIVE COMPENSATION OF HARMONICS IN INDUSTRIAL APPLICATIONS. Sergej Kalaschnikow, Steffan Hansen, Lucian Asiminoaei, Henrik Gedde Moos

ACTIVE COMPENSATION OF HARMONICS IN INDUSTRIAL APPLICATIONS. Sergej Kalaschnikow, Steffan Hansen, Lucian Asiminoaei, Henrik Gedde Moos ACTIVE COMPENSATION OF HARMONICS IN INDUSTRIAL APPLICATIONS Sergej Kalaschnikow, Steffan Hansen, Lucian Asiminoaei, Henrik Gedde Moos Danfoss Drives A/S, 63 Graasten, Denmark, www.danfoss.com e-mail: sergej.kalaschnikow@danfos.com,

More information

Comparative Study of Pulse Width Modulated and Phase Controlled Rectifiers

Comparative Study of Pulse Width Modulated and Phase Controlled Rectifiers Comparative Study of Pulse Width Modulated and Phase Controlled Rectifiers Dhruv Shah Naman Jadhav Keyur Mehta Setu Pankhaniya Abstract Fixed DC voltage is one of the very basic requirements of the electronics

More information

Process: DC TIG (GTAW) AC TIG (GTAW) Input Power: 230V, 1-Phase Amperage Range: A Rated Output at40 C (104 F): Maintenance and Repair

Process: DC TIG (GTAW) AC TIG (GTAW) Input Power: 230V, 1-Phase Amperage Range: A Rated Output at40 C (104 F): Maintenance and Repair MULTIFUNCTION / O251 Quick specs Light industrial Application: Metal fabrication workshops Shipyards and offshore industry Process: DC TIG (GTAW) AC TIG (GTAW) Input Power: 230V, 1-Phase Amperage Range:

More information

Class D Series Resonant Converter Controlled with FPGA-Based Delta-Sigma Modulator

Class D Series Resonant Converter Controlled with FPGA-Based Delta-Sigma Modulator Class D Series Resonant Converter Controlled with FPGA-Based Delta-Sigma Modulator Hirotaka Koizumi Department of Electrical Engineering Tokyo University of Science Chiyoda-ku, Tokyo 102-0073 JAPAN E-mail:

More information

Module 4. AC to AC Voltage Converters. Version 2 EE IIT, Kharagpur 1

Module 4. AC to AC Voltage Converters. Version 2 EE IIT, Kharagpur 1 Module 4 AC to AC Voltage Converters Version 2 EE IIT, Kharagpur 1 Lesson 31 Three-ase to Threease Cyclo-converters Version 2 EE IIT, Kharagpur 2 Instructional Objectives Study of the following: The three-ase

More information

Control of Power Converters for Distributed Generation

Control of Power Converters for Distributed Generation Mechatronics Industrial Advisory Board 2004 Control of Power Converters for Distributed Generation Ph.D. Student: Min Dai Advisor: Prof. Ali Keyhani Department of Electrical and Computer Engineering The

More information

Design of Electronic Welding Machine Design And Simulation of Electronic Welding Machine Using H-Bridge Inverter And Using 8051 Controller.

Design of Electronic Welding Machine Design And Simulation of Electronic Welding Machine Using H-Bridge Inverter And Using 8051 Controller. Design of Electronic Welding Machine Design And Simulation of Electronic Welding Machine Using H-Bridge Inverter And Using 8051 Controller. Mr.Pramod Modi 1,Ms. Sheetal S. Parmar 2 1 Assistant Professor,

More information

Type of loads Active load torque: - Passive load torque :-

Type of loads Active load torque: - Passive load torque :- Type of loads Active load torque: - Active torques continues to act in the same direction irrespective of the direction of the drive. e.g. gravitational force or deformation in elastic bodies. Passive

More information

Comparison Between CCM Single-Stage And Two-Stage Boost PFC Converters *

Comparison Between CCM Single-Stage And Two-Stage Boost PFC Converters * Comparison Between CCM Single-Stage And Two-Stage Boost PFC Converters * Jindong Zhang 1, Milan M. Jovanoviü, and Fred C. Lee 1 1 Center for Power Electronics Systems The Bradley Department of Electrical

More information

ABSTRACT I. INTRODUCTION

ABSTRACT I. INTRODUCTION 2017 IJSRST Volume 3 Issue 8 Print ISSN: 2395-6011 Online ISSN: 2395-602X Themed Section: Science and Technology A Novel Zeta Converter with Pi Controller for Power Factor Correction in Induction Motor

More information

PULSE MULTIPLICATION IN FORCED- COMMUTATED CURRENT SOURCE CONVERTERS BY DC RIPPLE REINJECTION

PULSE MULTIPLICATION IN FORCED- COMMUTATED CURRENT SOURCE CONVERTERS BY DC RIPPLE REINJECTION Queensland University of Technology From the SelectedWorks of Lasantha Bernard Perera Spring September 26, 2004 PULSE MULTIPLICATION IN FORCED- COMMUTATED CURRENT SOURCE CONVERTERS BY DC RIPPLE REINJECTION

More information

Control Of Shunt Active Filter Based On Instantaneous Power Theory

Control Of Shunt Active Filter Based On Instantaneous Power Theory B.Pragathi Department of Electrical and Electronics Shri Vishnu Engineering College for Women Bhimavaram, India Control Of Shunt Active Filter Based On Instantaneous Power Theory G.Bharathi Department

More information

Lecture Note. DC-AC PWM Inverters. Prepared by Dr. Oday A Ahmed Website: https://odayahmeduot.wordpress.com

Lecture Note. DC-AC PWM Inverters. Prepared by Dr. Oday A Ahmed Website: https://odayahmeduot.wordpress.com Lecture Note 10 DC-AC PWM Inverters Prepared by Dr. Oday A Ahmed Website: https://odayahmeduot.wordpress.com Email: 30205@uotechnology.edu.iq Scan QR DC-AC PWM Inverters Inverters are AC converters used

More information

Implementation of SRF based Multilevel Shunt Active Filter for Harmonic Control

Implementation of SRF based Multilevel Shunt Active Filter for Harmonic Control International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 3, Issue 8 (September 2012), PP. 16-20 Implementation of SRF based Multilevel Shunt

More information

Harmonics Elimination Using Shunt Active Filter

Harmonics Elimination Using Shunt Active Filter Harmonics Elimination Using Shunt Active Filter Satyendra Gupta Assistant Professor, Department of Electrical Engineering, Shri Ramswaroop Memorial College of Engineering and Management, Lucknow, India.

More information

CHAPTER 4 A NEW CARRIER BASED PULSE WIDTH MODULATION STRATEGY FOR VSI

CHAPTER 4 A NEW CARRIER BASED PULSE WIDTH MODULATION STRATEGY FOR VSI 52 CHAPTER 4 A NEW CARRIER BASED PULSE WIDTH MODULATION STRATEGY FOR VSI 4.1 INTRODUCTION The present day applications demand ac power with adjustable amplitude and frequency. A well defined mode of operation

More information

A Local-Dimming LED BLU Driving Circuit for a 42-inch LCD TV

A Local-Dimming LED BLU Driving Circuit for a 42-inch LCD TV A Local-Dimming LED BLU Driving Circuit for a 42-inch LCD TV Yu-Cheol Park 1, Hee-Jun Kim 2, Back-Haeng Lee 2, Dong-Hyun Shin 3 1 Yu-Cheol Park Intelligent Vehicle Technology R&D Center, KATECH, Korea

More information

CONTROL OF CHAOS IN BOOST CONVERTER

CONTROL OF CHAOS IN BOOST CONVERTER CONTROL OF CHAOS IN BOOST CONVERTER Amrutha.M.K 1, NaveenKumar G.N 2, 1,2 Department of Electronics and Communication, CMRIT, Bangalore Abstract: Chaos is a kind of quasi-stochastic behaviours of determinate

More information

A Unity Power Factor Boost Rectifier with a Predictive Capacitor Model for High Bandwidth DC Bus Voltage Control

A Unity Power Factor Boost Rectifier with a Predictive Capacitor Model for High Bandwidth DC Bus Voltage Control A Unity Power Factor Boost Rectifier with a Predictive Capacitor Model for High Bandwidth DC Bus Voltage Control Peter Wolfs Faculty of Sciences, Engineering and Health Central Queensland University, Rockhampton

More information

CHAPTER 2 DESIGN AND MODELING OF POSITIVE BUCK BOOST CONVERTER WITH CASCADED BUCK BOOST CONVERTER

CHAPTER 2 DESIGN AND MODELING OF POSITIVE BUCK BOOST CONVERTER WITH CASCADED BUCK BOOST CONVERTER 17 CHAPTER 2 DESIGN AND MODELING OF POSITIVE BUCK BOOST CONVERTER WITH CASCADED BUCK BOOST CONVERTER 2.1 GENERAL Designing an efficient DC to DC buck-boost converter is very much important for many real-time

More information

THREE-PHASE voltage-source pulsewidth modulation

THREE-PHASE voltage-source pulsewidth modulation 1144 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 13, NO. 6, NOVEMBER 1998 A Novel Overmodulation Technique for Space-Vector PWM Inverters Dong-Choon Lee, Member, IEEE, and G-Myoung Lee Abstract In this

More information

SIMULATION OF HIGH BOOST CONVERTER FOR CONTINUOUS AND DISCONTINUOUS MODE OF OPERATION WITH COUPLED INDUCTOR

SIMULATION OF HIGH BOOST CONVERTER FOR CONTINUOUS AND DISCONTINUOUS MODE OF OPERATION WITH COUPLED INDUCTOR SIMULATION OF HIGH BOOST CONVERTER FOR CONTINUOUS AND DISCONTINUOUS MODE OF OPERATION WITH COUPLED INDUCTOR Praveen Sharma (1), Irfan Khan (2), Neha Verma (3),Bhoopendra Singh (4) (1), (2), (4) Electrical

More information

REDUCED SWITCHING LOSS AC/DC/AC CONVERTER WITH FEED FORWARD CONTROL

REDUCED SWITCHING LOSS AC/DC/AC CONVERTER WITH FEED FORWARD CONTROL REDUCED SWITCHING LOSS AC/DC/AC CONVERTER WITH FEED FORWARD CONTROL Avuluri.Sarithareddy 1,T. Naga durga 2 1 M.Tech scholar,lbr college of engineering, 2 Assistant professor,lbr college of engineering.

More information

Harmonics White Paper

Harmonics White Paper Harmonics White Paper New Breakthrough In PWM Drives Technology Reduces Input Line Harmonics Without the Use of Filtering Devices Harmonic Distortion Damages Equipment and Creates a Host of Other Problems

More information

Analysis, Modeling and Simulation of Dynamic Voltage Restorer (DVR)for Compensation of Voltage for sag-swell Disturbances

Analysis, Modeling and Simulation of Dynamic Voltage Restorer (DVR)for Compensation of Voltage for sag-swell Disturbances IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 3 Ver. I (May Jun. 2014), PP 36-41 Analysis, Modeling and Simulation of Dynamic Voltage

More information

Current Rebuilding Concept Applied to Boost CCM for PF Correction

Current Rebuilding Concept Applied to Boost CCM for PF Correction Current Rebuilding Concept Applied to Boost CCM for PF Correction Sindhu.K.S 1, B. Devi Vighneshwari 2 1, 2 Department of Electrical & Electronics Engineering, The Oxford College of Engineering, Bangalore-560068,

More information

CHAPTER 3 H BRIDGE BASED DVR SYSTEM

CHAPTER 3 H BRIDGE BASED DVR SYSTEM 23 CHAPTER 3 H BRIDGE BASED DVR SYSTEM 3.1 GENERAL The power inverter is an electronic circuit for converting DC power into AC power. It has been playing an important role in our daily life, as well as

More information

SINGLE STAGE LOW FREQUENCY ELECTRONIC BALLAST FOR HID LAMPS

SINGLE STAGE LOW FREQUENCY ELECTRONIC BALLAST FOR HID LAMPS SINGLE STAGE LOW FREQUENCY ELECTRONIC BALLAST FOR HID LAMPS SUMAN TOLANUR 1 & S.N KESHAVA MURTHY 2 1,2 EEE Dept., SSIT Tumkur E-mail : sumantolanur@gmail.com Abstract - The paper presents a single-stage

More information

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 01, 2016 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 01, 2016 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 01, 2016 ISSN (online): 2321-0613 Study of Bidirectional AC/DC Converter with Feedforward Scheme using Neural Network Control

More information

Chapter 6. Small signal analysis and control design of LLC converter

Chapter 6. Small signal analysis and control design of LLC converter Chapter 6 Small signal analysis and control design of LLC converter 6.1 Introduction In previous chapters, the characteristic, design and advantages of LLC resonant converter were discussed. As demonstrated

More information

Literature Review. Chapter 2

Literature Review. Chapter 2 Chapter 2 Literature Review Research has been carried out in two ways one is on the track of an AC-AC converter and other is on track of an AC-DC converter. Researchers have worked in AC-AC conversion

More information

PROCESS. TOTAL s2f Semiautomatic Aluminum MIG Welding Solutions

PROCESS. TOTAL s2f Semiautomatic Aluminum MIG Welding Solutions WAVEFORM CONTROL TECHNOLOGY Welding aluminum is different than welding steel. Those who have done both will readily acknowledge this fact. Until recently, welding power supplies were controlled by analog

More information

Do Capacitor Switching Transients Still Cause Problems?

Do Capacitor Switching Transients Still Cause Problems? Do Capacitor Switching Transients Still Cause Problems? Mark McGranaghan We have been evaluating problems related to capacitor switching transients for many years. Capacitor banks have been used on distribution

More information

Hybrid PWM switching scheme for a three level neutral point clamped inverter

Hybrid PWM switching scheme for a three level neutral point clamped inverter Hybrid PWM switching scheme for a three level neutral point clamped inverter Sarath A N, Pradeep C NSS College of Engineering, Akathethara, Palakkad. sarathisme@gmail.com, cherukadp@gmail.com Abstract-

More information

Electronic Circuits I Laboratory 03 Rectifiers

Electronic Circuits I Laboratory 03 Rectifiers Electronic Circuits I Laboratory 03 Rectifiers # Student ID Student Name Grade (10) 1 Instructor signature 2 3 4 5 Delivery Date -1 / 18 - Objectives In this experiment, you will get to know a group of

More information