CHAPTER 3 H BRIDGE BASED DVR SYSTEM

Size: px
Start display at page:

Download "CHAPTER 3 H BRIDGE BASED DVR SYSTEM"

Transcription

1 23 CHAPTER 3 H BRIDGE BASED DVR SYSTEM 3.1 GENERAL The power inverter is an electronic circuit for converting DC power into AC power. It has been playing an important role in our daily life, as well as in industrial fields. Power inverters are installed in a wide range of consumer products and high-power equipment, including temperature control, light control, motor control, power supplies, bulk transportation systems, HVDC systems and FACTS. And the power rating of those power devices ranges from milli-watts to several megawatts as described by Mohan (2003). Since 1975, many researchers have been dedicated to developing new control methods and new modulation techniques for power inverters. The most popular modulation technique adopted in industrial applications is sinusoidal PWM. The concept is derived from the classical PWM method, in which a modulating signal is compared with triangular carriers to generate the gate signals. Such modulating signal is derived by an error amplifier, typically a proportional-plus-integral controller, which compares the reference signal and the actual output. The error signal will then be combined with a synchronous reference frame to generate a synchronized gate signal. However, due to the limited bandwidth of the overall control mechanism, the actual output will inherently have a phase lag and magnitude error, which will increase with the disturbance frequency. Another modulation technique is the Space-Vector Modulation (SVM), which is dominantly applied to three-phase inverters. It features good utilization of dc-link voltage and low current ripple,

2 24 but its implementation is generally complex and computationally intensive. As the generation of the space vector table is based on considering the phase and magnitude of the steady-state vectors, the inverter output regulation, and thus the dynamic response, is governed by the output voltage or current controller. An alternative way to regulate the inverter output is to use the boundary control technique, which is based on hysteresis comparison on a well-defined switching surface to determine the switching instants of the output. Typical examples include Hysteresis Current Control (HCC) and sigma-delta modulation (SDM) methods. The concept of HCC is based on continually tracking the actual output current with the reference current within a hysteresis band to generate the gate signals. Some variant techniques use multiple hysteresis bands, with each band representing switching between two adjacent voltage levels. SDM is based on integrating the error between the actual output voltage and the reference voltage, and comparing the integral error with a hysteresis quantizer to dictate the switching states. Such boundary-control-based methods are robust and able to give fast dynamic response to large-signal disturbances, but their fundamental control philosophy relies on observing the instantaneous state variables and generating the gate signals without taking the state trajectory movement into account. 3.2 BRIDGE INVERTERS Bridge inverter can be classified into two categories, namely the half-bridge inverter and the full-bridge inverter. Half-bridge and full-bridge inverters are employed in most household appliances such as air conditioners, washing machines and refrigerators. Their circuit structures and basic operating principles are reviewed and presented below.

3 Half-Bridge Inverters The schematic diagram of a single-phase half-bridge VSI is shown in Figure 3.1(a). It consists of two power switches (S 1 and S 2 ), two power diodes (D 1 and D 2 ) and two cumbersome capacitors (C 1 and C 2 ). The two capacitors are connected in series across the DC input. They split the DC link voltage with a neutral point n, thus the potential across each capacitor is constant and with a value equal to V dc /2. S 1 and S 2 are on/off solid state switches such as SCR, GTO, IGBT or power MOSFET. They cannot be turned on simultaneously as a short circuit across the DC link input would be produced under such situation. D 1 and D 2 are called feedback diodes. They are connected in anti-parallel with S 1 and S 2. There are three switch modes in the single-phase half-bridge VSI. When S 1 is switched on and S 2 is switched off, the instantaneous voltage across the inverter output v o is equal to V dc /2. D 1 conducts when the load is an inductive load. The load current i o would continue to flow through D 1, load and C 1 until the current falls to zero. Likewise, when S 1 is switched off and S 2 is switched on, v o is equal to -V dc /2. i o would continue to flow through D 2, load and C 2 when an inductive load is connected. The output voltage of the inverter is undefined when both S 1 and S 2 are switched off.v o can equal to V dc /2 or -V dc /2, depending on which diode is conducted. Figure 3.1(b) shows the waveform of the inverter when an inductive load is connected. The switch states of single-phase half-bridge VSI are summarized in Table 3.1.

4 26 Table 3.1 Switch states of single-phase half-bridge VSI. State No Switch states Vo Components conducting 1 S 1 is on and S 2 is off V dc /2 S 1 ifi o > 0, D 1 ifi o < 0 2 S 1 is off and S 2 is on V dc /2 D 2 ifi o > 0, S 2 ifi o < 0 3 S 1 and S 2 are off V dc /2 V dc /2 D 2 ifi o > 0, D 1 ifi o < 0 Figure 3.1 Single-phase half-bridge inverter (a) Schematic diagram and (b) output waveform with highly inductive load Full-bridge Inverters Figure 3.2(a) shows the schematic diagram of a single-phase fullbridge VSI (H-bridge inverter). It consists of four power switches (S 1 to S 4 ) and four power diodes (D 1 to D 4 ), which double the number of switches and diodes integrated in a single-phase half-bridge inverter. Similar to the halfbridge inverter, S 1 and S 4 in leg a (or S 2 and S 3 in leg b) should not be switched on simultaneously in order to prevent a short circuit across the DC link input.

5 27 Figure 3.2 Single-phase full-bridge inverter (a) Schematic diagram and (b) output waveform with highly inductive load Table 3.2 Switch states of a single-phase full-bridge VSI State No. Switch states V an V bn V o Components conducting 1 S 1 and S 2 are on and S 3 and S 4 are off V dc /2 V dc /2 V dc S 1 and S 2 ifi o > 0 D 1 and D 2 ifi o < 0 2 S 3 and S 4 are on and S 1 and S 2 are off -V dc /2 V dc /2 -V dc D 3 and D 4 ifi o > 0 S 3 and S 4 ifi o < 0 3 S 1 and S 3 are on and S 2 and S 4 are off V dc /2 V dc /2 0 S 1 and D 3 ifi o > 0 D 1 and S 3 ifi o < 0 4 S 2 and S 4 are on and S 1 and S 3 are off -V dc /2 -V dc /2 0 S 2 and D 4 ifi o > 0 D 2 and S 4 ifi o < 0 5 S 1, S 2, S 3, and S 4 are all off -V dc /2 V dc /2 V dc - V dc /2 -V dc /2 V dc 3 4 o D 1 and D 2 ifi o < 0 D 1 to D 4 are connected in anti-parallel with the switches S 1 to S 4 respectively. When an inductive load is connected, the diodes are conducted and the energy is fed back to the DC link input, hence, they are called feedback diodes. Figure 3.2.b shows the waveforms of the output voltage v and output current i o of a full-bridge VSI when a highly inductive load is connected. There are

6 28 five switch modes in a single-phase full-bridge VSI and they are summarized in Table 3.2. When S 1 and S 2 are switched on, and, S 3 and S 4 are switched off, the instantaneous voltage across the inverter outputv o is equal to V dc. When S 1 and S 2 are switched off, and, S 3 and S 4 are switched on,v o is equal to -V dc. When either upper switches (S 1 and S 3 ) or lower switches (S 2 and S 4 ) are switched on, v o would become zero. When all the switches (S1 to S4) are switched off,v o is undefined.v o could be V dc or V dc depending on which pair of diodes are conducted. Generally, there are two PWM schemes in full-bridge inverter, namely PWM with bipolar voltage switching and PWM with unipolar voltage switching. In PWM with bipolar voltage switching,v o changes between V dc and V dc only. The harmonic spectrum of the PWM signals and the inverter output voltage are the same. This operation is identical to half-bridge inverter. In PWM with unipolar voltage switching, the output voltage changes between zero and V dc or between zero and V dc. In comparison with the bipolar voltage switching scheme, the unipolar voltage switching scheme has the advantage of effectively doubling the switching frequency across the inverter output voltage. Besides, the voltage step across the inverter output is V dc while the bipolar PWM has a voltage step equals to 2V dc. The peak reverse blocking voltage of each switching device in both half-bridge and full-bridge inverters are the same. Although the fundamental components in full-bridge inverter are double of that in half-bridge inverter, the output power of full-bridge inverter is four times higher than the halfbridge inverter. This is the reason why the full-bridge inverters are preferred in higher voltage and higher power applications.

7 SIMULATION RESULTS In this chapter, investigations on H-bridge based DVR is done with R, RL, and non-linear loads for change in load conditions by applying different PWM techniques and the results are compared based on the better THD reduction, which is not found in the research works mentioned in the literatures review. Hence a simulation study on the same is taken up and the results are presented and the outcomes are discussed as follows. For a H-bridge based DVR, 50 Hz frequency, the pulse width works out to 10 ms as follows, T = 1/f = 1/ 50 = 20 ms For half cycle, T/2 = 10 ms Pulse width = 10 ms. Therefore the control circuit of the inverter is designed to produce a pulse of width 10ms. The circuit model for DVR system is shown in Figure 3.3. Generator impedance is shown in series with the source. Line impedance is connected in series with the generator. It also shows the line compensation circuit with additional AC source. During normal conditions, there is normal flow of current through load-1 and breaker-3 is closed.when breaker-2 is closed an extra load is added to and voltage sag occurs due to the increased drop. At this point breaker-1 closes and breaker-3 opens and allows additional AC source to inject voltage.

8 30 The Figure 3.4 shows the voltages across transformer primary. The voltages across loads 1 and 2 are shown in Figure 3.5. The Figure 3.6 shows the line compensation using DVR circuit. The model for DVR is shown in Figure 3.7. The DVR is represented as sub system. The DVR system has four MOSFETs. The Figure 3.8 shows the DVR circuit with LC filter. The LC filter is added with DVR to get better output. It is designed to absorb fifth order harmonics. The Figure 3.9 shows the voltage waveforms of injection and compensated voltage across load-1 and load-2. The Figure 3.10 shows the voltage waveforms of injection and compensated voltage across load-1 and load- 2 with LC filter. From this figure it can be seen that proper voltage is injected to improve the voltage profile. At t = 0.5sec, the DVR injects voltage and the receiving end voltage resumes to the normal value. Thus the voltage quality is improved by using DVR. The data used for simulation is given in appendix I. Br1 AC2 + - v Vt5 e3 1 Li 2 S1 S Br3 Br2 AC LOAD v Vt2 e2 LOAD v Vt1 e1 Figure 3.3 Line compensation circuit with additional AC source

9 31 Figure 3.4 Voltage across transformer primary Figure 3.5 Voltage across load-1 and load-2

10 Figure 3.6 Compensation using DVR circuit 32

11 Figure 3.7 H-Bridge sub system 33

12 Figure 3.8 DVR with LC filter 34

13 35 Figure 3.9 Voltage waveforms of injection, load-1 & load-2 without filter Figure 3.10 Voltage wave forms of injection, load-1 and load-2 with filter

14 36 PWM methods like single PWM, multiple PWM and SVM are considered to find a better modulation method to reduce the THD of DVR system with RL and non linear loads. Figure 3.11 shows the DVR system with H-bridge inverter with RL load. Figure 3.12 shows the output voltage across DVR and load-1. Here single pulse PWM method is used. Up to 0.2 sec, load-1 is connected to main circuit. At t=0.2 sec load-2 is connected to the main circuit using circuit breaker. As a result voltage sag occurs. At t=0.4 sec, the DVR is connected. As a result the voltage is compensated. Figure 3.13 shows the RMS line voltage with sag and compensation condition. Figure 3.14 shows the FFT analysis for line voltage. It has a THD of 12.9%. Percentage THD is calculated using the formula (V H /V1)*100. Where 2 2 V H = (V 3 + V 5 + V 2 7 ). Figure 3.11 DVR system with RL load

15 37 Figure 3.12 Voltage waveforms across DVR and Load-1 Figure 3.13 RMS output voltage across load-1

16 38 Figure 3.14 FFT analysis for line voltage Figure 3.15 shows the DVR system with RL load. Here sine PWM (SPWM) method is used. Figure 3.16 shows the sine PWM pulses for switches. Figure 3.17 shows the output voltage across DVR and load-1. Up to 0.2 sec load-1 is connected. At t=0.2 sec additional load (load-2) is connected. As a result voltage sag occurs. At t=0.4 sec, the DVR is connected and the voltage is compensated. Figure 3.18 shows the RMS line voltage with sag and compensation condition. Figure 3.19 shows the FFT analysis for the line voltage. It has THD of 10.18%. SPWM method has lesser harmonics compared to single pulse method.

17 39 Figure 3.15 DVR System with RL load Figure 3.16 PWM pulses

18 40 Figure 3.17 Voltage waveforms across DVR and load-1 Figure 3.18 RMS output voltage across load-1

19 41 Figure 3.19 FFT analysis for line voltage Figure 3.20 shows the DVR with non-linear load. Figure 3.21 shows the output voltgae waveforms across DVR and load-1. Here single pulse PWM method is used. Upto 0.2 sec, load-1 is connected. At t=0.2 sec an additional load (load-2) is connected. As a result voltage sag occurs. At t=0.4 sec, the DVR is connected and as a result the voltage is compensated. The Figure 3.22 shows the voltage across non linear load. The Figure 3.23 shows the RMS line voltage with sag and compensation across load-1. The Figure 3.24 shows the FFT analysis for line voltage. It has a THD of 12.90%.

20 42 Figure 3.20 DVR system with non-linear load Fig 3.21 Voltage waveforms across DVR and load-1

21 43 Figure 3.22 Voltage across the non-linear load Figure 3.23 RMS output voltage across load-1

22 44 Figure 3.24 FFT analysis of line voltage Figure 3.25 shows the DVR with non-linear load. Uncontrolled rectifier with capacitor is used as a non linear load. Figure 3.26 the output voltgae waveforms across DVR and load-1. Here sine PWM method is used. Upto 0.2 sec, load-1 is connected. At t=0.2 sec an additional load (load-2) is connected. As a result the voltage sag occurs. At t=0.4 sec the DVR is connected and as a result voltage is compensated. Figure 3.27 shows the voltage across non-linear load. Figure 3.28 shows the RMS line voltage with sag and compensation across load-1. Figure 3.29 shows the FFT analysis of line voltage. It has THD of 11.77%. SPWM has less harmonics compared to the single PWM.

23 45 Figure 3.25 DVR system with non-linear load Figure 3.26 Voltage waveforms across DVR and load-1

24 46 Figure 3.27 Voltage across the non-linear load Figure 3.28 RMS output voltage across load-1

25 47 Figure 3.29 FFT analysis of line voltage The THD values obtained in the results of the above mentioned simulations are summarized in the table 3.3. The THD levels are still higher to minimize the THD further SVM method is tried. Table 3.3 Comparison of THD values Type of Load RL Load Non-linear Load Type of PWM Single Single Sine PWM Sine PWM technique PWM PWM THD Values DVR SYSTEM USING SPACE VECTOR MODULATION Figure 3.30 shows the model of DVR system. It consists of threephase source, three-phase load and three-phase DVR with SVM controller.

26 48 When the load is increased, the voltage sag occurs at the load side. This voltage sag is compensated with the help of DVR. The DVR system is controlled by SVM technique. The line voltage is sensed and it is converted from three-phase into two-phase. From this, reference voltage and angle are obtained. Based on this, PWM signals are generated. These signals are used to control the DVR switches. The Figure 3.31 shows the control blocks. The Figure 3.32 shows the model of DVR. Figure 3.33 shows the load voltage with disturbance. Figure 3.34 and 3.35 show the RMS voltage and current wave forms of the load. Figure 3.36 shows the FFT analysis for line voltage. The THD is 1.39% which is very less compared to the THD values attained in the previous simulation outputs of other PWM techniques, which is shown in table 3.3. Thus the SVM is best method to reduce the harmonics in the output. Figure 3.30 SVM based DVR system

27 49 Figure 3.31 Block diagram of SVM control Figure 3.32 DVR circuit with SVM control

28 50 Figure 3.33 Voltage waveforms of phase a, b and c with change in load Figure 3.34 RMS value of voltage with change in load conditions

29 51 Figure 3.35 RMS value of current with change in load conditions Figure 3.36 FFT analysis for voltage

30 CLOSED LOOP CONTROLLED DVR To test the performance of DVR in a closed loop condition a closed loop system is simulated and the performance of the DVR is studied. Figure 3.37 shows the closed loop controlled DVR system. It contains AC source, load, DVR and feedback circuits. Line impedance is shown in series with the source. Additional load is connected in series with the existing load to produce voltage sag. When the load increases, the voltage sag occurs in the load voltage. This voltage dip or sag is compensated using DVR. The feedback circuit is used to sense the voltage sag. At the summing point, actual value is compared with set value. This difference is given to PI controller. The comparator produces PWM pulses for DVR switches. When the sag increases, the error signal increases. This increases the output of PI controller. It results in increase of pulse width which is given to the DVR. This increases the RMS value of voltage to be injected by the DVR. Thus the load voltage is regulated. Figure 3.38 shows the model of DVR. Figure 3.39 shows the load voltage and current waveforms with change in load. The RMS voltage and current waveforms of the load are shown in Figures 3.40 and 3.41 respectively. Figure 3.42 shows the FFT analysis for line voltage. From the figures it can be seen that the voltage sag is compensated using closed loop system.

31 53 Figure 3.37 Closed loop system Figure 3.38 Circuit of DVR

32 54 Figure 3.39 Voltage and current across load-1 Figure 3.40 RMS Voltage across the load

33 55 Figure 3.41 RMS current through the load Figure 3.42 FFT Analysis for line voltage

34 EXPERIMENTAL RESULTS A 1 kw Laboratory model is fabricated and the hardware is tested. The hardware consists of driver board, controller board and filter board. Microcontroller based control circuit is shown in Figure The pulses are generated using the microcontroller Atmel 89c2051. Features and descriptions of the same are given in appendix 2. The 12V DC supply required by IC IR2110 is generated by using the regulator IC7812. The 5V DC supply required by the microcontroller is fed by the IC Crystal and capacitors are connected to the microcontroller as specified in the data sheet. Reset switch is used to reset the microcontroller. These pulses are amplified to 12V using the driver IC IR2110, the features of the same is described in appendix 4. The flow chart for the controller program is shown in Figure The corresponding delay subroutine is shown in Figure The Assembly language program is given in appendix-7. Top view of the hardware is shown in Figure Pulses from the microcontroller are shown in Figure The amplified pulses from the driver are shown in Figure The output voltage of inverter is shown in Figure The harmonics are filtered using the LC filter and the output after the LC filter is shown in Figure The Figure 3.51 shows the AC input voltage. PWM technique is used to generate the pulses required by rectifier and inverter. The advantage of PWM is that it reduces lower order harmonics. The filter is required only for higher order harmonics.

35 57 U1 1 2 VIN VOUT 12V U2 1 2 VIN VOUT 5V TX1 1 2 D1 1N D2 1N4500 L7812/TO3 L7805/TO220 R1 1k VAMPL = 230V V1 FREQ = 50HZ 1 2 D4 1N D5 1N4500 C1 1000E-6 D3 LED 0 C5 33E-12 C7 33E-12 R10 Y1 ZTB SW U4 SW C10 PUSHBUTTON P1.0/AIN0 P1.1/AIN1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 XTAL1 XTAL2 RST/VPP VCC AT89C2051 P3.0/RXD P3.1/TXD P3.2/INT0 P3.3/INT1 P3.4/T0 P3.5/T1 P E E-6 47E-6 100E E-6 47E-6 11 U HIN LIN SHDN 2 6 COM 3 VB 9 VCC 5 VDD 13 VS VSS IR2110 U HIN LIN SHDN COM VB VCC VDD VS VSS IR2110 HO LO HO LO E 22E 22E 22E M1 M2 M3 M4 0 1k 10E-6 Figure 3.43 Microcontroller based control circuit

36 58 START PORT INITIALIZATION MOVE DATA 55H TO PORT1 CALL DELAY-1 MOVE DATA 00 H TO PORT1 CALL DELAY-2 MOVE DATA 55H TO PORT1 CALL DELAY-1 MOVE DATA 55H TO PORT1 CALL DELAY-2 Figure 3.44 Main routine

37 59 Delay Move data to Register R1 Decrement R1 Is R1 = 0 N Y RET Figure 3.45 Delay subroutine

38 60 Figure 3.46 Top view of the hardware Figure 3.47 Pulses from microcontroller

39 61 Figure 3.48 Amplified pulses from the driver IC IR2110 Figure 3.49 The output voltage of inverter without filter

40 62 Figure 3.50 The output voltage of inverter with LC filter Figure 3.51 AC input voltage

41 CONCLUSION In this chapter, a MATLAB Simulink model for two bus system with DVR is developed. The DVR using the H-bridge inverter is simulated using this model. The developed model is tested against R, RL, non-linear loads and the results are presented. For all the load conditions DVR successfully mitigated the voltage sags caused by the change in load conditions. Single pulse PWM and Sine PWM techniques are applied for the H-bridge based DVR with RL and non-linear loads. Comparison of THD values obtained from the above simulation results are given in table 3.3. From the table it is clear that, when sine PWM technique is used, THD value is reduced by 21% for RL load and 44% for non-linear load. Then SVM based DVR system is also modelled and simulated. This system has minimum value of THD. The THD value is 1.4%. Since SVM technique has very less THD compared to other PWM techniques it is a better suited one. Then a closed loop controlled DVR system is also modelled and simulated. The simulation results of closed loop system are presented. The corresponding results indicate that the load voltage is maintained constant and also it is proved that, DVRs can reduce the problem of harmonics caused by non-linear load machinery. A 1 kw prototype model for H-bridge is implemented using an embedded microcontroller. The results of hardware set-up are also presented. But, still the three-level H-bridge inverter based DVR contains considerable harmonics in the output. In order to reduce the harmonics further, a nine-level converter is considered for the DVR system. The investigation on nine-level inverter is presented in the next chapter.

CHAPTER 4 MULTI-LEVEL INVERTER BASED DVR SYSTEM

CHAPTER 4 MULTI-LEVEL INVERTER BASED DVR SYSTEM 64 CHAPTER 4 MULTI-LEVEL INVERTER BASED DVR SYSTEM 4.1 INTRODUCTION Power electronic devices contribute an important part of harmonics in all kind of applications, such as power rectifiers, thyristor converters

More information

CHAPTER 6 IMPLEMENTATION OF FPGA BASED CASCADED MULTILEVEL INVERTER

CHAPTER 6 IMPLEMENTATION OF FPGA BASED CASCADED MULTILEVEL INVERTER 8 CHAPTER 6 IMPLEMENTATION OF FPGA BASED CASCADED MULTILEVEL INVERTER 6.1 INTRODUCTION In this part of research, a proto type model of FPGA based nine level cascaded inverter has been fabricated to improve

More information

Lecture 19 - Single-phase square-wave inverter

Lecture 19 - Single-phase square-wave inverter Lecture 19 - Single-phase square-wave inverter 1. Introduction Inverter circuits supply AC voltage or current to a load from a DC supply. A DC source, often obtained from an AC-DC rectifier, is converted

More information

CHAPTER 3 SINGLE SOURCE MULTILEVEL INVERTER

CHAPTER 3 SINGLE SOURCE MULTILEVEL INVERTER 42 CHAPTER 3 SINGLE SOURCE MULTILEVEL INVERTER 3.1 INTRODUCTION The concept of multilevel inverter control has opened a new avenue that induction motors can be controlled to achieve dynamic performance

More information

CHAPTER 5 CONTROL SYSTEM DESIGN FOR UPFC

CHAPTER 5 CONTROL SYSTEM DESIGN FOR UPFC 90 CHAPTER 5 CONTROL SYSTEM DESIGN FOR UPFC 5.1 INTRODUCTION This chapter deals with the performance comparison between a closed loop and open loop UPFC system on the aspects of power quality. The UPFC

More information

CHAPTER 5 POWER QUALITY IMPROVEMENT BY USING POWER ACTIVE FILTERS

CHAPTER 5 POWER QUALITY IMPROVEMENT BY USING POWER ACTIVE FILTERS 86 CHAPTER 5 POWER QUALITY IMPROVEMENT BY USING POWER ACTIVE FILTERS 5.1 POWER QUALITY IMPROVEMENT This chapter deals with the harmonic elimination in Power System by adopting various methods. Due to the

More information

CHAPTER 2 PHASE SHIFTED SERIES RESONANT DC TO DC CONVERTER

CHAPTER 2 PHASE SHIFTED SERIES RESONANT DC TO DC CONVERTER 30 CHAPTER 2 PHASE SHIFTED SERIES RESONANT DC TO DC CONVERTER 2.1 INTRODUCTION This chapter introduces the phase shifted series resonant converter (PSRC). Operation of the circuit is explained. Design

More information

PF and THD Measurement for Power Electronic Converter

PF and THD Measurement for Power Electronic Converter PF and THD Measurement for Power Electronic Converter Mr.V.M.Deshmukh, Ms.V.L.Jadhav Department name: E&TC, E&TC, And Position: Assistant Professor, Lecturer Email: deshvm123@yahoo.co.in, vandanajadhav19jan@gmail.com

More information

CHAPTER 5 DESIGN OF DSTATCOM CONTROLLER FOR COMPENSATING UNBALANCES

CHAPTER 5 DESIGN OF DSTATCOM CONTROLLER FOR COMPENSATING UNBALANCES 86 CHAPTER 5 DESIGN OF DSTATCOM CONTROLLER FOR COMPENSATING UNBALANCES 5.1 INTRODUCTION Distribution systems face severe power quality problems like current unbalance, current harmonics, and voltage unbalance,

More information

CHAPTER 5 MODIFIED SINUSOIDAL PULSE WIDTH MODULATION (SPWM) TECHNIQUE BASED CONTROLLER

CHAPTER 5 MODIFIED SINUSOIDAL PULSE WIDTH MODULATION (SPWM) TECHNIQUE BASED CONTROLLER 74 CHAPTER 5 MODIFIED SINUSOIDAL PULSE WIDTH MODULATION (SPWM) TECHNIQUE BASED CONTROLLER 5.1 INTRODUCTION Pulse Width Modulation method is a fixed dc input voltage is given to the inverters and a controlled

More information

COMPENSATION OF VOLTAGE SAG USING LEVEL SHIFTED CARRIER PULSE WIDTH MODULATED ASYMMETRIC CASCADED MLI BASED DVR SYSTEM G.Boobalan 1 and N.

COMPENSATION OF VOLTAGE SAG USING LEVEL SHIFTED CARRIER PULSE WIDTH MODULATED ASYMMETRIC CASCADED MLI BASED DVR SYSTEM G.Boobalan 1 and N. COMPENSATION OF VOLTAGE SAG USING LEVEL SHIFTED CARRIER PULSE WIDTH MODULATED ASYMMETRIC CASCADED MLI BASED DVR SYSTEM G.Boobalan 1 and N.Booma 2 Electrical and Electronics engineering, M.E., Power and

More information

Multi Level Inverter Based Active Power Filter for Harmonic Reduction

Multi Level Inverter Based Active Power Filter for Harmonic Reduction Multi Level Inverter Based Active Power Filter for Harmonic Reduction K Siva Gopi Raju Department of Electrical and Electronics Engineering, Andhra University, Visakhapatnam, Andhra Pradesh 530003, India.

More information

Use of Advanced Unipolar SPWM Technique for Higher Efficiency High Power Applications

Use of Advanced Unipolar SPWM Technique for Higher Efficiency High Power Applications 2 nd International Conference on Multidisciplinary Research & Practice P a g e 161 Use of Advanced Unipolar SPWM Technique for Higher Efficiency High Power Applications Naman Jadhav, Dhruv Shah Institute

More information

Lecture Note. DC-AC PWM Inverters. Prepared by Dr. Oday A Ahmed Website: https://odayahmeduot.wordpress.com

Lecture Note. DC-AC PWM Inverters. Prepared by Dr. Oday A Ahmed Website: https://odayahmeduot.wordpress.com Lecture Note 10 DC-AC PWM Inverters Prepared by Dr. Oday A Ahmed Website: https://odayahmeduot.wordpress.com Email: 30205@uotechnology.edu.iq Scan QR DC-AC PWM Inverters Inverters are AC converters used

More information

CHAPTER 6 THREE-LEVEL INVERTER WITH LC FILTER

CHAPTER 6 THREE-LEVEL INVERTER WITH LC FILTER 97 CHAPTER 6 THREE-LEVEL INVERTER WITH LC FILTER 6.1 INTRODUCTION Multi level inverters are proven to be an ideal technique for improving the voltage and current profile to closely match with the sinusoidal

More information

CHAPTER 2 PID CONTROLLER BASED CLOSED LOOP CONTROL OF DC DRIVE

CHAPTER 2 PID CONTROLLER BASED CLOSED LOOP CONTROL OF DC DRIVE 23 CHAPTER 2 PID CONTROLLER BASED CLOSED LOOP CONTROL OF DC DRIVE 2.1 PID CONTROLLER A proportional Integral Derivative controller (PID controller) find its application in industrial control system. It

More information

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR 105 CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR 6.1 GENERAL The line current drawn by the conventional diode rectifier filter capacitor is peaked pulse current. This results in utility line

More information

SHUNT ACTIVE POWER FILTER

SHUNT ACTIVE POWER FILTER 75 CHAPTER 4 SHUNT ACTIVE POWER FILTER Abstract A synchronous logic based Phase angle control method pulse width modulation (PWM) algorithm is proposed for three phase Shunt Active Power Filter (SAPF)

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.1 Introduction Power semiconductor devices constitute the heart of the modern power electronics, and are being extensively used in power electronic converters in the form of a

More information

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE 98 CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE 6.1 INTRODUCTION Process industries use wide range of variable speed motor drives, air conditioning plants, uninterrupted power supply systems

More information

POWER- SWITCHING CONVERTERS Medium and High Power

POWER- SWITCHING CONVERTERS Medium and High Power POWER- SWITCHING CONVERTERS Medium and High Power By Dorin O. Neacsu Taylor &. Francis Taylor & Francis Group Boca Raton London New York CRC is an imprint of the Taylor & Francis Group, an informa business

More information

CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER

CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER 65 CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER 4.1 INTRODUCTION Many control strategies are available for the control of IMs. The Direct Torque Control (DTC) is one of the most

More information

Simulation & Implementation Of Three Phase Induction Motor On Single Phase By Using PWM Techniques

Simulation & Implementation Of Three Phase Induction Motor On Single Phase By Using PWM Techniques Simulation & Implementation Of Three Phase Induction Motor On Single Phase By Using PWM Techniques Ashwini Kadam 1,A.N.Shaikh 2 1 Student, Department of Electronics Engineering, BAMUniversity,akadam572@gmail.com,9960158714

More information

Chapter 2 Shunt Active Power Filter

Chapter 2 Shunt Active Power Filter Chapter 2 Shunt Active Power Filter In the recent years of development the requirement of harmonic and reactive power has developed, causing power quality problems. Many power electronic converters are

More information

Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology

Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology Riya Philip 1, Reshmi V 2 Department of Electrical and Electronics, Amal Jyothi College of Engineering, Koovapally, India 1,

More information

CHAPTER 2 VSI FED INDUCTION MOTOR DRIVE

CHAPTER 2 VSI FED INDUCTION MOTOR DRIVE CHAPTER 2 VI FE INUCTION MOTOR RIVE 2.1 INTROUCTION C motors have been used during the last century in industries for variable speed applications, because its flux and torque can be controlled easily by

More information

CHAPTER 4 PI CONTROLLER BASED LCL RESONANT CONVERTER

CHAPTER 4 PI CONTROLLER BASED LCL RESONANT CONVERTER 61 CHAPTER 4 PI CONTROLLER BASED LCL RESONANT CONVERTER This Chapter deals with the procedure of embedding PI controller in the ARM processor LPC2148. The error signal which is generated from the reference

More information

Hardware Implementation of SPWM Based Diode Clamped Multilevel Invertr

Hardware Implementation of SPWM Based Diode Clamped Multilevel Invertr Hardware Implementation of SPWM Based Diode Clamped Multilevel Invertr Darshni M. Shukla Electrical Engineering Department Government Engineering College Valsad, India darshnishukla@yahoo.com Abstract:

More information

MODELLING & SIMULATION OF ACTIVE SHUNT FILTER FOR COMPENSATION OF SYSTEM HARMONICS

MODELLING & SIMULATION OF ACTIVE SHUNT FILTER FOR COMPENSATION OF SYSTEM HARMONICS JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY Journal of Electrical Engineering & Technology (JEET) (JEET) ISSN 2347-422X (Print), ISSN JEET I A E M E ISSN 2347-422X (Print) ISSN 2347-4238 (Online) Volume

More information

Literature Review for Shunt Active Power Filters

Literature Review for Shunt Active Power Filters Chapter 2 Literature Review for Shunt Active Power Filters In this chapter, the in depth and extensive literature review of all the aspects related to current error space phasor based hysteresis controller

More information

Selective Harmonic Elimination (SHE) for 3-Phase Voltage Source Inverter (VSI)

Selective Harmonic Elimination (SHE) for 3-Phase Voltage Source Inverter (VSI) Selective Elimination (SHE) for 3-Phase Voltage Source Inverter (VSI) V.Karthikeyan, SVS College of Engineering, Coimbatore, India karthick77keyan@gmail.com V.J.Vijayalakshmi, Sri Krishna College of Engg

More information

Implementation and Design of Advanced DC/AC Inverter for Renewable Energy

Implementation and Design of Advanced DC/AC Inverter for Renewable Energy International Journal of Electrical Energy, l. 3, No., March 2 Implementation and Design of Advanced DC/AC Inverter for Renewable Energy Ergun Ercelebi and Abubakir Aziz Shikhan Electrical and Electronic

More information

Comparative Study of Pulse Width Modulated and Phase Controlled Rectifiers

Comparative Study of Pulse Width Modulated and Phase Controlled Rectifiers Comparative Study of Pulse Width Modulated and Phase Controlled Rectifiers Dhruv Shah Naman Jadhav Keyur Mehta Setu Pankhaniya Abstract Fixed DC voltage is one of the very basic requirements of the electronics

More information

Power Quality improvement of a three phase four wire system using UPQC

Power Quality improvement of a three phase four wire system using UPQC International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 2 Issue: 4 July-215 www.irjet.net p-issn: 2395-72 Power Quality improvement of a three phase four wire system

More information

Active Rectifier in Microgrid

Active Rectifier in Microgrid 03.09.2012 Active Rectifier in Microgrid - Developing a simulation model in SimPower - Dimensioning the filter - Current controller comparison - Calculating average losses in the diodes and transistors

More information

CHAPTER 6 ANALYSIS OF THREE PHASE HYBRID SCHEME WITH VIENNA RECTIFIER USING PV ARRAY AND WIND DRIVEN INDUCTION GENERATORS

CHAPTER 6 ANALYSIS OF THREE PHASE HYBRID SCHEME WITH VIENNA RECTIFIER USING PV ARRAY AND WIND DRIVEN INDUCTION GENERATORS 73 CHAPTER 6 ANALYSIS OF THREE PHASE HYBRID SCHEME WITH VIENNA RECTIFIER USING PV ARRAY AND WIND DRIVEN INDUCTION GENERATORS 6.1 INTRODUCTION Hybrid distributed generators are gaining prominence over the

More information

Control Of Shunt Active Filter Based On Instantaneous Power Theory

Control Of Shunt Active Filter Based On Instantaneous Power Theory B.Pragathi Department of Electrical and Electronics Shri Vishnu Engineering College for Women Bhimavaram, India Control Of Shunt Active Filter Based On Instantaneous Power Theory G.Bharathi Department

More information

Ch.8 INVERTER. 8.1 Introduction. 8.2 The Full-Bridge Converter. 8.3 The Square-Wave Inverter. 8.4 Fourier Series Analysis

Ch.8 INVERTER. 8.1 Introduction. 8.2 The Full-Bridge Converter. 8.3 The Square-Wave Inverter. 8.4 Fourier Series Analysis Ch.8 INVERTER 8.1 Introduction 8.2 The Full-Bridge Converter 8.3 The Square-Wave Inverter 8.4 Fourier Series Analysis 8.5 Total Harmonic Distortion 8.6 PSpice Simulation of Square-Wave Inverters 8.7 Amplitude

More information

Z-SOURCE INVERTER BASED DVR FOR VOLTAGE SAG/SWELL MITIGATION

Z-SOURCE INVERTER BASED DVR FOR VOLTAGE SAG/SWELL MITIGATION Z-SOURCE INVERTER BASED DVR FOR VOLTAGE SAG/SWELL MITIGATION 1 Arsha.S.Chandran, 2 Priya Lenin 1 PG Scholar, 2 Assistant Professor 1 Electrical & Electronics Engineering 1 Mohandas College of Engineering

More information

CHAPTER-IV EXPERIMENTAL AND SIMULATION PROGRAM

CHAPTER-IV EXPERIMENTAL AND SIMULATION PROGRAM 49 CHAPTER-IV EXPERIMENTAL AND SIMULATION PROGRAM 4.0 INTRODUCTION This chapter covers in detail the experimental set up of proposed Z source Matrix (ZSMC) based UPFC and compares with a lab scale model

More information

Enhanced Performance of Multilevel Inverter Fed Induction Motor Drive

Enhanced Performance of Multilevel Inverter Fed Induction Motor Drive Enhanced Performance of Multilevel Inverter Fed Induction Motor Drive Venkata Anil Babu Polisetty 1, B.R.Narendra 2 PG Student [PE], Dept. of EEE, DVR. & Dr.H.S.MIC College of Technology, AP, India 1 Associate

More information

DESIGN AND DEVELOPMENT OF ACTIVE POWER FILTER FOR HARMONIC MINIMIZATION USING SYNCHRONOUS REFERENCE FRAME (SRF)

DESIGN AND DEVELOPMENT OF ACTIVE POWER FILTER FOR HARMONIC MINIMIZATION USING SYNCHRONOUS REFERENCE FRAME (SRF) DESIGN AND DEVELOPMENT OF ACTIVE POWER FILTER FOR HARMONIC MINIMIZATION USING SYNCHRONOUS REFERENCE FRAME (SRF) Rosli Omar, Mohammed Rasheed, Zheng Kai Low and Marizan Sulaiman Universiti Teknikal Malaysia

More information

Simulation and Comparison of DVR and DSTATCOM Used For Voltage Sag Mitigation at Distribution Side

Simulation and Comparison of DVR and DSTATCOM Used For Voltage Sag Mitigation at Distribution Side Simulation and Comparison of DVR and DSTATCOM Used For Voltage Sag Mitigation at Distribution Side 1 Jaykant Vishwakarma, 2 Dr. Arvind Kumar Sharma 1 PG Student, High voltage and Power system, Jabalpur

More information

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE 3.1 GENERAL The PMBLDC motors used in low power applications (up to 5kW) are fed from a single-phase AC source through a diode bridge rectifier

More information

Mosfet Based Inverter with Three Phase Preventer & Selector for Industrial Application

Mosfet Based Inverter with Three Phase Preventer & Selector for Industrial Application International Journal of Innovation and Scientific Research ISSN 2351-8014 Vol. 10 No. 1 Oct. 2014, pp. 232-237 2014 Innovative Space of Scientific Research Journals http://www.ijisr.issr-journals.org/

More information

CHAPTER - 3 CONVENTIONAL SOURCE INVERTER FED INDUCTION MOTOR DRIVE. output voltage could be fixed or variable at a fixed or variable frequency.

CHAPTER - 3 CONVENTIONAL SOURCE INVERTER FED INDUCTION MOTOR DRIVE. output voltage could be fixed or variable at a fixed or variable frequency. CHAPTER - 3 CONVENTIONAL SOURCE INVERTER FED INDUCTION MOTOR DRIVE 3.1. Introduction The objective of this chapter is to describe conventional source inverters, modes of operations and comparisons. DC

More information

Space Vector PWM Voltage Source Inverter Fed to Permanent Magnet Synchronous Motor

Space Vector PWM Voltage Source Inverter Fed to Permanent Magnet Synchronous Motor International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 12, Issue 6 (June 2016), PP.50-60 Space Vector PWM Voltage Source Inverter Fed to

More information

2020 P a g e. Figure.2: Line diagram of series active power filter.

2020 P a g e. Figure.2: Line diagram of series active power filter. Power Quality Improvement By UPQC Using ANN Controller Saleha Tabassum 1, B.Mouli Chandra 2 (Department of Electrical & Electronics Engineering KSRM College of Engineering, Kadapa.) (Asst. Professor Dept

More information

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 14 CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 2.1 INTRODUCTION Power electronics devices have many advantages over the traditional power devices in many aspects such as converting

More information

Application of Fuzzy Logic Controller in Shunt Active Power Filter

Application of Fuzzy Logic Controller in Shunt Active Power Filter IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 11 April 2016 ISSN (online): 2349-6010 Application of Fuzzy Logic Controller in Shunt Active Power Filter Ketan

More information

Unipolar and Bipolar PWM Inverter

Unipolar and Bipolar PWM Inverter IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 7 December 2014 ISSN (online): 2349-6010 Unipolar and Bipolar PWM Inverter Anuja Namboodiri UG Student Power

More information

CHAPTER 5 NOVEL CARRIER FUNCTION FOR FUNDAMENTAL FORTIFICATION IN VSI

CHAPTER 5 NOVEL CARRIER FUNCTION FOR FUNDAMENTAL FORTIFICATION IN VSI 98 CHAPTER 5 NOVEL CARRIER FUNCTION FOR FUNDAMENTAL FORTIFICATION IN VSI 5.1 INTRODUCTION This chapter deals with the design and development of FPGA based PWM generation with the focus on to improve the

More information

CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE

CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE 58 CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE 4.1 INTRODUCTION Conventional voltage source inverter requires high switching frequency PWM technique to obtain a quality output

More information

Single Phase Induction Motor Drive using Modified SEPIC Converter and Three Phase Inverter

Single Phase Induction Motor Drive using Modified SEPIC Converter and Three Phase Inverter Single Phase Induction Motor Drive using Modified SEPIC Converter and Three Phase Inverter Ajeesh P R PG Student, M. Tech Power Electronics, Mar Athanasius College of Engineering, Kerala, India, Dr. Babu

More information

PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT CARRIER AND MODULATING SIGNAL

PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT CARRIER AND MODULATING SIGNAL Journal of Engineering Science and Technology Vol. 10, No. 4 (2015) 420-433 School of Engineering, Taylor s University PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT

More information

PSPWM Control Strategy and SRF Method of Cascaded H-Bridge MLI based DSTATCOM for Enhancement of Power Quality

PSPWM Control Strategy and SRF Method of Cascaded H-Bridge MLI based DSTATCOM for Enhancement of Power Quality PSPWM Control Strategy and SRF Method of Cascaded H-Bridge MLI based DSTATCOM for Enhancement of Power Quality P.Padmavathi, M.L.Dwarakanath, N.Sharief, K.Jyothi Abstract This paper presents an investigation

More information

PERFORMANCE ANALYSIS OF SVPWM AND FUZZY CONTROLLED HYBRID ACTIVE POWER FILTER

PERFORMANCE ANALYSIS OF SVPWM AND FUZZY CONTROLLED HYBRID ACTIVE POWER FILTER International Journal of Electrical and Electronics Engineering Research (IJEEER) ISSN 2250-155X Vol. 3, Issue 2, Jun 2013, 309-318 TJPRC Pvt. Ltd. PERFORMANCE ANALYSIS OF SVPWM AND FUZZY CONTROLLED HYBRID

More information

Modeling and Simulation of Matrix Converter Using Space Vector PWM Technique

Modeling and Simulation of Matrix Converter Using Space Vector PWM Technique Modeling and Simulation of Matrix Converter Using Space Vector PWM Technique O. Hemakesavulu 1, T. Brahmananda Reddy 2 1 Research Scholar [PP EEE 0011], EEE Department, Rayalaseema University, Kurnool,

More information

CHAPTER 3 MODIFIED FULL BRIDGE ZERO VOLTAGE SWITCHING DC-DC CONVERTER

CHAPTER 3 MODIFIED FULL BRIDGE ZERO VOLTAGE SWITCHING DC-DC CONVERTER 53 CHAPTER 3 MODIFIED FULL BRIDGE ZERO VOLTAGE SWITCHING DC-DC CONVERTER 3.1 INTRODUCTION This chapter introduces the Full Bridge Zero Voltage Switching (FBZVSC) converter. Operation of the circuit is

More information

14. DC to AC Converters

14. DC to AC Converters 14. DC to AC Converters Single-phase inverters: 14.1 Single-phase half-bridge inverter This type of inverter is very simple in construction. It does not need output transformer like parallel inverter.

More information

Sinusoidal Current Control based Shunt Active Power Filter for Current Harmonics Reduction

Sinusoidal Current Control based Shunt Active Power Filter for Current Harmonics Reduction Sinusoidal Current Control based Shunt Active Power Filter for Current Harmonics Reduction Anju Yadav 1, K. Narayanan 2, Binsy Joseph 3 1, 2, 3 Fr. Conceicao Rodrigues College of Engineering, Mumbai, India

More information

Performance of DVR under various Fault conditions in Electrical Distribution System

Performance of DVR under various Fault conditions in Electrical Distribution System IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 8, Issue 1 (Nov. - Dec. 2013), PP 06-12 Performance of DVR under various Fault conditions

More information

Analysis of Solar PV Inverter based on PIC Microcontroller and Sinusoidal Pulse Width Modulation

Analysis of Solar PV Inverter based on PIC Microcontroller and Sinusoidal Pulse Width Modulation IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 08, 2016 ISSN (online): 2321-0613 Analysis of Solar PV Inverter based on PIC Microcontroller and Sinusoidal Pulse Width

More information

SIMULATION AND IMPLEMENTATION OF MULTILEVEL INVERTER BASED INDUCTION MOTOR DRIVE BASED ON PWM TECHNIQUES

SIMULATION AND IMPLEMENTATION OF MULTILEVEL INVERTER BASED INDUCTION MOTOR DRIVE BASED ON PWM TECHNIQUES SIMULATION AND IMPLEMENTATION OF MULTILEVEL INVERTER BASED INDUCTION MOTOR DRIVE BASED ON PWM TECHNIQUES 1 CH.Manasa, 2 K.Uma, 3 D.Bhavana Students of B.Tech, Electrical and Electronics Department BRECW,

More information

DRIVE FRONT END HARMONIC COMPENSATOR BASED ON ACTIVE RECTIFIER WITH LCL FILTER

DRIVE FRONT END HARMONIC COMPENSATOR BASED ON ACTIVE RECTIFIER WITH LCL FILTER DRIVE FRONT END HARMONIC COMPENSATOR BASED ON ACTIVE RECTIFIER WITH LCL FILTER P. SWEETY JOSE JOVITHA JEROME Dept. of Electrical and Electronics Engineering PSG College of Technology, Coimbatore, India.

More information

CHAPTER IV DESIGN AND ANALYSIS OF VARIOUS PWM TECHNIQUES FOR BUCK BOOST CONVERTER

CHAPTER IV DESIGN AND ANALYSIS OF VARIOUS PWM TECHNIQUES FOR BUCK BOOST CONVERTER 59 CHAPTER IV DESIGN AND ANALYSIS OF VARIOUS PWM TECHNIQUES FOR BUCK BOOST CONVERTER 4.1 Conventional Method A buck-boost converter circuit is a combination of the buck converter topology and a boost converter

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 3.134 International Journal of Advance Engineering and Research Development Volume 3, Issue 1, January -2016 e-issn (O): 2348-4470 p-issn (P): 2348-6406 Design

More information

DOWNLOAD PDF POWER ELECTRONICS DEVICES DRIVERS AND APPLICATIONS

DOWNLOAD PDF POWER ELECTRONICS DEVICES DRIVERS AND APPLICATIONS Chapter 1 : Power Electronics Devices, Drivers, Applications, and Passive theinnatdunvilla.com - Google D Download Power Electronics: Devices, Drivers and Applications By B.W. Williams - Provides a wide

More information

Micro-controller Based Three-phase Voltage Source Inverter for Alternative Energy Source. Abstract

Micro-controller Based Three-phase Voltage Source Inverter for Alternative Energy Source. Abstract Micro-controller Based Three-phase Voltage Source Inverter for Alternative Energy Source M.M. A. Rahman, Kurt Hammons, Phillip Beemer, Marcia Isserstedt, and Matt Trommater School of Engineering Padnos

More information

Simulation Study of Hysteresis Current Controlled Single Phase Inverters for PhotoVoltaic Systems with Reduced Harmonics level

Simulation Study of Hysteresis Current Controlled Single Phase Inverters for PhotoVoltaic Systems with Reduced Harmonics level Simulation Study of Hysteresis Current Controlled Single Phase Inverters for PhotoVoltaic Systems with Reduced Harmonics level 1 G. Ganesan @ Subramanian, 2 Dr.M.K.Mishra, 3 K.Jayaprakash and 4 P.J.Sureshbabu

More information

Lecture 21. Single-phase SPWM inverter switching schemes

Lecture 21. Single-phase SPWM inverter switching schemes Lecture 21. Single-phase SPWM inverter switching schemes 21.1 Single-phase SPWM Inverter with Unipolar Switching Scheme In this scheme, switches T1 and T2 or T3 and T4 are not switched on together. Instead,

More information

Simulation of Speed Control of Induction Motor with DTC Scheme Patel Divyaben Lalitbhai 1 Prof. C. A. Patel 2 Mr. B. R. Nanecha 3

Simulation of Speed Control of Induction Motor with DTC Scheme Patel Divyaben Lalitbhai 1 Prof. C. A. Patel 2 Mr. B. R. Nanecha 3 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 09, 2015 ISSN (online): 2321-0613 Simulation of Speed Control of Induction Motor with DTC Scheme Patel Divyaben Lalitbhai

More information

A Switched Boost Inverter Fed Three Phase Induction Motor Drive

A Switched Boost Inverter Fed Three Phase Induction Motor Drive A Switched Boost Inverter Fed Three Phase Induction Motor Drive 1 Riya Elizabeth Jose, 2 Maheswaran K. 1 P.G. student, 2 Assistant Professor 1 Department of Electrical and Electronics engineering, 1 Nehru

More information

INTERLINE UNIFIED POWER QUALITY CONDITIONER: DESIGN AND SIMULATION

INTERLINE UNIFIED POWER QUALITY CONDITIONER: DESIGN AND SIMULATION International Journal of Electrical, Electronics and Data Communication, ISSN: 23284 Volume, Issue-4, April14 INTERLINE UNIFIED POWER QUALITY CONDITIONER: DESIGN AND SIMULATION 1 V.S.VENKATESAN, 2 P.CHANDHRA

More information

ANALYSIS OF EFFECTS OF VECTOR CONTROL ON TOTAL CURRENT HARMONIC DISTORTION OF ADJUSTABLE SPEED AC DRIVE

ANALYSIS OF EFFECTS OF VECTOR CONTROL ON TOTAL CURRENT HARMONIC DISTORTION OF ADJUSTABLE SPEED AC DRIVE ANALYSIS OF EFFECTS OF VECTOR CONTROL ON TOTAL CURRENT HARMONIC DISTORTION OF ADJUSTABLE SPEED AC DRIVE KARTIK TAMVADA Department of E.E.E, V.S.Lakshmi Engineering College for Women, Kakinada, Andhra Pradesh,

More information

Development of a Single-Phase PWM AC Controller

Development of a Single-Phase PWM AC Controller Pertanika J. Sci. & Technol. 16 (2): 119-127 (2008) ISSN: 0128-7680 Universiti Putra Malaysia Press Development of a Single-Phase PWM AC Controller S.M. Bashi*, N.F. Mailah and W.B. Cheng Department of

More information

Improved direct torque control of induction motor with dither injection

Improved direct torque control of induction motor with dither injection Sādhanā Vol. 33, Part 5, October 2008, pp. 551 564. Printed in India Improved direct torque control of induction motor with dither injection R K BEHERA andspdas Department of Electrical Engineering, Indian

More information

Harmonic Analysis of Sine PWM and hysteresis current controller

Harmonic Analysis of Sine PWM and hysteresis current controller Harmonic Analysis of Sine PWM and hysteresis current controller Kedar Patil 1 PG Student [EPS], M&V Patel Department of Electrical Engineering, CHARUSAT, Changa, India 1 ABSTRACT: There are several pulse

More information

CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE

CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE 113 CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE 5.1 INTRODUCTION This chapter describes hardware design and implementation of direct torque controlled induction motor drive with

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.14 International Journal of Advance Engineering and Research Development Volume 3, Issue 10, October -2016 e-issn (O): 2348-4470 p-issn (P): 2348-6406 Single

More information

COMPARATIVE HARMONIC ANALYSIS OF VSI FED INDUCTION MOTOR DRIVE

COMPARATIVE HARMONIC ANALYSIS OF VSI FED INDUCTION MOTOR DRIVE Volume-2, Issue-5, May-214 COMPARATIVE HARMONIC ANALYSIS OF VSI FED INDUCTION MOTOR DRIVE 1 NIKHIL D. PATNE, 2 SUSHANT S. ANGRE, 3 MONALISA DASH Student of Electrical Engineering Mumbai University, Student

More information

Analysis, Modeling and Simulation of Dynamic Voltage Restorer (DVR)for Compensation of Voltage for sag-swell Disturbances

Analysis, Modeling and Simulation of Dynamic Voltage Restorer (DVR)for Compensation of Voltage for sag-swell Disturbances IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 3 Ver. I (May Jun. 2014), PP 36-41 Analysis, Modeling and Simulation of Dynamic Voltage

More information

SCOTT TRANSFORMER AND DIODE CLAMPED INVERTER FED INDUCTION MOTOR BASED ON FOC

SCOTT TRANSFORMER AND DIODE CLAMPED INVERTER FED INDUCTION MOTOR BASED ON FOC RESEARCH ARTICLE OPEN ACCESS SCOTT TRANSFORMER AND DIODE CLAMPED INVERTER FED INDUCTION MOTOR BASED ON FOC 1, Ms. Snehal M. Khobragade, 2, Prof.B.S.Dani Mtech(IDC) pursuing Priyadarshini college of Engineering

More information

CHAPTER 3 CASCADED H-BRIDGE MULTILEVEL INVERTER

CHAPTER 3 CASCADED H-BRIDGE MULTILEVEL INVERTER 39 CHAPTER 3 CASCADED H-BRIDGE MULTILEVEL INVERTER The cascaded H-bridge inverter has drawn tremendous interest due to the greater demand of medium-voltage high-power inverters. It is composed of multiple

More information

CHAPTER 4 FULL WAVE RECTIFIER. AC DC Conversion

CHAPTER 4 FULL WAVE RECTIFIER. AC DC Conversion CHAPTER 4 FULL WAVE RECTIFIER AC DC Conversion SINGLE PHASE FULL-WAVE RECTIFIER The objective of a full wave rectifier is to produce a voltage or current which is purely dc or has some specified dc component.

More information

Chapter -3 ANALYSIS OF HVDC SYSTEM MODEL. Basically the HVDC transmission consists in the basic case of two

Chapter -3 ANALYSIS OF HVDC SYSTEM MODEL. Basically the HVDC transmission consists in the basic case of two Chapter -3 ANALYSIS OF HVDC SYSTEM MODEL Basically the HVDC transmission consists in the basic case of two convertor stations which are connected to each other by a transmission link consisting of an overhead

More information

Three Phase Active Shunt Power Filter with Simple Control in PSIM Simulation

Three Phase Active Shunt Power Filter with Simple Control in PSIM Simulation Three Phase Active Shunt Power Filter with Simple Control in PSIM Simulation A.Jeraldine viji Associate Professor, EEE department, Mailam Engineering College, Tamil Nadu E-mail: jeraldrovan@gmail.com Dr.M.Sudhakaran

More information

DESIGN AND IMPLEMENTATION OF SINGLE PHASE INVERTER

DESIGN AND IMPLEMENTATION OF SINGLE PHASE INVERTER DESIGN AND IMPLEMENTATION OF SINGLE PHASE INVERTER PROF. A. N. WADEKAR, abhijitwadekar69@gmai.com J B BANDGAR, bandgarjayshri3@gmail.com S V JADHAV swapnalij1996@gmail.com U.S MANE, ulkamane@gmail.com

More information

Power Quality Compensation by using UPFC

Power Quality Compensation by using UPFC ISSN: 2454-132X Impact factor: 4.295 (Volume 4, Issue 2) Available online at: www.ijariit.com Power Quality Compensation by using UPFC P. Madhumathi madhumathi9196@gmail.com Vivekanada College of Engineering

More information

Acknowledgements Introduction p. 1 Electric Power Quality p. 3 Impacts of Power Quality Problems on End Users p. 4 Power Quality Standards p.

Acknowledgements Introduction p. 1 Electric Power Quality p. 3 Impacts of Power Quality Problems on End Users p. 4 Power Quality Standards p. Preface p. xv Acknowledgements p. xix Introduction p. 1 Electric Power Quality p. 3 Impacts of Power Quality Problems on End Users p. 4 Power Quality Standards p. 6 Power Quality Monitoring p. 7 Power

More information

Mitigation of Voltage Sag and Swell using Distribution Static Synchronous Compensator (DSTATCOM)

Mitigation of Voltage Sag and Swell using Distribution Static Synchronous Compensator (DSTATCOM) ABHIYANTRIKI Mitigation of Voltage Sag and Swell using Distribution Static Synchronous Compensator (DSTATCOM) An International Journal of Engineering & Technology (A Peer Reviewed & Indexed Journal) Vol.

More information

Power Quality enhancement of a distribution line with DSTATCOM

Power Quality enhancement of a distribution line with DSTATCOM ower Quality enhancement of a distribution line with DSTATCOM Divya arashar 1 Department of Electrical Engineering BSACET Mathura INDIA Aseem Chandel 2 SMIEEE,Deepak arashar 3 Department of Electrical

More information

Analysis & Hardware Implementation Of Three-Phase Voltage Source Inverter

Analysis & Hardware Implementation Of Three-Phase Voltage Source Inverter Analysis & Hardware Implementation Of Three-Phase Voltage Source Inverter Prachi S. Dharmadhikari M-Tech Student: Electrical Engg.Department R.C.O.E.M, Nagpur (India) Gaurav N. Goyal Asst. Prof : Electrical

More information

Research Article International Journals of Advanced Research in Computer Science and Software Engineering ISSN: X (Volume-7, Issue-6)

Research Article International Journals of Advanced Research in Computer Science and Software Engineering ISSN: X (Volume-7, Issue-6) International Journals of Advanced Research in Computer Science and Software Engineering Research Article June 2017 Closed Loop PI Control of a Single Phase Induction Motor Using SPWM Kuheli Ghosh Goswami

More information

A SPWM CONTROLLED THREE-PHASE UPS FOR NONLINEAR LOADS

A SPWM CONTROLLED THREE-PHASE UPS FOR NONLINEAR LOADS http:// A SPWM CONTROLLED THREE-PHASE UPS FOR NONLINEAR LOADS Abdul Wahab 1, Md. Feroz Ali 2, Dr. Abdul Ahad 3 1 Student, 2 Associate Professor, 3 Professor, Dept.of EEE, Nimra College of Engineering &

More information

Harmonics Analysis Of A Single Phase Inverter Using Matlab Simulink

Harmonics Analysis Of A Single Phase Inverter Using Matlab Simulink International Journal Of Engineering Research And Development e- ISSN: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 14, Issue 5 (May Ver. II 2018), PP.27-32 Harmonics Analysis Of A Single Phase Inverter

More information

Implementation of a low cost series compensator for voltage sags

Implementation of a low cost series compensator for voltage sags J.L. Silva Neto DEE-UFRJ luizneto@dee.ufrj.br R.M. Fernandes COPPE-UFRJ rodrigo@coe.ufrj.br D.R. Costa COPPE-UFRJ diogo@coe.ufrj.br L.G.B. Rolim DEE,COPPE-UFRJ rolim@dee.ufrj.br M. Aredes DEE,COPPE-UFRJ

More information

Fuzzy Logic Controller Based Three-phase Shunt Active Filter for Line Harmonics Reduction

Fuzzy Logic Controller Based Three-phase Shunt Active Filter for Line Harmonics Reduction Journal of Computer Science 3 (: 76-8, 7 ISSN 549-3636 7 Science Publications Fuzzy Logic Controller Based Three-phase Shunt Active Filter for Line Harmonics Reduction C.Sharmeela, M.R.Mohan, G.Uma, J.Baskaran

More information

Design and Simulation of DVR Used For Voltage Sag Mitigation at Distribution Side

Design and Simulation of DVR Used For Voltage Sag Mitigation at Distribution Side Design and Simulation of DVR Used For Voltage Sag Mitigation at Distribution Side Jaykant Vishwakarma 1, Dr. Arvind Kumar Sharma 2 1 PG Student, High voltage and Power system, Jabalpur Engineering College,

More information

Pulse width modulated (PWM) inverters are mostly used power electronic circuits in

Pulse width modulated (PWM) inverters are mostly used power electronic circuits in 2.1 Introduction Pulse width modulated (PWM) inverters are mostly used power electronic circuits in practical applications. These inverters are able to produce ac voltages of variable magnitude and frequency.

More information