Phys Sci Lesson Waves and Sound

Size: px
Start display at page:

Download "Phys Sci Lesson Waves and Sound"

Transcription

1 Phys Sci Lesson Waves and Sound Next test: Week 15 Dec 19/21 Week 16 Dec 30 class at my home: 10-1 PM Reading Assignments Module 14 pp Module 14 pp Homework Assignment Module 14 Study Guide Questions p 365 # 1-10 Module 14 Study Guide Questions p # Prep Questions 11: (1) What is a wave? (2) What are the types of waves? (3) What are the parts of waves? Prep Questions 12: (1) What is sound? (2) What is the Doppler Effect?

2 Introduction (p339) One common way energy is transferred from on place to another is a wave. In this module we will examine waves. Waves (p ) : Oscillations of extended bodies made up of many objects such as water waves. Disturbances: Another term use to describe the waves. Medium: Material which a wave travels through.

3 Parts of Waves Amplitude - height of the wave (A) = ½ height (1/2 ypeak - ytrough) Crests - peak or max height of the wave (A) Trough - lowest point or min of the wave (-A) Wavelength (l or λ) - distance from crest to crest or from trough to trough

4 Cycle Terms of Waves T Frequency (f) is the measure of how many waves hit a given point in a certain amount of time (cycles per second or the hertz - hz) Sound examples Light examples Period (T) time for a particle on a medium to make one complete vibrational cycle. T = 1/f

5 Wave Motion Terms Wave speed (v) sometimes called wave velocity- it is the speed a specific wave has as it passes a given point Note it is not velocity because this quality is independent of a direction. Wave velocity is associated with movement a group of waves that act together such as an ocean wave called propagation. The group of waves look like one wave that move in one direction. v = fl (v = fλ) or v= l/t (v=λ/t) Propagation - wave propagation is any of the ways in which waves travel through a medium - related to wave speed Oscillation - the up and down motion - related to frequency Transmission medium (plural transmission media) is a material substance (solid, liquid or gas) which can propagate energy waves. For example, the transmission medium for sound received by the ears is usually air, but solids and liquids may also act as transmission media for sound. ALL waves excerpt for one (electromagnetic waves) requires a medium - something to move through.

6 Wave Motion Terms Wave speed (v) sometimes called wave velocity- it is the speed a specific wave has as it passes a given point Note it is not velocity because this quality is independent of a direction. Wave velocity is associated with movement a group of waves that act together such as an ocean wave called propagation. The group of waves look like one wave that move in one direction. v = fl (v = fλ) or v= l/t (v=λ/t)

7

8 Wave Motion Terms Propagation - wave propagation is any of the ways in which waves travel through a medium - related to wave speed Oscillation - the up and down motion - related to frequency Transmission medium (plural transmission media) is a material substance (solid, liquid or gas) which can propagate energy waves. For example, the transmission medium for sound received by the ears is usually air, but solids and liquids may also act as transmission media for sound. ALL waves excerpt for one (electromagnetic waves) requires a medium - something to move through.

9 Two General Type of Waves (p 343) Transfer waves Long waves Waves - Gen Transverse - wave that propagates perpendicular to its direction of occultation. Longitudinal - waves that propagates parallel to its direction of oscillation. Compression - area of compression (higher pressure/greater density) - like crest Rarefaction - pulled apart lower pressure/lower density - like trough.

10

11 Examples of Longitudinal Waves

12 Comparison Between Transverse and Longitudinal Waves Amplitude (A): Transverse waves: Amplitude is the greatest displacement of a particle. A = ½(ypeak ytrough) Longitudinal waves: Amplitude is half the distance maximum and minimum pressure (density) differences greatest displacement of a particle: A = ½(xmax xmin) Wavelength (λ): Transverse waves: the distance from peak to peak or trough to tough. λ = xpeak2 xpeak1 or xtrough2 xtrough1 Longitudinal waves: the distance from compression zone to compression zone or refraction zone to refraction zone. λ = xcomp2 xcomp1 or xrefrac2 xrefrac1 Cycle: One cycle is completed in one wavelength (Same Frequency (f): Number of cycle per time (Same) Wave speed (v): Speed of the disturbance or wave through the medium. v = λ f (Same)

13 Examples of Transverse Waves Light Waves Top of water waves Earthquake "S" waves

14 Examples of Longitudes Waves Sound Waves Earthquake "P" waves

15 Combination Waves Combination of both a longitudinal and transverse waves. Water waves and earth quakes are example of combination waves. Water waves are examples of combination waves: More transverse near the top More compression waves below the surface

16 Example 12-4 Working with Waves: Determining Wavelength Water - Top distance from trough to crest is 30 feet λ = 2 (30 feet) = 60 feet Sound frequency of a high voice ~1000 Hz Vsound = ( T)m/sec (T must be in C) at T = 20 (note: bad science on this page: 72F 20C) Vsound = (20T)m/sec = m/s v = λ f or λ = v/ f = (343.5 m/s)/1000 = m*3.28 ft/m = ft Light A photon of red light has a speed of 3.00 x 108 m/s with a frequency 3.80 x 1014 Hz (s-1). What is its wavelength? Solution: v = λ f (v is constant makes this a special case) λ = v/ f = (3.00 x 108 m/s)/(3.80 x 1014s-1) λ = x 10-7m λ = 789 nm

17 20 C to F F = C (9/5) + 32 F = 20 9/ = 4 (9) + 32 = = 68 F 20 C = 68 F

18 Example 12-5 Analyzing Waves Figure 12-26a shows a wave graph and figure 12-26b (BJP) shows a vibration graph for a wave. Find the wave s (a) Amplitude A = ½(ypeak ytrough) = ½(+10 cm (-10 cm) = 20cm (b) Wavelength λ = xcomp2 xcomp1 = 25 cm 5 cm = 20 cm = 0.2 m (c) Frequency f = v/ λ = cycles/δt = 1/(t2 t1) = 1/ (2.5 s 0.5 s) = 1/2s = 0.5 s-1 (d) Period T = 1/ f = 1/( 0.5 s-1) = 2 s (e) Wave propagation - movement of waves (see (f) Simple Speed v = λ f = 20 cm (0.5 s-1) = 10 cm/s = 0.2 m (0.5 s-1) = 0.1 m/s Phase velocity Cp = wavelengh/period Group Velocity Cg = beat pattern that moves together is called a wave group

19 12a

20 12b

21 End week 11 Begin week 12 More specifics on waves

22 Some Specific Types of Waves Standing or solitary wave: Single or stationary wave Periodic Waves : wave that repeat over and over Periodic waves are very useful. The can carry: Carry information example color. Energy - EM waves In physics, periodic motion is something that is repeated in equal intervals of time.

23 Examples of Periodic Motion Examples: a rocking chair, a bouncing ball, a vibrating tuning fork, a swing in motion, the Earth in its orbit around the Sun, and a water wave. In each case, the interval of time for a repetition, or cycle, of the motion is called a period, While the number of periods per unit time is called the frequency. Thus, the period of the Earth s orbit is one year, and its frequency is one orbit per year. A tuning fork might have a frequency of 1,000 cycles per second and a period of 1 millisecond (1 thousandth of a second).

24 An example of a spring s oscillating motion

25 Spring Motion Terms: rest or equilibrium position - position before stretching Pull to mass on end of spring to y = -A then release For an ideal spring (no friction) the mass will go up and down between y = -A and +A Damping: Effect of friction in a real spring that weakens the oscillation with time Restoring Force (Fr): Force that tends to return the spring to the equilibrium position - gravitational force pulls it down and force of spring pulls it up Total amount of energy remains constant going back and forth from PE to KE Measuring spring constant: =s1jraf1c9va&feature=related

26 Spring Motion The motion is characterized by: its amplitude (which is always positive), its period, the time for a single oscillation, its frequency, the reciprocal of the period (i.e. the number of cycles per unit time), and its phase, which determines the starting point on the sine wave. The period and frequency are constants determined by the overall system, while the amplitude and phase are determined by the initial conditions (position and velocity) of that system. The resorting force (Fr) - the forces that bring the motion back towards the equilibrium position.

27 The Electromagnetic Waves Light (EM) Waves are very unusual in that the are transverse waves that require no medium. More in Mod 15

28 Water Waves (See paws.kettering.edu/~drussell/demos/waves/wavemotion.htm ) Water waves are an example of waves that involve a combination of both longitudinal and transverse motions. As a wave travels through the waver, the particles travel in clockwise circles. The radius of the circles decreases as the depth into the water increases. Surface gravity waves, moving under the forcing by gravity, propagate faster for increasing wavelength. For a certain wavelength, gravity waves in deeper water have a larger phase speed than in shallower water. In contrast with this, capillary waves only forced by surface tension, propagate faster for shorter wavelengths. There are three basic types of Deep water waves: Deep do not feel bottom, Intermediate water waves: Feel bottom a little bit Shallow water waves: Strongly feel the bottom

29 deep-water: Deep Water Wave =7yPTa8qi5X8 Shallow: =SQv7I2MdvZc Shallow Water Wave Breakers: =8y1MkFZSwIs&feature=relat

30

31 1H/7W L >1/20 depth L between 1/20 and 2 depth L < 2 depth

32

33 Sound Waves Sound waves are longitudinal pressure waves that propagate through a substance that comes from a vibrating body. The more dense a substance the faster sound travels through it. sound travels fastest through solids, less quickly through liquids and slowest through gasses. Process of hearing: Something vibrates, the vibrations cause compression and refraction of the air around the vibrating object causing a pressure wave that propagates to your ear, that causes the eardrum to vibrate, then tiny bones in the inner ear which causes a nerve impulse that the brain can interpret as sound.

34 Sound Waves Characteristics (Qualities) of Sound: Intensity(I): The sound intensity, (acoustic intensity) is defined as the sound power Pac transmitted per unit area A. The usual context is the noise measurement of sound intensity in the air at a listener's location. I = Pac/A = Pac/4r 2. Loudness (β): Loudness as heard by a human is the quality of a sound that is a subjective measure related to sound intensity and sound pressure. Loudness is also affected by parameters other than sound pressure, including frequency and duration. β = (10 db) log (Is/(10-12 /W/m2)

35 Sound Waves Decibels: The decibel (db) is used to measure sound intensity *and other electronic, signals and communication intensities). The db is a logarithmic unit used to describe a ratio. The scale for measuring intensity is the decibel scale. The threshold of hearing is assigned a sound level of 0 decibels (abbreviated 0 db); this sound corresponds to an intensity of 1*10-12 W/m2. A sound which is 10 times more intense ( 1*10-11 W/m2) is assigned a sound level of 10 db. A sound which is 10*10 or 100 times more intense ( 1*10-10 W/m2) is assigned a sound level of 20 db. A sound which is 10*10*10 or 1000 times more intense ( 1*10-9 W/m2) is assigned a sound level of 30 db. A sound which is 10*10*10*10 or times more intense ( 1*10-8 W/m2) is assigned a sound level of 40 db. Observe that this scale is based on powers or multiples of 10. If one sound is 10x times more intense than another sound, then it has a sound level which is 10*x more decibels than the less intense sound. The table below lists some common sounds with an estimate of their intensity and decibel level.

36 Sound Waves Source Intensity Intensity Level # of Times Greater Than TOH Threshold of Hearing (TOH) 1*10-12 W/m 2 0 db 100 Rustling Leaves 1*10-11 W/m 2 10 db 101 Whisper 1* W/m 2 20 db 102 Normal Conversation 1*10-6 W/m 2 60 db 106 Busy Street Traffic 1*10-5 W/m 2 70 db 107 Vacuum Cleaner 1*10-4 W/m 2 80 db 108 Large Orchestra 6.3*10-3 W/m 2 98 db Walkman at Maximum Level 1*10-2 W/m db 1010 Front Rows of Rock Concert 1*10-1 W/m db 1011 Threshold of Pain 1*10 1 W/m db 1013 Military Jet Takeoff 1*10 2 W/m db 1014 Instant Perforation of Eardrum 1*10 4 W/m db 1016

37 Sound Waves Pitch: The sensation of a frequencies is commonly referred to as the pitch of a sound. High pitch sound corresponds to a high frequency sound wave Low pitch sound corresponds to a low frequency sound wave. Quality: Sound "quality" or "timbre" describes those characteristics of sound which allow the ear to distinguish sounds which have the same pitch and loudness. Timbre is then a general term for the distinguishable characteristics of a tone. Timbre is mainly determined by the harmonic content of a sound and the dynamic characteristics of the sound such as vibrato and the envelope of the sound.

38 Sound Waves Interval Frequency Ratio Examples Octave 2:1 512 Hz and 256 Hz Third 5:4 320 Hz and 256 Hz Fourth 4:3 342 Hz and 256 Hz Fifth 3:2 384 Hz and 256 Hz

39 Sound Waves Fundamental Frequency: The fundamental frequency is the inverse of the pitch period length. The pitch period is, in turn, the smallest repeating unit of a signal. One pitch period thus describes the periodic signal completely. Natural Frequency: The frequency or frequencies at which an object tends to vibrate with when hit, struck, plucked, strummed or somehow disturbed is known as the natural frequency of the object.

40 Sound Waves Harmonics: In acoustics and telecommunication, a harmonic of a wave is a component frequency of the signal that is an integer multiple of the fundamental frequency. For example, if the fundamental frequency is f, the harmonics have frequencies f, 2f, 3f, 4f, etc. For example, if the fundamental frequency is 25 Hz, the frequencies of the harmonics are: 25 Hz, 50 Hz, 75 Hz, 100 Hz, etc. Resonance and resonant frequencies: Resonance is the tendency of a system to oscillate at a greater amplitude at some frequencies than at others. These are known as the system's resonant frequencies (or resonance frequencies). At these frequencies, even small periodic driving forces can produce large amplitude oscillations, because the system stores vibrational energy.

41

42 Sound Waves Speed of Sound: The speed of a sound wave in air depends upon the properties of the air, namely the temperature and the pressure. The pressure of air (like any gas) will affect the mass density of the air (an inertial property) and the temperature will affect the strength of the particle interactions (an elastic property). The speed of sound is the distance travelled during a unit of time by a sound wave. In dry air at 20 C (68 F), the speed of sound is metres per second (1,126 ft/s). This is 1,236 kilometres per hour (768 mph), or about one kilometer in three seconds or approximately one mile in five seconds. At normal atmospheric pressure, the temperature dependence of the speed of a sound wave through air is approximated by the following equation: v = 331 m/s + (0.6 m/s/c) T where T is the temperature of the air in degrees Celsius. Using this equation to determine the speed of a sound wave in air at a temperature of 20 degrees Celsius yields the following solution. v = 331 m/s + (0.6 m/s/c) T v = 331 m/s + (0.6 m/s/c) (20 C) v = 331 m/s + 12 m/s v = 343 m/s 1 meter / second = 2.24 mph

43 Doppler Effect The Doppler effect (or Doppler shift), named after Austrian physicist Christian Doppler who proposed it in 1842, is the change in frequency and wavelength of a wave for an observer moving relative to the source of the waves. It is commonly heard when a vehicle sounding a siren approaches, passes and recedes from an observer. The received frequency is increased (compared to the emitted frequency) during the approach, it is identical at the instant of passing by, and it is decreased during the recession. For waves that propagate in a medium, such as sound waves, the velocity of the observer and of the source are relative to the medium in which the waves are transmitted. The total Doppler effect may therefore result from motion of the source, motion of the observer, or motion of the medium. Each of these effects is analyzed separately. For waves which do not require a medium, such as light or gravity in special relativity, only the relative difference in velocity between the observer and the source needs to be considered. Doppler Effect Doppler Explanation

44 Doppler Effect If the moving source is emitting waves through a medium with an actual frequency f0, then an observer stationary relative to the medium detects waves with a frequency f given by f = (v/v+vs)fo where v is the speed of the waves in the medium and vs is the speed of the source with respect to the medium (positive if moving away from the observer, negative if moving towards the observer). A similar analysis for a moving observer and a stationary source yields the observed frequency (the receiver's velocity being represented as vr): f = [(v+vr/v)]fo where the same convention applies: vr is positive if the observer is moving away from the source, and negative if the observer is moving towards the source. These can be generalized into a single equation with both the source and receiver moving. which can be written as: f = [(v+vr)/(v+vs)]fo Where vs,r is the source to receiver velocity radial component. With a relatively slow moving source, vs,r is small in comparison to v and the equation approximates to f = [(1(v/vs-r)]fo vs-r = vs - vr

45 Doppler Example: A stationary source emits a sound wave of 5000 Hz. An object approaches the source with a velocity of 3.5 m/s. What is the frequency of the wave as experienced by the object? v of sound 343 m/s f'object =[(v + vr/v) f0 ] = 5000 Hz [(343 m/s m)/343 m/s)] = 5000 Hz (346.5/343) = 5000 Hz.(1.0102) = 5051 Hz f'object = [(1-(vs-r/v)]fo = [(1-(0-3.5m/s/343 m/s)]5000 Hz = [(1-( )]5000 Hz = [( )]5000 Hz =( )5000 Hz = 5051 Hz

46 Some Uses of Sound Hearing: ability to perceive sound by detecting vibrations via an organ such as the ear. Sonar: (sound navigation and ranging) is a technique that uses sound propagation (usually underwater) to navigate, communicate with or detect other vessels.

47 Echolocation Echolocation, also called biosonar, is the biological sonar used by several animals such as dolphins, shrews, most bats,cave swiftlets (birds), and most whales. Echolocating animals emit calls out to the environment and listen to the echoes of those calls that return from various objects in the environment. They use these echoes to locate, range, and identify the objects. Echolocation is used for navigation and for foraging (or hunting) in various environments.

48 Echolocation

49 Echo Lo Echo Lo

50 Ability to Perceive Sound

51 Ultrasound - Putting sound to work Ultrasound is cyclic sound pressure with a frequency greater than the upper limit of human hearing. Although this limit varies from person to person, it is approximately 20 kilohertz (20,000 hertz) in healthy, young adults and thus, 20 khz serves as a useful lower limit in describing ultrasound. The production of ultrasound is used in many different fields: Medical Diagnostic Ultrasonic Applications Ultrasonic Cleaning - cleans deleicate items Ultrasonic Humidifier - cool mist - fog Ultrasound Identification (USID) Ultrasound and animals Bats, Dogs, Dolphins and whales, Fish, Moths, Rodents/insects Ultrasonic disintegration Ultrasonic range finding

A mechanical wave is a disturbance which propagates through a medium with little or no net displacement of the particles of the medium.

A mechanical wave is a disturbance which propagates through a medium with little or no net displacement of the particles of the medium. Waves and Sound Mechanical Wave A mechanical wave is a disturbance which propagates through a medium with little or no net displacement of the particles of the medium. Water Waves Wave Pulse People Wave

More information

Chapter 12. Preview. Objectives The Production of Sound Waves Frequency of Sound Waves The Doppler Effect. Section 1 Sound Waves

Chapter 12. Preview. Objectives The Production of Sound Waves Frequency of Sound Waves The Doppler Effect. Section 1 Sound Waves Section 1 Sound Waves Preview Objectives The Production of Sound Waves Frequency of Sound Waves The Doppler Effect Section 1 Sound Waves Objectives Explain how sound waves are produced. Relate frequency

More information

Frequency f determined by the source of vibration; related to pitch of sound. Period T time taken for one complete vibrational cycle

Frequency f determined by the source of vibration; related to pitch of sound. Period T time taken for one complete vibrational cycle Unit 1: Waves Lesson: Sound Sound is a mechanical wave, a longitudinal wave, a pressure wave Periodic sound waves have: Frequency f determined by the source of vibration; related to pitch of sound Period

More information

Properties and Applications

Properties and Applications Properties and Applications What is a Wave? How is it Created? Waves are created by vibrations! Atoms vibrate, strings vibrate, water vibrates A wave is the moving oscillation Waves are the propagation

More information

1. Transverse Waves: the particles in the medium move perpendicular to the direction of the wave motion

1. Transverse Waves: the particles in the medium move perpendicular to the direction of the wave motion Mechanical Waves Represents the periodic motion of matter e.g. water, sound Energy can be transferred from one point to another by waves Waves are cyclical in nature and display simple harmonic motion

More information

Warm-Up. Think of three examples of waves. What do waves have in common? What, if anything, do waves carry from one place to another?

Warm-Up. Think of three examples of waves. What do waves have in common? What, if anything, do waves carry from one place to another? Warm-Up Think of three examples of waves. What do waves have in common? What, if anything, do waves carry from one place to another? WAVES Physics Waves If you can only remember one thing Waves transmit

More information

Sound All sound begins with a vibrating object Ex. Vibrating tuning fork Vibrating prong sets molecules near it in motion

Sound All sound begins with a vibrating object Ex. Vibrating tuning fork Vibrating prong sets molecules near it in motion Sound All sound begins with a vibrating object Ex. Vibrating tuning fork Vibrating prong sets molecules near it in motion As prong swings right, air molecules in front of the movement are forced closer

More information

Chapter 05: Wave Motions and Sound

Chapter 05: Wave Motions and Sound Chapter 05: Wave Motions and Sound Section 5.1: Forces and Elastic Materials Elasticity It's not just the stretch, it's the snap back An elastic material will return to its original shape when stretched

More information

A sound wave is introduced into a medium by the vibration of an object. Sound is a longitudinal, mechanical

A sound wave is introduced into a medium by the vibration of an object. Sound is a longitudinal, mechanical Sound Waves Dancing Liquids A sound wave is introduced into a medium by the vibration of an object. Sound is a longitudinal, mechanical wave. For example, a guitar string forces surrounding air molecules

More information

Chapter 7. Waves and Sound

Chapter 7. Waves and Sound Chapter 7 Waves and Sound What is wave? A wave is a disturbance that propagates from one place to another. Or simply, it carries energy from place to place. The easiest type of wave to visualize is a transverse

More information

Bike Generator Project

Bike Generator Project Bike Generator Project Each lab section will build 1 bike generator Each lab group will build 1 energy board Connect and test energy board and bike generator Create curriculum materials and demos to teach

More information

Preview. Sound Section 1. Section 1 Sound Waves. Section 2 Sound Intensity and Resonance. Section 3 Harmonics

Preview. Sound Section 1. Section 1 Sound Waves. Section 2 Sound Intensity and Resonance. Section 3 Harmonics Sound Section 1 Preview Section 1 Sound Waves Section 2 Sound Intensity and Resonance Section 3 Harmonics Sound Section 1 TEKS The student is expected to: 7A examine and describe oscillatory motion and

More information

sound is a longitudinal, mechanical wave that travels as a series of high and low pressure variations

sound is a longitudinal, mechanical wave that travels as a series of high and low pressure variations Sound sound is a longitudinal, mechanical wave that travels as a series of high and low pressure variations the high pressure regions are compressions and the low pressure regions are rarefactions the

More information

Chapter PREPTEST: SHM & WAVE PROPERTIES

Chapter PREPTEST: SHM & WAVE PROPERTIES 2 4 Chapter 13-14 PREPTEST: SHM & WAVE PROPERTIES Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A load of 45 N attached to a spring that is hanging vertically

More information

Vibrations and Waves. Properties of Vibrations

Vibrations and Waves. Properties of Vibrations Vibrations and Waves For a vibration to occur an object must repeat a movement during a time interval. A wave is a disturbance that extends from one place to another through space. Light and sound are

More information

Chapter 16. Waves and Sound

Chapter 16. Waves and Sound Chapter 16 Waves and Sound 16.1 The Nature of Waves 1. A wave is a traveling disturbance. 2. A wave carries energy from place to place. 1 16.1 The Nature of Waves Transverse Wave 16.1 The Nature of Waves

More information

Intext Exercise 1 Question 1: How does the sound produced by a vibrating object in a medium reach your ear?

Intext Exercise 1 Question 1: How does the sound produced by a vibrating object in a medium reach your ear? Intext Exercise 1 How does the sound produced by a vibrating object in a medium reach your ear? When an vibrating object vibrates, it forces the neighbouring particles of the medium to vibrate. These vibrating

More information

ISSUED BY KENDRIYA VIDYALAYA - DOWNLOADED FROM CHAPTER 12 Sound

ISSUED BY KENDRIYA VIDYALAYA - DOWNLOADED FROM  CHAPTER 12 Sound 1. Production of Sound CHAPTER 12 Sound KEY CONCEPTS [ *rating as per the significance of concept] 1 Production of Sound **** 2 Propagation of Sound ***** 3 Reflection of Sound ***** 4 Echo **** 5 Uses

More information

Physics I Notes: Chapter 13 Sound

Physics I Notes: Chapter 13 Sound Physics I Notes: Chapter 13 Sound I. Properties of Sound A. Sound is the only thing that one can hear! Where do sounds come from?? Sounds are produced by VIBRATING or OSCILLATING OBJECTS! Sound is a longitudinal

More information

Date Period Name. Write the term that corresponds to the description. Use each term once. beat

Date Period Name. Write the term that corresponds to the description. Use each term once. beat Date Period Name CHAPTER 15 Study Guide Sound Vocabulary Review Write the term that corresponds to the description. Use each term once. beat Doppler effect closed-pipe resonator fundamental consonance

More information

CHAPTER 12 SOUND. Sound: Sound is a form of energy which produces a sensation of hearing in our ears.

CHAPTER 12 SOUND. Sound: Sound is a form of energy which produces a sensation of hearing in our ears. CHAPTER 12 SOUND Sound: Sound is a form of energy which produces a sensation of hearing in our ears. Production of Sound Sound is produced due to the vibration of objects. Vibration is the rapid to and

More information

Copyright 2009 Pearson Education, Inc.

Copyright 2009 Pearson Education, Inc. Chapter 16 Sound 16-1 Characteristics of Sound Sound can travel through h any kind of matter, but not through a vacuum. The speed of sound is different in different materials; in general, it is slowest

More information

Waves & Interference

Waves & Interference Waves & Interference I. Definitions and Types II. Parameters and Equations III. Sound IV. Graphs of Waves V. Interference - superposition - standing waves The student will be able to: HW: 1 Define, apply,

More information

NCERT solution for Sound

NCERT solution for Sound NCERT solution for Sound 1 Question 1 How does the sound produce by a vibrating object in a medium reach your ear? When an object vibrates, it vibrates the neighboring particles of the medium. These vibrating

More information

Key Terms. Loud Soft Quiet High pitch Low pitch Noise Deafness Frequency. Amplitude Wave Loudness Volume Dynamics Medium Speed of sound

Key Terms. Loud Soft Quiet High pitch Low pitch Noise Deafness Frequency. Amplitude Wave Loudness Volume Dynamics Medium Speed of sound Objectives Understand the idea of sound and hearing Learn how sound travels through media Explain how the ear works, find out about the harmful effects of loud noise and how loud noise can be reduced Key

More information

Waves and Sound Practice Test 43 points total Free- response part: [27 points]

Waves and Sound Practice Test 43 points total Free- response part: [27 points] Name Waves and Sound Practice Test 43 points total Free- response part: [27 points] 1. To demonstrate standing waves, one end of a string is attached to a tuning fork with frequency 120 Hz. The other end

More information

SOUND. Second, the energy is transferred from the source in the form of a longitudinal sound wave.

SOUND. Second, the energy is transferred from the source in the form of a longitudinal sound wave. SOUND - we can distinguish three aspects of any sound. First, there must be a source for a sound. As with any wave, the source of a sound wave is a vibrating object. Second, the energy is transferred from

More information

SECTION A Waves and Sound

SECTION A Waves and Sound AP Physics Multiple Choice Practice Waves and Optics SECTION A Waves and Sound 2. A string is firmly attached at both ends. When a frequency of 60 Hz is applied, the string vibrates in the standing wave

More information

Lecture Notes Intro: Sound Waves:

Lecture Notes Intro: Sound Waves: Lecture Notes (Propertie es & Detection Off Sound Waves) Intro: - sound is very important in our lives today and has been throughout our history; we not only derive useful informationn from sound, but

More information

Section 1 Sound Waves. Chapter 12. Sound Waves. Copyright by Holt, Rinehart and Winston. All rights reserved.

Section 1 Sound Waves. Chapter 12. Sound Waves. Copyright by Holt, Rinehart and Winston. All rights reserved. Section 1 Sound Waves Sound Waves Section 1 Sound Waves The Production of Sound Waves, continued Sound waves are longitudinal. Section 1 Sound Waves Frequency and Pitch The frequency for sound is known

More information

Waves, Sound and Light. Grade 10 physics Robyn Basson

Waves, Sound and Light. Grade 10 physics Robyn Basson Waves, Sound and Light Grade 10 physics Robyn Basson Heartbeat Flick in hose pipe What is a pulse? A single disturbance that moves through a medium. Stone in water Other? moving Transverse pulse: A pulse

More information

ABC Math Student Copy

ABC Math Student Copy Page 1 of 17 Physics Week 9(Sem. 2) Name Chapter Summary Waves and Sound Cont d 2 Principle of Linear Superposition Sound is a pressure wave. Often two or more sound waves are present at the same place

More information

Sound & Waves Review. Physics - Mr. Jones

Sound & Waves Review. Physics - Mr. Jones Sound & Waves Review Physics - Mr. Jones Waves Types Transverse, longitudinal (compression) Characteristics Frequency, period, wavelength, amplitude, crest, trough v = f! Review: What is sound? Sound is

More information

SECTION A Waves and Sound

SECTION A Waves and Sound AP Physics Multiple Choice Practice Waves and Optics SECTION A Waves and Sound 1. Which of the following statements about the speed of waves on a string are true? I. The speed depends on the tension in

More information

PHYSICS 102N Spring Week 6 Oscillations, Waves, Sound and Music

PHYSICS 102N Spring Week 6 Oscillations, Waves, Sound and Music PHYSICS 102N Spring 2009 Week 6 Oscillations, Waves, Sound and Music Oscillations Any process that repeats itself after fixed time period T Examples: Pendulum, spring and weight, orbits, vibrations (musical

More information

SUMMARY. ) f s Shock wave Sonic boom UNIT. Waves transmit energy. Sound is a longitudinal mechanical wave. KEY CONCEPTS CHAPTER SUMMARY

SUMMARY. ) f s Shock wave Sonic boom UNIT. Waves transmit energy. Sound is a longitudinal mechanical wave. KEY CONCEPTS CHAPTER SUMMARY UNIT D SUMMARY KEY CONCEPTS CHAPTER SUMMARY 9 Waves transmit energy. Crest, trough, amplitude, wavelength Longitudinal and transverse waves Cycle Period, frequency f 1_ T Universal wave equation v fλ Wave

More information

An introduction to physics of Sound

An introduction to physics of Sound An introduction to physics of Sound Outlines Acoustics and psycho-acoustics Sound? Wave and waves types Cycle Basic parameters of sound wave period Amplitude Wavelength Frequency Outlines Phase Types of

More information

Waves and Sound. AP Physics 1

Waves and Sound. AP Physics 1 Waves and Sound AP Physics 1 What is a wave A WAVE is a vibration or disturbance in space. A MEDIUM is the substance that all SOUND WAVES travel through and need to have in order to move. Classes of waves

More information

Name Date Class _. Holt Science Spectrum

Name Date Class _. Holt Science Spectrum Holt Science Spectrum Holt, Rinehart and Winston presents the Guided Reading Audio CD Program, recorded to accompany Holt Science Spectrum. Please open your book to the chapter titled Sound and Light.

More information

CHAPTER 12 SOUND ass/sound/soundtoc. html. Characteristics of Sound

CHAPTER 12 SOUND  ass/sound/soundtoc. html. Characteristics of Sound CHAPTER 12 SOUND http://www.physicsclassroom.com/cl ass/sound/soundtoc. html Characteristics of Sound Intensity of Sound: Decibels The Ear and Its Response; Loudness Sources of Sound: Vibrating Strings

More information

Waves transfer energy NOT matter Two categories of waves Mechanical Waves require a medium (matter) to transfer wave energy Electromagnetic waves no

Waves transfer energy NOT matter Two categories of waves Mechanical Waves require a medium (matter) to transfer wave energy Electromagnetic waves no 1 Waves transfer energy NOT matter Two categories of waves Mechanical Waves require a medium (matter) to transfer wave energy Electromagnetic waves no medium required to transfer wave energy 2 Mechanical

More information

Chapter 2. Meeting 2, Measures and Visualizations of Sounds and Signals

Chapter 2. Meeting 2, Measures and Visualizations of Sounds and Signals Chapter 2. Meeting 2, Measures and Visualizations of Sounds and Signals 2.1. Announcements Be sure to completely read the syllabus Recording opportunities for small ensembles Due Wednesday, 15 February:

More information

Physics B Waves and Sound Name: AP Review. Show your work:

Physics B Waves and Sound Name: AP Review. Show your work: Physics B Waves and Sound Name: AP Review Mechanical Wave A disturbance that propagates through a medium with little or no net displacement of the particles of the medium. Parts of a Wave Crest: high point

More information

Sound. DEF: A pressure variation that is transmitted through matter. Collisions are high pressure / compressions.

Sound. DEF: A pressure variation that is transmitted through matter. Collisions are high pressure / compressions. Sound Sound DEF: A pressure variation that is transmitted through matter. Link to pic of bell animation Collisions are high pressure / compressions. Pulls are low pressure / rarefacation. Have same properties

More information

From Last Time Wave Properties. Description of a Wave. Water waves? Water waves occur on the surface. They are a kind of transverse wave.

From Last Time Wave Properties. Description of a Wave. Water waves? Water waves occur on the surface. They are a kind of transverse wave. From Last Time Wave Properties Amplitude is the maximum displacement from the equilibrium position Wavelength,, is the distance between two successive points that behave identically Period: time required

More information

Waves Q1. MockTime.com. (c) speed of propagation = 5 (d) period π/15 Ans: (c)

Waves Q1. MockTime.com. (c) speed of propagation = 5 (d) period π/15 Ans: (c) Waves Q1. (a) v = 5 cm (b) λ = 18 cm (c) a = 0.04 cm (d) f = 50 Hz Q2. The velocity of sound in any gas depends upon [1988] (a) wavelength of sound only (b) density and elasticity of gas (c) intensity

More information

PHYS102 Previous Exam Problems. Sound Waves. If the speed of sound in air is not given in the problem, take it as 343 m/s.

PHYS102 Previous Exam Problems. Sound Waves. If the speed of sound in air is not given in the problem, take it as 343 m/s. PHYS102 Previous Exam Problems CHAPTER 17 Sound Waves Sound waves Interference of sound waves Intensity & level Resonance in tubes Doppler effect If the speed of sound in air is not given in the problem,

More information

g L f = 1 2π Agenda Chapter 14, Problem 24 Intensity of Sound Waves Various Intensities of Sound Intensity Level of Sound Waves

g L f = 1 2π Agenda Chapter 14, Problem 24 Intensity of Sound Waves Various Intensities of Sound Intensity Level of Sound Waves Agenda Today: HW #1 Quiz, power and energy in waves and decibel scale Thursday: Doppler effect, more superposition & interference, closed vs. open tubes Chapter 14, Problem 4 A 00 g ball is tied to a string.

More information

Sound 05/02/2006. Lecture 10 1

Sound 05/02/2006. Lecture 10 1 What IS Sound? Sound is really tiny fluctuations of air pressure units of pressure: N/m 2 or psi (lbs/square-inch) Carried through air at 345 m/s (770 m.p.h) as compressions and rarefactions in air pressure

More information

Ch 26: Sound Review 2 Short Answers 1. What is the source of all sound?

Ch 26: Sound Review 2 Short Answers 1. What is the source of all sound? Ch 26: Sound Review 2 Short Answers 1. What is the source of all sound? 2. How does a sound wave travel through air? 3. What media transmit sound? 4. What determines the speed of sound in a medium? 5.

More information

Test Review # 7. Physics R: Form TR7.17A. v C M = mach number M = C v = speed relative to the medium v sound C v sound = speed of sound in the medium

Test Review # 7. Physics R: Form TR7.17A. v C M = mach number M = C v = speed relative to the medium v sound C v sound = speed of sound in the medium Physics R: Form TR7.17A TEST 7 REVIEW Name Date Period Test Review # 7 Frequency and pitch. The higher the frequency of a sound wave is, the higher the pitch is. Humans can detect sounds with frequencies

More information

AP Physics B (Princeton 15 & Giancoli 11 & 12) Waves and Sound

AP Physics B (Princeton 15 & Giancoli 11 & 12) Waves and Sound AP Physics B (Princeton 15 & Giancoli 11 & 12) Waves and Sound Preview What are the two categories of waves with regard to mode of travel? Mechanical Electromagnetic Which type of wave requires a medium?

More information

From Last Time Wave Properties. Description of a Wave. Question. Examples. More types of waves. Seismic waves

From Last Time Wave Properties. Description of a Wave. Question. Examples. More types of waves. Seismic waves From Last Time Wave Properties Amplitude is the maximum displacement of string above the equilibrium position Wavelength, λ, is the distance between two successive points that behave identically Period:

More information

Lecture 8 Wave and Sound for Life and Health. 10 October 2018 Wannapong Triampo, Ph.D.

Lecture 8 Wave and Sound for Life and Health. 10 October 2018 Wannapong Triampo, Ph.D. Lecture 8 Wave and Sound for Life and Health 10 October 2018 Wannapong Triampo, Ph.D. A Doppler flow meter measures the speed of red blood cells 3 Ultrasonography- detectionpe of foetus in uterus Neurosurgeons

More information

Ans: A wave is periodic disturbance produced by vibration of the vibrating. 2. What is the amount of sound energy passing per second through unit area

Ans: A wave is periodic disturbance produced by vibration of the vibrating. 2. What is the amount of sound energy passing per second through unit area One mark questions 1. What do you understand by sound waves? Ans: A wave is periodic disturbance produced by vibration of the vibrating body. 2. What is the amount of sound energy passing per second through

More information

(3) A traveling wave transfers, but it does not transfer.

(3) A traveling wave transfers, but it does not transfer. AP PHYSICS TEST 9 Waves and Sound (1) Give a good physics definition of a wave. (2) Any wave has as its source. (3) A traveling wave transfers, but it does not transfer. (4) What is a mechanical wave?

More information

Chapter 14, Sound. 1. When a sine wave is used to represent a sound wave, the crest corresponds to:

Chapter 14, Sound. 1. When a sine wave is used to represent a sound wave, the crest corresponds to: CHAPTER 14 1. When a sine wave is used to represent a sound wave, the crest corresponds to: a. rarefaction b. condensation c. point where molecules vibrate at a right angle to the direction of wave travel

More information

10/24/ Teilhard de Chardin French Geologist. The answer to the question is ENERGY, not MATTER!

10/24/ Teilhard de Chardin French Geologist. The answer to the question is ENERGY, not MATTER! Someday, after mastering the winds, the waves, the tides and gravity, we shall harness for God the energies of love, and then, for a second time in the history of the world, man will have discovered fire.

More information

Final Reg Wave and Sound Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Final Reg Wave and Sound Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Final Reg Wave and Sound Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) What is the frequency of a 2.5 m wave traveling at 1400 m/s? 1) 2)

More information

Chapter 16 Sound. Copyright 2009 Pearson Education, Inc.

Chapter 16 Sound. Copyright 2009 Pearson Education, Inc. Chapter 16 Sound 16-6 Interference of Sound Waves; Beats Sound waves interfere in the same way that other waves do in space. 16-6 Interference of Sound Waves; Beats Example 16-12: Loudspeakers interference.

More information

The Nature of Sound. What produces sound?

The Nature of Sound. What produces sound? 1 The Nature of Sound What produces sound? Every sound is produced by an object that vibrates. For example, your friends voices are produced by the vibrations of their vocal cords, and music from a carousel

More information

CHAPTER 11 TEST REVIEW -- MARKSCHEME

CHAPTER 11 TEST REVIEW -- MARKSCHEME AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response MULTIPLE CHOICE DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM

More information

Answer:- School bell starts vibrating when heated which creates compression and rarefaction in air and sound is produced.

Answer:- School bell starts vibrating when heated which creates compression and rarefaction in air and sound is produced. Sound How does the sound produced by a vibrating object in a medium reach your ear? - Vibrations in an object create disturbance in the medium and consequently compressions and rarefactions. Because of

More information

Chapter 15 Supplement HPS. Harmonic Motion

Chapter 15 Supplement HPS. Harmonic Motion Chapter 15 Supplement HPS Harmonic Motion Motion Linear Moves from one place to another Harmonic Motion that repeats over and over again Examples time, speed, acceleration Examples Pendulum Swing Pedaling

More information

Music 171: Sinusoids. Tamara Smyth, Department of Music, University of California, San Diego (UCSD) January 10, 2019

Music 171: Sinusoids. Tamara Smyth, Department of Music, University of California, San Diego (UCSD) January 10, 2019 Music 7: Sinusoids Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego (UCSD) January 0, 209 What is Sound? The word sound is used to describe both:. an auditory sensation

More information

3) For vibrational motion, the maximum displacement from the equilibrium point is called the

3) For vibrational motion, the maximum displacement from the equilibrium point is called the WAVES & SOUND Conceptual Questions 1) The time for one cycle of a periodic process is called the 2) For a periodic process, the number of cycles per unit time is called the 3) For vibrational motion, the

More information

Unit 10 Simple Harmonic Waves and Sound Holt Chapter 12 Student Outline

Unit 10 Simple Harmonic Waves and Sound Holt Chapter 12 Student Outline Unit 10 Simple Harmonic Waves and Sound Holt Chapter 12 Student Outline Variables introduced or used in chapter: Quantity Symbol Units Vector or Scalar? Spring Force Spring Constant Displacement Period

More information

Exam 3--PHYS 151--Chapter 4--S14

Exam 3--PHYS 151--Chapter 4--S14 Class: Date: Exam 3--PHYS 151--Chapter 4--S14 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of these statements is not true for a longitudinal

More information

Lecture PowerPoints. Chapter 12 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 12 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 12 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Wave Review Questions Updated

Wave Review Questions Updated Name: Date: 1. Which type of wave requires a material medium through which to travel? 5. Which characteristic is the same for every color of light in a vacuum? A. radio wave B. microwave C. light wave

More information

1) The time for one cycle of a periodic process is called the A) period. B) frequency. C) wavelength. D) amplitude.

1) The time for one cycle of a periodic process is called the A) period. B) frequency. C) wavelength. D) amplitude. Practice quiz for engineering students. Real test next Tuesday. Plan on an essay/show me work question as well. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers

More information

WAVES. Chapter Fifteen MCQ I

WAVES. Chapter Fifteen MCQ I Chapter Fifteen WAVES MCQ I 15.1 Water waves produced by a motor boat sailing in water are (a) neither longitudinal nor transverse. (b) both longitudinal and transverse. (c) only longitudinal. (d) only

More information

BVHS Physics: Waves Unit - Targets

BVHS Physics: Waves Unit - Targets BVHS Physics: Waves Unit - Targets Part A: General Wave Properties: Students should be able to 1) describe waves as traveling disturbances which transport energy without the bulk motion of matter. In transverse

More information

Chapter 17 Waves in Two and Three Dimensions

Chapter 17 Waves in Two and Three Dimensions Chapter 17 Waves in Two and Three Dimensions Slide 17-1 Chapter 17: Waves in Two and Three Dimensions Concepts Slide 17-2 Section 17.1: Wavefronts The figure shows cutaway views of a periodic surface wave

More information

Lecture PowerPoints. Chapter 12 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints. Chapter 12 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoints Chapter 12 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

the mechanical wave model can be used to explain phenomena related to reflection and refraction, including echoes and seismic phenomena.

the mechanical wave model can be used to explain phenomena related to reflection and refraction, including echoes and seismic phenomena. WAVES 5 Syllabus Checklist SCIENCE UNDERSTANDING WAVES waves are periodic oscillations that transfer energy from one point to another. mechanical waves transfer energy through a medium; longitudinal and

More information

Unit 6: Waves and Sound

Unit 6: Waves and Sound Unit 6: Waves and Sound Waves What is a wave? Examples Water, sound, slinky, ER Transverse vs. Longitudinal Brent Royuk Phys-109 Concordia University 2 Wave Properties The magic of waves. Great distances

More information

Analytical Physics 1B Lecture 7: Sound

Analytical Physics 1B Lecture 7: Sound Analytical Physics 1B Lecture 7: Sound Sang-Wook Cheong Friday, March 2nd, 2018 Sound Waves Longitudinal waves in a medium (air, solids, liquids, etc.) Human ear is sensitive to frequencies between 20

More information

Pre Test 1. Name. a Hz b Hz c Hz d Hz e Hz. 1. d

Pre Test 1. Name. a Hz b Hz c Hz d Hz e Hz. 1. d Name Pre Test 1 1. The wavelength of light visible to the human eye is on the order of 5 10 7 m. If the speed of light in air is 3 10 8 m/s, find the frequency of the light wave. 1. d a. 3 10 7 Hz b. 4

More information

Waves Homework. Assignment #1. Assignment #2

Waves Homework. Assignment #1. Assignment #2 Waves Homework Assignment #1 Textbook: Read Section 11-7 and 11-8 Online: Waves Lesson 1a, 1b, 1c http://www.physicsclassroom.com/class/waves * problems are for all students ** problems are for honors

More information

Reflection and Absorption

Reflection and Absorption Reflection and Absorption Fill in the blanks. Reading Skill: Cause and Effect - questions 3, 5, 10, 15, 16, 17, 20 Do Sounds Bounce? 1. When a sound wave hits a surface, some of its energy bounces, or,

More information

Waves and Sound. Review 10

Waves and Sound. Review 10 Review 10 Waves and Sound 1. A spring stretches by 25 cm when a 0.5 kg mass is suspended from its end. a. Determine the spring constant. b. How much elastic potential energy is stored in the spring when

More information

Chapter Introduction. Chapter Wrap-Up. and the Eye

Chapter Introduction. Chapter Wrap-Up. and the Eye Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Sound Light Chapter Wrap-Up Mirrors, Lenses, and the Eye How do sound and light waves travel and interact with matter? What do you think? Before you begin,

More information

Fundamentals of Music Technology

Fundamentals of Music Technology Fundamentals of Music Technology Juan P. Bello Office: 409, 4th floor, 383 LaFayette Street (ext. 85736) Office Hours: Wednesdays 2-5pm Email: jpbello@nyu.edu URL: http://homepages.nyu.edu/~jb2843/ Course-info:

More information

PHYSICS. Sound & Music

PHYSICS. Sound & Music PHYSICS Sound & Music 20.1 The Origin of Sound The source of all sound waves is vibration. 20.1 The Origin of Sound The original vibration stimulates the vibration of something larger or more massive.

More information

describe sound as the transmission of energy via longitudinal pressure waves;

describe sound as the transmission of energy via longitudinal pressure waves; 1 Sound-Detailed Study Study Design 2009 2012 Unit 4 Detailed Study: Sound describe sound as the transmission of energy via longitudinal pressure waves; analyse sound using wavelength, frequency and speed

More information

electroencephalogram

electroencephalogram electroencephalogram Particle Waves Electrons are STANDING WAVES in atomic orbitals. λ = h p Electron Waves Probability Waves in an Ocean of Uncertainty A wave packet in a square well (an electron in a

More information

SOUND & MUSIC. Sound & Music 1

SOUND & MUSIC. Sound & Music 1 SOUND & MUSIC Sound is produced by a rapid variation in the average density or pressure of air molecules. We perceive sound as these pressure changes cause our eardrums to vibrate. Sound waves are produced

More information

Physics 101. Lecture 21 Doppler Effect Loudness Human Hearing Interference of Sound Waves Reflection & Refraction of Sound

Physics 101. Lecture 21 Doppler Effect Loudness Human Hearing Interference of Sound Waves Reflection & Refraction of Sound Physics 101 Lecture 21 Doppler Effect Loudness Human Hearing Interference of Sound Waves Reflection & Refraction of Sound Quiz: Monday Oct. 18; Chaps. 16,17,18(as covered in class),19 CR/NC Deadline Oct.

More information

Define following terms in relation to a wave: (a) amplitude (b) frequency (c) wavelength and (d) wave velocity

Define following terms in relation to a wave: (a) amplitude (b) frequency (c) wavelength and (d) wave velocity EXERCISE. 7 (A) Question 1: Define following terms in relation to a wave: (a) amplitude (b) frequency (c) wavelength and (d) wave velocity Solution 1: (a) Amplitude: The maximum displacement of the particle

More information

Unit 6: Waves and Sound

Unit 6: Waves and Sound Unit 6: Waves and Sound Brent Royuk Phys-109 Concordia University Waves What is a wave? Examples Water, sound, slinky, ER Transverse vs. Longitudinal 2 Wave Properties The magic of waves. Great distances

More information

Sound Waves Speed Intensity Loudness Frequency Pitch Resonance Sound Waves

Sound Waves Speed Intensity Loudness Frequency Pitch Resonance Sound Waves Sound Waves Speed Intensity Loudness Frequency Pitch Resonance 13.2 Sound Waves Sound Waves Sound waves are longitudinal waves. Behaviors of sound can be explained with a few properties: Speed Intensity

More information

electroencephalogram

electroencephalogram electroencephalogram Particle Waves Electrons are STANDING WAVES in atomic orbitals. λ = h p Electron Waves Probability Waves in an Ocean of Uncertainty A wave packet in a square well (an electron in a

More information

CHAPTER 17 AND 18 CHARACTERISTICS OF EM WAVES LEARNING OBJECTIVES CHARACTERISTICS OF EM WAVES 11/10/2014

CHAPTER 17 AND 18 CHARACTERISTICS OF EM WAVES LEARNING OBJECTIVES CHARACTERISTICS OF EM WAVES 11/10/2014 STUDENT LEARNING GOALS PHYSICAL SCIENCE ELECTROMAGNETISM SC.912.P.10.18 CHAPTER 17 AND 18 Electromagnetic Spectrum, Light, and Sound Goal: Explore the theory of electromagnetism by comparting and contrasting

More information

Waves-Wave Behaviors

Waves-Wave Behaviors 1. While playing, two children create a standing wave in a rope, as shown in the diagram below. A third child participates by jumping the rope. What is the wavelength of this standing wave? 1. 2.15 m 2.

More information

Introduction to Acoustical Oceanography SMS-598, Fall 2005.

Introduction to Acoustical Oceanography SMS-598, Fall 2005. Introduction to Acoustical Oceanography SMS-598, Fall 2005. Instructors: Mick Peterson and Emmanuel Boss Introductions: why are we here? Expectations: participation, homework, term-paper. Emphasis: learning

More information

Sound, acoustics Slides based on: Rossing, The science of sound, 1990.

Sound, acoustics Slides based on: Rossing, The science of sound, 1990. Sound, acoustics Slides based on: Rossing, The science of sound, 1990. Acoustics 1 1 Introduction Acoustics 2! The word acoustics refers to the science of sound and is a subcategory of physics! Room acoustics

More information

Waves. Waves, Sound, & Light. Types&of&Waves. Types of Waves

Waves. Waves, Sound, & Light. Types&of&Waves. Types of Waves Waves PHY1014/1024 Physical Science Lecture 9: Waves, Sound, & Light Professor Kenny L. Tapp Waves&are&disturbances&(energy)&that& propagate&(move)& Waves&involve&a&oscilla8on&of&something& about&an&equilibrium&point

More information

Honors Physics-121B Sound and Musical Acoustics Introduction: Production of Sounds by Various Sources: Media That Transmit Sound:

Honors Physics-121B Sound and Musical Acoustics Introduction: Production of Sounds by Various Sources: Media That Transmit Sound: Honors Physics-121B Sound and Musical Acoustics Introduction: This unit deals with the properties of longitudinal (compressional) waves traveling through various media. As these waves travel through the

More information

Waves Mechanical vs. Electromagnetic Mechanical Electromagnetic Transverse vs. Longitudinal Behavior of Light

Waves Mechanical vs. Electromagnetic Mechanical Electromagnetic Transverse vs. Longitudinal Behavior of Light PSC1341 Chapter 4 Waves Chapter 4: Wave Motion A.. The Behavior of Light B. The E-M spectrum C. Equations D. Reflection, Refraction, Lenses and Diffraction E. Constructive Interference, Destructive Interference

More information