Exclusive Technology Feature. SIMPLIS Simulation Tames Analysis of Stability, Transient Response, and Startup For DC-DC Converters

Size: px
Start display at page:

Download "Exclusive Technology Feature. SIMPLIS Simulation Tames Analysis of Stability, Transient Response, and Startup For DC-DC Converters"

Transcription

1 SIMPLIS Simulation Tames Analysis of Stability, Transient Response, and Startup For DC-DC Converters By Timothy Hegarty, National Semiconductor, Tucson, Ariz. ISSUE: August 2010 In designing linear and switch-mode power supplies, engineers have long focused on the issue of load current transient demand and its impact on the power supply s output-voltage regulation and response characteristic. Many applications based on ASICs, FPGAs, microprocessors and the like have supply voltages whose levels are decreasing on an absolute basis and whose tolerance bands are decreasing on a percentage basis. This trend is compounded by progressively increasing supply-current amplitudes and slew-rate demands. In many instances, an ASIC may be regularly commanded from its sleep state to its full rated current in such a short time and at such a high repetition rate that a severe burden is placed on the power supply. In these cases, it becomes critical that the supply exhibit a fast step-load transient response on its output voltage. That s needed not only to keep the output voltage within the ASIC s specification, but also for the cost and space savings promised if fewer output capacitors are required. Against this backdrop, this article demonstrates a circuit simulation [1] of a non-isolated dc-dc converter that allows us to explore the converter s load-transient behavior, control-loop stability and output-voltage startup characteristic (all of which are interrelated). The simulation, which is based on a full time-domain, non-linear, switching model of the converter, is essentially a virtual prototyping tool that gives the designer several wellknown benefits. Among these are fewer PCB spins, early identification of design errors, shortened design time, and ultimately, reduced engineering cost. Aside from the simplicity and flexibility of the simulation process described here, its convenience renders it viable for everyday use by the practicing power electronics engineer. With this approach, there s no need to derive averaged models of the converter or identify the current-loop sampling gain contribution! This simulation method accommodates circuit non-idealities, including error amplifier finite gain-bandwidth characteristic and switch minimum on-time constraints, using small-signal ac analysis simulation to produce meaningful bode plot results up to half the switching frequency. The output voltage waveform in response to a load transient can then be simply determined with time-domain simulation using the same model. The key benchmarks of output transient performance peak deviation and settling time are readily obtained. Finally, with this simulation method, the startup characteristic can be scrutinized as it pertains to soft-start time, output voltage waveform monotonicity, and pre-bias startup compatibility. A Regulator Case Study A fixed switching frequency, naturally-sampled, peak current-mode controlled converter is shown in Fig. 1. This particular design example employs a commercially available PWM synchronous buck regulator [2] operating in continuous-conduction mode (CCM) with a purely resistive load. Note that the parasitic resistances of the filter inductor and output capacitor, R dcr and R esr, are denoted explicitly in Fig How2Power. All rights reserved. Page 1 of 11

2 Fig. 1. The power train of an LM21305-based dc-dc synchronous buck regulator employs a peak current-mode PWM control loop structure and a transconductance error amplifier with type-ii voltage loop compensation. The outer voltage loop employs a type-ii voltage-compensation circuit and conventional operational transconductance error amplifier (EA) with its inverting input, labeled the feedback (FB) node, connected to feedback resistors R fb1 and R fb2. A compensated error signal appears at the EA output (COMP), the outer voltage loop thus providing the reference command for the inner current loop. As illustrated in Fig. 1, a slope-compensation ramp of amplitude V slope is added to the sensed current to lessen the risk of subharmonic oscillation. The associated quality factor, Q, and slope-compensation parameter, m c, of the current-mode structure are defined as [3, 4] 1 Q = π ( m D c Se m c 1+. S. 0.5) (1) = (2) n where S e is the slope-compensation ramp slope and S n is the off-time slope of the sensed-current signal. S n is the duty-cycle complement. The circuit operating conditions, key component values and control circuit parameters relevant to the LM21305 regulator example are specified in Table How2Power. All rights reserved. Page 2 of 11

3 Table 1. LM21305 buck converter parameters. V in 12 V R dcr 9 mω C bw 32 pf V O 3.3 V R esr 2 mω V slope 0.2 V I O(max) 5 A R ds(on)hs 44 mω S e 0.10 V/µs L 3.3 µh R ds(on)ls 22 mω S n 0.13 V/µs C O 100 µf g m 2 ms m c 1.76 f S 500 khz R oea 880 kω Q 0.42 SIMPLIS Circuit Simulation Using the parameters from Table 1, a SIMPLIS switching model circuit simulation is presented in Fig. 2. Fortunately, just one SIMPLIS model is sufficient to inspect the small-signal control system, large-signal transient response, and startup characteristic. A few subtle details in the simulation model are worth detailing. The EA is implemented using a controlled source known as a voltage-controlled current source (VCCS) with built-in limiter function to conveniently define the EA sink and source current capability of ±250 μa. The high-side switch current is sensed by a currentcontrolled voltage source (CCVS) with gain of mω. The minimum high-side switch on-time is set to 60 ns by the clock pulse-width that sets the PWM latch. Slope compensation is achieved using a 0.2-V sawtooth ramp synchronized to the clock. Soft-start function is implemented by feeding 10 μa into soft-start capacitor C ss connected to the EA non-inverting input so that the reference voltage ramps linearly until it reaches 0.6 V. The low-side FET is operated in diode-emulation mode during startup such that the device is gated off when the inductor current ramps down to zero. The inductor current is sensed by looking at the voltage across its DCR and the low-side drive is terminated by AND gate U2. The output rail is diode connected to a pre-bias voltage source. The pre-bias voltage source minus the diode drop sets the output voltage pre-bias level. The output filter capacitor is a level 3 model representing a 100-μF 1210 ceramic with 2-mΩ ESR, 0.3-nH ESL, and 1-MΩ leakage resistance. Finally, variables A and B are included in the values of R fb2 and C comp, respectively. Both A and B default to unity but can take on a range of values to sweep the relevant component value in a multi-step analysis simulation run How2Power. All rights reserved. Page 3 of 11

4 Fig. 2. A SIMPLIS model used to perform ac and transient analyses of an LM21305-based buck converter. Any relevant transfer function of the converter system can be measured by breaking the loop at the upper feedback divider resistor, injecting a variable-frequency oscillator signal, and analyzing the frequency response at the appropriate nodes exactly the same steps as required in a practical measurement. The element with reference designator X1 in Fig. 2 is the SIMPLIS clock-edge trigger, which is used to find the circuit periodic operating point (POP) before running the ac analysis. POP analysis works on the full non-linear switching time-domain model of the circuit and enables the subsequent ac or transient analyses. The ac source with reference designator V osc in Fig. 2 is the input stimulus for the ac amplitude. This source is automatically controlled during simulation to keep the ac response in the linearized small-signal region. Loop Stability A type-ii compensator using an EA with transconductance, g m, is shown in Fig. 2. The dominant pole of the EA open-loop gain is set by the EA output resistance, R oea, and effective bandwidth-limiting capacitance, C bw. The EA bandwidth is modeled in the simulation by capacitor C bw so that the open-loop bandwidth is f = g. m EA BW (3) 2πC bw The compensator transfer function from output voltage to COMP is a two-pole, one-zero expression given by [4] 2010 How2Power. All rights reserved. Page 4 of 11

5 G ( s) c = v~ v~ R comp out ( s). ( s) g R (1 + sr ). )) fb1 m oea comp comp (4) R fb1 + R fb2 (1 + sroeaccomp )(1 + srcomp ( Chf + Cbw C The reader interested in a detailed treatment of peak current-mode compensation strategy and current-mode system loop gain can refer to [3]. Note that capacitor C hf is sometimes not installed, allowing the EA itself to solely provide high-frequency attenuation by virtue of its finite gain-bandwidth. The simulated frequency response of the compensator is given in Fig. 3. The EA has an open-loop dc gain of 65 db and a 10-MHz singlepole gain-bandwidth characteristic. The 180 phase lag related to the EA in the inverting configuration is not included in the phase plots. The low-frequency compensator pole, compensator zero, and high-frequency compensator pole are plainly apparent. Fig. 3. Bode plot simulation result of compensator transfer function, Gc(s). Fig. 4 illustrates the simulated loop gain and phase plot of the exemplified converter. The crossover frequency is 70 khz and the phase margin (the difference between the loop phase and 180, EA inversion phase lag notwithstanding) is How2Power. All rights reserved. Page 5 of 11

6 Fig. 4. Bode plot simulation result of loop small-signal transfer function, T(s). Fig. 5 illustrates the simulated bode plot of the COMP-to-output transfer function. The sampling-gain term of the current loop contributes the steep phase roll-off at high frequencies. The load pole is clearly discernible. Assuming no reduction in output capacitance with applied voltage, its ESR zero is located at 800 khz so its effect is irrelevant. The voltage coefficient of ceramic capacitors, however, can be quite substantial and the actual capacitance at the frequency of interest should be experimentally characterized. Fig. 5. Bode plot simulation result of control-to-output small-signal transfer function, C-O(s). As evident in equation 4, the penalty for using a transconductance-type EA is that both feedback resistors, R fb1 and R fb2, factor into the compensator gain. The loop crossover frequency, all else being equal, will decrease as the output voltage increases. A multi-step simulation run is performed to measure the loop gain with the output 2010 How2Power. All rights reserved. Page 6 of 11

7 voltage setpoint at 3.3 V, 1.8 V and 1.2 V. Using variable A as a scale factor for the upper feedback resistance, R fb2, the output voltage is set before each simulation run. The results are plotted in Fig. 6. The crossover frequency at 1.2-V output is 133 khz, but the phase margin erodes to 29. Fig. 6. Bode plot simulation result of loop transfer function, T(s), with output voltage of 3.3 V, 1.8 V and 1.2 V. The implication is twofold: the compensation may need retuning if the output voltage changes; the performance is impaired if a module-style converter with wide output range is required. In contrast, if an op-amp type EA is employed, the FB node is effectively at ac ground and R fb2 bears no influence on the loop dynamics. The compensator transfer function is not dependent on output-voltage setpoint. Load Transient Response Using a SIMPLIS time-domain transient analysis, load-on and load-off transient responses are obtained as shown in Fig. 7. The load step is from 1 A to 5 A at 4 A/µs. The output voltage, output current, inductor current, COMP, and high-side switch drive waveforms are plotted. The peak deviation is 100 mv and settling time is 30 μs How2Power. All rights reserved. Page 7 of 11

8 Fig. 7. Load-on step transient simulation with high-side gate drive and COMP waveforms. The compensation zero frequency represents the dominant time constant in a load transient response characteristic [4]. A large C comp capacitance is thus antithetical to a fast transient response settling time. C comp can be reduced, however, to tradeoff phase margin and settling time. A phase margin target of 50 to 60 is ideal and it is found that the compensator zero is optimally located above the load pole but below the power stage resonant frequency. 1 ω R ω p LC comp = C 1 LC o comp ; ω 1 ω R p LC R load comp 1 C o ; (5) Of course, a smaller compensation capacitance is also advantageous if the transconductance EA has a low output drive current capability. Load-on and load-off transient responses are obtained with high (6.8 nf) and low (2.7 nf) compensation capacitor values chosen so that the compensator zero is located directly at the load pole and the power-stage resonant frequencies, respectively. Using variable B as a scale factor for C comp, the compensator zero is set before each simulation run. The results are plotted in Fig. 8. It is evident that the lower value of compensation capacitance results in a much more favorable settling time. Interestingly, this is achieved with very little relative change in the bode plot. There s approximately 1-kHz decrease in crossover frequency and 4 less phase margin with the 2.7-nF capacitor than with the 6.8-nF capacitor How2Power. All rights reserved. Page 8 of 11

9 Fig. 8: Load step transient response simulation with two values of compensation capacitance. Startup To obtain the output-voltage startup characteristic, a SIMPLIS time-domain transient analysis is run with the initial condition of the output capacitor voltage set to zero and the POP analysis not selected to run. The softstart time is 1 ms and startup is into a 0.66-Ω resistive load. The output-voltage waveform is monotonic during the entire ramp time with no dips or flat spots as shown in Fig. 9. Note the transition from diode-emulation mode to fully synchronous operation once the soft-start interval has expired. Fig. 9. Startup simulation How2Power. All rights reserved. Page 9 of 11

10 Fig. 10 demonstrates pre-bias startup compatibility. Again, the output-voltage waveform is monotonic during the startup ramp from the pre-bias level of 1.0 V to the steady-state operating point of 3.3 V. Perhaps more important, as the low-side FET operates in diode-emulation mode during startup, negative inductor current is prevented and the regulator does not sink current from the output rail. Fig. 10. Startup simulation with 1.0-V pre-biased output. References: 1. SIMPLIS Technologies Advanced Power System Simulation, Rev 6.0, 2. Product datasheet for National Semiconductor s LM A Adjustable Frequency Synchronous Buck Regulator from the PowerWise Family, 3. Robert Sheehan, National Semiconductor, Current-Mode Modeling Reference Guide, 4. Timothy Hegarty, National Semiconductor, Peak Current-Mode DC-DC Converter Stability Analysis, Further Reading: National Semiconductor s Webench Power Designer, How2Power. All rights reserved. Page 10 of 11

11 About the Author Timothy Hegarty is a principal applications engineer for the National Semiconductor design center in Tucson, Ariz. He received the B.E.(Elec.) and M.Eng.Sc degrees in Electrical Engineering from University College Cork, Ireland in 1995 and 1997, respectively. Prior to joining National, he worked for Artesyn Technologies designing isolated board-mounted brick converters. His areas of interest are integrated PWM switching regulators and controllers, LDOs, references, hot-swap controllers, renewable energy systems, and system-level simulation of same How2Power. All rights reserved. Page 11 of 11

Background (What Do Line and Load Transients Tell Us about a Power Supply?)

Background (What Do Line and Load Transients Tell Us about a Power Supply?) Maxim > Design Support > Technical Documents > Application Notes > Power-Supply Circuits > APP 3443 Keywords: line transient, load transient, time domain, frequency domain APPLICATION NOTE 3443 Line and

More information

3A, 24V Asynchronous Step Down DC/DC Converter

3A, 24V Asynchronous Step Down DC/DC Converter 3A, 24V Asynchronous Step Down DC/DC Converter DESCRIPTION The ZT1525 is a constant frequency peak current mode step down switching regulator. The range of input voltage is from 4V to 24V. The output current

More information

MP1482 2A, 18V Synchronous Rectified Step-Down Converter

MP1482 2A, 18V Synchronous Rectified Step-Down Converter The Future of Analog IC Technology MY MP48 A, 8 Synchronous Rectified Step-Down Converter DESCRIPTION The MP48 is a monolithic synchronous buck regulator. The device integrates two 30mΩ MOSFETs, and provides

More information

Constant Current Control for DC-DC Converters

Constant Current Control for DC-DC Converters Constant Current Control for DC-DC Converters Introduction...1 Theory of Operation...1 Power Limitations...1 Voltage Loop Stability...2 Current Loop Compensation...3 Current Control Example...5 Battery

More information

Designing a Multi-Phase Asynchronous Buck Regulator Using the LM2639

Designing a Multi-Phase Asynchronous Buck Regulator Using the LM2639 Designing a Multi-Phase Asynchronous Buck Regulator Using the LM2639 Overview The LM2639 provides a unique solution to high current, low voltage DC/DC power supplies such as those for fast microprocessors.

More information

SGM6132 3A, 28.5V, 1.4MHz Step-Down Converter

SGM6132 3A, 28.5V, 1.4MHz Step-Down Converter GENERAL DESCRIPTION The SGM6132 is a current-mode step-down regulator with an internal power MOSFET. This device achieves 3A continuous output current over a wide input supply range from 4.5V to 28.5V

More information

HM3410D Low Noise, Fast Transient 1A Step-Down Converter

HM3410D Low Noise, Fast Transient 1A Step-Down Converter General Description The HM3410D is a 1.4MHz step-down converter with an input voltage range of 2.3V to 6.0V and output voltage as low as 0.6V. It is optimized to react quickly to a load variation. The

More information

Design Type III Compensation Network For Voltage Mode Step-down Converters

Design Type III Compensation Network For Voltage Mode Step-down Converters Introduction This application note details how to calculate a type III compensation network and investigates the relationship between phase margin and load transient response for the Skyworks family of

More information

MP2305 2A, 23V Synchronous Rectified Step-Down Converter

MP2305 2A, 23V Synchronous Rectified Step-Down Converter The Future of Analog IC Technology MP305 A, 3 Synchronous Rectified Step-Down Converter DESCRIPTION The MP305 is a monolithic synchronous buck regulator. The device integrates 30mΩ MOSFETS that provide

More information

Designing low-frequency decoupling using SIMPLIS

Designing low-frequency decoupling using SIMPLIS Designing low-frequency decoupling using SIMPLIS K. Covi Traditional approach to sizing decoupling Determine effective ESR required Parallel electrolytic caps until ESR = ΔV/ΔI where ΔV = desired voltage

More information

SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS

SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS 8 TO 35 V OPERATION 5.1 V REFERENCE TRIMMED TO ± 1 % 100 Hz TO 500 KHz OSCILLATOR RANGE SEPARATE OSCILLATOR SYNC TERMINAL ADJUSTABLE DEADTIME CONTROL INTERNAL

More information

SGM6232 2A, 38V, 1.4MHz Step-Down Converter

SGM6232 2A, 38V, 1.4MHz Step-Down Converter GENERAL DESCRIPTION The is a current-mode step-down regulator with an internal power MOSFET. This device achieves 2A continuous output current over a wide input supply range from 4.5V to 38V with excellent

More information

MP2307 3A, 23V, 340KHz Synchronous Rectified Step-Down Converter

MP2307 3A, 23V, 340KHz Synchronous Rectified Step-Down Converter The Future of Analog IC Technology TM TM MP307 3A, 3, 340KHz Synchronous Rectified Step-Down Converter DESCRIPTION The MP307 is a monolithic synchronous buck regulator. The device integrates 00mΩ MOSFETS

More information

EUP3410/ A,16V,380KHz Step-Down Converter DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

EUP3410/ A,16V,380KHz Step-Down Converter DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit 2A,16V,380KHz Step-Down Converter DESCRIPTION The is a current mode, step-down switching regulator capable of driving 2A continuous load with excellent line and load regulation. The can operate with an

More information

4.5V to 32V Input High Current LED Driver IC For Buck or Buck-Boost Topology CN5816. Features: SHDN COMP OVP CSP CSN

4.5V to 32V Input High Current LED Driver IC For Buck or Buck-Boost Topology CN5816. Features: SHDN COMP OVP CSP CSN 4.5V to 32V Input High Current LED Driver IC For Buck or Buck-Boost Topology CN5816 General Description: The CN5816 is a current mode fixed-frequency PWM controller for high current LED applications. The

More information

Analog Technologies. ATI2202 Step-Down DC/DC Converter ATI2202. Fixed Frequency: 340 khz

Analog Technologies. ATI2202 Step-Down DC/DC Converter ATI2202. Fixed Frequency: 340 khz Step-Down DC/DC Converter Fixed Frequency: 340 khz APPLICATIONS LED Drive Low Noise Voltage Source/ Current Source Distributed Power Systems Networking Systems FPGA, DSP, ASIC Power Supplies Notebook Computers

More information

Features. 5V Reference UVLO. Oscillator S R

Features. 5V Reference UVLO. Oscillator S R MIC38C42/3/4/5 BiCMOS Current-Mode PWM Controllers General Description The MIC38C4x are fixed frequency, high performance, current-mode PWM controllers. Micrel s BiCMOS devices are pin compatible with

More information

MP A, 15V, 800KHz Synchronous Buck Converter

MP A, 15V, 800KHz Synchronous Buck Converter The Future of Analog IC Technology TM TM MP0.5A, 5, 00KHz Synchronous Buck Converter DESCRIPTION The MP0 is a.5a, 00KHz synchronous buck converter designed for low voltage applications requiring high efficiency.

More information

EUP3452A. 2A,30V,300KHz Step-Down Converter DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

EUP3452A. 2A,30V,300KHz Step-Down Converter DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit 2A,30V,300KHz Step-Down Converter DESCRIPTION The is current mode, step-down switching regulator capable of driving 2A continuous load with excellent line and load regulation. The can operate with an input

More information

EUP A,40V,200KHz Step-Down Converter

EUP A,40V,200KHz Step-Down Converter 3A,40V,200KHz Step-Down Converter DESCRIPTION The is current mode, step-down switching regulator capable of driving 3A continuous load with excellent line and load regulation. The operates with an input

More information

Current-mode PWM controller

Current-mode PWM controller DESCRIPTION The is available in an 8-Pin mini-dip the necessary features to implement off-line, fixed-frequency current-mode control schemes with a minimal external parts count. This technique results

More information

MIC38C42A/43A/44A/45A

MIC38C42A/43A/44A/45A MIC38C42A/43A/44A/45A BiCMOS Current-Mode PWM Controllers General Description The MIC38C4xA are fixed frequency, high performance, current-mode PWM controllers. Micrel s BiCMOS devices are pin compatible

More information

Preliminary. Synchronous Buck PWM DC-DC Controller FP6329/A. Features. Description. Applications. Ordering Information.

Preliminary. Synchronous Buck PWM DC-DC Controller FP6329/A. Features. Description. Applications. Ordering Information. Synchronous Buck PWM DC-DC Controller Description The is designed to drive two N-channel MOSFETs in a synchronous rectified buck topology. It provides the output adjustment, internal soft-start, frequency

More information

LINEAR MODELING OF A SELF-OSCILLATING PWM CONTROL LOOP

LINEAR MODELING OF A SELF-OSCILLATING PWM CONTROL LOOP Carl Sawtell June 2012 LINEAR MODELING OF A SELF-OSCILLATING PWM CONTROL LOOP There are well established methods of creating linearized versions of PWM control loops to analyze stability and to create

More information

MP1472 2A, 18V Synchronous Rectified Step-Down Converter

MP1472 2A, 18V Synchronous Rectified Step-Down Converter The Future of Analog IC Technology MP472 2A, 8 Synchronous Rectified Step-Down Converter DESCRIPTION The MP472 is a monolithic synchronous buck regulator. The device integrates a 75mΩ highside MOSFET and

More information

SGM6130 3A, 28.5V, 385kHz Step-Down Converter

SGM6130 3A, 28.5V, 385kHz Step-Down Converter GENERAL DESCRIPTION The SGM6130 is a current-mode step-down regulator with an internal power MOSFET. This device achieves 3A continuous output current over a wide input supply range from 4.5 to 28.5 with

More information

BUCK Converter Control Cookbook

BUCK Converter Control Cookbook BUCK Converter Control Cookbook Zach Zhang, Alpha & Omega Semiconductor, Inc. A Buck converter consists of the power stage and feedback control circuit. The power stage includes power switch and output

More information

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook.

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook. EE4902 Lab 9 CMOS OP-AMP PURPOSE: The purpose of this lab is to measure the closed-loop performance of an op-amp designed from individual MOSFETs. This op-amp, shown in Fig. 9-1, combines all of the major

More information

Using an automated Excel spreadsheet to compensate a flyback converter operated in current-mode. Christophe Basso, David Sabatié

Using an automated Excel spreadsheet to compensate a flyback converter operated in current-mode. Christophe Basso, David Sabatié Using an automated Excel spreadsheet to compensate a flyback converter operated in current-mode Christophe Basso, David Sabatié ON Semiconductor download Go to ON Semiconductor site and enter flyback in

More information

LR8509 Series 1.5MHz 600mA Synchronous Step-Down Converter

LR8509 Series 1.5MHz 600mA Synchronous Step-Down Converter LR8509 Series 1.5MHz 600mA Synchronous Step-Down Converter INTRODUCTION: The LR8509 is a 1.5MHz constant frequency, slope compensated current mode PWM synchronous step-down converter. High switching frequency

More information

MP2313 High Efficiency 1A, 24V, 2MHz Synchronous Step Down Converter

MP2313 High Efficiency 1A, 24V, 2MHz Synchronous Step Down Converter The Future of Analog IC Technology MP2313 High Efficiency 1A, 24V, 2MHz Synchronous Step Down Converter DESCRIPTION The MP2313 is a high frequency synchronous rectified step-down switch mode converter

More information

Homework Assignment 06

Homework Assignment 06 Question 1 (2 points each unless noted otherwise) Homework Assignment 06 1. True or false: when transforming a circuit s diagram to a diagram of its small-signal model, we replace dc constant current sources

More information

Features. 5V Reference UVLO. Oscillator S R GND*(AGND) 5 (9) ISNS 3 (5)

Features. 5V Reference UVLO. Oscillator S R GND*(AGND) 5 (9) ISNS 3 (5) MIC38HC42/3/4/5 BiCMOS 1A Current-Mode PWM Controllers General Description The MIC38HC4x family are fixed frequency current-mode PWM controllers with 1A drive current capability. Micrel s BiCMOS devices

More information

idesyn id8802 2A, 23V, Synchronous Step-Down DC/DC

idesyn id8802 2A, 23V, Synchronous Step-Down DC/DC 2A, 23V, Synchronous Step-Down DC/DC General Description Applications The id8802 is a 340kHz fixed frequency PWM synchronous step-down regulator. The id8802 is operated from 4.5V to 23V, the generated

More information

ML4818 Phase Modulation/Soft Switching Controller

ML4818 Phase Modulation/Soft Switching Controller Phase Modulation/Soft Switching Controller www.fairchildsemi.com Features Full bridge phase modulation zero voltage switching circuit with programmable ZV transition times Constant frequency operation

More information

NOT RECOMMENDED FOR NEW DESIGNS REFER TO MP2147 MP Ultra Low Voltage, 4A, 5.5V Synchronous Step-Down Switching Regulator DESCRIPTION FEATURES

NOT RECOMMENDED FOR NEW DESIGNS REFER TO MP2147 MP Ultra Low Voltage, 4A, 5.5V Synchronous Step-Down Switching Regulator DESCRIPTION FEATURES The Future of Analog IC Technology DESCRIPTION The MP38115 is an internally compensated 1.5MHz fixed frequency PWM synchronous step-down regulator. MP38115 operates from a 1.1V to 5.5V input and generates

More information

MP1484 3A, 18V, 340KHz Synchronous Rectified Step-Down Converter

MP1484 3A, 18V, 340KHz Synchronous Rectified Step-Down Converter The Future of Analog IC Technology MP484 3A, 8, 340KHz Synchronous Rectified Step-Down Converter DESCRIPTION The MP484 is a monolithic synchronous buck regulator. The device integrates top and bottom 85mΩ

More information

James Lunsford HW2 2/7/2017 ECEN 607

James Lunsford HW2 2/7/2017 ECEN 607 James Lunsford HW2 2/7/2017 ECEN 607 Problem 1 Part A Figure 1: Negative Impedance Converter To find the input impedance of the above NIC, we use the following equations: V + Z N V O Z N = I in, V O kr

More information

ANP012. Contents. Application Note AP2004 Buck Controller

ANP012. Contents. Application Note AP2004 Buck Controller Contents 1. AP004 Specifications 1.1 Features 1. General Description 1. Pin Assignments 1.4 Pin Descriptions 1.5 Block Diagram 1.6 Absolute Maximum Ratings. Hardware.1 Introduction. Typical Application.

More information

LM148/LM248/LM348 Quad 741 Op Amps

LM148/LM248/LM348 Quad 741 Op Amps Quad 741 Op Amps General Description The LM148 series is a true quad 741. It consists of four independent, high gain, internally compensated, low power operational amplifiers which have been designed to

More information

HF A 27V Synchronous Buck Converter General Description. Features. Applications. Package: TBD

HF A 27V Synchronous Buck Converter General Description. Features. Applications.  Package: TBD General Description The is a monolithic synchronous buck regulator. The device integrates 80 mω MOSFETS that provide 4A continuous load current over a wide operating input voltage of 4.5V to 27V. Current

More information

3A, 36V, Step-Down Converter

3A, 36V, Step-Down Converter 3A, 36, Step-Down Converter FP6150 General Description The FP6150 is a buck regulator with a built in internal power MOSFET. It achieves 3A continuous output current over a wide input supply range with

More information

UNISONIC TECHNOLOGIES CO., LTD UC3842B/3843B

UNISONIC TECHNOLOGIES CO., LTD UC3842B/3843B UNISONIC TECHNOLOGIES CO., LTD UC3842B/3843B HIGH PERFORMANCE CURRENT MODE CONTROLLERS DESCRIPTION The UTC UC3842B/3843B are specifically designed for off-line and dc-to-dc converter applications offering

More information

AN726. Vishay Siliconix AN726 Design High Frequency, Higher Power Converters With Si9166

AN726. Vishay Siliconix AN726 Design High Frequency, Higher Power Converters With Si9166 AN726 Design High Frequency, Higher Power Converters With Si9166 by Kin Shum INTRODUCTION The Si9166 is a controller IC designed for dc-to-dc conversion applications with 2.7- to 6- input voltage. Like

More information

PRODUCTION DATA SHEET

PRODUCTION DATA SHEET is a 340kHz fixed frequency, current mode, PWM synchronous buck (step-down) DC- DC converter, capable of driving a 3A load with high efficiency, excellent line and load regulation. The device integrates

More information

10A Current Mode Non-Synchronous PWM Boost Converter

10A Current Mode Non-Synchronous PWM Boost Converter 10A Current Mode Non-Synchronous PWM Boost Converter General Description The is a current mode boost DC-DC converter. It is PWM circuitry with built-in 15mΩ power MOSFET make this regulator highly power

More information

FP A Current Mode Non-Synchronous PWM Boost Converter

FP A Current Mode Non-Synchronous PWM Boost Converter 10A Current Mode Non-Synchronous PWM Boost Converter General Description The is a current mode boost DC-DC converter. It is PWM circuitry with built-in 15mΩ power MOSFET make this regulator highly power

More information

Test Your Understanding

Test Your Understanding 074 Part 2 Analog Electronics EXEISE POBLEM Ex 5.3: For the switched-capacitor circuit in Figure 5.3b), the parameters are: = 30 pf, 2 = 5pF, and F = 2 pf. The clock frequency is 00 khz. Determine the

More information

ECEN 325 Lab 5: Operational Amplifiers Part III

ECEN 325 Lab 5: Operational Amplifiers Part III ECEN Lab : Operational Amplifiers Part III Objectives The purpose of the lab is to study some of the opamp configurations commonly found in practical applications and also investigate the non-idealities

More information

Thermally enhanced Low V FB Step-Down LED Driver ADT6780

Thermally enhanced Low V FB Step-Down LED Driver ADT6780 Thermally enhanced Low V FB Step-Down LED Driver General Description The is a thermally enhanced current mode step down LED driver. That is designed to deliver constant current to high power LEDs. The

More information

PART MAX1801 COMP DCON GND. Maxim Integrated Products 1

PART MAX1801 COMP DCON GND. Maxim Integrated Products 1 19-1741 Rev 0; 10/00 Digital Camera Step-Up Slave General Description The step-up slave DC-DC controller is used with either the MAX1800 (step-up) or the MAX1802 (stepdown) master DC-DC converter to provide

More information

1.5MHz, 1.5A Step-Down Converter

1.5MHz, 1.5A Step-Down Converter 1.5MHz, 1.5A Step-Down Converter General Description The is a 1.5MHz constant frequency current mode PWM step-down converter. It is ideal for portable equipment which requires very high current up to 1.5A

More information

MP V, 4A Synchronous Step-Down Coverter

MP V, 4A Synchronous Step-Down Coverter MP9151 20, 4A Synchronous Step-Down Coverter DESCRIPTION The MP9151 is a synchronous rectified stepdown switch mode converter with built in internal power MOSFETs. It offers a very compact solution to

More information

EUP2619. TFT LCD DC-DC Converter with Integrated Charge Pumps and OP-AMP FEATURES DESCRIPTION APPLICATIONS. Typical Application Circuit

EUP2619. TFT LCD DC-DC Converter with Integrated Charge Pumps and OP-AMP FEATURES DESCRIPTION APPLICATIONS. Typical Application Circuit TFT LCD DC-DC Converter with Integrated Charge Pumps and OP-AMP DESCRIPTION The EUP2619 generates power supply rails for thin-film transistor (TFT) liquid-crystal display (LCD) panels in tablet PCs and

More information

Vishay Siliconix AN718 Powering the Pentium VRE with the Si9145 Voltage Mode Controlled PWM Converter

Vishay Siliconix AN718 Powering the Pentium VRE with the Si9145 Voltage Mode Controlled PWM Converter AN718 Powering the Pentium VRE with the Si9145 Voltage Mode Controlled PWM Converter BENEFITS First and only Intel-approved switching converter solution to provide static and dynamic voltage regulation

More information

DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION. 500KHz, 18V, 2A Synchronous Step-Down Converter

DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION. 500KHz, 18V, 2A Synchronous Step-Down Converter DESCRIPTION The is a fully integrated, high-efficiency 2A synchronous rectified step-down converter. The operates at high efficiency over a wide output current load range. This device offers two operation

More information

Features MIC2193BM. Si9803 ( 2) 6.3V ( 2) VDD OUTP COMP OUTN. Si9804 ( 2) Adjustable Output Synchronous Buck Converter

Features MIC2193BM. Si9803 ( 2) 6.3V ( 2) VDD OUTP COMP OUTN. Si9804 ( 2) Adjustable Output Synchronous Buck Converter MIC2193 4kHz SO-8 Synchronous Buck Control IC General Description s MIC2193 is a high efficiency, PWM synchronous buck control IC housed in the SO-8 package. Its 2.9V to 14V input voltage range allows

More information

Features MIC2194BM VIN EN/ UVLO CS OUTP VDD FB. 2k COMP GND. Adjustable Output Buck Converter MIC2194BM UVLO

Features MIC2194BM VIN EN/ UVLO CS OUTP VDD FB. 2k COMP GND. Adjustable Output Buck Converter MIC2194BM UVLO MIC2194 400kHz SO-8 Buck Control IC General Description s MIC2194 is a high efficiency PWM buck control IC housed in the SO-8 package. Its 2.9V to 14V input voltage range allows it to efficiently step

More information

ADT7351. General Description. Applications. Features. Typical Application Circuit. Oct / Rev0.

ADT7351. General Description. Applications. Features. Typical Application Circuit.   Oct / Rev0. General Description The ADT735 is a step-down converter with integrated switching MOSFET. It operates wide input supply voltage range from 4.5 to 28 with 3A continuous output current. It includes current

More information

OPERATIONAL AMPLIFIER PREPARED BY, PROF. CHIRAG H. RAVAL ASSISTANT PROFESSOR NIRMA UNIVRSITY

OPERATIONAL AMPLIFIER PREPARED BY, PROF. CHIRAG H. RAVAL ASSISTANT PROFESSOR NIRMA UNIVRSITY OPERATIONAL AMPLIFIER PREPARED BY, PROF. CHIRAG H. RAVAL ASSISTANT PROFESSOR NIRMA UNIVRSITY INTRODUCTION Op-Amp means Operational Amplifier. Operational stands for mathematical operation like addition,

More information

Techcode. 1.6A 32V Synchronous Rectified Step-Down Converte TD1529. General Description. Features. Applications. Package Types DATASHEET

Techcode. 1.6A 32V Synchronous Rectified Step-Down Converte TD1529. General Description. Features. Applications. Package Types DATASHEET General Description Features The TD1529 is a monolithic synchronous buck regulator. The device integrates two 130mΩ MOSFETs, and provides 1.6A of continuous load current over a wide input voltage of 4.75V

More information

NX7101 2A, High Voltage Synchronous Buck Regulator

NX7101 2A, High Voltage Synchronous Buck Regulator is a 340kHz fixed frequency, current mode, PWM synchronous buck (step-down) DC- DC converter, capable of driving a 2A load with high efficiency, excellent line and load regulation. The device integrates

More information

ACE726C. 500KHz, 18V, 2A Synchronous Step-Down Converter. Description. Features. Application

ACE726C. 500KHz, 18V, 2A Synchronous Step-Down Converter. Description. Features. Application Description The is a fully integrated, high-efficiency 2A synchronous rectified step-down converter. The operates at high efficiency over a wide output current load range. This device offers two operation

More information

Synchronous Buck Converter Controller

Synchronous Buck Converter Controller Product is End of Life 3/204 Synchronous Buck Converter Controller Si950 DESCRIPTION The Si950 synchronous buck regulator controller is ideally suited for high-efficiency step down converters in battery-powered

More information

LED Driver Specifications

LED Driver Specifications Maxim > Design Support > Technical Documents > Reference Designs > Automotive > APP 4452 Maxim > Design Support > Technical Documents > Reference Designs > Display Drivers > APP 4452 Maxim > Design Support

More information

Testing Power Sources for Stability

Testing Power Sources for Stability Keywords Venable, frequency response analyzer, oscillator, power source, stability testing, feedback loop, error amplifier compensation, impedance, output voltage, transfer function, gain crossover, bode

More information

MP2303 3A, 28V, 340KHz Synchronous Rectified Step-Down Converter

MP2303 3A, 28V, 340KHz Synchronous Rectified Step-Down Converter MP2303 3A, 28V, 340KHz Synchronous Rectified Step-Down Converter TM The Future of Analog IC Technology DESCRIPTION The MP2303 is a monolithic synchronous buck regulator. The device integrates power MOSFETS

More information

APPLICATION NOTE 6071 CHOOSE THE RIGHT REGULATOR FOR THE RIGHT JOB: PART 3, COMPONENT SELECTION

APPLICATION NOTE 6071 CHOOSE THE RIGHT REGULATOR FOR THE RIGHT JOB: PART 3, COMPONENT SELECTION Keywords: Switching Regulators,Step Down,Inductors,Simulation,EE-Sim,component selection APPLICATION NOTE 6071 CHOOSE THE RIGHT REGULATOR FOR THE RIGHT JOB: PART 3, COMPONENT SELECTION By: Don Corey, Principal

More information

EUP A,30V,500KHz Step-Down Converter DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

EUP A,30V,500KHz Step-Down Converter DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit 5A,30V,500KHz Step-Down Converter DESCRIPTION The is current mode, step-down switching regulator capable of driving 5A continuous load with excellent line and load regulation. The operates with an input

More information

EUP V/12V Synchronous Buck PWM Controller DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit. 1

EUP V/12V Synchronous Buck PWM Controller DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit. 1 5V/12V Synchronous Buck PWM Controller DESCRIPTION The is a high efficiency, fixed 300kHz frequency, voltage mode, synchronous PWM controller. The device drives two low cost N-channel MOSFETs and is designed

More information

ELC224 Final Review (12/10/2009) Name:

ELC224 Final Review (12/10/2009) Name: ELC224 Final Review (12/10/2009) Name: Select the correct answer to the problems 1 through 20. 1. A common-emitter amplifier that uses direct coupling is an example of a dc amplifier. 2. The frequency

More information

FAN8301 2A, 16V, Non-Synchronous, Step-Down, DC/DC Regulator

FAN8301 2A, 16V, Non-Synchronous, Step-Down, DC/DC Regulator November 2008 FAN8301 2A, 16V, Non-Synchronous, Step-Down, DC/DC Regulator Features 2A Output Current 0.22Ω Internal Power MOSFET Switch Wide 4.75V to 16V Operating Input Range Output Adjustable from 0.6

More information

HM2259D. 2A, 4.5V-20V Input,1MHz Synchronous Step-Down Converter. General Description. Features. Applications. Package. Typical Application Circuit

HM2259D. 2A, 4.5V-20V Input,1MHz Synchronous Step-Down Converter. General Description. Features. Applications. Package. Typical Application Circuit HM2259D 2A, 4.5V-20V Input,1MHz Synchronous Step-Down Converter General Description Features HM2259D is a fully integrated, high efficiency 2A synchronous rectified step-down converter. The HM2259D operates

More information

Phase Shift Resonant Controller

Phase Shift Resonant Controller Phase Shift Resonant Controller FEATURES Programmable Output Turn On Delay; Zero Delay Available Compatible with Voltage Mode or Current Mode Topologies Practical Operation at Switching Frequencies to

More information

FAN2013 2A Low-Voltage, Current-Mode Synchronous PWM Buck Regulator

FAN2013 2A Low-Voltage, Current-Mode Synchronous PWM Buck Regulator FAN2013 2A Low-Voltage, Current-Mode Synchronous PWM Buck Regulator Features 95% Efficiency, Synchronous Operation Adjustable Output Voltage from 0.8V to V IN-1 4.5V to 5.5V Input Voltage Range Up to 2A

More information

PHYS 536 The Golden Rules of Op Amps. Characteristics of an Ideal Op Amp

PHYS 536 The Golden Rules of Op Amps. Characteristics of an Ideal Op Amp PHYS 536 The Golden Rules of Op Amps Introduction The purpose of this experiment is to illustrate the golden rules of negative feedback for a variety of circuits. These concepts permit you to create and

More information

MP2314S 2A, 24V, 500kHz, High-Efficiency, Synchronous, Step-Down Converter

MP2314S 2A, 24V, 500kHz, High-Efficiency, Synchronous, Step-Down Converter The Future of Analog IC Technology DESCRIPTION The MP2314S is a high-efficiency, synchronous, rectified, step-down, switch mode converter with built-in, internal power MOSFETs. It is a next generation

More information

MP A, 5.5V Synchronous Step-Down Switching Regulator

MP A, 5.5V Synchronous Step-Down Switching Regulator The Future of Analog IC Technology DESCRIPTION The MP2120 is an internally compensated 1.5MHz fixed frequency PWM synchronous step-down regulator. MP2120 operates from a 2.7V to 5.5V input and generates

More information

Testing and Stabilizing Feedback Loops in Today s Power Supplies

Testing and Stabilizing Feedback Loops in Today s Power Supplies Keywords Venable, frequency response analyzer, impedance, injection transformer, oscillator, feedback loop, Bode Plot, power supply design, open loop transfer function, voltage loop gain, error amplifier,

More information

CURRENT MODE PWM CONTROLLER LM3842A/3A/4A/5A

CURRENT MODE PWM CONTROLLER LM3842A/3A/4A/5A CURRENT MODE PWM CONTROLLER LMA/A/A/5A FEATURES SOP/ DIP PIN Configulation Automatic feed forward compensation Optimized for offline converter Double pulse suppression Current mode operation to 500 KHz

More information

FEATURES DESCRIPTION APPLICATIONS PACKAGE REFERENCE

FEATURES DESCRIPTION APPLICATIONS PACKAGE REFERENCE DESCRIPTION The is a monolithic synchronous buck regulator. The device integrates 100mΩ MOSFETS that provide 2A continuous load current over a wide operating input voltage of 4.75V to 25V. Current mode

More information

Increasing Performance Requirements and Tightening Cost Constraints

Increasing Performance Requirements and Tightening Cost Constraints Maxim > Design Support > Technical Documents > Application Notes > Power-Supply Circuits > APP 3767 Keywords: Intel, AMD, CPU, current balancing, voltage positioning APPLICATION NOTE 3767 Meeting the Challenges

More information

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820 a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from + V to + V Dual Supply Capability from. V to 8 V Excellent Load

More information

MPM V-5.5V, 4A, Power Module, Synchronous Step-Down Converter with Integrated Inductor

MPM V-5.5V, 4A, Power Module, Synchronous Step-Down Converter with Integrated Inductor The Future of Analog IC Technology MPM3840 2.8V-5.5V, 4A, Power Module, Synchronous Step-Down Converter with Integrated Inductor DESCRIPTION The MPM3840 is a DC/DC module that includes a monolithic, step-down,

More information

MP2307 3A, 23V, 340KHz Synchronous Rectified Step-Down Converter

MP2307 3A, 23V, 340KHz Synchronous Rectified Step-Down Converter The Future of Analog IC Technology MP2307 3A, 23V, 340KHz Synchronous Rectified Step-Down Converter DESCRIPTION The MP2307 is a monolithic synchronous buck regulator. The device integrates 00mΩ MOSFETS

More information

LSP5502 2A Synchronous Step Down DC/DC Converter

LSP5502 2A Synchronous Step Down DC/DC Converter FEATURES 2A Output Current Wide 4.5V to 27V Operating Input Range Integrated 20mΩ Power MOSFET Switches Output Adjustable from 0.925V to 24V Up to 96% Efficiency Programmable Soft-Start Stable with Low

More information

LM348. Quad Operational Amplifier. Features. Description. Internal Block Diagram.

LM348. Quad Operational Amplifier. Features. Description. Internal Block Diagram. Quad Operational Amplifier www.fairchildsemi.com Features LM741 OP Amp operating characteristics Low supply current drain Class AB output stage-no crossover distortion Pin compatible with the LM324 Low

More information

December 2010 Rev FEATURES. Fig. 1: XRP7664 Application Diagram

December 2010 Rev FEATURES. Fig. 1: XRP7664 Application Diagram December 2010 Rev. 1.1.0 GENERAL DESCRIPTION The XRP7664 is a synchronous current-mode PWM step down (buck) regulator capable of a constant output current up to 2Amps. A wide 4.75V to 18V input voltage

More information

LF353 Wide Bandwidth Dual JFET Input Operational Amplifier

LF353 Wide Bandwidth Dual JFET Input Operational Amplifier LF353 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage

More information

2A, 6V, 1.5MHz, 17μA I Q, COT Synchronous Step Down Switcher In 8-pin TSOT23

2A, 6V, 1.5MHz, 17μA I Q, COT Synchronous Step Down Switcher In 8-pin TSOT23 The Future of Analog IC Technology DESCRIPTION The MP2161 is a monolithic step-down switch mode converter with built-in internal power MOSFETs. It achieves 2A continuous output current from a 2.5 to 6

More information

SG1524/SG2524/SG3524 REGULATING PULSE WIDTH MODULATOR DESCRIPTION FEATURES HIGH RELIABILITY FEATURES - SG1524 BLOCK DIAGRAM

SG1524/SG2524/SG3524 REGULATING PULSE WIDTH MODULATOR DESCRIPTION FEATURES HIGH RELIABILITY FEATURES - SG1524 BLOCK DIAGRAM SG54/SG54/SG54 REGULATING PULSE WIDTH MODULATOR DESCRIPTION This monolithic integrated circuit contains all the control circuitry for a regulating power supply inverter or switching regulator. Included

More information

R5 4.75k IN OUT GND 6.3V CR1 1N4148. C8 120pF AD8517. Figure 1. SSTL Bus Termination

R5 4.75k IN OUT GND 6.3V CR1 1N4148. C8 120pF AD8517. Figure 1. SSTL Bus Termination Tracking Bus Termination Voltage Regulators by Charles Coles Introduction This application note presents both low noise linear and high efficiency switch mode solutions for the SSTL type tracking bus termination

More information

LM6162/LM6262/LM6362 High Speed Operational Amplifier

LM6162/LM6262/LM6362 High Speed Operational Amplifier LM6162/LM6262/LM6362 High Speed Operational Amplifier General Description The LM6362 family of high-speed amplifiers exhibits an excellent speed-power product, delivering 300 V/µs and 100 MHz gain-bandwidth

More information

MP1570 3A, 23V Synchronous Rectified Step-Down Converter

MP1570 3A, 23V Synchronous Rectified Step-Down Converter Monolithic Power Systems MP570 3A, 23 Synchronous Rectified Step-Down Converter FEATURES DESCRIPTION The MP570 is a monolithic synchronous buck regulator. The device integrates 00mΩ MOSFETS which provide

More information

Voltage-to-Frequency and Frequency-to-Voltage Converter ADVFC32

Voltage-to-Frequency and Frequency-to-Voltage Converter ADVFC32 a FEATURES High Linearity 0.01% max at 10 khz FS 0.05% max at 100 khz FS 0.2% max at 500 khz FS Output TTL/CMOS Compatible V/F or F/V Conversion 6 Decade Dynamic Range Voltage or Current Input Reliable

More information

MP A, 50V, 1.2MHz Step-Down Converter in a TSOT23-6

MP A, 50V, 1.2MHz Step-Down Converter in a TSOT23-6 MP2456 0.5A, 50V, 1.2MHz Step-Down Converter in a TSOT23-6 DESCRIPTION The MP2456 is a monolithic, step-down, switchmode converter with a built-in power MOSFET. It achieves a 0.5A peak-output current over

More information

Design Note DN05009/D High Efficiency 3A Buck Regulator w/ Light Load Efficiency

Design Note DN05009/D High Efficiency 3A Buck Regulator w/ Light Load Efficiency DN59/D Design Note DN59/D High Efficiency 3A Buck Regulator w/ Light Load Efficiency Device Application Input Output Output Topology Voltage Voltage Current NCP317A Consumer Electronic 5V & 12V 1.V-5.V

More information

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter 3.1 Introduction DC/DC Converter efficiently converts unregulated DC voltage to a regulated DC voltage with better efficiency and high power density.

More information

INTEGRATED CIRCUITS. AN109 Microprocessor-compatible DACs Dec

INTEGRATED CIRCUITS. AN109 Microprocessor-compatible DACs Dec INTEGRATED CIRCUITS 1988 Dec DAC products are designed to convert a digital code to an analog signal. Since a common source of digital signals is the data bus of a microprocessor, DAC circuits that are

More information

Power Supply Works with FET Drivers, DrMOS and Power Blocks for Flexible Placement Near Microprocessors

Power Supply Works with FET Drivers, DrMOS and Power Blocks for Flexible Placement Near Microprocessors Power Supply Works with FET Drivers, DrMOS and Power Blocks for Flexible Placement Near Microprocessors Theo Phillips As microprocessors demand progressively more current at lower voltages, it becomes

More information