MOBILE RADIO PROPAGATION ALONG MIXED PATHS IN FOREST ENVIRONMENT

Size: px
Start display at page:

Download "MOBILE RADIO PROPAGATION ALONG MIXED PATHS IN FOREST ENVIRONMENT"

Transcription

1 Journal of Microwaes and Optoelectronics, Vol., No. 4, September MOBIL ADIO POPAGATION ALONG MIXD PATHS IN FOST NVIONMNT Gerásio P. S. Caalcante; Mário A.. Sanches and ômulo A. N. Olieira * Abstract This work proposes a simple model of trajectory of rays, based on knifeedge diffraction, to calculate the intensity field receied by a mobile station inside a forest enironment with relief discontinuity. To alidate the model, a radio propagation measurement campaign was carried out, in the county of Benfica, near the city of Belém, State of Pará. The measurement system consisted of a fixed laboratory transmitting a carrier at 9 MHz and a mobile laboratory specially mounted to measure and store the instantaneous alues of power of the receied signal. The results were compared to the simulations made with the proposed model, which presented the best performance comparing to other models utilized in this work. Index Terms radio propagation problem factors, mobile system in forest enironment, point-to-point models. I. INTODUCTION The propagation of radio waes oer irregular surfaces is of great importance to design of fixed and mobile radio systems. The behaior of propagating electromagnetic waes through forests and thick woods has been extensiely studied in the last decade []-[3]. Usual assessments of radio propagation in egetation focus either on communication paths for which both transmitter and receier are located in the egetation, or for which the transmitter is within the egetation while the receier is in the air aboe the egetation. Howeer, all this studies do not include propagation on a mobile enironment where systems operate in the 8/9 MHz frequency band. The aim of the present paper is to propose a simple model using ray trace techniques for mixed paths in forest enironment. The model makes use of diffraction and/or reflections on abrupt discontinuities caused by the presence of a road inside the forest enironment [4]. In this work is utilized a small number of rays paths contributing to the receied electromagnetic field. An important feature of this work is to show that these analytical results can be described in terms of ray paths, which permit the calculation of mobile radio loss in a large class of forest enironment. As an example, the ray representation is discussed in the context of a propagation path that traerses through two wooded regions, which are separated by a paed road. A campaign of propagation measurements was carried out in order to alidate the proposed model. * Gerásio P. S. Caalcante and Mário A. Sanches. Departamento de ngenharia létrica do Centro Tecnológico da Uniersidade Federal do Pará-UFPA CP:869, CP: Belém-PA Brazil, Tel/Fax: gerasio@guama.cpgee.ufpa.br; ômulo A. N. Olieira Centro Federal de ducação Tecnológica do Pará-CFT- CP: 866 This work was supported in part by FINP/CNPq/POPSP-UFPA under grant.

2 Journal of Microwaes and Optoelectronics, Vol., No. 4, September II. FOMULATION OF TH POBLM The idealized model for mixed-path considerations in a forest enironment is shown in Fig.. A paed road crosses a forest layer haing an effectie tree height h. The complete propagation path then takes the form of a succession of ray trajectories. As each of the trajectories is simple and is identified with a well-defined loss, the total radio loss oer the actie composite propagation path can be systematically determined. Fig. (a) shows the "road-angle" α that indicates the relatie position of the ray path and the o o road direction. This angle can assume alues in the interal α < 9. Fig.(b) shows the geometry of the propagation enironment studied where two knife-edges are considered. The first is located in point A and the second in point B associated with the first and second discontinuity of the forest, respectiely. Also, it is showed the situation where only two rays are considered as the most important components of the receied field. Due the first discontinuity the field is considered by diffraction in a knife-edge and a reflection on the road. In the second discontinuity the road cuts the forest gien origin to a field component ( ) that reaches the receier by a single diffraction on the edge of the egetation. A second component ( ) reaches the receier after diffraction on the edge of the egetation and a reflection at the forest on the other side of the road. To establish the field in the mobile receier it is conenient to considerate before the resultant field at point produced by diffraction at point A (corresponding to component) and reflection on the road (corresponding to component). This can be accompanied through Fig.(b). T FOST a OAD FOST OAD MOBIL FOST w d d (a) (b) Fig.. Geometry of the model: (a) superior iew of forest; (b) lateral iew of the forest

3 Journal of Microwaes and Optoelectronics, Vol., No. 4, September A. The Field eceied at Point. The expression for the receied field in point is gien by: = [ f ( ) + OAD f ( ) ] () where, is the free space field, OAD is the Fresnel reflection coefficient at road and f ( ) C( ) j S( ) = = or C(ν * ) and S(ν * ) are the Fresnel integrals with the parameter ν * gien by H =. F Here H * represents the path obstruction or liberation and F * is the first Fresnel zone ray. From Fig. we obtain the following Fresnel parameters ν * alues: = () ( d + W )cos α = h λ[( d + W )cosα W ] W (3) For ν = and ν > more simple expression may be used instead and it is proen that these approximation lead to errors smaller than db [5]: = (4) OAD =.5 (5)

4 Journal of Microwaes and Optoelectronics, Vol., No. 4, September = + (6) Then OAD (7) B. Field eceied in the Mobile Knowing that field at point M is due the field arriing from point, we can use the analytical continuation arguments to found the field at point considering that the transmitter being at point M. From reciprocity theorem we found that field at point M, mobile receier as follows: = (8). 5 BM OAD =.5 (9) Then d + w mobile = () d BM + + FOST Inserting (7) into () we obtain =.5 3P G ( d + w) 5 + T T OAD BM mobile ( ) () d d + W FOST + BM + FOST

5 Journal of Microwaes and Optoelectronics, Vol., No. 4, September where P T G T is the effectie radiated power by base station, FOST is the Fresnel reflection coefficient at forest and BM = ( h h r ) d cos α λ( d cosα w) w () = ( h h ) r λ( d cosα d cos α W + w)(w w) (3) BM = ( h h r ) ( d + w) cos α λ[( d + w)cosα w] w (4) = ( h h ) r λ[( d + ( d + w) cos α w)cosα W + w](w w) (5) From () we can obtain the receied aerage power: P = (6) mobile III. MASUMNT CAMPAIGN The arrangement of the measurement systems is showed in Fig.. The measurements were taken in a coered by radio signal transmitted by fixed station in the surroundings of Belém, state of Pará in a town called Benfica. The transmitted signal was a CW wae at 9 MHz, using a collinear antenna in a twele-height tower (Fig. a). The transmitter was installed on a building of the DMC (Delegacia do Ministério das Comunicações). The mobile receier has traeled along a 5.6-km road inside a forest at a speed of approximately km/h in one direction and at 4 km/h on the other (Fig. b). The measurement results were recorded on a tape recorder for off line processing. The map of measurement enironment (Fig. c) indicates the transmitter position, and the path of mobile receier unit in road. Fig. d shows a iew of the road crossing forest.

6 Journal of Microwaes and Optoelectronics, Vol., No. 4, September Fig a- Transmitter antenna Fig b- Mobile eceier Unity Fig.c- Map of Benfica road inside forest Fig d- Benfica road Fig. - Measurement enironment

7 Journal of Microwaes and Optoelectronics, Vol., No. 4, September IV. SULTS The recorded data obtained of set up measurement were A/D conerted and processed for comparison with the theoretical simulations. Comparatie analysis was performed using all the experimental data and the point-to-point models of Multirays [4], Lee [6], Blomquist-Ladell [7], and the proposed here. For the models applications, the following set of parameters were considered and showed in the Table I: TABL I PAAMTS USD IN TH MODLS Parameters Symbols Values Frequency f 9 MHz Aerage height forest h m Transmitter height h t m Mobile receier height h r 3 m Transmitter antenna gain G T.4 db eceier antenna gain G.4 db Transmitted power P T 3 dbm oad paed, width W m Vehicle position w 7.75 m Forest relatie permittiity ε F. Forest conductiity σ F. ms/m oad relatie permittiity ε.7 oad conductiity σ 4 ms/m Transmitter distance range d 5 to 56 m oad-angle range α 67 to 84 degrees To illustrate the effect of the two knife-edges in the model, Fig.-3 shows the ariation of the receied aerage power as a function of distance d in the representatie case. This result is compared with the model proposed by Olieira et al. [4], called Multirays where they consider only one knife-edge. In the figure we can obsere a best fit to the experimental data by proposed model in this work.

8 Journal of Microwaes and Optoelectronics, Vol., No. 4, September eceied Aerage Power (dbm) xperimental Data Multirays [4] This Model q.(6) Distance (Km) Fig. 3- Variation of the receied aerage power with distance of the theoretical (Multirays, Proposed Model) and experimental results. In Fig.4 experimental results and the theoretical simulations with the models can be obsered. eceied Aerage Power (dbm) -4 xperimental Data Lee -5 Blomquist-Ladell Multirays [4] -6 This Model q.(6) Distance (Km) Fig. 4- Variation of the receied aerage power with distance of the theoretical (Blomquist-Ladell, Lee, Multirays, Proposed Model) and experimental results.

9 Journal of Microwaes and Optoelectronics, Vol., No. 4, September A simple way to make a quantitatie comparison is calculating the statistics of the error between the measured alues with the model results and with the linear regression. Table II presents this comparatie analysis. The absolute error,, between measurements and prediction is calculated for arious distances from transmitter, by: = MF K (7) j j j where j is the range of distances, MF j is the aerage measured alue inside the range j and K j is the alue of that range predicted by the model. Table II presents the absolute aerage error, standard deiation and the MS error. The absolute aerage error is calculated from (7) by the following expression: _ = F F j= j (8) where F is the number of distance ranges considered and j is the range itself. The standard deiation, σ, is calculated from the absolute error (7) and the absolute aerage error (8) by: F _ σ = j F ( ) (9) F j= The MS error is an association of the two preious parameters. Hence, by the use of (8) and (9) it can be written by: _ = ( ) + σ MS ()

10 Journal of Microwaes and Optoelectronics, Vol., No. 4, September Models TABL II OS COMPAISON BTWN MODLS Absolute Aerage rror (db) Standard Deiation(dB) MS rror (db) Linear egression This model Multirays [4] Lee Blomquist-Ladell V. CONCLUSION This work has presented a theoretical study to calculate the intensity field receied by a mobile station inside a forest enironment. The results inole relatiely simple formulas, which can be interpreted in terms of ray paths that represent diffracted and reflected waes. To alidate the model, a radio propagation measurement campaign was carried out. The measured experimental results, obtained with the mobile laboratory specifically mounted for this experiment, demonstrate that this model can be used to describe the receied field of cellular mobile systems in roads and highways crossing forested areas. The results demonstrated that the proposed model presented the best performance comparing to Multirays, Lee and Blomquist-Ladell point-to-point models simulated in this work. ACKNOWLDGMNT The authors are pleased to acknowledge the substantie support and encouragement of this work by Mr. Siqueira, L. G. of the CTUC/PUC/io, as well as by engineers of DMC/PA (Delegacia do Ministério das Comunicações-Pará). FNCS. T. Tamir, adio Wae Propagation Along Mixed Paths in Forest nironments, I Trans. on Antennas and Propagation, AP-5 (4), pp47-477, July G. P. S. Caalcante, and A. J. Giarola, Optimization of adio-communication in Three Layered Media, I Transactions on Antennas and Propagation, ol.3, n o, G. P. S. Caalcante, ogers D. A. and A. J. Giarola. "adio Loss in Forest Using a Model With Four Layered Media, adio Science, ol. 8, n o 5, A. N. Olieira, G. P. S. Caalcante, and G. L. Siqueira, ay Tracing Model for Mobile Systems in a Forested nironments, ITS98 International Telecommunication Symposium, São Paulo, Basil, pp.6-3, Aug. 998.

11 Journal of Microwaes and Optoelectronics, Vol., No. 4, September F. Ikegami, S. Yoshida, T. Takeuchi and M. Umehira, "Propagation Factors Controlling Mean Field Strength on Urban Streets", I Trans. on Antennas and Propagation, AP-3 (8), pp. 8-89, Aug W. C. Lee, Mobile Communications Design Fundamentals, John Wiley & Sons, Inc J. D. Parsons, The Mobile adio Propagation Channel, John Wiley & Sons, Inc. 99.

RECOMMENDATION ITU-R P Attenuation in vegetation

RECOMMENDATION ITU-R P Attenuation in vegetation Rec. ITU-R P.833-3 RECOMMENDATION ITU-R P.833-3 Attenuation in egetation (Question ITU-R 0/3) (99-994-999-00) The ITU Radiocommunication Assembly considering a) that attenuation in egetation can be important

More information

Mobile Radio Propagation along Mixed Paths in Forest Environment using Parabolic Equation

Mobile Radio Propagation along Mixed Paths in Forest Environment using Parabolic Equation Mobile Radio Propagation along Mixed Paths in Forest Environment using Parabolic Equation João F. de Souza, Fátima N. B. Magno, Zínia A. Valente, Jessé C. Costa, Gervásio P. S. Cavalcante Universidade

More information

INVESTIGATION OF GSM SIGNAL VARIATION DRY AND WET EARTH EFFECTS

INVESTIGATION OF GSM SIGNAL VARIATION DRY AND WET EARTH EFFECTS Progress In Electromagnetics Research B, Vol. 1, 147 157, 2008 INVESTIGATION OF GSM SIGNAL VARIATION DRY AND WET EARTH EFFECTS S. Helhel, Ş. Özen, and H. Göksu Department of Electrical and Electronics

More information

EEG 816: Radiowave Propagation 2009

EEG 816: Radiowave Propagation 2009 Student Matriculation No: Name: EEG 816: Radiowave Propagation 2009 Dr A Ogunsola This exam consists of 5 problems. The total number of pages is 5, including the cover page. You have 2.5 hours to solve

More information

EE3301 Experiment 5 A BRIDGE RECTIFIER POWER SUPPLY

EE3301 Experiment 5 A BRIDGE RECTIFIER POWER SUPPLY Fall 2000 Releant sections of textbook: Chapter 10 Output Stages and Power Supplies 10.5 inear oltage regulators 10.6 inear-power-supply design EE3301 Experiment 5 A BRIDGE RECTIFIER POWER SUPPY 1 Introduction

More information

Rec. ITU-R P RECOMMENDATION ITU-R P PROPAGATION BY DIFFRACTION. (Question ITU-R 202/3)

Rec. ITU-R P RECOMMENDATION ITU-R P PROPAGATION BY DIFFRACTION. (Question ITU-R 202/3) Rec. ITU-R P.- 1 RECOMMENDATION ITU-R P.- PROPAGATION BY DIFFRACTION (Question ITU-R 0/) Rec. ITU-R P.- (1-1-1-1-1-1-1) The ITU Radiocommunication Assembly, considering a) that there is a need to provide

More information

CORRELATION FOR MULTI-FREQUENCY PROPAGA- TION IN URBAN ENVIRONMENTS. 3 Place du Levant, Louvain-la-Neuve 1348, Belgium

CORRELATION FOR MULTI-FREQUENCY PROPAGA- TION IN URBAN ENVIRONMENTS. 3 Place du Levant, Louvain-la-Neuve 1348, Belgium Progress In Electromagnetics Research Letters, Vol. 29, 151 156, 2012 CORRELATION FOR MULTI-FREQUENCY PROPAGA- TION IN URBAN ENVIRONMENTS B. Van Laethem 1, F. Quitin 1, 2, F. Bellens 1, 3, C. Oestges 2,

More information

RADIO WAVE PROPAGATION IN THE AMAZON JUNGLE. Mauro S. Assis MAY 2011

RADIO WAVE PROPAGATION IN THE AMAZON JUNGLE. Mauro S. Assis MAY 2011 RADIO WAVE PROPAGATION IN THE AMAZON JUNGLE Mauro S. Assis MAY 2011 INTRODUCTION Amazon Region DENSE RAIN FOREST Annual precipitation of the order or higher than 2000 mm HOT AND HUMID CLIMATE Median temperature

More information

DESIGN OF PASSIVE RETRANSMITTING SYSTEM

DESIGN OF PASSIVE RETRANSMITTING SYSTEM 76 DESIGN OF PASSIVE RETRANSMITTING SYSTEM FOR CELLULAR COMMUNICATION Juliane Iten Chaves, Anton Gora Junior, and José Ricardo Descardeci Department of Electrical Engineering, Federal University of Parana-UFPR

More information

Modified PTS Technique Of Its Transceiver For PAPR Reduction In OFDM System

Modified PTS Technique Of Its Transceiver For PAPR Reduction In OFDM System Modified PTS Technique Of Its Transceier For PAPR Reduction In OFDM System. Munmun Das Research Scholar MGM College of Engineering, Nanded(M.S),India.. Mr. Sayed Shoaib Anwar Assistant Professor MGM College

More information

Application of classical two-ray and other models for coverage predictions of rural mobile communications over various zones of India

Application of classical two-ray and other models for coverage predictions of rural mobile communications over various zones of India Indian Journal of Radio & Space Physics Vol. 36, October 2007, pp. 423-429 Application of classical two-ray and other models for coverage predictions of rural mobile communications over various zones of

More information

Beam Switching Techniques for Millimeter Wave Vehicle to Infrastructure Communications

Beam Switching Techniques for Millimeter Wave Vehicle to Infrastructure Communications Beam Switching Techniques for Millimeter Wae Vehicle to Infrastructure Communications Hamed Mohammadi Department of Electrical Engineering Uniersity of Kurdistan, Sanandaj, Iran. Email: Hamed.mohammadi@eng.uok.ac.ir

More information

Path Loss Modelization in VHF and UHF Systems

Path Loss Modelization in VHF and UHF Systems 1 Path Loss Modelization in VHF and UHF Systems Tiago A. A. Rodrigues, António J. C. B. Rodrigues Abstract The main purpose of this paper is to assess the recommendation ITU-R P.46-3 proposed by the International

More information

Characterization of Mobile Radio Propagation Channel using Empirically based Pathloss Model for Suburban Environments in Nigeria

Characterization of Mobile Radio Propagation Channel using Empirically based Pathloss Model for Suburban Environments in Nigeria Characterization of Mobile Radio Propagation Channel using Empirically based Pathloss Model for Suburban Environments in Nigeria Ifeagwu E.N. 1 Department of Electronic and Computer Engineering, Nnamdi

More information

Exact Pairwise Error Probability for the MIMO Block Fading Channel. Zinan Lin, Elza Erkip and Andrej Stefanov

Exact Pairwise Error Probability for the MIMO Block Fading Channel. Zinan Lin, Elza Erkip and Andrej Stefanov International Symposium on Information Theory and its Applications, ISITA004 Parma, Italy, October 0 3, 004 Exact Pairwise Error Probability for the MIMO Block Fading Channel Zinan Lin, Elza Erkip and

More information

RECOMMENDATION ITU-R P ATTENUATION IN VEGETATION. (Question ITU-R 202/3)

RECOMMENDATION ITU-R P ATTENUATION IN VEGETATION. (Question ITU-R 202/3) Rec. ITU-R P.833-2 1 RECOMMENDATION ITU-R P.833-2 ATTENUATION IN VEGETATION (Question ITU-R 2/3) Rec. ITU-R P.833-2 (1992-1994-1999) The ITU Radiocommunication Assembly considering a) that attenuation

More information

Study of Factors which affect the Calculation of Co- Channel Interference in a Radio Link

Study of Factors which affect the Calculation of Co- Channel Interference in a Radio Link International Journal of Electronic and Electrical Engineering. ISSN 0974-2174 Volume 8, Number 2 (2015), pp. 103-111 International Research Publication House http://www.irphouse.com Study of Factors which

More information

Propagation Model for Path Loss Through Vegetated Environments at MHz Band

Propagation Model for Path Loss Through Vegetated Environments at MHz Band 179 Propagation Model for Path Through Vegetated Environments at 700 800 MHz Band J. C. Silva 1, G. L. Siqueira 2, P. V. G. Castellanos 3 Centro de Estudos em Telecomunicações CETUC, Pontifical Catholic

More information

Mobile Radio Wave propagation channel- Path loss Models

Mobile Radio Wave propagation channel- Path loss Models Mobile Radio Wave propagation channel- Path loss Models 3.1 Introduction The wireless Communication is one of the integral parts of society which has been a focal point for sharing information with different

More information

Testing the Applicability of a Hybrid FDTD-MoL Technique on the Simulation of Passive Microstrip Paths

Testing the Applicability of a Hybrid FDTD-MoL Technique on the Simulation of Passive Microstrip Paths 344 INTERNATIONAL JOURNAL OF MICROWAVE AND OPTICAL TECHNOLOGY, VOL.4 NO.6 NOVEMBER 9 Testing the Applicability of a Hybrid FDTD-MoL Technique on the imulation of Passie Microstrip Paths J. M. Villegas

More information

Simulation of Outdoor Radio Channel

Simulation of Outdoor Radio Channel Simulation of Outdoor Radio Channel Peter Brída, Ján Dúha Department of Telecommunication, University of Žilina Univerzitná 815/1, 010 6 Žilina Email: brida@fel.utc.sk, duha@fel.utc.sk Abstract Wireless

More information

Radio Propagation Fundamentals

Radio Propagation Fundamentals Radio Propagation Fundamentals Concept of Electromagnetic Wave Propagation Mechanisms Modes of Propagation Propagation Models Path Profiles Link Budget Fading Channels Electromagnetic (EM) Waves EM Wave

More information

Abstract. Propagation tests for land-mobile radio service

Abstract. Propagation tests for land-mobile radio service Abstract Propagation tests for land-mobile radio service VHF (200MHz) and UHF (453, 922, 1310, 1430, 1920MHz) Various situations of irregular terrain/environmental clutter The results analyzed statistically

More information

The Radio Channel. COS 463: Wireless Networks Lecture 14 Kyle Jamieson. [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P.

The Radio Channel. COS 463: Wireless Networks Lecture 14 Kyle Jamieson. [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P. The Radio Channel COS 463: Wireless Networks Lecture 14 Kyle Jamieson [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P. Steenkiste] Motivation The radio channel is what limits most radio

More information

People and Furniture Effects on the Transmitter Coverage Area

People and Furniture Effects on the Transmitter Coverage Area 2006 IEEE Ninth International Symposium on Spread Spectrum Techniques and Applications People and Furniture Effects on the Transmitter Coverage Area Josiane C. Rodrigues 1, Juliana Valim 1, Bruno de Tarso

More information

Session2 Antennas and Propagation

Session2 Antennas and Propagation Wireless Communication Presented by Dr. Mahmoud Daneshvar Session2 Antennas and Propagation 1. Introduction Types of Anttenas Free space Propagation 2. Propagation modes 3. Transmission Problems 4. Fading

More information

Question 15.1: Which of the following frequencies will be suitable for beyond-the-horizon communication using sky waves? (a) 10 khz (b) 10 MHz (c) 1 GHz (d) 1000 GHz (b) : 10 MHz For beyond-the-horizon

More information

RADIO WAVE PROPAGATION IN URBAN ENVIRONMENTS

RADIO WAVE PROPAGATION IN URBAN ENVIRONMENTS RADIO WAVE PROPAGATION IN URBAN ENVIRONMENTS Sérgio Daniel Dias Pereira Instituto de Telecomunicações, Instituto Superior Técnico Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal Abstract - This work consists

More information

λ iso d 4 π watt (1) + L db (2)

λ iso d 4 π watt (1) + L db (2) 1 Path-loss Model for Broadcasting Applications and Outdoor Communication Systems in the VHF and UHF Bands Constantino Pérez-Vega, Member IEEE, and José M. Zamanillo Communications Engineering Department

More information

ELEG 5693 Wireless Communications Propagation and Noise Part I

ELEG 5693 Wireless Communications Propagation and Noise Part I Department of Electrical Engineering University of Arkansas ELEG 5693 Wireless Communications ropagation and Noise art I Dr. Jingxian Wu wuj@uark.edu OULINE 2 Wireless channel ath loss Shadowing Small

More information

Simulation and Performance Evaluation of Shunt Hybrid Power Filter for Power Quality Improvement Using PQ Theory

Simulation and Performance Evaluation of Shunt Hybrid Power Filter for Power Quality Improvement Using PQ Theory International Journal of Electrical and Computer Engineering (IJECE) Vol. 6, No. 6, December 016, pp. 603~609 ISSN: 088-8708, DOI: 10.11591/ijece.6i6.1011 603 Simulation and Performance Ealuation of Shunt

More information

Investigation of radio waves propagation models in Nigerian rural and sub-urban areas

Investigation of radio waves propagation models in Nigerian rural and sub-urban areas AMERICAN JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH 2010, Science Huβ, http://www.scihub.org/ajsir ISSN: 2153-649X doi:10.5251/ajsir.2010.1.2.227.232 Investigation of radio waves propagation models

More information

Tute W4: DOPPLER EFFECT 1

Tute W4: DOPPLER EFFECT 1 Tute W4: DOPPLER EFFECT 1 A Doppler effect occurs wheneer there is relatie motion between a source and the receier. When the source and receier moe towards each other, the frequency detected by the receier

More information

ELG 2135 ELECTRONICS I FOURTH CHAPTER : BIPOLAR JUNCTION TRANSISTORS

ELG 2135 ELECTRONICS I FOURTH CHAPTER : BIPOLAR JUNCTION TRANSISTORS ELG 2135 ELECTRONICS I FOURTH CHAPTER : BIPOLAR JUNCTION TRANSISTORS Session WINTER 2003 Dr M. YAGOUB Fourth Chapter: Bipolar Junction Transistors IV - 2 _ Haing studied the junction diode, which is the

More information

Model analysis for the radio channel of DVB-T indoor reception in a Single Frequency Network

Model analysis for the radio channel of DVB-T indoor reception in a Single Frequency Network Model analysis for the radio channel of DVB-T indoor reception in a Single Frequency Network Chi-Fang Huang 1, Yi-Min Tsai 2, Feng-Ting Wen 2, Ming-Fu Wei 2 and Chia-Fu Yang 2 1 Graduate Institute of Communication

More information

Comparison of Receive Signal Level Measurement Techniques in GSM Cellular Networks

Comparison of Receive Signal Level Measurement Techniques in GSM Cellular Networks Comparison of Receive Signal Level Measurement Techniques in GSM Cellular Networks Nenad Mijatovic *, Ivica Kostanic * and Sergey Dickey + * Florida Institute of Technology, Melbourne, FL, USA nmijatov@fit.edu,

More information

A Model for Radio Propagation Loss Prediction in Buildings using Parabolic Equations

A Model for Radio Propagation Loss Prediction in Buildings using Parabolic Equations 006 IEEE Ninth International Symposium on Spread Spectrum Techniques and Applications A Model for Radio Propagation Loss Prediction in Buildings using Parabolic Equations F. N. B. Magno, Z. A. Valente,

More information

Wireless Communication System

Wireless Communication System Wireless Communication System Generic Block Diagram An t PC An r Source Tx Rx Destination P t G t L p G r P r Source a source of information to be transmitted Destination a destination of the transmitted

More information

RADIO COVERAGE ANALYSIS FOR MOBILE COMMUNICATION NETWORKS USING ICS TELECOM

RADIO COVERAGE ANALYSIS FOR MOBILE COMMUNICATION NETWORKS USING ICS TELECOM U.P.B. Sci. Bull., Series C, Vol. 78, Iss. 2, 2016 ISSN 2286-3540 RADIO COVERAGE ANALYSIS FOR MOBILE COMMUNICATION NETWORKS USING ICS TELECOM Florin ALMĂJANU 1, Cosmina-Valentina NĂSTASE 2, Alexandru MARŢIAN

More information

Calculation of Minimum Frequency Separation for Mobile Communication Systems

Calculation of Minimum Frequency Separation for Mobile Communication Systems THE FIELD OF SCIENTIFIC AND TECHNICAL RESEARCH COST 259 TD(98) EURO-COST Source: Germany Calculation of Minimum Frequency Separation for Mobile Communication Systems Abstract This paper presents a new

More information

A Prediction Study of Path Loss Models from GHz in an Urban-Macro Environment

A Prediction Study of Path Loss Models from GHz in an Urban-Macro Environment A Prediction Study of Path Loss Models from 2-73.5 GHz in an Urban-Macro Environment Timothy A. Thomas a, Marcin Rybakowski b, Shu Sun c, Theodore S. Rappaport c, Huan Nguyen d, István Z. Kovács e, Ignacio

More information

Chapter 3. Mobile Radio Propagation

Chapter 3. Mobile Radio Propagation Chapter 3 Mobile Radio Propagation Based on the slides of Dr. Dharma P. Agrawal, University of Cincinnati and Dr. Andrea Goldsmith, Stanford University Propagation Mechanisms Outline Radio Propagation

More information

RADIOWAVE PROPAGATION

RADIOWAVE PROPAGATION RADIOWAVE PROPAGATION Physics and Applications CURT A. LEVIS JOEL T. JOHNSON FERNANDO L. TEIXEIRA The cover illustration is part of a figure from R.C. Kirby, "Introduction," Lecture 1 in NBS Course in

More information

DECT ARCHITECTURE PROPOSAL FOR A CONSTRUCTION SITE

DECT ARCHITECTURE PROPOSAL FOR A CONSTRUCTION SITE ECT ARCHITECTURE PROPOSAL FOR A CONSTRUCTION SITE Silvia Ruiz, Ramón Agustí epartment of Signal Theory and Communications (UPC) C/Gran Capitán s/n, módul 4 08034 Barcelona (SPAIN) Email: ramon, silvia@xaloc.upc.es

More information

HANDOVER NECESSITY ESTIMATION FOR 4G HETEROGENEOUS NETWORKS

HANDOVER NECESSITY ESTIMATION FOR 4G HETEROGENEOUS NETWORKS International Journal of Information Sciences and Techniques (IJIST) Vol., No., January 0 HANDOVER NECESSITY ESTIMATION FOR 4G HETEROGENEOUS NETWORKS Issaka Hassane Abdoulaziz, Li Renfa and Zeng Fanzi

More information

Site-Specific Validation of ITU Indoor Path Loss Model at 2.4 GHz

Site-Specific Validation of ITU Indoor Path Loss Model at 2.4 GHz Site-Specific Validation of ITU Indoor Path Loss Model at 2.4 GHz Theofilos Chrysikos (1), Giannis Georgopoulos (1) and Stavros Kotsopoulos (1) (1) Wireless Telecommunications Laboratory Department of

More information

Evaluation of the Recommendation ITU-R P for UHF Field-Strength Prediction over Fresh-Water Mixed Paths

Evaluation of the Recommendation ITU-R P for UHF Field-Strength Prediction over Fresh-Water Mixed Paths 1 Evaluation of the Recommendation ITU-R P.146-2 for UHF Field-Strength Prediction over Fresh-Water Mixed Paths M. A. S. Mayrink, F. J. S. Moreira, C. G. Rego Department of Electronic Engineering, Federal

More information

The Mobile Radio Propagation Channel Second Edition

The Mobile Radio Propagation Channel Second Edition The Mobile Radio Propagation Channel Second Edition J. D. Parsons, DSc (Engl FREng, FlEE Emeritus Professor of Electrical Engineering University of Liverpool, UK JOHN WILEY & SONS LTD Chichester New York

More information

Radio Path Prediction Software

Radio Path Prediction Software Radio Path Prediction Software for Command and Control Scenario Developers Reference# C-168, Michael Shattuck Command and Control Research and Technology Symposium June 2006 Topics Link Planning for Wireless

More information

Special Issue Review. 1. Introduction

Special Issue Review. 1. Introduction Special Issue Review In recently years, we have introduced a new concept of photonic antennas for wireless communication system using radio-over-fiber technology. The photonic antenna is a functional device

More information

Antenna & Propagation. Basic Radio Wave Propagation

Antenna & Propagation. Basic Radio Wave Propagation For updated version, please click on http://ocw.ump.edu.my Antenna & Propagation Basic Radio Wave Propagation by Nor Hadzfizah Binti Mohd Radi Faculty of Electric & Electronics Engineering hadzfizah@ump.edu.my

More information

The MYTHOLOGIES OF WIRELESS COMMUNICATION. Tapan K Sarkar

The MYTHOLOGIES OF WIRELESS COMMUNICATION. Tapan K Sarkar The MYTHOLOGIES OF WIRELESS COMMUNICATION Tapan K Sarkar What is an Antenna? A device whose primary purpose is to radiate or receive electromagnetic energy What is Radiation? Far Field (Fraunhofer region>2l

More information

Flying Ubiquitous Sensor Networks as a Queueing System

Flying Ubiquitous Sensor Networks as a Queueing System Flying Ubiquitous Sensor Networks as a Queueing System Ruslan Kirichek*, Alexandr Paramono*, Andrey Koucheryay* * State Uniersity of Telecommunication, 22 Prospekt Bolsheiko, St. Petersburg, Russia kirichek@sut.ru,

More information

Mobile Communications

Mobile Communications Mobile Communications Part IV- Propagation Characteristics Professor Z Ghassemlooy School of Computing, Engineering and Information Sciences University of Northumbria U.K. http://soe.unn.ac.uk/ocr Contents

More information

Building Optimal Statistical Models with the Parabolic Equation Method

Building Optimal Statistical Models with the Parabolic Equation Method PIERS ONLINE, VOL. 3, NO. 4, 2007 526 Building Optimal Statistical Models with the Parabolic Equation Method M. Le Palud CREC St-Cyr Telecommunications Department (LESTP), Guer, France Abstract In this

More information

UHF Radio Frequency Propagation Model for Akure Metropolis

UHF Radio Frequency Propagation Model for Akure Metropolis Abstract Research Journal of Engineering Sciences ISSN 2278 9472 UHF Radio Frequency Propagation Model for Akure Metropolis Famoriji J.O. and Olasoji Y.O. Federal University of Technology, Akure, Nigeria

More information

Research Article TOA Estimation and Data Association for Through-Wall Tracking of Moving Targets

Research Article TOA Estimation and Data Association for Through-Wall Tracking of Moving Targets Hindawi Publishing Corporation EURASIP Journal on Wireless Communications and Networking Volume Article ID 4767 pages doi:.55//4767 Research Article TOA Estimation and Data Association for Through-Wall

More information

Basic Propagation Theory

Basic Propagation Theory S-7.333 POSTGRADUATE COURSE IN RADIO COMMUNICATIONS, AUTUMN 4 1 Basic Propagation Theory Fabio Belloni S-88 Signal Processing Laboratory, HUT fbelloni@hut.fi Abstract In this paper we provide an introduction

More information

RECOMMENDATION ITU-R P * Propagation by diffraction

RECOMMENDATION ITU-R P * Propagation by diffraction Rec. ITU-R P.56-10 1 RECOMMENDATION ITU-R P.56-10 * Propagation by diffraction (Question ITU-R 0/3 (1978-198-199-1994-1995-1997-1999-001-003-005-007 Scope This Recommendation presents several models to

More information

Transactions on the Built Environment vol 34, 1998 WIT Press, ISSN

Transactions on the Built Environment vol 34, 1998 WIT Press,   ISSN Experimental validation of propagation models for radiocommunications applications in industrial environments M. V. Castro, A. Seoane P., F. P. Fontan, J. Pereda Dpt. of Communications Technologies. University

More information

Chapter 2. Fundamental Properties of Antennas. ECE 5318/6352 Antenna Engineering Dr. Stuart Long

Chapter 2. Fundamental Properties of Antennas. ECE 5318/6352 Antenna Engineering Dr. Stuart Long Chapter Fundamental Properties of Antennas ECE 5318/635 Antenna Engineering Dr. Stuart Long 1 IEEE Standards Definition of Terms for Antennas IEEE Standard 145-1983 IEEE Transactions on Antennas and Propagation

More information

FURTHER STUDY OF RAINFALL EFFECT ON VHF FORESTED RADIO-WAVE PROPAGATION WITH FOUR- LAYERED MODEL

FURTHER STUDY OF RAINFALL EFFECT ON VHF FORESTED RADIO-WAVE PROPAGATION WITH FOUR- LAYERED MODEL Progress In Electromagnetics Research, PIER 99, 149 161, 2009 FURTHER STUDY OF RAINFALL EFFECT ON VHF FORESTED RADIO-WAVE PROPAGATION WITH FOUR- LAYERED MODEL Y. S. Meng, Y. H. Lee, and B. C. Ng School

More information

Annex 5. Determination of the interference field strength in the Land Mobile Service

Annex 5. Determination of the interference field strength in the Land Mobile Service Annex 5 Determination of the interference field strength in the Land Mobile Service Annex 5, page 2 of 18 1 General 1.1 This calculation method is based on Recommendation ITU-R P.1546, taking into account

More information

Neural Model for Path Loss Prediction in Suburban Environment

Neural Model for Path Loss Prediction in Suburban Environment Neural Model for Path Loss Prediction in Suburban Environment Ileana Popescu, Ioan Nafornita, Philip Constantinou 3, Athanasios Kanatas 3, Netarios Moraitis 3 University of Oradea, 5 Armatei Romane Str.,

More information

EEM.Ant. Antennas and Propagation

EEM.Ant. Antennas and Propagation EEM.ant/0304/08pg/Req: None 1/8 UNIVERSITY OF SURREY Department of Electronic Engineering MSc EXAMINATION EEM.Ant Antennas and Propagation Duration: 2 Hours Spring 2003/04 READ THESE INSTRUCTIONS Answer

More information

A Terrestrial Multiple-Receiver Radio Link Experiment at 10.7 GHz - Comparisons of Results with Parabolic Equation Calculations

A Terrestrial Multiple-Receiver Radio Link Experiment at 10.7 GHz - Comparisons of Results with Parabolic Equation Calculations RADIOENGINEERING, VOL. 19, NO. 1, APRIL 2010 117 A Terrestrial Multiple-Receiver Radio Link Experiment at 10.7 GHz - Comparisons of Results with Parabolic Equation Calculations Pavel VALTR 1, Pavel PECHAC

More information

Paralleled three-phase inverters

Paralleled three-phase inverters Paralleled three-phase inerters Hoff, E., Skjellnes, T. & Norum, L. Department of Electrical Power Engineering, Norwegian Uniersity of Science and Technology, NTNU 749 Trondheim, NORWAY Phone (+47) 73

More information

Revision of Lecture One

Revision of Lecture One Revision of Lecture One System blocks and basic concepts Multiple access, MIMO, space-time Transceiver Wireless Channel Signal/System: Bandpass (Passband) Baseband Baseband complex envelope Linear system:

More information

SIMULATION AND ANALYSIS OF 60 GHz MILLIMETER- WAVE INDOOR PROPAGATION CHARACTERISTICS BASE ON THE METHOD OF SBR/IMAGE

SIMULATION AND ANALYSIS OF 60 GHz MILLIMETER- WAVE INDOOR PROPAGATION CHARACTERISTICS BASE ON THE METHOD OF SBR/IMAGE Progress In Electromagnetics Research C, Vol. 43, 15 28, 2013 SIMULATION AND ANALYSIS OF 60 GHz MILLIMETER- WAVE INDOOR PROPAGATION CHARACTERISTICS BASE ON THE METHOD OF SBR/IMAGE Yuan-Jian Liu, Qin-Jian

More information

Link Budget Calculation

Link Budget Calculation Link Budget Calculation Training materials for wireless trainers This 60 minute talk is about estimating wireless link performance by using link budget calculations. It also introduces the Radio Mobile

More information

Intro to Radio Propagation,Antennas and Link Budget

Intro to Radio Propagation,Antennas and Link Budget Intro to Radio Propagation,Antennas and Link Budget Training materials for wireless trainers Marco Zennaro and Ermanno Pietrosemoli T/ICT4D Laboratory ICTP Behavior of radio waves There are a few simple

More information

Development of a Wireless Communications Planning Tool for Optimizing Indoor Coverage Areas

Development of a Wireless Communications Planning Tool for Optimizing Indoor Coverage Areas Development of a Wireless Communications Planning Tool for Optimizing Indoor Coverage Areas A. Dimitriou, T. Vasiliadis, G. Sergiadis Aristotle University of Thessaloniki, School of Engineering, Dept.

More information

Mobile Hata Model and Walkfisch Ikegami

Mobile Hata Model and Walkfisch Ikegami Calculate Path Loss in Transmitter in Global System Mobile By Using Hata Model and Ikegami Essam Ayiad Ashebany 1, Silaiman Khalifa Yakhlef 2 and A. R. Zerek 3 1 Post grade Student, Libyan Academy of Graduate

More information

Antenna Selection Based Initial Ranging Method for IEEE m MIMO-OFDMA Systems

Antenna Selection Based Initial Ranging Method for IEEE m MIMO-OFDMA Systems Antenna Selection Based Initial anging Method for IEEE 8.6m MIMO-OFDMA Systems Department of Physics & Electronics Information Luoyang ormal Uniersity o.7, Longmen oad, Luoyang, Henan, 47 CHIA shiyongpeng@63.com

More information

Lecture - 06 Large Scale Propagation Models Path Loss

Lecture - 06 Large Scale Propagation Models Path Loss Fundamentals of MIMO Wireless Communication Prof. Suvra Sekhar Das Department of Electronics and Communication Engineering Indian Institute of Technology, Kharagpur Lecture - 06 Large Scale Propagation

More information

Multi-Band Microstrip Antenna Design for Wireless Energy Harvesting

Multi-Band Microstrip Antenna Design for Wireless Energy Harvesting Shuvo MAK et al. American Journal of Energy and Environment 2018, 3:1-5 Page 1 of 5 Research Article American Journal of Energy and Environment http://www.ivyunion.org/index.php/energy Multi-Band Microstrip

More information

Propagation Mechanism

Propagation Mechanism Propagation Mechanism ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1 Propagation Mechanism Simplest propagation channel is the free space: Tx free space Rx In a more realistic scenario, there may be

More information

A Matlab-Based Virtual Propagation Tool: Surface Wave Mixed-path Calculator

A Matlab-Based Virtual Propagation Tool: Surface Wave Mixed-path Calculator 430 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 A Matlab-Based Virtual Propagation Tool: Surface Wave Mixed-path Calculator L. Sevgi and Ç. Uluışık Doğuş University,

More information

Path-loss and Shadowing (Large-scale Fading) PROF. MICHAEL TSAI 2015/03/27

Path-loss and Shadowing (Large-scale Fading) PROF. MICHAEL TSAI 2015/03/27 Path-loss and Shadowing (Large-scale Fading) PROF. MICHAEL TSAI 2015/03/27 Multipath 2 3 4 5 Friis Formula TX Antenna RX Antenna = 4 EIRP= Power spatial density 1 4 6 Antenna Aperture = 4 Antenna Aperture=Effective

More information

Candidate: Dragan Trajkov. Mentor: Dr. Jim Roberts

Candidate: Dragan Trajkov. Mentor: Dr. Jim Roberts Maximizing the Allowable Coverage Area of a Broadband Wireless Communication System that Utilizes an Occupied Frequency Band Candidate: Dragan Trajkov Mentor: Dr. Jim Roberts Presentation Outline Motivation

More information

Performance, Accuracy and Generalization Capability of Indoor Propagation Models in Different Types of Buildings

Performance, Accuracy and Generalization Capability of Indoor Propagation Models in Different Types of Buildings Performance, Accuracy and Generalization Capability of Indoor Propagation Models in Different Types of Buildings Gerd Wölfle, Philipp Wertz, and Friedrich M. Landstorfer Institut für Hochfrequenztechnik,

More information

World Journal of Engineering Research and Technology WJERT

World Journal of Engineering Research and Technology WJERT wjert, 2017, Vol. 3, Issue 3, 12-26. Original Article ISSN 2454-695X Jaja et al. WJERT www.wjert.org SJIF Impact Factor: 4.326 APPLICATION OF HYBRID DIVERSITY TECHNIQUES FOR IMPROVEMENT OF MICROWAVE RADIO

More information

Empirical Path Loss Models

Empirical Path Loss Models Empirical Path Loss Models 1 Free space and direct plus reflected path loss 2 Hata model 3 Lee model 4 Other models 5 Examples Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 1

More information

Basic Radio Physics. Developed by Sebastian Buettrich. ItrainOnline MMTK 1

Basic Radio Physics. Developed by Sebastian Buettrich. ItrainOnline MMTK   1 Basic Radio Physics Developed by Sebastian Buettrich 1 Goals Understand radiation/waves used in wireless networking. Understand some basic principles of their behaviour. Apply this understanding to real

More information

ECEN474: (Analog) VLSI Circuit Design Fall 2011

ECEN474: (Analog) VLSI Circuit Design Fall 2011 ECEN474: (Analog) LSI Circuit Design Fall 011 Lecture 1: Noise Sebastian Hoyos Analog & Mixed-Signal Center Texas A&M Uniersity Announcements Reading Razais CMOS Book Chapter 7 Agenda Noise Types Noise

More information

A simple and efficient model for indoor path-loss prediction

A simple and efficient model for indoor path-loss prediction Meas. Sci. Technol. 8 (1997) 1166 1173. Printed in the UK PII: S0957-0233(97)81245-3 A simple and efficient model for indoor path-loss prediction Constantino Perez-Vega, Jose Luis García G and José Miguel

More information

CHAPTER 3 DESIGN OF A PV-UPQC SYSTEM FOR VOLTAGE SAG AND SWELL COMPENSATION

CHAPTER 3 DESIGN OF A PV-UPQC SYSTEM FOR VOLTAGE SAG AND SWELL COMPENSATION 21 CHAPTER 3 DESIGN OF A PV-UPQC SYSTEM FOR VOLTAGE SAG AND SWELL COMPENSATION INTRODUCTION The recent increase in the use of non-linear loads creates many power quality problems such as oltage sag, swell

More information

Modeling Antennas on Automobiles in the VHF and UHF Frequency Bands, Comparisons of Predictions and Measurements

Modeling Antennas on Automobiles in the VHF and UHF Frequency Bands, Comparisons of Predictions and Measurements Modeling Antennas on Automobiles in the VHF and UHF Frequency Bands, Comparisons of Predictions and Measurements Nicholas DeMinco Institute for Telecommunication Sciences U.S. Department of Commerce Boulder,

More information

RAPS, radio propagation simulator for CBTC system

RAPS, radio propagation simulator for CBTC system Computers in Railways XIII 111 RAPS, radio propagation simulator for CBTC system J. Liang 1, J. M. Mera 3, C. Briso 3, I. Gómez-Rey 3, A. Garcerán 3, J. Maroto 3, K. Katsuta 2, T. Inoue 1 & T. Tsutsumi

More information

IEEE Broadband Wireless Access Working Group <http://ieee802.org/16>

IEEE Broadband Wireless Access Working Group <http://ieee802.org/16> Project Title Date Submitted IEEE 80.16 Broadband Wireless Access Working Group Propagation models for coexistence studies 001-9-6 Source(s) Re: Avi Freedman Hexagon System Engineering

More information

Assigning and Scheduling Partially Overlapping Channels in Wireless Mesh Networks

Assigning and Scheduling Partially Overlapping Channels in Wireless Mesh Networks 2013 IEEE 9th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) Assigning and Scheduling Partially Oerlapping Channels in Wireless Mesh Networks Brigitte

More information

Terrain Reflection and Diffraction, Part One

Terrain Reflection and Diffraction, Part One Terrain Reflection and Diffraction, Part One 1 UHF and VHF paths near the ground 2 Propagation over a plane Earth 3 Fresnel zones Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018

More information

CHAPTER 2 WIRELESS CHANNEL

CHAPTER 2 WIRELESS CHANNEL CHAPTER 2 WIRELESS CHANNEL 2.1 INTRODUCTION In mobile radio channel there is certain fundamental limitation on the performance of wireless communication system. There are many obstructions between transmitter

More information

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman Antennas & Propagation CSG 250 Fall 2007 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception

More information

Multi-antenna Cell Constellations for Interference Management in Dense Urban Areas

Multi-antenna Cell Constellations for Interference Management in Dense Urban Areas Multi-antenna Cell Constellations for Interference Management in Dense Urban Areas Syed Fahad Yunas #, Jussi Turkka #2, Panu Lähdekorpi #3, Tero Isotalo #4, Jukka Lempiäinen #5 Department of Communications

More information

Cellular Expert Radio Links module features

Cellular Expert Radio Links module features Cellular Expert Radio Links module features Tasks Features Network data management Site, sector, construction, customer, repeater management: Add Edit Move Copy Delete Site re-use patterns for nominal

More information

Empirical Modeling of Ducting Effects on a Mobile Microwave Link Over a Sea Surface

Empirical Modeling of Ducting Effects on a Mobile Microwave Link Over a Sea Surface 154 Y. H. LEE, Y. S. MENG, EMPIRICAL MODELING OF DUCTING EFFECTS ON A MOBILE MICROWAVE LINK OVER A SEA... Empirical Modeling of Ducting Effects on a Mobile Microwave Link Over a Sea Surface Yee Hui LEE

More information

Introduction. TV Coverage and Interference, February 06, 2004.

Introduction. TV Coverage and Interference, February 06, 2004. A New Prediction Model for M/H Mobile DTV Service Prepared for OMVC June 28, 2011 Charles Cooper, du Treil, Lundin & Rackley, Inc. Victor Tawil, National Association of Broadcasters Introduction The Open

More information

Wireless Physical Layer Concepts: Part II

Wireless Physical Layer Concepts: Part II Wireless Physical Layer Concepts: Part II Raj Jain Professor of CSE Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at:

More information

LMS4000 & NCL MHz Radio Propagation

LMS4000 & NCL MHz Radio Propagation LMS4000 & NCL1900 900-MHz Radio Propagation This application note is an update to the previous LMS3000/LMS3100 900 MHz Radio Propagation note. It provides general guidelines to estimate CCU3000 & NCL1900

More information