Magnetic Field Fluctuations Measurements in the Solar Orbiter Project

Size: px
Start display at page:

Download "Magnetic Field Fluctuations Measurements in the Solar Orbiter Project"

Transcription

1 Magnetic Field Fluctuations Measurements in the Solar Orbiter Project 1 Pinçon JL, 1 Dudok de Wit T, 1 Krasnoselskikh V, 1 Seran HC, 1 Cavoit C, 1 Fergeau P, 1 Chabassiere M, 2 Roux A, 2 Berthomier M,, 2 Chust T, 2 Le Contel O, 2 Rezeau L, 2 Coillot C, 3 S. Bale 1 LPCE/CNRS, 3A Av. de la Recherche Scientifique, Orléans, France 2 CETP/IPSL/CNRS, 10/12 Avenue de l Europe, Vélizy, France 3 SSL, Berkeley, USA Abstract. Although much is known concerning the waves that exist in the solar wind near the orbit of the Earth, many questions remain concerning the waves occurring much closer to the Sun. At the present time the measurements closest to the Sun have been obtained from the Helios 1 and 2 spacecraft at approximately 0.3 AU. Based on these observations, hereafter is a presentation of the characteristics of the waves expected to be present at 0.2 AU and the magnetic field sensors required to measure them. VLF magnetic sensor for Solar Orbiter ELF/VLF waves & turbulences: Alfvén turbulence and ion-cyclotron waves play an essential role in the heating and acceleration of the solar wind. Recent studies of the particle distributions measured onboard Helios have evidenced the process of pitch angle diffusion of protons (Tu and Marsch 2001). They give strong argument that the plasma heating caused by Alfvén turbulence and Ion- Cyclotron Waves activity continues to be effective on quite large distances from the Sun. These waves are generated below and at the local proton gyrofrequency, respectively. At 0.2 AU the value of ion gyro-frequency Ωci can be estimated to be about 1 Hz (Gurnett 1978). Actually, the

2 corresponding frequencies observed in the spacecraft frame can be Doppler shifted up to the khz range. The maximum amplitude for Alfvén and ion-cyclotron waves should be of the order of 10-2 nt/(hz) 1/2. Whistler turbulence and Ion-Acoustic waves: Above the proton gyro-frequency Ωcp, the next resonant frequency to be encountered is the electron gyro-frequency (Ωce = 2 khz at 0.2 AU). For frequencies between Ωcp and Ωce the only electromagnetic mode that can propagate is the right-hand polarized whistler mode. Measurements from Helios have shown that whistler turbulence is present in the solar wind at frequencies up to Ωce. Helios observations stressed the trend for most solar wind wave modes to increase in intensity at smaller heliocentric distances. Based on these trends one can estimate the whistler mode emissions at 0.2 AU to extend from 10-5 nt/(hz) 1/2 up to 10-1 nt/(hz) 1/2 (see Gurnett, Plasma waves near the Sun, 1978). Measurements from Helios also revealed the occurrence of ion-acoustic-like electrostatic waves in the solar wind at frequencies between the electron and ion plasma frequencies (at 0.2 AU, fpi = 4 khz and fpe = 200 khz). Although the ion-acoustic mode propagates at frequencies below fpi, the observed wave frequencies are mainly determined by the Doppler shift, which is much larger than fpi. As pointed out by Kellog et al. (1999), magnetic field measurements will be necessary to unambiguously determine whether the observed waves are electromagnetic or electrostatic. The estimate of the amplitude of the magnetic field component in these waves shows that it is large enough (about 10-4 nt/(hz) 1/2 ) and can be easily measured by the 3-axis ELF-VLF magnetic sensors we propose below. The choice of the instrument characteristics will be determined by the combination of factors such as the accommodation place available for the instrument, electromagnetic compatibility with the plasma environment, radiation and thermal requirements and the noise level around it. Figure 1 shows a recent development of a three component magnetic sensor which has its preamplifier placed inside the support (Seran and Fergeau 2005). Each magnetic antenna is 17 cm long. The miniaturized 3 channel preamplifier itself is shown in Figure 2. The main characteristics of the ELF- VLF search coil are presented in the Table 1. Figures 3 and 4 represent comparative frequency responses and noise levels of the sensors with lengths of 10 cm and 17 cm. Onboard data processing can be performed by special dedicated unit that can be realized using 3D+ technology. More details can be found in the Thesis work of Vassal (2001).

3 Fig. 1. The 3-axis ELV-VLF search coil. Each coil is 17 cm long Fig. 2. The miniaturized 3 channel preamplifier Fig. 3. Frequency response of the ELF-VLF search coil. The orange (top) and blue (bottom) lines correspond to antennae that are respectively 17 cm and 10 cm long

4 Fig. 4. Noise level of the ELF-VLF search coil. The orange and blue lines correspond to antennae that are respectively 17 cm and 10 cm long HF magnetic sensor for Solar Orbiter Another important scientific objective is related with the problem of particle acceleration, in particular, in association with Coronal Mass Ejections (CME s), during and after flares. Different acceleration mechanisms acceleration can occur, such as acceleration by collisionless shocks, or acceleration associated with the CME propagation such as by a potential electric field along the magnetic field lines. Accelerated electrons generate high frequency electrostatic and electromagnetic waves. The Solar Orbiter mission gives the possibility to carry out a systematic study of the wave activity in the frequency range (below 20 MHz) that cannot penetrate through the ionosphere. Such waves are registered onboard the Wind satellite, whose observations give excellent examples of radio emissions associated with flares and CME s that propagate in the interplanetary medium. These observations are based on one component of the electric field, with a 15 m tip-to-tip antenna, and allow to track the propagation of electron beams injected into the interplanetary medium after a flare has occurred. Such observations, combined with ground based observations by radio-telescopes, allow one to follow the evolution of the shocks using type II bursts. They give the opportunity to carry out complementary studies of the characteristics of electron acceleration processes, and the characteristics of the beam propagation. Figure 5 represents combined measurements of a type III and

5 Fig. 5. Combined measurements of type III / type II bursts observed onboard Wind satellite (RAD 1 and RAD 2 instruments) and by IZMIRAN radio-telescope A type II burst observed onboard Wind satellite by RAD 1 and RAD 2 instruments and by the IZMIRAN radio-telescope. The characteristic intensity of these signals can be estimated, taking into account that the maximum of the cosmic background spectral intensity is about W/ (m 2 Hz 1/2 ) at 3 MHz, which corresponds to an electric field spectral density equal to ( ) 2 V 2 /m 2 Hz (Dulk et al. 2001; Manning and Dulk 2001). The typical intensity of the observed signals is 5 10 db above this value, which implies an intensity of the order of nv/(m Hz 1/2 ). For a refractive index equal to one, the characteristic amplitude of the corresponding magnetic field can be estimated to be about nt/hz 1/2. The Wind measurements were performed around 1 AU. Taking into account that Helios observations show that the wave intensities associated with type III radio-bursts increase very rapidly with decreasing radial distance from the Sun, one can evaluate the amplitude range of the expected wave signals. In the frame of the Solar Orbiter project, intense HF emissions should reach amplitudes up to 10-4 nt/(hz) 1/2. We present here a very sensitive magnetic loop antenna developed by LPCE to measure the magnetic field of these high frequency waves. Several magnetic sensors operating in the frequency range up to several MHz have been used in space projects. A rectangular magnetic loop antenna was used in Polar project by Iowa University group (Gurnett et al. 1995). Our circular coil antenna realized in LPCE has a diameter of 20cm (Figure

6 6) and a sensitivity equal to nt/hz 1/2. Figures 7 and 8 respectively show its frequency response and noise level. The antenna sensitivity can be improved by increasing its size. A simulation of the characteristics of an antenna having a square shape and 50cm size is presented on Figure 8; it gives a quite optimistic evaluation of the possibility to measure electromagnetic waves in the type II an type III bursts, in a wide frequency range extending from 100 khz up to 30 MHz. The sensitivity of magnetic loop antennas is significantly less than that of the electric antennas. The high level of galactic noise however, makes this difference less important, because it does not allow the whole dynamic range of electric antennas to be used in such measurements. Magnetic antennas also have several advantages: accommodation of such an instrument is quite simple: its shape can be adapted to the surface of the non conducting shielding and it can be placed close to the surface without use of the special boom. Another important factor is related with the noise generated around the satellite by the evaporation of the shielding. This noise is mostly electrostatic and so is more likely to affect electric field measurements than magnetic field measurements. The characteristics of the instrument are summarized in the Table 1. Fig. 6. HF magnetic loop with preamplifier. The loop diameter is 20 cm

7 Fig. 7. Frequency response of the HF magnetic loop. The full and dashed lines respectively correspond to the modulus and the phase of the transfer function Fig. 8. Noise level of the HF magnetic loop. The full line corresponds to the measured values, for a circular loop with a diameter of 20 cm. The dashed line corresponds to the simulated values, for a square shaped magnetic antenna of 50 cm side Conclusion. The prime scientific objectives of Solar Orbiter project include the experimental study of the heating of the coronal and solar wind plasmas due to wave activity, and electron acceleration. To solve these problems it is ne-

8 cessary to measure particle distributions and electromagnetic fields in a wide frequency range from several Hertz up to MHz. We propose two instruments to measure the magnetic field of electromagnetic waves in this frequency band. They are a three component search coil in the range 3 Hz 20 khz and a very sensitive one component magnetic loop covering the frequency band from 10kHz up to 20MHz. We show that using this instrumental set we can meet the requirements determined by the scientific objectives of the mission. The authors acknowledge useful and helpful comments of Kaiser and Thejappa concerning RAD 1 and 2 experiments onboard Wind. Table 1. Characteristics of the ELF-VLF search coil and the HF magnetic loop 3axis ELF-VLF search coil HF magnetic loop Bandwidth Sensitivity 1Hz 20kHz 10-5 nt/hz 1/2 at 1kHz 10kHz 20MHz 10-6 nt/hz 1/2 at 1MHz Dimension L=18cm =2cm =20cm Mass sensors=3 100g preamp=20g Total=200g Power 100mW (±12V) 300mW (±5V) References. Dulk GA, Erickson WC, Manning R, Bougeret JL (2001) Calibration of low-frequency radio telescopes using the galactic background, Astron. & Astrophys., 365, p 294 Gurnett DA (1978) Plasma waves near the Sun. In: Neugebauer M and Davies RW, (eds) A close up to the Sun, JPL Publ., pp Gurnett DA (1991) Physics of the Inner Heliosphere. Springer-Verlag, Berlin, pp. 135 Gurnett DA, Persoon AM, Randall RF, Odem DL, Remington SL, Averkamp TF, Debower MM, Hospodarsky GB, Huff RL, Kirchner DL, Mitchell MA, Pham BT, Phillips JR, Schintler WJ, Sheyko P, Tomash DR (1995) The Polar plasma wave instrument, Space Sci. Rev.,71: Kellog PJ, Goetz K, Monson SJ, Bale SD (1999), Langmuir waves in a fluctuating solar wind, J. Geophys. Res., 104: Manning R, Dulk GA (2001) The galactic background from 0.2 to 13.8MHz, Astron. & Astrophys., 372, p 663 Seran HC, Fergeau P (2005) An optimized low frequency three axis search coil magnetometer for space research, accepted for publication in Review of Scientific Instruments Tu CY, Marsch E (2001) Wave dissipation by ion cyclotron resonance in the solar corona, A. & A., 368: Vassal MC (2001) Etude et miniaturisation d un analyseur basse fréquence destiné à la correction de l effet Doppler à bord d une sonde en mouvement rapide par rapport au milieu étudié, Thèse de l Université Versailles Saint-Quentinen-Yvelines

SURA-WAVES experiments: calibration of the Cassini/RPWS/HFR instrumentation

SURA-WAVES experiments: calibration of the Cassini/RPWS/HFR instrumentation SURA-WAVES experiments: calibration of the Cassini/RPWS/HFR instrumentation Abstract The SURA facility transmitted signals in the 9 MHz frequency range to the Cassini spacecraft during the Earth flyby

More information

The Cassini Radio and Plasma Wave Science Instrument

The Cassini Radio and Plasma Wave Science Instrument The Cassini Radio and Plasma Wave Science Instrument Roger Karlsson Space Research Institute of the Austrian Academy of Sciences, Graz Graz in Space, September 7, 2006 The Cassini Radio and Plasma Wave

More information

RESONANCE Project for Studies of Wave-Particle Interactions in the Inner Magnetosphere. Anatoly Petrukovich and Resonance team

RESONANCE Project for Studies of Wave-Particle Interactions in the Inner Magnetosphere. Anatoly Petrukovich and Resonance team RESONANCE Project for Studies of Wave-Particle Interactions in the Inner Magnetosphere Ω Anatoly Petrukovich and Resonance team РЕЗОНАНС RESONANCE Resonance Inner magnetospheric mission Space weather Ring

More information

Radar astronomy and radioastronomy using the over-the-horizon radar NOSTRADAMUS. ONERA, Département Electromagnétisme et Radar

Radar astronomy and radioastronomy using the over-the-horizon radar NOSTRADAMUS. ONERA, Département Electromagnétisme et Radar Radar astronomy and radioastronomy using the over-the-horizon radar NOSTRADAMUS J-F. Degurse 1,2, J-Ph. Molinié 1, V. Rannou 1,S. Marcos 2 1 ONERA, Département Electromagnétisme et Radar 2 L2S Supéléc,

More information

IONOSPHERIC SIGNATURES OF SEISMIC EVENTS AS OBSERVED BY THE DEMETER SATELLITE

IONOSPHERIC SIGNATURES OF SEISMIC EVENTS AS OBSERVED BY THE DEMETER SATELLITE IONOSPHERIC SIGNATURES OF SEISMIC EVENTS AS OBSERVED BY THE DEMETER SATELLITE M. Parrot and F. Lefeuvre LPC2E/CNRS, 3 A Av Recherche Scientifique 45071 Orleans cedex 2 France lefeuvre@cnrs-orleans.fr URSI

More information

Near Earth space monitoring with LOFAR PL610 station in Borówiec

Near Earth space monitoring with LOFAR PL610 station in Borówiec Near Earth space monitoring with LOFAR PL610 station in Borówiec Hanna Rothkaehl 1, Mariusz Pożoga 1, Marek Morawski 1, Barbara Matyjasiak 1, Dorota Przepiórka 1, Marcin Grzesiak 1 and Roman Wronowski

More information

First Results from the 2014 Coordinated Measurements Campaign with HAARP and CASSIOPE/ePOP

First Results from the 2014 Coordinated Measurements Campaign with HAARP and CASSIOPE/ePOP First Results from the 2014 Coordinated Measurements Campaign with HAARP and CASSIOPE/ePOP Carl L. Siefring, Paul A. Bernhardt, Stanley J. Briczinski, and Michael McCarrick Naval Research Laboratory Matthew

More information

TARANIS mission T. Farges with the collaboration of J-L. Pinçon, J-L. Rauch, P-L. Blelly, F. Lebrun, J-A. Sauvaud, and E. Seran

TARANIS mission T. Farges with the collaboration of J-L. Pinçon, J-L. Rauch, P-L. Blelly, F. Lebrun, J-A. Sauvaud, and E. Seran TARANIS mission T. Farges with the collaboration of J-L. Pinçon, J-L. Rauch, P-L. Blelly, F. Lebrun, J-A. Sauvaud, and E. Seran Joint MTG LI & GOES-R GLM workshop 27-29 May 2015 - Roma TARANIS scientific

More information

SPACE WEATHER SIGNATURES ON VLF RADIO WAVES RECORDED IN BELGRADE

SPACE WEATHER SIGNATURES ON VLF RADIO WAVES RECORDED IN BELGRADE Publ. Astron. Obs. Belgrade No. 80 (2006), 191-195 Contributed paper SPACE WEATHER SIGNATURES ON VLF RADIO WAVES RECORDED IN BELGRADE DESANKA ŠULIĆ1, VLADIMIR ČADEŽ2, DAVORKA GRUBOR 3 and VIDA ŽIGMAN4

More information

Page 1 of 8 Search Contact NRL Personnel Locator Human Resources Public Affairs Office Visitor Info Planning a Visit Directions Maps Weather & Traffic Field Sites Stennis Monterey VXS-1 Chesapeake Bay

More information

Precipitation of Energetic Protons from the Radiation Belts. using Lower Hybrid Waves

Precipitation of Energetic Protons from the Radiation Belts. using Lower Hybrid Waves Precipitation of Energetic Protons from the Radiation Belts using Lower Hybrid Waves Lower hybrid waves are quasi-electrostatic whistler mode waves whose wave normal direction is very close to the whistler

More information

ionospheric satellite cluster scientific premises and proposed configuration

ionospheric satellite cluster scientific premises and proposed configuration ionospheric satellite cluster scientific premises and proposed configuration O. Fedorov, Institute of Space Research, Kyiv, Ukraine V. Korepanov, Lviv Centre of Institute of Space Research, Lviv, Ukraine

More information

Power line harmonic radiation (PLHR) observed by the DEMETER spacecraft

Power line harmonic radiation (PLHR) observed by the DEMETER spacecraft JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2005ja011480, 2006 Power line harmonic radiation (PLHR) observed by the DEMETER spacecraft F. Němec, 1,2 O. Santolík, 3,4 M. Parrot, 1 and J. J.

More information

SHEDDING NEW LIGHT ON SOLITARY WAVES OBSERVED IN SPACE

SHEDDING NEW LIGHT ON SOLITARY WAVES OBSERVED IN SPACE University of Iowa SHEDDING NEW LIGHT ON SOLITARY WAVES OBSERVED IN SPACE J. S. Pickett, L.-J. Chen, D. A. Gurnett, J. M. Swanner, O. SantolRk P. M. E. Décréau, C. BJghin, D. Sundkvist, B. Lefebvre, M.

More information

(CSES) Introduction for China Seismo- Electromagnetic Satellite

(CSES) Introduction for China Seismo- Electromagnetic Satellite Introduction for China Seismo- Electromagnetic Satellite (CSES) Wang Lanwei Working Group of China Earthquake-related related Satellites Mission China Earthquake Administration Outline Project Objectives

More information

What is Space Weather? THE ACTIVE SUN

What is Space Weather? THE ACTIVE SUN Aardvark Roost AOC Space Weather in Southern Africa Hannes Coetzee 1 What is Space Weather? THE ACTIVE SUN 2 The Violant Sun 3 What is Space Weather? Solar eruptive events (solar flares, coronal Mass Space

More information

Solar Radar Experiments

Solar Radar Experiments Solar Radar Experiments Paul Rodriguez Plasma Physics Division Naval Research Laboratory Washington, DC 20375 phone: (202) 767-3329 fax: (202) 767-3553 e-mail: paul.rodriguez@nrl.navy.mil Award # N0001498WX30228

More information

4/29/2012. General Class Element 3 Course Presentation. Radio Wave Propagation. Radio Wave Propagation. Radio Wave Propagation.

4/29/2012. General Class Element 3 Course Presentation. Radio Wave Propagation. Radio Wave Propagation. Radio Wave Propagation. General Class Element 3 Course Presentation ti ELEMENT 3 SUB ELEMENTS General Licensing Class Subelement G3 3 Exam Questions, 3 Groups G1 Commission s Rules G2 Operating Procedures G3 G4 Amateur Radio

More information

Case studies on the wave propagation and polarization of ELF emissions observed by Freja around the local proton gyrofrequency

Case studies on the wave propagation and polarization of ELF emissions observed by Freja around the local proton gyrofrequency JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 104, NO. A2, PAGES 2459 2475, FEBRUARY 1, 1999 Case studies on the wave propagation and polarization of ELF emissions observed by Freja around the local proton gyrofrequency

More information

Space-born system for on-line precursors monitoring of eathquakes,, natural and man-made made catastrophes

Space-born system for on-line precursors monitoring of eathquakes,, natural and man-made made catastrophes Space-born system for on-line precursors monitoring of eathquakes,, natural and man-made made catastrophes The main goal of the Project In my brief report, I would like to inform about the work on developing

More information

NON-TYPICAL SERIES OF QUASI-PERIODIC VLF EMISSIONS

NON-TYPICAL SERIES OF QUASI-PERIODIC VLF EMISSIONS NON-TYPICAL SERIES OF QUASI-PERIODIC VLF EMISSIONS J. Manninen 1, N. Kleimenova 2, O. Kozyreva 2 1 Sodankylä Geophysical Observatory, Finland, e-mail: jyrki.manninen@sgo.fi; 2 Institute of Physics of the

More information

IONOSPHERE EFFECTS ON GPS/RF COMMUNICATION, ELECTRIC, METAL NETWORKS AND SPACECRAFTS OSMAN AKGÜN

IONOSPHERE EFFECTS ON GPS/RF COMMUNICATION, ELECTRIC, METAL NETWORKS AND SPACECRAFTS OSMAN AKGÜN IONOSPHERE EFFECTS ON GPS/RF COMMUNICATION, ELECTRIC, METAL NETWORKS AND SPACECRAFTS 2119212 OSMAN AKGÜN IONOSPHERE IONOSPHERE EFFECTS POSSIBLE EFFECTS GPS errors Atomic oxygen attack Spacecraft charging

More information

Low Frequency Radio Astronomy from the Lunar Surface

Low Frequency Radio Astronomy from the Lunar Surface Low Frequency Radio Astronomy from the Lunar Surface R. J. MacDowall (1), T. J. Lazio (2), J. Burns (3) (1) NASA/GSFC, Greenbelt, MD, USA (2) JPL/Caltech, Pasadena, CA, USA (3) U. Colorado, Boulder, CO,

More information

1 Introduction. 2 Scientific Objectives and Mission Contents. SHEN Xuhui

1 Introduction. 2 Scientific Objectives and Mission Contents. SHEN Xuhui 0254-6124/2014/34(5)-558 05 Chin. J. Space Sci. Ξ ΛΠΠ Shen Xuhui. The experimental satellite on electromagnetism monitoring. Chin. J. Space Sci., 2014, 34(5): 558-562, doi:10.11728/ cjss2014.05.558 The

More information

CLUSTER observations of lower hybrid waves excited at high altitudes by electromagnetic whistler mode signals from the HAARP facility

CLUSTER observations of lower hybrid waves excited at high altitudes by electromagnetic whistler mode signals from the HAARP facility GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L06811, doi:10.1029/2003gl018855, 2004 CLUSTER observations of lower hybrid waves excited at high altitudes by electromagnetic whistler mode signals from the HAARP

More information

Multi-band Whistler-mode Chorus Emissions Observed by the Cluster Spacecraft

Multi-band Whistler-mode Chorus Emissions Observed by the Cluster Spacecraft WDS'11 Proceedings of Contributed Papers, Part II, 91 96, 211. ISBN 978-8-7378-185-9 MATFYZPRESS Multi-band Whistler-mode Chorus Emissions Observed by the Cluster Spacecraft E. Macúšová and O. Santolík

More information

Diagnostic development to measure parallel wavenumber of lower hybrid waves on Alcator C-Mod

Diagnostic development to measure parallel wavenumber of lower hybrid waves on Alcator C-Mod Diagnostic development to measure parallel wavenumber of lower hybrid waves on Alcator C-Mod S. G. Baek, T. Shinya*, G. M. Wallace, S. Shiraiwa, R. R. Parker, Y. Takase*, D. Brunner MIT Plasma Science

More information

Experimental Observations of ELF/VLF Wave Generation Using Optimized Beam-Painting

Experimental Observations of ELF/VLF Wave Generation Using Optimized Beam-Painting Experimental Observations of ELF/VLF Wave Generation Using Optimized Beam-Painting R. C. Moore Department of Electrical and Computer Engineering University of Florida, Gainesville, FL 32611. Abstract Observations

More information

Using the Radio Spectrum to Understand Space Weather

Using the Radio Spectrum to Understand Space Weather Using the Radio Spectrum to Understand Space Weather Ray Greenwald Virginia Tech Topics to be Covered What is Space Weather? Origins and impacts Analogies with terrestrial weather Monitoring Space Weather

More information

Whistler Wave Generation by Continuous HF Heating of the F-region Ionosphere

Whistler Wave Generation by Continuous HF Heating of the F-region Ionosphere Whistler Wave Generation by Continuous HF Heating of the F-region Ionosphere Aram Vartanyan 1 G. M. Milikh 1, B. Eliasson 1,2, A. C. Najmi 1, M. Parrot 3, K. Papadopoulos 1 1 Departments of Physics and

More information

MAN MADE RADIO EMISSIONS RECORDED BY CASSINI/RPWS DURING EARTH FLYBY

MAN MADE RADIO EMISSIONS RECORDED BY CASSINI/RPWS DURING EARTH FLYBY MAN MADE RADIO EMISSIONS RECORDED BY CASSINI/RPWS DURING EARTH FLYBY G. Fischer and H. O. Rucker Abstract In the days around closest approach of the Cassini spacecraft to Earth at August 18, 1999, the

More information

Satellite Testing. Prepared by. A.Kaviyarasu Assistant Professor Department of Aerospace Engineering Madras Institute Of Technology Chromepet, Chennai

Satellite Testing. Prepared by. A.Kaviyarasu Assistant Professor Department of Aerospace Engineering Madras Institute Of Technology Chromepet, Chennai Satellite Testing Prepared by A.Kaviyarasu Assistant Professor Department of Aerospace Engineering Madras Institute Of Technology Chromepet, Chennai @copyright Solar Panel Deployment Test Spacecraft operating

More information

Analysis of fine ELF wave structures observed poleward from the ionospheric trough by the low-altitude satellite DEMETER

Analysis of fine ELF wave structures observed poleward from the ionospheric trough by the low-altitude satellite DEMETER Analysis of fine ELF wave structures observed poleward from the ionospheric trough by the low-altitude satellite DEMETER Michel Parrot, František Nĕmec, Ondřej Santolík To cite this version: Michel Parrot,

More information

Study of Ion Cyclotron Emissions due to DD Fusion Product Ions on JT-60U

Study of Ion Cyclotron Emissions due to DD Fusion Product Ions on JT-60U 1 Study of Ion Cyclotron Emissions due to DD Fusion Product Ions on JT-6U M. Ichimura 1), M. Katano 1), Y. Yamaguchi 1), S. Sato 1), Y. Motegi 1), H. Muro 1), T. Ouchi 1), S. Moriyama 2), M. Ishikawa 2),

More information

Measurements of Mode Converted ICRF Waves with Phase Contrast Imaging in Alcator C-Mod

Measurements of Mode Converted ICRF Waves with Phase Contrast Imaging in Alcator C-Mod Measurements of Mode Converted ICRF Waves with Phase Contrast Imaging in Alcator C-Mod N. Tsujii, M. Porkolab, E.M. Edlund, L. Lin, Y. Lin, J.C. Wright, S.J. Wukitch MIT Plasma Science and Fusion Center

More information

Frequency Dependence of VLF Wave Generation at Gakona, Alaska

Frequency Dependence of VLF Wave Generation at Gakona, Alaska Frequency Dependence of VLF Wave Generation at Gakona, Alaska Spencer P. Kuo 1, Maurice Rubinraut 1, Yen-Liang Wu 1, R. Pradipta 2, J.A. Cohen 2, M.C. Lee 2,3 1 Dept of Electrical & Computer Engineering,

More information

Antennas and Propagation Chapters T4, G7, G8 Antenna Fundamentals, More Antenna Types, Feed lines and Measurements, Propagation

Antennas and Propagation Chapters T4, G7, G8 Antenna Fundamentals, More Antenna Types, Feed lines and Measurements, Propagation Antennas and Propagation Chapters T4, G7, G8 Antenna Fundamentals, More Antenna Types, Feed lines and Measurements, Propagation =============================================================== Antenna Fundamentals

More information

4/18/2012. Supplement T3. 3 Exam Questions, 3 Groups. Amateur Radio Technician Class

4/18/2012. Supplement T3. 3 Exam Questions, 3 Groups. Amateur Radio Technician Class Amateur Radio Technician Class Element 2 Course Presentation ti ELEMENT 2 SUB-ELEMENTS Technician Licensing Class Supplement T3 Radio Wave Characteristics 3 Exam Questions, 3 Groups T1 - FCC Rules, descriptions

More information

DYNAMIC IONOSPHERE CUBESAT EXPERIMENT

DYNAMIC IONOSPHERE CUBESAT EXPERIMENT Geoff Crowley, Charles Swenson, Chad Fish, Aroh Barjatya, Irfan Azeem, Gary Bust, Fabiano Rodrigues, Miguel Larsen, & USU Student Team DYNAMIC IONOSPHERE CUBESAT EXPERIMENT NSF-Funded Dual-satellite Space

More information

Ionospheric Propagation

Ionospheric Propagation Ionospheric Nick Massey VA7NRM 1 Electromagnetic Spectrum Radio Waves are a form of Electromagnetic Radiation Visible Light is also a form of Electromagnetic Radiation Radio Waves behave a lot like light

More information

Study of small scale plasma irregularities. Đorđe Stevanović

Study of small scale plasma irregularities. Đorđe Stevanović Study of small scale plasma irregularities in the ionosphere Đorđe Stevanović Overview 1. Global Navigation Satellite Systems 2. Space weather 3. Ionosphere and its effects 4. Case study a. Instruments

More information

Radio Astronomy for Amateurs. Presented by Keith Payea AG6CI

Radio Astronomy for Amateurs. Presented by Keith Payea AG6CI Radio Astronomy for Amateurs Presented by Keith Payea AG6CI Outline Radio Astronomy Basics: What, How, Why How Amateurs can participate and contribute What is Radio Astronomy? The Study of the non-visible

More information

Testing Plasma Physics in the Ionosphere

Testing Plasma Physics in the Ionosphere Testing Plasma Physics in the Ionosphere Dennis Papadopoulos University of Maryland College Park, MD 20742 X. Shao, G. Milikh - UMCP C. Chang, T. Wallace, M. McCarrick, I Doxas BAE Systems-AT U. Inan,

More information

Radio-science experiments with the Enhanced Polar Outflow Probe satellite payload using its RRI, GAP and CERTO instruments

Radio-science experiments with the Enhanced Polar Outflow Probe satellite payload using its RRI, GAP and CERTO instruments Radio-science experiments with the Enhanced Polar Outflow Probe satellite payload using its RRI, GAP and CERTO instruments H.G. James, CRC, Ottawa, Canada P.A. Bernhardt, NRL, Washington, U.S.A. R.B. Langley,

More information

The Demonstrations & Science Experiment (DSX)

The Demonstrations & Science Experiment (DSX) The Demonstrations & Science Experiment (DSX) Radiation Belt Storm Probes Science Working Group 31 Aug 2010 Gregory Ginet, MIT/LL Michael Starks, AFRL Bob Johnston, AFRL Jay Albert, AFRL The Team Program

More information

NVIS PROPAGATION THEORY AND PRACTICE

NVIS PROPAGATION THEORY AND PRACTICE NVIS PROPAGATION THEORY AND PRACTICE Introduction Near-Vertical Incident Skywave (NVIS) propagation is a mode of HF operation that utilizes a high angle reflection off the ionosphere to fill in the gap

More information

Resonance project and active experiments

Resonance project and active experiments Resonance project and active experiments A. G. Demekhov Institute of Applied Physics, Nizhny Novgorod, Russia M. M. Mogilevsky, L. M. Zelenyi Space Research Institute, Moscow, Russia RBSP SWG Meeting,

More information

Monitoring the polar cap/ auroral ionosphere: Industrial applications. P. T. Jayachandran Physics Department University of New Brunswick Fredericton

Monitoring the polar cap/ auroral ionosphere: Industrial applications. P. T. Jayachandran Physics Department University of New Brunswick Fredericton Monitoring the polar cap/ auroral ionosphere: Industrial applications P. T. Jayachandran Physics Department University of New Brunswick Fredericton Outline Ionosphere and its effects on modern and old

More information

Research by Ukraine of the near Earth space

Research by Ukraine of the near Earth space MEETING BETWEEN YUZHNOYE SDO AND HONEYWELL, DECEMBER 8, 2009 Research by Ukraine of the near Earth space YUZHNOYE SDO PROPOSALS 50 th session FOR of COOPERATION STSC COPUOS WITH HONEYWELL Vienna 11-22

More information

ARTEMIS MARK-IV, THE NEW GREEK FRENCH DIGITAL RADIO SPECTROGRAPH AT THERMOPYLES, GREECE

ARTEMIS MARK-IV, THE NEW GREEK FRENCH DIGITAL RADIO SPECTROGRAPH AT THERMOPYLES, GREECE ARTEMIS MARK-IV, THE NEW GREEK FRENCH DIGITAL RADIO SPECTROGRAPH AT THERMOPYLES, GREECE D. MAROULIS Department of Informatics, University of Athens, Panepistimiopolis, GR-15784 Athens, Greece G. DUMAS

More information

The Largest Ionospheric Disturbances Produced by the HAARP HF Facility

The Largest Ionospheric Disturbances Produced by the HAARP HF Facility The Largest Ionospheric Disturbances Produced by the HAARP HF Facility Paul A. Bernhardt 1, Carl L. Seifring 1, Stanley J. Briczinski 2, Elizabeth A. kendall 3, Brenton J. Watkins 4, William Bristow 4,

More information

Radioastronomy in Space with Cubesats

Radioastronomy in Space with Cubesats Radioastronomy in Space with Cubesats Baptiste Cecconi (1), Philippe Zarka (1), Marc Klein Wolt (2), Jan Bergman (3), Boris Segret (1) (1) LESIA, CNRS-Observatoire de Paris, France (2) Radboud University

More information

ESS 7. Lectures 18, 19 and 20 November 14, 17 and 19. Technology and Space Weather

ESS 7. Lectures 18, 19 and 20 November 14, 17 and 19. Technology and Space Weather ESS 7 Lectures 18, 19 and 20 November 14, 17 and 19 Technology and Space Weather Space Weather Effects on Satellite Lifetimes: Atmospheric Drag A satellite would orbit forever if gravity was the only force

More information

The FIELDS Instrument Suite for Solar Probe Plus

The FIELDS Instrument Suite for Solar Probe Plus Space Sci Rev (2016) 204:49 82 DOI 10.1007/s11214-016-0244-5 The FIELDS Instrument Suite for Solar Probe Plus Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures

More information

CONTROLLED WAVE PARTICLE INTERACTION STUDIES IN THE RADIATION BELTS

CONTROLLED WAVE PARTICLE INTERACTION STUDIES IN THE RADIATION BELTS CONTROLLED WAVE PARTICLE INTERACTION STUDIES IN THE RADIATION BELTS DENNIS PAPADOPOULOS UMCP ACKNOWLEDGE: C.L.CHANG, J.LEBINSKY AT BAE SYSTEMS XI SHAO, B.ELIASSON, S. SHARMA AND G. MILIKH AT UMCP SUPPORT:

More information

Discovery of very large amplitude whistler-mode waves in Earth s radiation belts

Discovery of very large amplitude whistler-mode waves in Earth s radiation belts GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L01105, doi:10.1029/2007gl032009, 2008 Discovery of very large amplitude whistler-mode waves in Earth s radiation belts C. Cattell, 1 J. R. Wygant, 1 K. Goetz, 1

More information

V-shaped VLF streaks recorded on DEMETER above powerful thunderstorms

V-shaped VLF streaks recorded on DEMETER above powerful thunderstorms Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2008ja013336, 2008 V-shaped VLF streaks recorded on DEMETER above powerful thunderstorms M. Parrot, 1,2 U. S. Inan, 3

More information

Geoff Crowley, Chad Fish, Charles Swenson, Gary Bust, Aroh Barjatya, Miguel Larsen, and USU Student Team

Geoff Crowley, Chad Fish, Charles Swenson, Gary Bust, Aroh Barjatya, Miguel Larsen, and USU Student Team Geoff Crowley, Chad Fish, Charles Swenson, Gary Bust, Aroh Barjatya, Miguel Larsen, and USU Student Team NSF-Funded Dual-satellite Space Weather Mission Project Funded October 2009 (6 months ago) 1 2 11

More information

Excitation and Propagation of Low Frequency Waves in a FRC plasma

Excitation and Propagation of Low Frequency Waves in a FRC plasma 1 Excitation and Propagation of Low Frequency Waves in a FRC plasma S. Okada, K. Yamanaka, S. Yamamoto, T. Masumoto, K. Kitano, T. Asai, F. Kodera, M. Inomoto, S. Yoshimura, M. Okubo, S. Sugimoto, S. Ohi

More information

Storms in Earth s ionosphere

Storms in Earth s ionosphere Storms in Earth s ionosphere Archana Bhattacharyya Indian Institute of Geomagnetism IISF 2017, WSE Conclave; Anna University, Chennai Earth s Ionosphere Ionosphere is the region of the atmosphere in which

More information

Sub-HF Search and Acquisition

Sub-HF Search and Acquisition SECRET SP9KE Sub-HF Search and Acquisition (U) This report summarizes the history ofsub-hf search and discusses its present value to and future needs by SIGINT. The report concludes that a small automated

More information

C. A. Kletzing Department of Physics and Asttronomy The University of Iowa THE UNIVERSITY OF IOWA REPW 2007

C. A. Kletzing Department of Physics and Asttronomy The University of Iowa THE UNIVERSITY OF IOWA REPW 2007 1 Waves in the Earth s Radiation Belt: The Electric and Magnetic Field Instrument Suite with Integrated Science (EMFISIS) on the Radiation Belt Storm Probes C. A. Kletzing Department of Physics and Asttronomy

More information

S/WAVES: The Radio and Plasma Wave Investigation on the STEREO Mission

S/WAVES: The Radio and Plasma Wave Investigation on the STEREO Mission Space Sci Rev DOI 10.1007/s11214-007-9298-8 S/WAVES: The Radio and Plasma Wave Investigation on the STEREO Mission J.L. Bougeret K. Goetz M.L. Kaiser S.D. Bale P.J. Kellogg M. Maksimovic N. Monge S.J.

More information

Low-frequency radio observations at Lustbühel Observatory M. Panchenko(1), H.O. Rucker(2)

Low-frequency radio observations at Lustbühel Observatory M. Panchenko(1), H.O. Rucker(2) Low-frequency radio observations at Lustbühel Observatory M. Panchenko(1), H.O. Rucker(2) (1) Space Research Institute, Graz, Austria (2) Commission for Astronomy, Austrian Academy of Sciences, Graz 1

More information

REMOTE SENSING AS A TOOL OF SEISMIC HAZARDS MONITORING* V. Korepanov Lviv Centre of Institute of Space Research Lviv, Ukraine ABSTRACT

REMOTE SENSING AS A TOOL OF SEISMIC HAZARDS MONITORING* V. Korepanov Lviv Centre of Institute of Space Research Lviv, Ukraine ABSTRACT REMOTE SENSING AS A TOOL OF SEISMIC HAZARDS MONITORING* V. Korepanov Lviv Centre of Institute of Space Research Lviv, Ukraine ABSTRACT The possibility of the detection of the seismic hazards precursors

More information

Solar Observing Low-frequency Array for Radio Astronomy (SOLARA)

Solar Observing Low-frequency Array for Radio Astronomy (SOLARA) Solar Observing Low-frequency Array for Radio Astronomy (SOLARA) Exploring the last frontier of the EM spectrum Mary Knapp, Dr. Alessandra Babuscia, Rebecca Jensen-Clem, Francois Martel, Prof. Sara Seager

More information

The Newly Formed LoCSST

The Newly Formed LoCSST The Newly Formed LoCSST Lowell Center for Space Science and Technology 3 rd floor, Wannalancit Mill LoCSST Older Research Institutions UMLCAR (Center for Atmospheric Research) SSL (Space Sciences Lab)

More information

Ground based measurements of ionospheric turbulence manifestations induced by the VLF transmitter ABSTRACT

Ground based measurements of ionospheric turbulence manifestations induced by the VLF transmitter ABSTRACT Ground based measurements of ionospheric turbulence manifestations induced by the VLF transmitter Dmitry S. Kotik, 1 Fedor I. Vybornov, 1 Alexander V. Ryabov, 1 Alexander V. Pershin 1 and Vladimir A. Yashnov

More information

Summary of Research Activities on Microwave Discharge Phenomena involving Chalmers (Sweden), Institute of Applied Physics (Russia) and CNES (France)

Summary of Research Activities on Microwave Discharge Phenomena involving Chalmers (Sweden), Institute of Applied Physics (Russia) and CNES (France) Summary of Research Activities on Microwave Discharge Phenomena involving Chalmers (Sweden), Institute of Applied Physics (Russia) and CNES (France) J. Puech (1), D. Anderson (2), M.Lisak (2), E.I. Rakova

More information

General Classs Chapter 7

General Classs Chapter 7 General Classs Chapter 7 Radio Wave Propagation Bob KA9BHD Eric K9VIC Learning Objectives Teach you enough to get all the propagation questions right during the VE Session Learn a few things from you about

More information

The MITRA as a solar and ionospheric instrument

The MITRA as a solar and ionospheric instrument The MITRA as a solar and ionospheric instrument Girish Kumar Beeharry Mauritius Radio Telescope, Department of Physics, Faculty of Science, University of Mauritius, Mauritius. Email: gkb@uom.ac.mu Accepted:

More information

Ionospheric Absorption

Ionospheric Absorption Ionospheric Absorption Prepared by Forrest Foust Stanford University, Stanford, CA IHY Workshop on Advancing VLF through the Global AWESOME Network VLF Injection Into the Magnetosphere Earth-based VLF

More information

Chapter 7 HF Propagation. Ionosphere Solar Effects Scatter and NVIS

Chapter 7 HF Propagation. Ionosphere Solar Effects Scatter and NVIS Chapter 7 HF Propagation Ionosphere Solar Effects Scatter and NVIS Ionosphere and Layers Radio Waves Bent by the Ionosphere Daily variation of Ionosphere Layers Ionospheric Reflection Conduction by electrons

More information

A CubeSat Radio Beacon Experiment

A CubeSat Radio Beacon Experiment A CubeSat Radio Beacon Experiment CUBEACON A Beacon Test of Designs for the Future Antenna? Michael Cousins SRI International Multifrequency? Size, Weight and Power? CubeSat Developers Workshop, April

More information

Aurora - acceleration processes

Aurora - acceleration processes Aurora - acceleration processes S. L. G. Hess LATMOS IPSL/CNRS, Université Versailles St Quentin, France M. Kivelson's talk : Plasma moves in the magnetosphere. M. Galand's talk : This generates currents

More information

AWESOME for educational and research use

AWESOME for educational and research use SuperSID - a small-version AWESOME for educational and research use By Deborah Scherrer Tim Huynh Stanford University Solar Center 1 What I am going to talk about What is this project? What can the instrument

More information

FRL's Demonstration and Science Experiments (DSX) rogram Quest for the Common Micro Satellite Bus

FRL's Demonstration and Science Experiments (DSX) rogram Quest for the Common Micro Satellite Bus FRL's Demonstration and Science Experiments (DSX) rogram Quest for the Common Micro Satellite Bus 21st Annual Conference on Small Satellites August 13-16, 16, 2007 Logan, Utah N. Greg Heinsohn DSX HSB

More information

GA A25836 PRE-IONIZATION EXPERIMENTS IN THE DIII-D TOKAMAK USING X-MODE SECOND HARMONIC ELECTRON CYCLOTRON HEATING

GA A25836 PRE-IONIZATION EXPERIMENTS IN THE DIII-D TOKAMAK USING X-MODE SECOND HARMONIC ELECTRON CYCLOTRON HEATING GA A25836 PRE-IONIZATION EXPERIMENTS IN THE DIII-D TOKAMAK USING X-MODE SECOND HARMONIC ELECTRON CYCLOTRON HEATING by G.L. JACKSON, M.E. AUSTIN, J.S. degrassie, J. LOHR, C.P. MOELLER, and R. PRATER JULY

More information

New Earthquake Prediction Methods Based on ULF-ELF Signals

New Earthquake Prediction Methods Based on ULF-ELF Signals Periodic Seminar of Civil Aviation Technology of College New Earthquake Prediction Methods Based on ULF-ELF Signals Presented by Mohammad Rashtian 7 March 2012 Outline Iran and Earthquake Different Methods

More information

Space Weather and the Ionosphere

Space Weather and the Ionosphere Dynamic Positioning Conference October 17-18, 2000 Sensors Space Weather and the Ionosphere Grant Marshall Trimble Navigation, Inc. Note: Use the Page Down key to view this presentation correctly Space

More information

RECOMMENDATION ITU-R SA (Question ITU-R 210/7)

RECOMMENDATION ITU-R SA (Question ITU-R 210/7) Rec. ITU-R SA.1016 1 RECOMMENDATION ITU-R SA.1016 SHARING CONSIDERATIONS RELATING TO DEEP-SPACE RESEARCH (Question ITU-R 210/7) Rec. ITU-R SA.1016 (1994) The ITU Radiocommunication Assembly, considering

More information

HAARP Generated ELF/VLF Waves for Magnetospheric Probing. Mark Gołkowski

HAARP Generated ELF/VLF Waves for Magnetospheric Probing. Mark Gołkowski HAARP Generated ELF/VLF Waves for Magnetospheric Probing Mark Gołkowski University of Colorado Denver M.B. Cohen, U. S. Inan, D. Piddyachiy Stanford University RF Ionospheric Workshop 20 April 2010 Outline

More information

Relativistic cyclotron resonance condition as applied to Type II interplanetary radio emission

Relativistic cyclotron resonance condition as applied to Type II interplanetary radio emission JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003ja009965, 2004 Relativistic cyclotron resonance condition as applied to Type II interplanetary radio emission W. M. Farrell, 1 M. L. Kaiser,

More information

Patch Antennas UNIK9700 Radio and Mobility

Patch Antennas UNIK9700 Radio and Mobility Patch Antennas UNIK9700 Radio and Mobility Johan Tresvig PhD Candidate Dept. of Physics, UiO j.l.tresvig@fys.uio.no 1 Outline Introduction Patch antennas Theory - Rectangular patch antenna Case study Design

More information

Interplanetary CubeSats mission for space weather evaluations and technology demonstration

Interplanetary CubeSats mission for space weather evaluations and technology demonstration Interplanetary CubeSats mission for space weather evaluations and technology demonstration M.A. Viscio, N. Viola, S. Corpino Politecnico di Torino, Italy C. Circi*, F. Fumenti** *University La Sapienza,

More information

Helicon Wave Current Drive in KSTAR Plasmas

Helicon Wave Current Drive in KSTAR Plasmas Daejeon Helicon Wave Current Drive in KSTAR Plasmas S. J. Wanga, H. J. Kima, Jeehyun Kima, V. Vdovinb, B. H. Parka, H. H. Wic, S. H. Kimd, and J. G. Kwaka anational Fusion Research Institute, Daejeon,

More information

Co-current toroidal rotation driven and turbulent stresses with. resonant magnetic perturbations in the edge plasmas of the J-TEXT.

Co-current toroidal rotation driven and turbulent stresses with. resonant magnetic perturbations in the edge plasmas of the J-TEXT. Co-current toroidal rotation driven and turbulent stresses with resonant magnetic perturbations in the edge plasmas of the J-TEXT tokamak K. J. Zhao, 1 Y. J. Shi, H. Liu, P. H. Diamond, 3 F. M. Li, J.

More information

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 8: Cable Modeling

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 8: Cable Modeling ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1 Chapter 8: Cable Modeling Related to the topic in section 8.14, sometimes when an RF transmitter is connected to an unbalanced antenna fed against earth ground

More information

I J E E Volume 5 Number 1 January-June 2013 pp

I J E E Volume 5 Number 1 January-June 2013 pp I J E E Volume 5 Number 1 January-June 2013 pp. 21-25 Serials Publications, ISSN : 0973-7383 Various Antennas and Its Applications in Wireless Domain: A Review Paper P.A. Ambresh 1, P.M. Hadalgi 2 and

More information

ION CYCLOTRON HEATING IN A TOROIDAL OC TU POLE. February 1975

ION CYCLOTRON HEATING IN A TOROIDAL OC TU POLE. February 1975 ION CYCLOTRON HEATING IN A TOROIDAL OC TU POLE J. D. Barter and J. C. Sprott February 1975 (Submitted to Physical Review Letters) PLP 608 Plasma Studies University of Wisconsin These PLP Reports are informal

More information

Resonance Cones in Magnetized Plasma

Resonance Cones in Magnetized Plasma Resonance Cones in Magnetized Plasma C. Riccardi, M. Salierno, P. Cantu, M. Fontanesi, Th. Pierre To cite this version: C. Riccardi, M. Salierno, P. Cantu, M. Fontanesi, Th. Pierre. Resonance Cones in

More information

RECOMMENDATION ITU-R SA.364-5* PREFERRED FREQUENCIES AND BANDWIDTHS FOR MANNED AND UNMANNED NEAR-EARTH RESEARCH SATELLITES (Question 132/7)

RECOMMENDATION ITU-R SA.364-5* PREFERRED FREQUENCIES AND BANDWIDTHS FOR MANNED AND UNMANNED NEAR-EARTH RESEARCH SATELLITES (Question 132/7) Rec. ITU-R SA.364-5 1 RECOMMENDATION ITU-R SA.364-5* PREFERRED FREQUENCIES AND BANDWIDTHS FOR MANNED AND UNMANNED NEAR-EARTH RESEARCH SATELLITES (Question 132/7) Rec. ITU-R SA.364-5 (1963-1966-1970-1978-1986-1992)

More information

Coils Loop sensors / radiating loops / Helmholtz coils

Coils Loop sensors / radiating loops / Helmholtz coils Coils Loop sensors / radiating loops / Helmholtz coils Loop sensors / radiating loops: page 2 Helmholtz coils: page 6 Coils_F - 44/05 Page 1 of 10 Coils according to MIL-STD-461E Loop sensor / radiating

More information

Radiation and Particles from the. Sun

Radiation and Particles from the. Sun 2017 Radiation and Particles from the Photons Sun Photons (300000km/s ~ 8m 20s) radio waves, infra red, visible light, ultra violet, x-ray, x galactic waves, Solar Flux (30000km/s ~ 8m 20s) The 10.7 cm

More information

CONSIDERATION OF THE JOVIAN S-BURSTS AND NB-EMISSION BASED ON THE PARAMETRIC MODEL

CONSIDERATION OF THE JOVIAN S-BURSTS AND NB-EMISSION BASED ON THE PARAMETRIC MODEL CONSIDERATION OF THE JOVIAN S-BURSTS AND NB-EMISSION BASED ON THE PARAMETRIC MODEL V. E. Shaposhnikov *, A. V. Kostrov,H.O.Rucker, S. V. Korobkov, M. E. Gushchin,andG.V.Litvinenko Abstract The new mechanism

More information

ICE, the electric field experiment on DEMETER

ICE, the electric field experiment on DEMETER ARTICLE IN PRESS Planetary and Space Science 54 (2006) 456 471 www.elsevier.com/locate/pss ICE, the electric field experiment on DEMETER J.J. Berthelier a,, M. Godefroy a, F. Leblanc a, M. Malingre a,

More information

Jupiter's radiophysics unveiled by 2 decades of decameter observations in Nancay

Jupiter's radiophysics unveiled by 2 decades of decameter observations in Nancay Jupiter's radiophysics unveiled by 2 decades of decameter observations in Nancay P. Zarka LESIA, Observatoire de Paris, Meudon philippe.zarka@obspm.fr Discovery of Jovian Radio emissions (DAM) using Mills

More information

S.R.M. Institute of Science & Technology Deemed University School of Electronics & Communication Engineering

S.R.M. Institute of Science & Technology Deemed University School of Electronics & Communication Engineering S.R.M. Institute of Science & Technology Deemed University School of Electronics & Communication Engineering Question Bank Subject Code : EC401 Subject Name : Antennas and Wave Propagation Year & Sem :

More information

Helicon mode formation and rf power deposition in a helicon source

Helicon mode formation and rf power deposition in a helicon source Helicon mode formation and rf power deposition in a helicon source Michael Krämer & Kari Niemi Institut für Experimentalphysik II, Ruhr-Universität D-4478 Bochum, Germany Helicon Mini-Conference APS-DPP,

More information

17 Ionospheric disturbances generated by different natural processes and by human activity in Earth plasma environment

17 Ionospheric disturbances generated by different natural processes and by human activity in Earth plasma environment ANNALS OF GEOPHYSICS, SUPPLEMENT TO VOL. 47, N. 2/3, 2004 17 Ionospheric disturbances generated by different natural processes and by human activity in Earth plasma environment HANNA ROTHKAEHL ( 1 ), NATALY

More information