Testing Plasma Physics in the Ionosphere

Size: px
Start display at page:

Download "Testing Plasma Physics in the Ionosphere"

Transcription

1 Testing Plasma Physics in the Ionosphere Dennis Papadopoulos University of Maryland College Park, MD X. Shao, G. Milikh - UMCP C. Chang, T. Wallace, M. McCarrick, I Doxas BAE Systems-AT U. Inan, D. Piddyachiy STAR Laboratory, Stanford University M. Parrot LPCE CNRS J.J Berthelier CETP Observatoire de Saint Maur E. Mishin BC Invited Paper (D35) Presented at the 37 th COSPAR Scientific Assembly July 13-19, 2008 Montreal, CA

2 The Polar Ionosphere as Plasma Magnetosphere F (h> 120 km):collisionless (ν<<ω), Magnetized plasma Electron and ion plasma waves, cyclotron waves, whistlers, MHD ( Shear- Msonic) waves E(70<h<120 km): ω e,ω e >ν, Ω i <ν EMHD plasma Helicon waves no Alfven or Ion Cyclotron waves D (h<70 km): ν>ω e,ω e weakly ionized gas not plasma Active Regions (Plasmas with Free Energy): E-Electrojets, F- Density Gradient

3 How to Inject Energy in Space Ionospheric Heaters HAARP Ionospheric heater - Powerful HF transmitter ( MHz) that induces controlled temporary modification to the plasma temperature at desired altitude. Use in conjunction with diagnostics to study, in a cause and effect fashion: EM propagation, plasma turbulence and instabilities Response of magnetospheric plasma and Radiation Belts to controlled perturbations of the ionospheric plasma 180 Elements ERP dbw EISCAT, Tromsø HIPAS, Alaska ARECIBO, Puerto Rico 1 GW SURA, Russia 48 Elements.1 GW 36 acres Frequency (MHz)

4 RESEARCH TOPICS Collisional Heating (D Region) ULF/ELF generation by current modulation Multiple site detection Waveguide propagation Shear Alfven Wave Injection Satellite detection Excitation of Ionospheric Alfven Resonator F-Region Collisionless Heating (Anomalous Absorption) (and in Sporadic E) First measurements of Magnetosonic Wave generation and Injection into the Alfvenic Waveguide Generation and detection of artificial density ducts Langmuir turbulence - Parametric Instabilities Electron acceleration- Optical Emissions Field aligned striations - Scintillations Upper hybrid waves and conversion of lower hybrid waves to whistlers Artificially Stimulate emissions

5 HAARP Experiment Methodology DEMETER Lake Ozette HAARP Ground Probes Satellite Probes km 650 km 800 KM DMSP

6 D Region Heating Basic Physics of ULF Generation by Ejet current Modulation Ground Measurements Propagation in the Earth-Ionosphere Waveguide Ionospheric Alfven Resonator Excitation by HAARP SAW Wave DEMETER Detection F-Region Heating Basic Physics of Magnetosonic ULF Generation Modeling of ULF Propagation in the Alfvenic Duct First Detection of Heater Generated Msonic Waves in Space First Ground Detection of Heater Generated Msonic Waves in the Duct Measurements of Artificially Generated Ducts in Space

7 Absorption per unit length k = Collisional Heating ων 2 e en ( ω±ω cos θ) + ν e 2 2 en

8 D Region Heating Basic Physics of ULF Generation by Ejet current Modulation Ground Measurements Propagation in the Earth-Ionosphere Waveguide Ionospheric Alfven Resonator Excitation by HAARP SAW Wave DEMETER Detection Region Heating Basic Physics of Magnetosonic ULF Generation Modeling of ULF Propagation in the Alfvenic Duct First Detection of Heater Generated Msonic Waves in Space First Ground Detection of Heater Generated Msonic Waves in the Duct Measurements of Artificially Generated Ducts in Space

9 Conventional Electrojet Ionospheric ULF Generation Upward Injection Whistler and SA wave field aligned currents driven by varying the conductivity Hall J J / = ν / Ω JT α ν P H en e en e ν<<ω J Pedersen D Current loop diffusion ν>>ω εω=σ Bo Far Field H E At ULF Evanescent

10 D Region Heating Basic Physics of ULF Generation by Ejet current Modulation Ground Measurements Propagation in the Earth-Ionosphere Waveguide Ionospheric Alfven Resonator Excitation by HAARP SAW Wave DEMETER Detection Region Heating Basic Physics of Magnetosonic ULF Generation Modeling of ULF Propagation in the Alfvenic Duct First Detection of Heater Generated Msonic Waves in Space First Ground Detection of Heater Generated Msonic Waves in the Duct Measurements of Artificially Generated Ducts in Space

11 Ground Measurements -Gakona An example of step down modulation at 1.0,.8,.6,.4 and.2 Hz DP at 780 kw

12 ULF at Gakona Power Spectral Frequency spectrum in a moving time window Clear Schumann resonances at 8, 14,.. Hz Signals emerge as freq. peaks in sync with HAARP ULF operation Greatly varying background below 1 Hz Density (PSD) Triggered Pc1 broadband

13 ULF Signal Propagation Gakona Evanescent Mode Juneau 800 km 9.9 pt.28 pt 28 April, 2007 UTC 05:01:00 05:05:45 HAARP at 2.88 MW and 3.3 MHz Detected 1 Hz & 3 Hz peaks B~1/R 2 wave evanescent (Frequencies below Shuman Resonance)

14 ULF Signal Propagation Propagating Mode Gakona Clear 15 Hz peak can be seem at both sites EW Amplitudes: Gakona: 0.25 pt Chiniak: 0.07 pt Chiniak 670 km Propagating mode 3 db attenuation

15 D Region Heating Basic Physics of ULF Generation by Ejet current Modulation Ground Measurements Propagation in the Earth-Ionosphere Waveguide Ionospheric Alfven Resonator Excitation by HAARP SAW Wave DEMETER Detection F-Region Heating Basic Physics of Magnetosonic ULF Generation Modeling of ULF Propagation in the Alfvenic Duct First Detection of Heater Generated Msonic Waves in Space First Ground Detection of Heater Generated Msonic Waves in the Duct Measurements of Artificially Generated Ducts in Space

16 SA Waves Ionospheric Alfven Resonator (IAR) k v g B S Notice b B=0 SA wave is guided along the B field Reflections create standing wave structure E b Cash et al ω R n π VA ( Δh) Fabry-Perot like Resonator Natural SA waves

17 IAR Excitation Excitation of the IAR due naturally excited waves at.25 Hz and.5 Hz and by HAARP generated shear (?) waves at 1.0 Hz. Notice the high quality of the artificial excitation despite the fact that it corresponds to the 4 th harmonic frequency.

18 Paradox? Natural lines.25 Hz.5 Hz HAARP

19 D Region Heating Basic Physics of ULF Generation by Ejet current Modulation Ground Measurements Propagation in the Earth-Ionosphere Waveguide Ionospheric Alfven Resonator Excitation by HAARP SAW Wave DEMETER Detection F-Region Heating Basic Physics of Magnetosonic ULF Generation Modeling of ULF Propagation in the Alfvenic Duct First Detection of Heater Generated Msonic Waves in Space First Ground Detection of Heater Generated Msonic Waves in the Duct Measurements of Artificially Generated Ducts in Space

20 SAW DEMETER Detection Frequency.2 Hz Closest distance 80 km Detection time 25 sec Detection distance 150 km Maximum E º10 mv/m Estimated power ~ kw 1.5 pt on the ground After.2 Hz Before SEPTEMBER 28, 2008

21 D Region Heating Basic Physics of ULF Generation by Ejet current Modulation Ground Measurements Propagation in the Earth-Ionosphere Waveguide Ionospheric Alfven Resonator Excitation by HAARP SAW Wave DEMETER Detection F-Region Heating Basic Physics of Magnetosonic ULF Generation Modeling of ULF Propagation in the Alfvenic Duct First Detection of Heater Generated Msonic Waves in Space First Ground Detection of Heater Generated Msonic Waves in the Duct Measurements of Artificially Generated Ducts in Space

22 Collisionless Heating Anomalous Absorption (F-Region; Sporadic E) 4.9 MHz F 3.8 MHz SE Lundborg and Thidé, 1986

23 D Region Heating Basic Physics of ULF Generation by Ejet current Modulation Ground Measurements Propagation in the Earth-Ionosphere Waveguide Ionospheric Alfven Resonator Excitation by HAARP SAW Wave DEMETER Detection F-Region Heating Basic Physics of Magnetosonic ULF Generation Modeling of ULF Propagation in the Alfvenic Duct First Detection of Heater Generated Msonic Waves in Space First Ground Detection of Heater Generated Msonic Waves in the Duct Measurements of Artificially Generated Ducts in Space

24 Msonic Wave Generation Ducted MS wave Ejet not needed J Bo J F Layer HAARP B δ p Δ J = exp( iωt) 2 B M bˆ( Volume) ΔJ exp( iωt) bm ˆ exp( iωt) M parallel to B The wave propagates isotropically but is reflected at the D/E region and is much weaker on the ground under the heated region. It can be measured by satellites or at large lateral distances (skip zone) o

25 D Region Heating Basic Physics of ULF Generation by Ejet current Modulation Ground Measurements Propagation in the Earth-Ionosphere Waveguide Ionospheric Alfven Resonator Excitation by HAARP SAW Wave DEMETER Detection F-Region Heating Basic Physics of Magnetosonic ULF Generation Modeling of ULF Propagation in the Alfvenic Duct First Detection of Heater Generated Msonic Waves in Space First Ground Detection of Heater Generated Msonic Waves in the Duct Measurements of Artificially Generated Ducts in Space

26 Use Lysak 1997 Model Up to 8000km Variation of B-field strength with z accounted for with scale factor 2 x 2 x ( R / R 0 ) 3 B B = / x Code drives B directly; arbitrary shape, position F-region Modulated Heating Grid uniform in x, variable in z Courant condition constant at high z Simulations by I. Doxas 40km 80km 370km V A =c

27 2D Simulations Show Skip Distance Sawtooth/sine sweep B-drive in x,z (units are grid points) 8000 km 2000 km 370 km mho/m Va kmês parallel Pedersen Hall E layer F1 layer km km Zkm

28 8000 km 80 sec 1 Hz Sin Modulation 2000 km 100 sec 6000 km 140 sec 180 sec 2000 km

29 1 Hz Sawtooth 100 km/sec 100 sec 130 sec 160 sec 220 sec

30 3D Simulations Show Beaming for Sawtooth Sweep y km 4800 Contour plot of Bz 3200 Horizontal slice at height of drive, z=370km (same as min of V A ) x km Driver is swept in sawtooth in x-direction along a 100km track. V_sweep=100km/s, repetition=1hz

31 Msonic Generation Tests Summary Several detections by DEMETER mv/m amplitude No detections at Chiniak or Juneau (skip distance) Few detections at Lake Ozette with no simultaneous detection at Gakona All of the above with F-region matching 3.3 MHz and little or no D-region absorption or electrojet One exception- Strong sporadic E

32 D Region Heating Basic Physics of ULF Generation by Ejet current Modulation Ground Measurements Propagation in the Earth-Ionosphere Waveguide Ionospheric Alfven Resonator Excitation by HAARP SAW Wave DEMETER Detection F-Region Heating Basic Physics of Magnetosonic ULF Generation Modeling of ULF Propagation in the Alfvenic Duct First Detection of Heater Generated Msonic Waves in Space First Ground Detection of Heater Generated Msonic Waves in the Duct Measurements of Artificially Generated Ducts in Space

33 Ionospheric Condition Requirements (a) (b) (c) SAW Msonic

34 Msonic DEMETER Detection APRIL 24, 2008 Closest distance 50 km Detection time 120 sec Detection distance km Maximum E º 3 mv/m Estimated power ~ few kw No field on the ground at Gakona or Juneau

35 Msonic DEMETER Detection Simultaneous profile of density and electric field fluctuations measured by DEMETER

36 Closest distance 120 km Detection time 110 sec Detection distance km Maximum E º.1 mv/m Estimated power < 1 kw No field on the ground August 24, 2008

37 D Region Heating Basic Physics of ULF Generation by Ejet current Modulation Ground Measurements Propagation in the Earth-Ionosphere Waveguide Ionospheric Alfven Resonator Excitation by HAARP SAW Wave DEMETER Detection F-Region Heating Basic Physics of Magnetosonic ULF Generation Modeling of ULF Propagation in the Alfvenic Duct First Detection of Heater Generated Msonic Waves in Space First Ground Detection of Heater Generated Msonic Waves in the Duct Measurements of Artificially Generated Ducts in Space

38 Lake Ozette vs. Gakona Detections Example.5 Hz Ozette.1 pt Gakona f Hz f Hz

39 The Surprise 20 Hz Detection at Lake Ozette (.09 pt) but not Gakona <.05 pt. Too fast for F-region!! Msonic generation and ducting with BX p operating on sporadic E

40 Lake Ozette - Highlights Weak signals at best ( 0.1 pt) Except two 0.2 Hz events Total of 14 possible events found based on PSD-CC Far more 20 Hz events than ULF events (< 10 Hz) Most Lake Ozette events are in sync with low/no Gakona electrojet activity, thus in sync with non-event at Gakona Weak signals at Lake Ozette due to weak F layer?

41 D Region Heating Basic Physics of ULF Generation by Ejet current Modulation Ground Measurements Propagation in the Earth-Ionosphere Waveguide Ionospheric Alfven Resonator Excitation by HAARP SAW Wave DEMETER Detection F-Region Heating Basic Physics of Magnetosonic ULF Generation Modeling of ULF Propagation in the Alfvenic Duct First Detection of Heater Generated Msonic Waves in Space First Ground Detection of Heater Generated Msonic Waves in the Duct Measurements of Artificially Generated Ducts in Space

42 HAARP CW - Duct Formation at Demeter Flyover April 29, 2008; 06:46:00 UTC O mode at 3.3 MHz - CW Electron & ion density cavity recorded during Demeter flyover Lateral size ~ 600 km at Demeter alt. of ~ 850 km 3 HAARP-CW Demeterflyover events Duct formation in all 3 Artificial duct ELF/VLF propagation channel Ion Density Electron Density

43 Ion Density Electron Density DEMETER Duct Detection May 1 May 2

44 HAARP HF DEMETER Detection First SEE Satellite Detection?

CONTROLLED WAVE PARTICLE INTERACTION STUDIES IN THE RADIATION BELTS

CONTROLLED WAVE PARTICLE INTERACTION STUDIES IN THE RADIATION BELTS CONTROLLED WAVE PARTICLE INTERACTION STUDIES IN THE RADIATION BELTS DENNIS PAPADOPOULOS UMCP ACKNOWLEDGE: C.L.CHANG, J.LEBINSKY AT BAE SYSTEMS XI SHAO, B.ELIASSON, S. SHARMA AND G. MILIKH AT UMCP SUPPORT:

More information

Whistler Wave Generation by Continuous HF Heating of the F-region Ionosphere

Whistler Wave Generation by Continuous HF Heating of the F-region Ionosphere Whistler Wave Generation by Continuous HF Heating of the F-region Ionosphere Aram Vartanyan 1 G. M. Milikh 1, B. Eliasson 1,2, A. C. Najmi 1, M. Parrot 3, K. Papadopoulos 1 1 Departments of Physics and

More information

Ionospheric Current Drive (ICD) at Low Frequencies

Ionospheric Current Drive (ICD) at Low Frequencies Ionospheric Current Drive (ICD) at Low Frequencies Dennis Papadopoulos University of Maryland Chia- Lie Chang BAE Systems- AT Invited Presenta-on Kaw Symposium January 12-15, 2010 Ahmedabad, India Acknowledge:

More information

Electron acceleration and ionization fronts induced by high frequency plasma turbulence

Electron acceleration and ionization fronts induced by high frequency plasma turbulence Eliasson, Bengt (2014) Electron acceleration and ionization fronts induced by high frequency plasma turbulence. In: 41st IOP Plasma Physics Conference, 2014-04-14-2014-04-17, Grand Connaught Rooms., This

More information

New applications of the portable heater. Gennady Milikh, UMD-SPP group

New applications of the portable heater. Gennady Milikh, UMD-SPP group New applications of the portable heater Gennady Milikh, UMD-SPP group 1 Stabilization of equatorial spread F (ESF) by ion injection 2 ESF characterizes spreading in the height of F-region backscatter return

More information

HAARP-induced Ionospheric Ducts

HAARP-induced Ionospheric Ducts HAARP-induced Ionospheric Ducts Gennady Milikh, University of Maryland in collaboration with: Dennis Papadopoulos, Chia-Lee Chang, Hira Shroff, BAE systems Evgeny Mishin, AFRL/RVBXI, Hanscom AFB Michel

More information

First Results from the 2014 Coordinated Measurements Campaign with HAARP and CASSIOPE/ePOP

First Results from the 2014 Coordinated Measurements Campaign with HAARP and CASSIOPE/ePOP First Results from the 2014 Coordinated Measurements Campaign with HAARP and CASSIOPE/ePOP Carl L. Siefring, Paul A. Bernhardt, Stanley J. Briczinski, and Michael McCarrick Naval Research Laboratory Matthew

More information

Model for artificial ionospheric duct formation due to HF heating

Model for artificial ionospheric duct formation due to HF heating Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl042684, 2010 Model for artificial ionospheric duct formation due to HF heating G. M. Milikh, 1 A. G. Demekhov, 2 K.

More information

Artificial Ionospheric Perturbations Studied During НААRP May-June 2014 campaign

Artificial Ionospheric Perturbations Studied During НААRP May-June 2014 campaign Artificial Ionospheric Perturbations Studied During НААRP May-June 2014 campaign E.N. Sergeev 1,2, A.V. Shindin 1, S.M. Grach 1, G.M. Milikh 3 1 Lobachevsky State University of Nizhni Novgorod, Gagarin

More information

Some Recent Advances in Ionospheric Modification Research

Some Recent Advances in Ionospheric Modification Research Some Recent Advances in Ionospheric Modification Research W. A. Scales Director, Center for Space Science and Engineering Research Bradley Department of Electrical and Computer Engineering Crofton Department

More information

The Largest Ionospheric Disturbances Produced by the HAARP HF Facility

The Largest Ionospheric Disturbances Produced by the HAARP HF Facility The Largest Ionospheric Disturbances Produced by the HAARP HF Facility Paul A. Bernhardt 1, Carl L. Seifring 1, Stanley J. Briczinski 2, Elizabeth A. kendall 3, Brenton J. Watkins 4, William Bristow 4,

More information

Artificial Ionospheric Perturbations Studied During НААRP May-June 2014 campaign

Artificial Ionospheric Perturbations Studied During НААRP May-June 2014 campaign Artificial Ionospheric Perturbations Studied During НААRP May-June 2014 campaign E.N. Sergeev 1,2, A.V. Shindin 1, S.M. Grach 1, G.M. Milikh 3 1 Lobachevsky State University of Nizhni Novgorod, Gagarin

More information

On the Viability and Requirements of a Barge Based ELF System

On the Viability and Requirements of a Barge Based ELF System On the Viability and Requirements of a Barge Based ELF System Presentation to Dr. Bobby Junker ONR Code 31 Dennis Papadopoulos University of Maryland December 21,2010 Outline The Physics and Experimental

More information

Frequency Dependence of VLF Wave Generation at Gakona, Alaska

Frequency Dependence of VLF Wave Generation at Gakona, Alaska Frequency Dependence of VLF Wave Generation at Gakona, Alaska Spencer P. Kuo 1, Maurice Rubinraut 1, Yen-Liang Wu 1, R. Pradipta 2, J.A. Cohen 2, M.C. Lee 2,3 1 Dept of Electrical & Computer Engineering,

More information

The EISCAT Heating Facility

The EISCAT Heating Facility The EISCAT Heating Facility Michael Rietveld EISCAT Tromsø, Norway EISCAT radar school, 30 Aug-4 Sept, 2010, Sodankylä 1 Outline Description of the hardware Antenna beams Practical details- power levels

More information

SA11A Emission of ELF/VLF Waves by a Modulated Electrojet upwards into the Ionosphere and into the Earth- Ionosphere Waveguide

SA11A Emission of ELF/VLF Waves by a Modulated Electrojet upwards into the Ionosphere and into the Earth- Ionosphere Waveguide SA11A-0297 Emission of ELF/VLF Waves by a Modulated Electrojet upwards into the Ionosphere and into the Earth- Ionosphere Waveguide Nikolai G. Lehtinen (nleht@stanford.edu) Umran S. Inan Stanford University

More information

Modification of the high latitude ionosphere F region by X-mode powerful HF radio waves: Experimental results from multiinstrument

Modification of the high latitude ionosphere F region by X-mode powerful HF radio waves: Experimental results from multiinstrument Modification of the high latitude ionosphere F region by X-mode powerful HF radio waves: Experimental results from multiinstrument diagnostics N. F. Blagoveshchenskaya 1, T. D. Borisova 1, T. K. Yeoman

More information

Precipitation of Energetic Protons from the Radiation Belts. using Lower Hybrid Waves

Precipitation of Energetic Protons from the Radiation Belts. using Lower Hybrid Waves Precipitation of Energetic Protons from the Radiation Belts using Lower Hybrid Waves Lower hybrid waves are quasi-electrostatic whistler mode waves whose wave normal direction is very close to the whistler

More information

POLAR AERONOMY AND RADIO SCIENCE (PARS) ULF/ELF/VLF PROJECT

POLAR AERONOMY AND RADIO SCIENCE (PARS) ULF/ELF/VLF PROJECT Page 1 of 28 POLAR AERONOMY AND RADIO SCIENCE (PARS) ULF/ELF/VLF PROJECT U. S. Inan and T. F. Bell STAR Laboratory, Stanford University Page 2 of 28 Outline 1. INTRODUCTION 2. SCIENTIFIC BACKGROUND 2.1.

More information

Ground based measurements of ionospheric turbulence manifestations induced by the VLF transmitter ABSTRACT

Ground based measurements of ionospheric turbulence manifestations induced by the VLF transmitter ABSTRACT Ground based measurements of ionospheric turbulence manifestations induced by the VLF transmitter Dmitry S. Kotik, 1 Fedor I. Vybornov, 1 Alexander V. Ryabov, 1 Alexander V. Pershin 1 and Vladimir A. Yashnov

More information

Generation of whistler waves by continuous HF heating of the upper ionosphere

Generation of whistler waves by continuous HF heating of the upper ionosphere 1 2 3 4 5 6 7 8 Generation of whistler waves by continuous HF heating of the upper ionosphere A. Vartanyan 1, G. M. Milikh 1, B. Eliasson 1,2, A. C. Najmi 1, C. L. Chang 3, M. Parrot 4, and K. Papadopoulos

More information

DEMETER observations of the ionospheric trough over HAARP in relation to HF heating experiments

DEMETER observations of the ionospheric trough over HAARP in relation to HF heating experiments DEMETER observations of the ionospheric trough over HAARP in relation to HF heating experiments D. Piddyachiy, T. F. Bell, Jean-Jacques Berthelier, U. S. Inan, Michel Parrot To cite this version: D. Piddyachiy,

More information

HAARP Generated ELF/VLF Waves for Magnetospheric Probing. Mark Gołkowski

HAARP Generated ELF/VLF Waves for Magnetospheric Probing. Mark Gołkowski HAARP Generated ELF/VLF Waves for Magnetospheric Probing Mark Gołkowski University of Colorado Denver M.B. Cohen, U. S. Inan, D. Piddyachiy Stanford University RF Ionospheric Workshop 20 April 2010 Outline

More information

Article in Proof. 2. Numerical Model of Formation of the Artificial 84 Ducts LXXXXX

Article in Proof. 2. Numerical Model of Formation of the Artificial 84 Ducts LXXXXX Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl042684, 2010 1 Model for artificial ionospheric duct formation due to HF heating 2 G. M. Milikh, 1 A. G. Demekhov,

More information

Experimental Observations of ELF/VLF Wave Generation Using Optimized Beam-Painting

Experimental Observations of ELF/VLF Wave Generation Using Optimized Beam-Painting Experimental Observations of ELF/VLF Wave Generation Using Optimized Beam-Painting R. C. Moore Department of Electrical and Computer Engineering University of Florida, Gainesville, FL 32611. Abstract Observations

More information

DEMETER observations of an intense upgoing column of ELF/VLF radiation excited by the HAARP HF heater

DEMETER observations of an intense upgoing column of ELF/VLF radiation excited by the HAARP HF heater Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2008ja013208, 2008 DEMETER observations of an intense upgoing column of ELF/VLF radiation excited by the HAARP HF heater

More information

ELF/VLF wave generation using simultaneous CW and modulated HF heating of the ionosphere

ELF/VLF wave generation using simultaneous CW and modulated HF heating of the ionosphere JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi:10.1029/2010ja015902, 2011 ELF/VLF wave generation using simultaneous CW and modulated HF heating of the ionosphere R. C. Moore 1 and D. Agrawal 1 Received

More information

PUBLICATIONS. Radio Science. Generation of ELF waves during HF heating of the ionosphere at midlatitudes RESEARCH ARTICLE 10.

PUBLICATIONS. Radio Science. Generation of ELF waves during HF heating of the ionosphere at midlatitudes RESEARCH ARTICLE 10. PUBLICATIONS RESEARCH ARTICLE Special Section: Ionospheric Effects Symposium 2015 Key Points: ELF generation in ionospheric heating in the midlatitudes Mode conversion of fast mode to shear Alfvén, EMIC,

More information

ELF/VLF GENERATION IN THE IONOSPHERE STATE OF THE ART

ELF/VLF GENERATION IN THE IONOSPHERE STATE OF THE ART ELF/VLF GENERATION IN THE IONOSPHERE STATE OF THE ART Dennis Papadopoulos APTI Wih Suppor from Tom Wallace, Gennadi Milikh And Mike McCarrick Presenaion o PARS Workshop November, 4,21 A LITTLE HISTORY

More information

Page 1 of 8 Search Contact NRL Personnel Locator Human Resources Public Affairs Office Visitor Info Planning a Visit Directions Maps Weather & Traffic Field Sites Stennis Monterey VXS-1 Chesapeake Bay

More information

Ion gyro-harmonic structuring in the stimulated radiation spectrum and optical emissions during electron gyro-harmonic heating

Ion gyro-harmonic structuring in the stimulated radiation spectrum and optical emissions during electron gyro-harmonic heating JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 118, 127 1287, doi:1.12/jgra.5167, 213 Ion gyro-harmonic structuring in the stimulated radiation spectrum and optical emissions during electron gyro-harmonic

More information

Rec. ITU-R P RECOMMENDATION ITU-R P *

Rec. ITU-R P RECOMMENDATION ITU-R P * Rec. ITU-R P.53-1 1 RECOMMENDATION ITU-R P.53-1 * IONOSPHERIC EFFECTS AND OPERATIONAL CONSIDERATIONS ASSOCIATED WITH ARTIFICIAL MODIFICATION OF THE IONOSPHERE AND THE RADIO-WAVE CHANNEL Rec. 53-1 (1978-199)

More information

High time resolution observations of HF cross-modulation within the D region ionosphere

High time resolution observations of HF cross-modulation within the D region ionosphere GEOPHYSICAL RESEARCH LETTERS, VOL. 4, 1912 1916, doi:1.12/grl.5391, 213 High time resolution observations of HF cross-modulation within the D region ionosphere J. Langston 1 andr.c.moore 1 Received 17

More information

H3-5 Mode conversion of downward-propagating Langmuir waves in the topside ionosphere

H3-5 Mode conversion of downward-propagating Langmuir waves in the topside ionosphere E N G I N E E R I N G H3-5 Mode conversion of downward-propagating Langmuir waves in the topside ionosphere Nikolai G. Lehtinen, Nicholas L. Bunch, and Umran S. Inan STAR Laboratory, Stanford University,

More information

An interhemispheric model of artificial ionospheric ducts

An interhemispheric model of artificial ionospheric ducts Click Here for Full Article RADIO SCIENCE, VOL. 41,, doi:10.1029/2005rs003371, 2006 An interhemispheric model of artificial ionospheric ducts R. P. Perrine, 1 G. M. Milikh, 1 K. Papadopoulos, 1 J. D. Huba,

More information

The Largest Ionospheric Disturbances Produced by the HAARP HF Facility

The Largest Ionospheric Disturbances Produced by the HAARP HF Facility The Largest Ionospheric Disturbances Produced by the HAARP HF Facility Paul A. Bernhardt, Carl L. Siefring, Stanley J. Briczinski Plasma Physics Division and Naval Center for Spacecraft Technology Naval

More information

RESONANCE Project for Studies of Wave-Particle Interactions in the Inner Magnetosphere. Anatoly Petrukovich and Resonance team

RESONANCE Project for Studies of Wave-Particle Interactions in the Inner Magnetosphere. Anatoly Petrukovich and Resonance team RESONANCE Project for Studies of Wave-Particle Interactions in the Inner Magnetosphere Ω Anatoly Petrukovich and Resonance team РЕЗОНАНС RESONANCE Resonance Inner magnetospheric mission Space weather Ring

More information

C4: Collaborative Work on Novel Approaches to ELF/VLF Generation

C4: Collaborative Work on Novel Approaches to ELF/VLF Generation C4: Collaborative Work on Novel Approaches to ELF/VLF Generation Mark Golkowski University of Colorado Denver Robb Moore, Umran Inan, Morris Cohen, Ray Ingram, Tom Lee, Ed Kennedy, Paul Kossey C4: Collaborative

More information

Plasma Turbulence of Non-Specular Trail Plasmas as Measured by a High Power Large Aperture Radar

Plasma Turbulence of Non-Specular Trail Plasmas as Measured by a High Power Large Aperture Radar Space Environment and Satellite Systems Plasma Turbulence of Non-Specular Trail Plasmas as Measured by a High Power Large Aperture Radar Jonathan Yee and Sigrid Close Stanford University January 9, 2013

More information

TOROIDAL ALFVÉN EIGENMODES

TOROIDAL ALFVÉN EIGENMODES TOROIDAL ALFVÉN EIGENMODES S.E. Sharapov Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, UK OUTLINE OF LECTURE 4 Toroidicity induced frequency gaps and Toroidal

More information

Resonance project and active experiments

Resonance project and active experiments Resonance project and active experiments A. G. Demekhov Institute of Applied Physics, Nizhny Novgorod, Russia M. M. Mogilevsky, L. M. Zelenyi Space Research Institute, Moscow, Russia RBSP SWG Meeting,

More information

The USU-GAIM Data Assimilation Models for Ionospheric Specifications and Forecasts

The USU-GAIM Data Assimilation Models for Ionospheric Specifications and Forecasts The USU-GAIM Data Assimilation Models for Ionospheric Specifications and Forecasts L. Scherliess, R. W. Schunk, L. C. Gardner, L. Zhu, J.V. Eccles and J.J Sojka Center for Atmospheric and Space Sciences

More information

Helicon mode formation and rf power deposition in a helicon source

Helicon mode formation and rf power deposition in a helicon source Helicon mode formation and rf power deposition in a helicon source Michael Krämer & Kari Niemi Institut für Experimentalphysik II, Ruhr-Universität D-4478 Bochum, Germany Helicon Mini-Conference APS-DPP,

More information

Linear mode conversion in inhomogeneous magnetized plasmas during ionospheric modification by HF radio waves

Linear mode conversion in inhomogeneous magnetized plasmas during ionospheric modification by HF radio waves JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A12, 1470, doi:10.1029/2003ja009985, 2003 Linear mode conversion in inhomogeneous magnetized plasmas during ionospheric modification by HF radio waves N.

More information

Radio-induced incoherent scatter ion line enhancements with wide altitude extents in the high-latitude ionosphere

Radio-induced incoherent scatter ion line enhancements with wide altitude extents in the high-latitude ionosphere GEOPHYSICAL RESEARCH LETTERS, VOL. 4, 6, doi:.2/grl.5272, 23 Radio-induced incoherent scatter ion line enhancements with wide altitude extents in the high-latitude ionosphere A. Senior, M. T. Rietveld,

More information

Plasma Physics approach for the Interaction of Electromagnetic Wave with Ionosphere

Plasma Physics approach for the Interaction of Electromagnetic Wave with Ionosphere IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG) e-issn: 2321 0990, p-issn: 2321 0982.Volume 5, Issue 3 Ver. II (May - June 2017), PP 17-28 www.iosrjournals.org Plasma Physics approach for the

More information

Results of Ionospheric Heating Experiments Involving an Enhancement in Electron Density in the High Latitude Ionosphere

Results of Ionospheric Heating Experiments Involving an Enhancement in Electron Density in the High Latitude Ionosphere Results of Ionospheric Heating Experiments Involving an Enhancement in Electron Density in the High Latitude Ionosphere WU Jun ( ) 1,2, WU Jian ( ) 1,2, XU Zhengwen ( ) 1,2 1 Key Lab for Electromagnetic

More information

Future of the HAARP Facility. Bob McCoy Director, Geophysical Institute University of Alaska Fairbanks

Future of the HAARP Facility. Bob McCoy Director, Geophysical Institute University of Alaska Fairbanks Future of the HAARP Facility Bob McCoy Director, Geophysical Institute University of Alaska Fairbanks rpmccoy@alaska.edu 1 US Chairmanship 2015-2017 Future Space Research in Alaska: Integrated networks

More information

MUIR Studies of nonlinear ionospheric interactions at HAARP

MUIR Studies of nonlinear ionospheric interactions at HAARP Eastern Michigan University DigitalCommons@EMU Master's Theses and Doctoral Dissertations Master's Theses, and Doctoral Dissertations, and Graduate Capstone Projects 2008 MUIR Studies of nonlinear ionospheric

More information

Multi-hop whistler-mode ELF/VLF signals and triggered emissions excited by the HAARP HF heater

Multi-hop whistler-mode ELF/VLF signals and triggered emissions excited by the HAARP HF heater GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L24805, doi:10.1029/2004gl021647, 2004 Multi-hop whistler-mode ELF/VLF signals and triggered emissions excited by the HAARP HF heater U. S. Inan, 1 M. Gol-kowski,

More information

NON-TYPICAL SERIES OF QUASI-PERIODIC VLF EMISSIONS

NON-TYPICAL SERIES OF QUASI-PERIODIC VLF EMISSIONS NON-TYPICAL SERIES OF QUASI-PERIODIC VLF EMISSIONS J. Manninen 1, N. Kleimenova 2, O. Kozyreva 2 1 Sodankylä Geophysical Observatory, Finland, e-mail: jyrki.manninen@sgo.fi; 2 Institute of Physics of the

More information

Ionospheric Absorption

Ionospheric Absorption Ionospheric Absorption Prepared by Forrest Foust Stanford University, Stanford, CA IHY Workshop on Advancing VLF through the Global AWESOME Network VLF Injection Into the Magnetosphere Earth-based VLF

More information

Numerical Simulations of ELF/VLF Wave Generated by Modulated Beat-Wave Ionospheric Heating in High Latitude Regions

Numerical Simulations of ELF/VLF Wave Generated by Modulated Beat-Wave Ionospheric Heating in High Latitude Regions Progress In Electromagnetics Research M, Vol. 50, 55 63, 2016 Numerical Simulations of ELF/VLF Wave Generated by Modulated Beat-Wave Ionospheric Heating in High Latitude Regions Haiying Li 1, 2, *, Jie

More information

A Multidimensional Characterization of MUIR Backscatter Spectra Resulting from Ionospheric Heating Experiments Performed at HAARP

A Multidimensional Characterization of MUIR Backscatter Spectra Resulting from Ionospheric Heating Experiments Performed at HAARP Eastern Michigan University DigitalCommons@EMU Master's Theses and Doctoral Dissertations Master's Theses, and Doctoral Dissertations, and Graduate Capstone Projects 3-14-2015 A Multidimensional Characterization

More information

RADIOTOMOGRAPHIC IMAGING OF THE ARTIFICIALLY DISTURBED MIDLATITUDE IONOSPHERE WITH CASSIOPE AND PARUS SATELLITES

RADIOTOMOGRAPHIC IMAGING OF THE ARTIFICIALLY DISTURBED MIDLATITUDE IONOSPHERE WITH CASSIOPE AND PARUS SATELLITES RADIOTOMOGRAPHIC IMAGING OF THE ARTIFICIALLY DISTURBED MIDLATITUDE IONOSPHERE WITH CASSIOPE AND PARUS SATELLITES Vyacheslav E. Kunitsyn, Elena S. Andreeva, Artem M. Padokhin, Lomonosov Moscow State University,

More information

Determination of the electron temperature in the modified ionosphere over HAARP using the HF pumped Stimulated Brillouin Scatter (SBS) emission lines

Determination of the electron temperature in the modified ionosphere over HAARP using the HF pumped Stimulated Brillouin Scatter (SBS) emission lines Ann. Geophys., 27, 4409 4427, 2009 Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License. Annales Geophysicae Determination of the electron temperature in the modified

More information

VLF electromagnetic field structures in ionosphere disturbed by Sura RF heating facility

VLF electromagnetic field structures in ionosphere disturbed by Sura RF heating facility JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2010ja015484, 2010 VLF electromagnetic field structures in ionosphere disturbed by Sura RF heating facility V. O. Rapoport, 1 V. L. Frolov, 1 S.

More information

Electron and ion Bernstein waves excited in the ionosphere by high power EM waves at the second harmonic of the electron cyclotron frequency

Electron and ion Bernstein waves excited in the ionosphere by high power EM waves at the second harmonic of the electron cyclotron frequency GEOPHYSICAL RESEARCH LETTERS, VOL. 38,, doi:10.1029/2011gl049390, 2011 Electron and ion Bernstein waves excited in the ionosphere by high power EM waves at the second harmonic of the electron cyclotron

More information

Dependence of radio wave anomalous attenuation in the ionosphere on properties of spatial spectrum of irregularities

Dependence of radio wave anomalous attenuation in the ionosphere on properties of spatial spectrum of irregularities Dependence of radio wave anomalous attenuation in the ionosphere on properties of spatial spectrum of irregularities N.A. Zabotin, G.A. Zhbankov and E.S. Kovalenko ostov State University, ostov-on-don,

More information

DEMETER observations of ELF waves injected with the HAARP HF transmitter

DEMETER observations of ELF waves injected with the HAARP HF transmitter Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L16101, doi:10.1029/2006gl026462, 2006 DEMETER observations of ELF waves injected with the HAARP HF transmitter M. Platino, 1 U. S. Inan,

More information

Aurora - acceleration processes

Aurora - acceleration processes Aurora - acceleration processes S. L. G. Hess LATMOS IPSL/CNRS, Université Versailles St Quentin, France M. Kivelson's talk : Plasma moves in the magnetosphere. M. Galand's talk : This generates currents

More information

Attenuation of whistler waves through conversion to lower hybrid waves in the low-altitude ionosphere

Attenuation of whistler waves through conversion to lower hybrid waves in the low-altitude ionosphere JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2011ja017339, 2012 Attenuation of whistler waves through conversion to lower hybrid waves in the low-altitude ionosphere X. Shao, 1 B. Eliasson,

More information

IONOSPHERIC SIGNATURES OF SEISMIC EVENTS AS OBSERVED BY THE DEMETER SATELLITE

IONOSPHERIC SIGNATURES OF SEISMIC EVENTS AS OBSERVED BY THE DEMETER SATELLITE IONOSPHERIC SIGNATURES OF SEISMIC EVENTS AS OBSERVED BY THE DEMETER SATELLITE M. Parrot and F. Lefeuvre LPC2E/CNRS, 3 A Av Recherche Scientifique 45071 Orleans cedex 2 France lefeuvre@cnrs-orleans.fr URSI

More information

Form Approved REPORT DOCUMENTATION PAGE N Cornell University Day Hall Ithaca, NY 14853

Form Approved REPORT DOCUMENTATION PAGE N Cornell University Day Hall Ithaca, NY 14853 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour par response, including the time for reviewing instructions,

More information

Modeling and Subionospheric VLF perturbations caused by direct and indirect effects of lightning

Modeling and Subionospheric VLF perturbations caused by direct and indirect effects of lightning Modeling and Subionospheric VLF perturbations caused by direct and indirect effects of lightning Prepared by Benjamin Cotts Stanford University, Stanford, CA IHY Workshop on Advancing VLF through the Global

More information

Ionospheric Structure Imaging with ALOS PALSAR

Ionospheric Structure Imaging with ALOS PALSAR The Second ALOS PI Symposium Rhodes, Greece November 3 7, 008 Ionospheric Structure Imaging with ALOS PALSAR PI Number: 37 JAXA-RA PI: Jong-Sen Lee, Thomas L. Ainsworth and Kun-Shan Chen CSRSR, National

More information

Production of artificial ionospheric layers by frequency sweeping near the 2nd gyroharmonic

Production of artificial ionospheric layers by frequency sweeping near the 2nd gyroharmonic Ann. Geophys., 29, 47 51, 2011 doi:10.5194/angeo-29-47-2011 Author(s) 2011. CC Attribution License. Annales Geophysicae Production of artificial ionospheric layers by frequency sweeping near the 2nd gyroharmonic

More information

QPR No SPONTANEOUS RADIOFREQUENCY EMISSION FROM HOT-ELECTRON PLASMAS XIII. Academic and Research Staff. Prof. A. Bers.

QPR No SPONTANEOUS RADIOFREQUENCY EMISSION FROM HOT-ELECTRON PLASMAS XIII. Academic and Research Staff. Prof. A. Bers. XIII. SPONTANEOUS RADIOFREQUENCY EMISSION FROM HOT-ELECTRON PLASMAS Academic and Research Staff Prof. A. Bers Graduate Students C. E. Speck A. EXPERIMENTAL STUDY OF ENHANCED CYCLOTRON RADIATION FROM AN

More information

Short-pulse Heating: Theory, Experiments and Scaling

Short-pulse Heating: Theory, Experiments and Scaling PARS Workshop November 22 Short-pulse Heating: Theory, Experiments and Scaling Tom Wallace tom.wallace@apti.com Outline Time domain measurements and impulse responses Very simple way to predict results

More information

Studies of the Ionospheric Turbulence Excited by the Fourth Gyroharmonic at HAARP. March 31, 2015

Studies of the Ionospheric Turbulence Excited by the Fourth Gyroharmonic at HAARP. March 31, 2015 Studies of the Ionospheric Turbulence Excited by the Fourth Gyroharmonic at HAARP March 31, 2015 A. Najmi 1, G. Milikh 1, Y. M. Yampolski 2, A. V. Koloskov 2, A. A. Sopin 2, A. Zalizovski 2, P. Bernhardt

More information

Experimental Studies of RF Generated Ionospheric Turbulence

Experimental Studies of RF Generated Ionospheric Turbulence Experimental Studies of RF Generated Ionospheric Turbulence J. P. Sheerin 1 ; N. Watanabe 1 ; N. Rayyan 1 ; B. J Watkins 2 ; W. A. Bristow 2 ; 1 Department of Physics and Astronomy Eastern Michigan Univ.

More information

Models of ionospheric VLF absorption of powerful ground based transmitters

Models of ionospheric VLF absorption of powerful ground based transmitters GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2012gl054437, 2012 Models of ionospheric VLF absorption of powerful ground based transmitters M. B. Cohen, 1 N. G. Lehtinen, 1 and U. S. Inan 1,2 Received

More information

The Effects of Pulsed Ionospheric Flows on EMIC Wave Behaviour

The Effects of Pulsed Ionospheric Flows on EMIC Wave Behaviour The Effects of Pulsed Ionospheric Flows on EMIC Wave Behaviour S. C. Gane (1), D. M. Wright (1), T. Raita (2), ((1), (2) Sodankylä Geophysical Observatory) Continuous ULF Pulsations (Pc) Frequency band

More information

Perturbations of GPS signals by the ionospheric irregularities generated due to HF-heating at triple of electron gyrofrequency

Perturbations of GPS signals by the ionospheric irregularities generated due to HF-heating at triple of electron gyrofrequency Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L22102, doi:10.1029/2008gl035527, 2008 Perturbations of GPS signals by the ionospheric irregularities generated due to HF-heating at triple

More information

Diagnostic development to measure parallel wavenumber of lower hybrid waves on Alcator C-Mod

Diagnostic development to measure parallel wavenumber of lower hybrid waves on Alcator C-Mod Diagnostic development to measure parallel wavenumber of lower hybrid waves on Alcator C-Mod S. G. Baek, T. Shinya*, G. M. Wallace, S. Shiraiwa, R. R. Parker, Y. Takase*, D. Brunner MIT Plasma Science

More information

Paul Bernhardt 1, Carl Siefring 1, Andrew Yau 2, H. Gordon James 3. Naval Research Laboratory, Washington, DC. University of Calgary, Alberta, Canada

Paul Bernhardt 1, Carl Siefring 1, Andrew Yau 2, H. Gordon James 3. Naval Research Laboratory, Washington, DC. University of Calgary, Alberta, Canada Space Based Instrumentation for Future Detection of Artificial ULF/ELF/VLF waves and Their Effects using the Canadian Sponsored Enhanced Polar Outflow Project (epop) Satellite Paul Bernhardt 1, Carl Siefring

More information

VARIATIONS OF VLF SIGNALS RECEIVED ON DEMETER SATELLITE. IN ASSOCIATION WITH SEISMICITY A. Rozhnoi 1, M. Solovieva 1, Molchanov O.

VARIATIONS OF VLF SIGNALS RECEIVED ON DEMETER SATELLITE. IN ASSOCIATION WITH SEISMICITY A. Rozhnoi 1, M. Solovieva 1, Molchanov O. VARIATIONS OF VLF SIGNALS RECEIVED ON DEMETER SATELLITE IN ASSOCIATION WITH SEISMICITY A. Rozhnoi 1, M. Solovieva 1, Molchanov O. 1 1 Institute of the Earth Physics, RAS, Bolshaya Gruzinskaya 10, Moscow,

More information

Effect of frequency modulation on whistler mode waves in the magnetosphere

Effect of frequency modulation on whistler mode waves in the magnetosphere Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2009ja014155, 2009 Effect of frequency modulation on whistler mode waves in the magnetosphere A. V. Streltsov, 1 M. Gołkowski,

More information

Using the Radio Spectrum to Understand Space Weather

Using the Radio Spectrum to Understand Space Weather Using the Radio Spectrum to Understand Space Weather Ray Greenwald Virginia Tech Topics to be Covered What is Space Weather? Origins and impacts Analogies with terrestrial weather Monitoring Space Weather

More information

Whistlers, Helicons, Lower Hybrid Waves: the Physics of RF Wave Absorption for Current Drive Without Cyclotron Resonances

Whistlers, Helicons, Lower Hybrid Waves: the Physics of RF Wave Absorption for Current Drive Without Cyclotron Resonances Whistlers, Helicons, Lower Hybrid Waves: the Physics of RF Wave Absorption for Current Drive Without Cyclotron Resonances R.I. Pinsker General Atomics 100 50 Presented at the 56 th Annual Division of Plasma

More information

Scientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and ElectroDynamics - Data Assimilation (IDED-DA) Model

Scientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and ElectroDynamics - Data Assimilation (IDED-DA) Model DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Scientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and ElectroDynamics - Data Assimilation

More information

PUBLICATIONS. Radio Science. Large ionospheric disturbances produced by the HAARP HF facility RESEARCH ARTICLE 10.

PUBLICATIONS. Radio Science. Large ionospheric disturbances produced by the HAARP HF facility RESEARCH ARTICLE 10. PUBLICATIONS RESEARCH ARTICLE Special Section: Ionospheric Effects Symposium 2015 Key Points: HAARP facility produces unique results Artificial plasma clouds are emission and optical signatures Future

More information

Helicon Wave Current Drive in KSTAR Plasmas

Helicon Wave Current Drive in KSTAR Plasmas Daejeon Helicon Wave Current Drive in KSTAR Plasmas S. J. Wanga, H. J. Kima, Jeehyun Kima, V. Vdovinb, B. H. Parka, H. H. Wic, S. H. Kimd, and J. G. Kwaka anational Fusion Research Institute, Daejeon,

More information

ESS 7 Lectures 15 and 16 November 3 and 5, The Atmosphere and Ionosphere

ESS 7 Lectures 15 and 16 November 3 and 5, The Atmosphere and Ionosphere ESS 7 Lectures 15 and 16 November 3 and 5, 2008 The Atmosphere and Ionosphere The Earth s Atmosphere The Earth s upper atmosphere is important for groundbased and satellite radio communication and navigation.

More information

Study of Elliptical Polarization Requirement of KSTAR 84-GHz ECH System

Study of Elliptical Polarization Requirement of KSTAR 84-GHz ECH System Journal of the Korean Physical Society, Vol. 49, December 2006, pp. S201 S205 Study of Elliptical Polarization Requirement of KSTAR 84-GHz ECH System Jinhyun Jeong, Youngsoon Bae, Moohyun Cho and Won Namkung

More information

Measurements of Mode Converted ICRF Waves with Phase Contrast Imaging in Alcator C-Mod

Measurements of Mode Converted ICRF Waves with Phase Contrast Imaging in Alcator C-Mod Measurements of Mode Converted ICRF Waves with Phase Contrast Imaging in Alcator C-Mod N. Tsujii, M. Porkolab, E.M. Edlund, L. Lin, Y. Lin, J.C. Wright, S.J. Wukitch MIT Plasma Science and Fusion Center

More information

RF Physics: Status and Plans

RF Physics: Status and Plans RF Physics: Status and Plans Program Advisory Committee meeting February 6-7, 2002 S. J. Wukitch Outline: 1. Overview of RF Physics issues 2. Review of antenna performance and near term modifications.

More information

HF-induced airglow at magnetic zenith: theoretical considerations

HF-induced airglow at magnetic zenith: theoretical considerations Annales Geophysicae (25) 23: 47 53 SRef-ID: 1432-576/ag/25-23-47 European Geosciences Union 25 Annales Geophysicae HF-induced airglow at magnetic zenith: theoretical considerations E. V. Mishin 1, W. J.

More information

EC ANTENNA AND WAVE PROPAGATION

EC ANTENNA AND WAVE PROPAGATION EC6602 - ANTENNA AND WAVE PROPAGATION FUNDAMENTALS PART-B QUESTION BANK UNIT 1 1. Define the following parameters w.r.t antenna: i. Radiation resistance. ii. Beam area. iii. Radiation intensity. iv. Directivity.

More information

Ionospheric Propagation

Ionospheric Propagation Ionospheric Propagation Page 1 Ionospheric Propagation The ionosphere exists between about 90 and 1000 km above the earth s surface. Radiation from the sun ionizes atoms and molecules here, liberating

More information

OBJECTIVES: PROPAGATION INTRO RADIO WAVES POLARIZATION LINE OF SIGHT, GROUND WAVE, SKY WAVE IONOSPHERE REGIONS PROPAGATION, HOPS, SKIPS ZONES THE

OBJECTIVES: PROPAGATION INTRO RADIO WAVES POLARIZATION LINE OF SIGHT, GROUND WAVE, SKY WAVE IONOSPHERE REGIONS PROPAGATION, HOPS, SKIPS ZONES THE WAVE PROPAGATION OBJECTIVES: PROPAGATION INTRO RADIO WAVES POLARIZATION LINE OF SIGHT, GROUND WAVE, SKY WAVE IONOSPHERE REGIONS PROPAGATION, HOPS, SKIPS ZONES THE IONOSPHERIC LAYERS ABSORPTION AND FADING

More information

Anomalistic wave propagation phenomena in whistler waveforms detected on wide-band VLF recordings of the DEMETER satellite

Anomalistic wave propagation phenomena in whistler waveforms detected on wide-band VLF recordings of the DEMETER satellite International Symposium DEMETER. Results of the DEMETER project and of the recent advances in the seismo-electromagnetic effects and the ionospheric physic CNES, Toulouse-Labege, 14-16 June 2006 Anomalistic

More information

The Ionosphere and Thermosphere: a Geospace Perspective

The Ionosphere and Thermosphere: a Geospace Perspective The Ionosphere and Thermosphere: a Geospace Perspective John Foster, MIT Haystack Observatory CEDAR Student Workshop June 24, 2018 North America Introduction My Geospace Background (Who is the Lecturer?

More information

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1 Lecture 6 Optical transmitters Photon processes in light matter interaction Lasers Lasing conditions The rate equations CW operation Modulation response Noise Light emitting diodes (LED) Power Modulation

More information

Terrestrial VLF transmitter injection into the magnetosphere

Terrestrial VLF transmitter injection into the magnetosphere JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2012ja017992, 2012 Terrestrial VLF transmitter injection into the magnetosphere M. B. Cohen 1 and U. S. Inan 1,2 Received 1 June 2012; revised 15

More information

Development of the frequency scanning reflectometry for the registration of Alfvén wave resonances in the TCABR tokamak

Development of the frequency scanning reflectometry for the registration of Alfvén wave resonances in the TCABR tokamak Development of the frequency scanning reflectometry for the registration of Alfvén wave resonances in the TCABR tokamak L. F. Ruchko, R. M. O. Galvão, A. G. Elfimov, J. I. Elizondo, and E. Sanada Instituto

More information

ELF/VLF PHASED ARRAY GENERATION VIA FREQUENCY-MATCHED STEERING OF A CONTINUOUS HF IONOSPHERIC HEATING BEAM

ELF/VLF PHASED ARRAY GENERATION VIA FREQUENCY-MATCHED STEERING OF A CONTINUOUS HF IONOSPHERIC HEATING BEAM ELF/VLF PHASED ARRAY GENERATION VIA FREQUENCY-MATCHED STEERING OF A CONTINUOUS HF IONOSPHERIC HEATING BEAM A DISSERTATION SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND THE COMMITTEE ON GRADUATE

More information

Density and temperature maxima at specific? and B

Density and temperature maxima at specific? and B Density and temperature maxima at specific? and B Matthew M. Balkey, Earl E. Scime, John L. Kline, Paul Keiter, and Robert Boivin 11/15/2007 1 Slide 1 Abstract We report measurements of electron density

More information

thermospheric temperatures. See global change for more information. Frictional/Joule heating

thermospheric temperatures. See global change for more information. Frictional/Joule heating Atmosphere (Earth's) Because of the Earth's gravity, atmosphere is horizontally stratified (see, e.g., Kelley, 1989). Its structure can be organized by using the neutral gas temperature, as shown in the

More information

The Cassini Radio and Plasma Wave Science Instrument

The Cassini Radio and Plasma Wave Science Instrument The Cassini Radio and Plasma Wave Science Instrument Roger Karlsson Space Research Institute of the Austrian Academy of Sciences, Graz Graz in Space, September 7, 2006 The Cassini Radio and Plasma Wave

More information