Analysis and Software Implementation of a Robust Synchronizing Circuit PLL Circuit

Size: px
Start display at page:

Download "Analysis and Software Implementation of a Robust Synchronizing Circuit PLL Circuit"

Transcription

1 Analysis and Software Implementation of a Robust Synchronizing Circuit PLL Circuit Diogo R. COSTA, Jr., Luís G. B. ROLIM, and Maurício AREDES 3,,3 COPPE, UFRJ, Cidade Universitária, Rio de Janeiro, Brazil, ( diogo, rolim, aredes 3 )@coe.ufrj.br Abstract This paper presents the analysis and software implementation of a robust synchronizing circuit PLL circuit designed for using in the controller of active power line conditioners. The basic problem consists in designing a PLL circuit that can track accurately and continuously the positivesequence component at the fundamental frequency and its phase angle, even when the system voltage of the bus, to which the active power line conditioner is connected, is distorted and/or unbalanced. The fundaments of the PLL circuit are discussed. It is shown that the PLL can fail in tracking the system voltage during the startup, under some adverse conditions. Moreover, it is shown that oscillations caused by the presence of sub-harmonics can be very critical and can pull the stable point of operation synchronized to that subharmonic frequency. Oscillations at the reference input are also discussed, and the solution of this problem is presented. Finally, experimental and simulation results are shown and compared. Index Terms Phase-Locked Loop (PLL). I. INTRODUCTION Most applications of static converters connected to the utility power grid require synchronization between the grid voltage and the voltage or current synthesized by the converter. As examples of such applications can be pointed out: reference input u (t) VCO output u (t) phase detector (PD) phase u d (t) controlled oscillator (VCO) Fig. Block diagram of basic PLL structure loop filter (LF) VCO input u f (t) converters that inject energy coming from alternative supplies into the grid; Active Power Line Conditioners, FACTS and Custom Power devices (e.g. DVR, STATCOM, active filters []-[3]). In many cases, the reference signal obtained from the grid voltage is contaminated by harmonics, which may have been produced by the power converter itself or generated elsewhere. Additionally, the voltages in a three-phase system may contain unbalances from negative- and/or zerosequence components, which could cause improper synchronization between converter and grid. The most widely accepted solution to provide synchronization between time-varying signals is the use of a phaselocked-loop (PLL) system that can be described by the basic structure shown in block diagram form in Fig.. This simplified PLL structure comprises a phase detector (PD), a loop filter (LF) and a controlled oscillator (VCO), each of which can be implemented in several different forms. If the signal to be tracked (reference input) is an analog signal, then the most suitable type of PD to be used is the product-type one. The use of a product-type PD plus a linear LF causes the PLL to behave linearly for small variations on input, yielding a linear PLL. II. FUNDAMENTALS OF THE LINEAR PLL CIRCUIT In this work, the reference input is represented by a space vector, as well as the VCO output: j( wt +φ ) j( t +φ ) u ( t) = Ue and u ( t) = U w e () In stationary (αβ) reference frame, both signals can be written in the form u(t) = u α + ju β. Three-phase input signals can be easily converted to this form through the Clarke Transformation. Alternatively, these signals can be represented in a synchronously rotating reference frame (through the Park Transformation) as shown in [5], with similar results. The angular frequency ω of the VCO output signal is related to its input u f (t) by: ω = ω + u f (t), () where ω is called the center frequency. The phase detector operates on the product of both space vectors u (t) and u (t). For this reason it is often called a vector-product phase detector (VP-PD). Its output can thus be written as u d (t) = Im{u (t). u (t)}, which yields: u d (t) = U U.sin(φ - φ ), (3) for ω = ω = ω (PLL in the locked state at the center frequency). For small phase deviations, this relationship can be approximated linearly by: u d (t) K d.φ e (t), (4) where K d = U U and φ e (t) = φ (t) φ (t). If the amplitudes U and U are both normalized to unity, then (4) further simplifies to u d (t) φ e (t). As a result, the linearized behavior of the PLL can be described by the simplified block diagram shown in Fig.. In the block diagram shown in Fig., the center frequency appears as a term added to the output of the PI loop /3/$7. 3 IEEE 9

2 φ (t) φ (t) Ki s φ e (t) u f φ (t) + - KP + + loop filter filter. This produces the same effect as a non-zero initial condition at the integrator s output. For a proportional plus integral (PI-type) loop filter as the one shown in Fig., the linearized loop transfer function between φ (t) and φ (t) is given by: Φ( s) K Ps + Ki H ( s) = = Φ( s) s + K Ps + Ki. (5) H(s) can be rewritten in the form: ξωns + ω (6) n H ( s) = s + ξωns + ωn where ωn = K P Ki and ξ = K. Well-designed PLL systems should meet the following design criteria: ξ.7 for optimum transient response (ITAE sense); narrow bandwith (low ω n ) for improved noise rejection, in order to produce a purely sinusoidal output signal even in the presence of input harmonics. The PLL lock range is defined as the maximum initial frequency deviation between reference input and VCO output, which will still cause the PLL to get locked in a single beat. It can be shown to be approximately equal to the natural frequency ω n : ω L ω n. (7) Thus, a narrow-bandwith PLL may fail to lock at some i ω Fig. Small-signal block diagram. s VCO desired frequency during the start-up transient, if following conditions are met: the input signal contains harmonic components; the initial PI output is more distant from the desired frequency than the lock range; the initial PI output (or the center frequency) is close to some harmonic. It is however very difficult to predict the behavior of the PLL under the above conditions, because it depends on the relative amplitude of the harmonic components. Subharmonic oscillations at the reference input can cause the PLL to lock at the lower sub-harmonic frequency, even if the relative magnitude is very low. This fact is illustrated by the simulation results presented in Fig. 3a and Fig. 3b. For both simulations, the frequency of interest is 6Hz (with normalized amplitude of p.u.) and a disturbance at Hz has been added. The initial condition at the PI loop filter output is zero, what means that the VCO starts from zero frequency or DC conditions. If the disturbance is slightly increased beyond 7% of the main component, the PLL fails to lock at the desired center frequency of 6Hz. Fig. 3a shows a critical situation where 7% of disturbance at Hz is introduced and the PLL still locks at the center frequency (6Hz). However, it locks at Hz instead, as shown in Fig. 3b, if the disturbance is increased to % at Hz. As the frequency of interest for grid-connected applications is essentially constant (5Hz or 6Hz), an obvious solution to the above problem would be tuning the PLL by adjusting its center frequency to the nominal grid frequency. However, an even safer solution is the introduction of limits to the PI output, so that the VCO frequency variation is confined to the center frequency (chosen equal to the grid frequency) plus or minus the lock range. A potential risk introduced by this approach is the chance of occurring so-called reset windup problems in the controller [6], which can lead to undesired oscillations, numerical overflow problems and even to instability. To avoid these difficulties, some anti windup strategy should be used for implementation of the control algorithms. This solution has f(hz) 8 7 f(hz) Fig. 3 results for sub-harmonic disturbances at Hz: 7% in magnitude and % in magnitude

3 been implemented by software in a TMS3LF47 DSP. Some implementation details are given in the next section. i α sin(ωt) III. IMPLEMENTATION DETAILS The proposed PLL system was implemented with fixedpoint arithmetic in the TMS3LF47 DSP, using a khz sampling frequency. The algorithm is executed as an interrupt service routine (ISR), which is triggered by one of the general-purpose timer circuits available on-chip. The same timer also triggers the acquisition of input signals, simultaneously with the interrupts. As the on-chip A/D converters are fast (approximately 5ns conversion time), input data is made available at the beginning of the ISR with negligible time delay. A simplified block-diagram representation of the implemented algorithm is shown in Fig. 6. The line voltages v ab and v bc are converted to the αβ reference frame through the Clarke Transformation, immediately after A/D conversion. The feedback signals corresponding to VCO output (labeled i α and i β in Fig. 6) are generated in real time by table interpolations, which give the sine and the cosine of the output angle ωt for i α and i β respectively. The vector product between the reference input signals and VCO outputs (v α + j v β and i α + j i β respectively) is calculated as the sum of products of the individual components. The resulting quantity can be also interpreted as the real power, according to Akagi s pq theory ([7],[8]), and it is taken as the signal input to the PI-Controller. For this reason, this implementation is often called p-pll. Alternatively, signals i α and i β could be exchanged, yielding the socalled q-pll. Differently from eq. (3), it can be shown that the output of the VP-PD in this p-pll implementation, which was called p 3φ, can also be written as: p 3φ = 3.V.I.cos(φ - φ ), (8) for PLL in the locked state at the center frequency, under balanced conditions. V and I correspond to the three-phase system s phase voltage and phase current, respectively. Hence, the VCO outputs (i α + j i β) must be leading by 9 the reference input signal (v α + jv β) in steady state, to produce null input to the PI filter. This fundamental characteristic should be reminded when this PLL circuit is applied. IV. EXPERIMENTAL RESULTS The experimental results obtained by the PLL algorithm, which has been implemented with fixed point arithmetic in the TMS3LF47 DSP, were compared with simulations carried out in MATLAB. The input signals used in the simulations were the same ones acquired during the experimental tests. The sampling frequency used in the simulations was also khz. A. Unbalanced input signals v ab v bc In this case, in all experimental tests, as well as in the simulations, the PI output values were limited to a minimum of.5 and a maximum of.5, since the center frequency was normalized to p.u. Six test cases were accomplished with different initial condition at the PI s output and different input signals (balanced and with negative-sequence unbalance). In the first test case, it was admitted balanced input signals and the initial value for the PI s output equal to one. In the second test, it was admitted unbalanced input signals by.5% of negative-sequence component at the fundamental frequency, and the initial value for the PI s output equal to Fig. 4 and simulation results for signal balanced and the initial value for the PI s output equal to : PI output α-β Transf. v α v β X X Σ i β p 3φ PI Controller cos(ωt) Fig. 5 and simulation results for signal unbalanced and the initial value for the PI s output equal to : PI output ω ωt s Fig. 6 Block-diagram representation of the implemented algorithm 94

4 Four tests have been carried out to verify the perform Fig. 7 and simulation results for signal balanced and the initial value for the PI s output equal to.5: PI output Fig. 8 and simulation results for signal unbalanced and the initial value for the PI s output equal to.5: PI output one. The results of these cases are shown in Fig. 4 and Fig. 5 respectively, where the dynamic of PLL circuit can be seen. In both cases, where the PI s output was initialized to., the PLL circuit locks to the desired frequency in approximately 7ms. In the second test, the output frequency presents ripple smaller than two percent. The third test case comprises balanced input signals and the PI initial value is equal to.5. The results are shown in Fig. 7. In the next test case, it was admitted input signals unbalanced by.5% of negative-sequence component at the fundamental frequency and the initial value for the PI s output equal to.5. The results of this test case are shown in Fig. 8. In these cases, where the PI s output is initialized to.5, the PLL takes more time to lock in to the desired frequency (~5ms for balanced signals and ~43ms for unbalanced signals) than the previous ones. The ripple present in the output frequency in the fourth test is smaller than three percent. The fifth test case has balanced input signals and the initial value for the PI s output equal to.5. The results are shown in Fig. 9. In the sixth test, it was admitted input signals unbalanced by.5% of negative-sequence component at the fundamental frequency and the initial value for the PI s output equal to.5. The results of this test are shown in Fig.. For the PI s output initialized to.5, the time that the PLL takes to lock in desired frequency is approximated the same ones as in the case where the PI s output is initialized to.5. The ripple of frequency present in the sixth test is smaller than two percent. In all of the above tests, the PLL algorithm has successfully locked to the desired frequency, even in the presence of strong negative-sequence unbalances in the input voltages. With more than % of negative-sequence unbalance, the frequency jitter caused by this same unbalance remains around %. Based on the results obtained from the tests presented above, it can be said that the implemented PLL algorithm is very robust against negative-sequence unbalances coming from the three-phase input signals, up to an amount of.5% at least. The resulting VCO output signal will then always lock to the positive-sequence component of the input signals, thus indicating that this very algorithm can be used as a positive-sequence voltage or current detector. B. Sub-harmonics Fig. 9 and simulation results for signal balanced and the initial value for the PI s output equal to.5: PI output Fig. and simulation results for signal unbalanced and the initial value for the PI s output equal to.5: PI output

5 Fig. and simulation results for 7% of sub-harmonic disturbance at Hz and the initial value for the PI s output equal to zero: PI output Fig. 3 and simulation results for % of sub-harmonic disturbance at Hz and the initial value for the PI s output equal to zero: PI output Fig. and simulation results for 7% of sub-harmonic disturbance at Hz and the PI s output is limited: PI output Fig. 4 and simulation results for % of sub-harmonic disturbance at Hz and the PI s output is limited: PI output ance of the PLL control software in the presence of subharmonic oscillations at very low frequency (Hz), under different initial conditions and limiting or not the PI controller s output. The results of these tests are shown from Fig. to Fig. 4, which exhibit good agreement between simulated and experimental results. Fig. and Fig. show the results of the tests, which have used 7% of sub-harmonic disturbance at Hz. In Fig., the system starts from zero initial condition and the PI s output is not limited. In Fig., the PI s output is limited and the initial value is within the limits. and experiments show that the PLL locks to the desired frequency in both cases, but the settling time is very long (more than.5s) when the PI output is not limited. For the test results presented in Fig. 3 and Fig. 4, the sub-harmonic disturbance was % at Hz. In Fig. 3 the initial value for PI s output is zero and the output is not limited. In this case, the PLL fails to lock. This problem can be corrected if limits are introduced to the PI s output, as shown in Fig. 4. The PLL output frequency then locks to the desired frequency in approximately ten cycles of the input frequency, with only a few percent of frequency ripple. C. Harmonics This test was accomplished to verify the performance of the PLL circuit in the presence of harmonic distortion. In this case, the line voltage signals were acquired from a bus where a three-phase, full-bridge rectifier was also connected. These signals were contaminated with approximately % of harmonic of fifth order and 5% of harmonic of eleventh order. The THD is of approximately 5% and the waveform of this voltage can also be seen in Fig. 6, with the label v ab,ref. Fig. 5 shows the simulation and the experimental results obtained from the test described above. In this case, the PI s output is limited and the initial value for its output is equal to.. The experimental results agree very well to the simulation results.

6 v ab,ref v ab,gen Fig. 5 and simulation results for harmonic disturbance and the PI s output is limited: PI output The application of this PLL circuit in the control of power electronics equipment has proven to be very effective in this test, with the correct switching of a PWM inverter supplying energy to a resistive load. In Fig. 6, the distorted signal labeled v ab,ref is the reference signal for the PLL circuit and the voltage labeled v ab,gen is the filtered line voltage generated by PWM switching of the inverter. The PLL circuit has successfully locked, and the inverter is synchronized with the signal of fundamental component of line voltage. V. CONCLUSIONS This paper describes a robust synchronizing PLL circuit, which has been analyzed and implement by software. The experimental results obtained from several tests have been compared to MATLAB simulations, showing good agreement. Some aspects related to the system s ability to maintain synchronism in the presence of sub-harmonics, harmonics and negative-sequence unbalances have been investigated, and the implemented algorithm revealed to be robust even under such circumstances. When the input signals are contaminated with negative-sequence components, the implemented PLL is able to produce output signals locked to the positive sequence components only. This makes this PLL circuit suitable for positive-sequence detection of voltages and/or currents in power electronics equipment. Related applications will be discussed in future work. VI. REFERENCES [] L.N.Arruda, S.M.Silva and B.J.C.Filho, PLL structure for utility connected systems, Conference Record of the Thirty-Sixth IEEE- IAS Annual Meeting (), Volume 4, Page(s): [] C.Zhan, C.Fitzer, V.K.Ramachandaramurthy, A.Arulampalam, M.Barnes and N.Jenkins, Software phase-locked loop applied to dynamic voltage restore (DVR), IEEE Power Engineering Society Winter Meeting,, Volume 3, Page(s): [3] S.Chung, A phase tracking system for three phase utility interface inverters, IEEE Transactions on Power Electronics, Volume 5 Issue 3, May Page(s): [4] R.E.Best, Phase Locked Loops Theory, Design and Applications, ISBN , McGraw-Hill, 984. Fig. 6 results for harmonic disturbance of the switching of an inverter PWM [5] V.Kaura and V.Blasko, Operation of a phase locked loop system under distorted utility conditions, IEEE Transactions on Industry Applications, Volume 33 Issue, Jan.-Feb. 997 Page(s): [6] K.J. Åström and B. Wittenmark, Computer-Controlled Systems Theory and Design, 3 rd Edition, ISBN , Prentice- Hall, 984 [7] H. Akagi, Y. Kanagawa e A. Nabae, Instantaneous Reactive Power Compensator Comprising Switching Devices Without Energy Storage Components, IEEE Trans. Industry Applications, vol. IA-, May-June, 984. [8] E. H. Watanabe, R. M. Stephan e M. Aredes, New Concepts of Instantaneous Active and Reactive Powers in Electrical Systems with Generic Loads, IEEE Trans. Power Delivery, vol. 8, No., April 993, pp VII. BIOGRAPHIES Diogo Rodrigues da Costa Junior was born in Rio de Janeiro State, Brazil, on June, 98. He received the B.Sc. degree from Federal University of Rio de Janeiro, in 3. He is involved in research projects of the Power Electronic Laboratory from the COPPE/UFRJ, since. He is enrolled in M.Sc. at COPPE/UFRJ in Power Electronics and, with Dr. Rolim and Dr. Aredes, is developing the digital control of a prototype of a Dynamic Voltage Restorer. Luís Guilherme Barbosa Rolim was born in Niterói, Brazil, in 966. He received the B.S. and M.S. degrees from the Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil, and the Dr.-Ing. degree from the Technical University Berlin, Berlin, Germany, in 989, 993, and 997, respectively, all in electrical engineering. Since 99, he has been a Faculty Member of the Electrical Engineering Department, Escola Politécnica, UFRJ, where he teaches and conducts research on power electronics, drives, and microprocessor control. He is a member of the Power Electronics Research Group at COPPE/UFRJ and has authored more than papers published in brazilian and international conference proceedings and technical journals. Maurício Aredes (S 94, M 97) was born in São Paulo State, Brazil, on August 4, 96. He received the B.Sc. degree from Fluminense Federal University, Rio de Janeiro State in 984, the M.Sc. degree in Electrical Engineering from Federal University of Rio de Janeiro in 99, and the Dr.-Ing. Degree (magna cum laude) from Technische Universität Berlin in 996. From 985 to 988 he worked at the Itaipu HVDC Transmission System and from 988 to 99 in the SCADA Project of Itaipu Power Plant. From 996 to 997 he worked within CEPEL Centro de Pesquisas de Energia Elétrica, Rio de Janeiro, as R&D Engineer. In 997, he became an Associate Professor at the Federal University of Rio de Janeiro, where he teaches Power Electronics. His main research area includes HVDC and FACTS systems, active filters, Custom Power and Power Quality Issues. Dr. Aredes is a member of the Brazilian Society for Automatic Control and the Brazilian Power Electronics Society.

Analysis and Software Implementation of a Robust Synchronizing PLL Circuit

Analysis and Software Implementation of a Robust Synchronizing PLL Circuit Analysis and Software Implementation of a Robust Synchronizing PLL Circuit Luís Guilherme B. ROLIM, Member, IEEE, Diogo R. COSTA, Jr., and Maurício AREDES, Member, IEEE Federal University of Rio de Janeiro

More information

Implementation of a low cost series compensator for voltage sags

Implementation of a low cost series compensator for voltage sags J.L. Silva Neto DEE-UFRJ luizneto@dee.ufrj.br R.M. Fernandes COPPE-UFRJ rodrigo@coe.ufrj.br D.R. Costa COPPE-UFRJ diogo@coe.ufrj.br L.G.B. Rolim DEE,COPPE-UFRJ rolim@dee.ufrj.br M. Aredes DEE,COPPE-UFRJ

More information

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE 98 CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE 6.1 INTRODUCTION Process industries use wide range of variable speed motor drives, air conditioning plants, uninterrupted power supply systems

More information

5DESIGN PARAMETERS OF SHUNT ACTIVE FILTER FOR HARMONICS CURRENT MITIGATION

5DESIGN PARAMETERS OF SHUNT ACTIVE FILTER FOR HARMONICS CURRENT MITIGATION 5DESIGN PARAMETERS OF SHUNT ACTIE FILTER FOR HARMONICS CURRENT MITIGATION Page 59 A.H. Budhrani 1*, K.J. Bhayani 2, A.R. Pathak 3 1*, 2, 3 Department of Electrical Engineering,..P. Engineering College

More information

A Static Synchronous Compensator for Reactive Power Compensation under Distorted Mains Voltage Conditions

A Static Synchronous Compensator for Reactive Power Compensation under Distorted Mains Voltage Conditions 10 th International Symposium Topical Problems in the Field of Electrical and Power Engineering Pärnu, Estonia, January 10-15, 2011 A Static Synchronous Compensator for Reactive Power Compensation under

More information

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE Ms. K. Kamaladevi 1, N. Mohan Murali Krishna 2 1 Asst. Professor, Department of EEE, 2 PG Scholar, Department of

More information

ABSTRACT I. INTRODUCTION

ABSTRACT I. INTRODUCTION International Journal of Scientific Research in Computer Science, Engineering and Information Technology 2017 IJSRCSEIT Volume 2 Issue 6 ISSN : 2456-3307 Design of Shunt Active Power Filter for Power Quality

More information

Sinusoidal Current Control based Shunt Active Power Filter for Current Harmonics Reduction

Sinusoidal Current Control based Shunt Active Power Filter for Current Harmonics Reduction Sinusoidal Current Control based Shunt Active Power Filter for Current Harmonics Reduction Anju Yadav 1, K. Narayanan 2, Binsy Joseph 3 1, 2, 3 Fr. Conceicao Rodrigues College of Engineering, Mumbai, India

More information

Harmonics Reduction of 3 Phase Diode Bridge Rectifier by Implementing P-Q Theory with Active Filter

Harmonics Reduction of 3 Phase Diode Bridge Rectifier by Implementing P-Q Theory with Active Filter IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 07, 2016 ISSN (online): 2321-0613 Harmonics Reduction of 3 Phase Diode Bridge Rectifier by Implementing P-Q Theory with

More information

Unified Power Quality Conditioner (UPQC) using MATLAB Hiya Divyavani, Prof.(Dr.)Mohd.Muzzam Noida International University ----------------------------------------------------------------- Abstract: The

More information

Simulation Results of a Shunt Active Power Filter with Control Based on p-q Theory

Simulation Results of a Shunt Active Power Filter with Control Based on p-q Theory Simulation Results of a Shunt Active Power Filter with Control Based on p-q Theory Emílio F. Couto, Júlio S. Martins, João L. Afonso Department of Industrial Electronic University of Minho Campus de Azurém

More information

Experimental Results of a Single-Phase Shunt Active Filter Prototype with Different Switching Techniques

Experimental Results of a Single-Phase Shunt Active Filter Prototype with Different Switching Techniques ISIE 007 - IEEE International Symposium on Industrial Electronics Vigo, Espanha, 4-7 Junho de 007, ISBN: 1-444-0755-9 Experimental Results of a Single-Phase Shunt Active Filter Prototype with Different

More information

HARMONIC contamination, due to the increment of nonlinear

HARMONIC contamination, due to the increment of nonlinear 612 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 44, NO. 5, OCTOBER 1997 A Series Active Power Filter Based on a Sinusoidal Current-Controlled Voltage-Source Inverter Juan W. Dixon, Senior Member,

More information

Chapter 2 Shunt Active Power Filter

Chapter 2 Shunt Active Power Filter Chapter 2 Shunt Active Power Filter In the recent years of development the requirement of harmonic and reactive power has developed, causing power quality problems. Many power electronic converters are

More information

A Novel Control Method for Input Output Harmonic Elimination of the PWM Boost Type Rectifier Under Unbalanced Operating Conditions

A Novel Control Method for Input Output Harmonic Elimination of the PWM Boost Type Rectifier Under Unbalanced Operating Conditions IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 16, NO. 5, SEPTEMBER 2001 603 A Novel Control Method for Input Output Harmonic Elimination of the PWM Boost Type Rectifier Under Unbalanced Operating Conditions

More information

Power Quality Improvement using Shunt Passive Filter

Power Quality Improvement using Shunt Passive Filter Power Quality Improvement using Shunt Passive Filter Assistant Professor, Department of Electrical Engineering Bhutta Group of Institutions, India Abstract: The electricity supply would, ideally, show

More information

Control Of Shunt Active Filter Based On Instantaneous Power Theory

Control Of Shunt Active Filter Based On Instantaneous Power Theory B.Pragathi Department of Electrical and Electronics Shri Vishnu Engineering College for Women Bhimavaram, India Control Of Shunt Active Filter Based On Instantaneous Power Theory G.Bharathi Department

More information

A MATLAB-SIMULINK APPROACH TO SHUNT ACTIVE POWER FILTERS

A MATLAB-SIMULINK APPROACH TO SHUNT ACTIVE POWER FILTERS A MATLAB-SIMULINK APPROACH TO SHUNT ACTIVE POWER FILTERS George Adam, Alina G. Stan (Baciu) and Gheorghe Livinţ Department of Electrical Engineering Technical University of Iaşi 700050, Iaşi, Romania E-mail:

More information

Harmonics Reduction using 4-Leg Shunt Active Power Filters

Harmonics Reduction using 4-Leg Shunt Active Power Filters Harmonics Reduction using 4-Leg Shunt Active Power Filters K Srinivas Assistant Professor & Department of EEE & JNTUH CEJ Telangana, India. Abstract Harmonics in power system are caused by highly non-linear

More information

Investigation of negative sequence injection capability in H-bridge Multilevel STATCOM

Investigation of negative sequence injection capability in H-bridge Multilevel STATCOM Investigation of negative sequence injection capability in H-bridge Multilevel STATCOM Ehsan Behrouzian 1, Massimo Bongiorno 1, Hector Zelaya De La Parra 1,2 1 CHALMERS UNIVERSITY OF TECHNOLOGY SE-412

More information

Literature Review for Shunt Active Power Filters

Literature Review for Shunt Active Power Filters Chapter 2 Literature Review for Shunt Active Power Filters In this chapter, the in depth and extensive literature review of all the aspects related to current error space phasor based hysteresis controller

More information

Compensation of Distribution Feeder Loading With Power Factor Correction by Using D-STATCOM

Compensation of Distribution Feeder Loading With Power Factor Correction by Using D-STATCOM Compensation of Distribution Feeder Loading With Power Factor Correction by Using D-STATCOM N.Shakeela Begum M.Tech Student P.V.K.K Institute of Technology. Abstract This paper presents a modified instantaneous

More information

A Simple Control Algorithm for Three-Phase Shunt Active Power Filter for Reactive Power and Current Harmonic Compensation

A Simple Control Algorithm for Three-Phase Shunt Active Power Filter for Reactive Power and Current Harmonic Compensation International Journal of Electrical Engineering. ISSN 0974-2158 Volume 6, Number 4 (2013), pp. 473-483 International Research Publication House http://www.irphouse.com A Simple Control Algorithm for Three-Phase

More information

Voltage Flicker Compensation using STATCOM to Improve Power Quality

Voltage Flicker Compensation using STATCOM to Improve Power Quality D.Lavanya and B.Srinu 1 Voltage Flicker Compensation using STATCOM to Improve Power Quality D.Lavanya 1 B.Srinu 2 1 M.tech Scholar (EPS), Anurag Engineering College, Kodad, Telangana, India 2 Assistant

More information

ANALYSIS OF SYNCHRONOUS-REFERENCE-FRAME-BASED CONTROL METHOD FOR UPQC UNDER UNBALANCED AND DISTORTED LOAD CONDITIONS Salava Nagaraju* 1

ANALYSIS OF SYNCHRONOUS-REFERENCE-FRAME-BASED CONTROL METHOD FOR UPQC UNDER UNBALANCED AND DISTORTED LOAD CONDITIONS Salava Nagaraju* 1 International Journal of Engineering & Science Research ANALYSIS OF SYNCHRONOUS-REFERENCE-FRAME-BASED CONTROL METHOD FOR UPQC UNDER UNBALANCED AND DISTORTED LOAD CONDITIONS Salava Nagaraju* 1 1 M.Tech

More information

Fault detection in a three-phase system grid connected using SOGI structure to calculate vector components

Fault detection in a three-phase system grid connected using SOGI structure to calculate vector components International Conference on Renewable Energies and Power Quality (ICREPQ 15) La Coruña (Spain), 25 th to 27 th March, 2015 Renewable Energy and Power Quality Journal (RE&PQJ) ISSN 2172-038 X, No.13, April

More information

Application of Fuzzy Logic Controller in Shunt Active Power Filter

Application of Fuzzy Logic Controller in Shunt Active Power Filter IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 11 April 2016 ISSN (online): 2349-6010 Application of Fuzzy Logic Controller in Shunt Active Power Filter Ketan

More information

Improvement of Power Quality Using Hybrid Active Power Filter in Three- Phase Three- Wire System Applied to Induction Drive

Improvement of Power Quality Using Hybrid Active Power Filter in Three- Phase Three- Wire System Applied to Induction Drive Improvement of Power Quality Using Hybrid Active Power Filter in Three- Phase Three- Wire System Applied to Induction Drive B. Mohan Reddy 1, G.Balasundaram 2 PG Student [PE&ED], Dept. of EEE, SVCET, Chittoor

More information

PERFORMANCE ANALYSIS OF SVPWM AND FUZZY CONTROLLED HYBRID ACTIVE POWER FILTER

PERFORMANCE ANALYSIS OF SVPWM AND FUZZY CONTROLLED HYBRID ACTIVE POWER FILTER International Journal of Electrical and Electronics Engineering Research (IJEEER) ISSN 2250-155X Vol. 3, Issue 2, Jun 2013, 309-318 TJPRC Pvt. Ltd. PERFORMANCE ANALYSIS OF SVPWM AND FUZZY CONTROLLED HYBRID

More information

Design and Simulation of Fuzzy Logic controller for DSTATCOM In Power System

Design and Simulation of Fuzzy Logic controller for DSTATCOM In Power System Design and Simulation of Fuzzy Logic controller for DSTATCOM In Power System Anju Gupta Department of Electrical and Electronics Engg. YMCA University of Science and Technology anjugupta112@gmail.com P.

More information

ACTIVE compensation of harmonics, reactive power and

ACTIVE compensation of harmonics, reactive power and IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 19, NO. 3, JULY 2004 979 A Signal Processing System for Extraction of Harmonics and Reactive Current of Single-Phase Systems Masoud Karimi-Ghartemani, Hossein

More information

INSTANTANEOUS POWER THEORY AND APPLICATIONS TO POWER CONDITIONING

INSTANTANEOUS POWER THEORY AND APPLICATIONS TO POWER CONDITIONING INSTANTANEOUS POWER THEORY AND APPLICATIONS TO POWER CONDITIONING Hirofumi Akagi Professor of Electrica! Engineering TIT Tokyo Institute of Technology, Japan Edson Hirokazu Watanabe Professor of Electrica!

More information

Power Control Scheme of D-Statcom

Power Control Scheme of D-Statcom ISSN : 48-96, Vol. 4, Issue 6( Version 3), June 04, pp.37-4 RESEARCH ARTICLE OPEN ACCESS Power Control Scheme of D-Statcom A. Sai Krishna, Y. Suri Babu (M. Tech (PS)) Dept of EEE, R.V.R. & J.C. College

More information

Multi-Pulse Voltage Source Converter Statcom For Voltage Flicker Mitigation

Multi-Pulse Voltage Source Converter Statcom For Voltage Flicker Mitigation RESEARCH ARTICLE OPEN ACCESS Multi-Pulse Voltage Source Converter Statcom For Voltage Flicker Mitigation * G.Ravinder Reddy Assistant Professor,**M.Thirupathaiah * Assistant Professor. (Deparment of Electrical

More information

Kanuru; Krishna (Dt); A.P, India. DOI: / Page. 1 G. Aruna Jyothi, 2 DR. P. V. R. L.

Kanuru; Krishna (Dt); A.P, India. DOI: / Page. 1 G. Aruna Jyothi, 2 DR. P. V. R. L. IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 78-676,p-ISSN: -, Volume, Issue Ver. II (Jan Feb. 5), PP 68-74 www.iosrjournals.org Implementation of Instantaneous Reactive Power

More information

HYSTERESIS CONTROL FOR CURRENT HARMONICS SUPPRESSION USING SHUNT ACTIVE FILTER. Rajesh Kr. Ahuja

HYSTERESIS CONTROL FOR CURRENT HARMONICS SUPPRESSION USING SHUNT ACTIVE FILTER. Rajesh Kr. Ahuja HYSTERESIS CONTROL FOR CURRENT HARMONICS SUPPRESSION USING SHUNT ACTIVE FILTER Rajesh Kr. Ahuja 1, Aasha Chauhan 2, Sachin Sharma 3 Rajesh Kr. Ahuja Faculty, Electrical & Electronics Engineering Dept.

More information

Grid Power Quality Analysis of 3-Phase System Using Low Cost Digital Signal Processor

Grid Power Quality Analysis of 3-Phase System Using Low Cost Digital Signal Processor Grid Power Quality Analysis of 3-Phase System Using Low Cost Digital Signal Processor Sravan Vorem, Dr. Vinod John Department of Electrical Engineering Indian Institute of Science Bangalore 56002 Email:

More information

ISSN: Page 20. International Journal of Engineering Trends and Technology- Volume2Issue3-2011

ISSN: Page 20. International Journal of Engineering Trends and Technology- Volume2Issue3-2011 Design of Shunt Active Power Filter to eliminate the harmonic currents and to compensate the reactive power under distorted and or imbalanced source voltages in steady state Sangu Ravindra #1, Dr.V.C.Veera

More information

p. 1 p. 6 p. 22 p. 46 p. 58

p. 1 p. 6 p. 22 p. 46 p. 58 Comparing power factor and displacement power factor corrections based on IEEE Std. 18-2002 Harmonic problems produced from the use of adjustable speed drives in industrial plants : case study Theory for

More information

Power Quality Improvement Using Hybrid Power Filter Based On Dual Instantaneous Reactive Power Theory With Hysteresis Current Controller

Power Quality Improvement Using Hybrid Power Filter Based On Dual Instantaneous Reactive Power Theory With Hysteresis Current Controller Power Quality Improvement Using Hybrid Power Filter Based On Dual Instantaneous Reactive Power Theory With Hysteresis Current Controller J.Venkatesh 1, K.S.S.Prasad Raju 2 1 Student SRKREC, India, venki_9441469778@yahoo.com

More information

PI-VPI Based Current Control Strategy to Improve the Performance of Shunt Active Power Filter

PI-VPI Based Current Control Strategy to Improve the Performance of Shunt Active Power Filter PI-VPI Based Current Control Strategy to Improve the Performance of Shunt Active Power Filter B.S.Nalina 1 Ms.V.J.Vijayalakshmi 2 Department Of EEE Department Of EEE 1 PG student,skcet, Coimbatore, India

More information

Assessment of Different Compensation Strategies in Hybrid Active Power Filters

Assessment of Different Compensation Strategies in Hybrid Active Power Filters Assessment of Different Compensation Strategies in Hybrid Active Power Filters Rashed Bahrekazemi Electrical Engineering Department Iran University of Science & Technology (IUST) Tehran, Iran rbahrkazemi@ee.iust.ac.ir

More information

Harmonics Elimination Using Shunt Active Filter

Harmonics Elimination Using Shunt Active Filter Harmonics Elimination Using Shunt Active Filter Satyendra Gupta Assistant Professor, Department of Electrical Engineering, Shri Ramswaroop Memorial College of Engineering and Management, Lucknow, India.

More information

Modeling and Simulation of SRF and P-Q based Control DSTATCOM

Modeling and Simulation of SRF and P-Q based Control DSTATCOM International Journal of Engineering Research and Development ISSN: 2278-067X, Volume 1, Issue 10 (June 2012), PP.65-71 www.ijerd.com Modeling and Simulation of SRF and P-Q based Control DSTATCOM Kasimvali.

More information

A Comparative Study between DPC and DPC-SVM Controllers Using dspace (DS1104)

A Comparative Study between DPC and DPC-SVM Controllers Using dspace (DS1104) International Journal of Electrical and Computer Engineering (IJECE) Vol. 4, No. 3, June 2014, pp. 322 328 ISSN: 2088-8708 322 A Comparative Study between DPC and DPC-SVM Controllers Using dspace (DS1104)

More information

Application of Fuzzy Logic Controller in UPFC to Mitigate THD in Power System

Application of Fuzzy Logic Controller in UPFC to Mitigate THD in Power System International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 9, Issue 8 (January 2014), PP. 25-33 Application of Fuzzy Logic Controller in UPFC

More information

IMPROVING EFFICIENCY OF ACTIVE POWER FILTER FOR RENEWABLE POWER GENERATION SYSTEMS BY USING PREDICTIVE CONTROL METHOD AND FUZZY LOGIC CONTROL METHOD

IMPROVING EFFICIENCY OF ACTIVE POWER FILTER FOR RENEWABLE POWER GENERATION SYSTEMS BY USING PREDICTIVE CONTROL METHOD AND FUZZY LOGIC CONTROL METHOD IMPROVING EFFICIENCY OF ACTIVE POWER FILTER FOR RENEWABLE POWER GENERATION SYSTEMS BY USING PREDICTIVE CONTROL METHOD AND FUZZY LOGIC CONTROL METHOD T PRAHLADA 1, P SUJATHA 2, P BHARATH KUMAR 3 1PG Scholar,

More information

Improved PLL for Power Generation Systems Operating under Real Grid Conditions

Improved PLL for Power Generation Systems Operating under Real Grid Conditions ELECTRONICS, VOL. 15, NO., DECEMBER 011 5 Improved PLL for Power Generation Systems Operating under Real Grid Conditions Evgenije M. Adžić, Milan S. Adžić, and Vladimir A. Katić Abstract Distributed power

More information

Investigation of D-Statcom Operation in Electric Distribution System

Investigation of D-Statcom Operation in Electric Distribution System J. Basic. Appl. Sci. Res., (2)29-297, 2 2, TextRoad Publication ISSN 29-434 Journal of Basic and Applied Scientific Research www.textroad.com Investigation of D-Statcom Operation in Electric Distribution

More information

SIMULATION AND COMPARISON OF SPWM AND SVPWM CONTROL FOR TWO LEVEL UPQC

SIMULATION AND COMPARISON OF SPWM AND SVPWM CONTROL FOR TWO LEVEL UPQC SIMULATION AND COMPARISON OF SPWM AND SVPWM CONTROL FOR TWO LEVEL UPQC 1 G.ANNAPURNA, 2 DR.G.TULASIRAMDAS 1 G.Narayanamma Institute Of Technology And Science (For Women) Hyderabad, Department Of EEE 2

More information

Control of grid connected inverter system for sinusoidal current injection with improved performance

Control of grid connected inverter system for sinusoidal current injection with improved performance Control of grid connected inverter system for sinusoidal current injection with improved performance Simeen. S. Mujawar. Electrical engineering Department, Pune University /PVG s COET, Pune, India. simeen1990@gmail.com

More information

Simulation and Comparison of DVR and DSTATCOM Used For Voltage Sag Mitigation at Distribution Side

Simulation and Comparison of DVR and DSTATCOM Used For Voltage Sag Mitigation at Distribution Side Simulation and Comparison of DVR and DSTATCOM Used For Voltage Sag Mitigation at Distribution Side 1 Jaykant Vishwakarma, 2 Dr. Arvind Kumar Sharma 1 PG Student, High voltage and Power system, Jabalpur

More information

Direct Harmonic Analysis of the Voltage Source Converter

Direct Harmonic Analysis of the Voltage Source Converter 1034 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 18, NO. 3, JULY 2003 Direct Harmonic Analysis of the Voltage Source Converter Peter W. Lehn, Member, IEEE Abstract An analytic technique is presented for

More information

An Optimized Synchronous Techniques of Single Phase Enhanced Phase Locked Loop (EPLL)

An Optimized Synchronous Techniques of Single Phase Enhanced Phase Locked Loop (EPLL) IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 11, Issue 3 Ver. IV (May. Jun. 2016), PP 36-42 www.iosrjournals.org An Optimized Synchronous

More information

IMPORTANCE OF VSC IN HVDC

IMPORTANCE OF VSC IN HVDC IMPORTANCE OF VSC IN HVDC Snigdha Sharma (Electrical Department, SIT, Meerut) ABSTRACT The demand of electrical energy has been increasing day by day. To meet these high demands, reliable and stable transmission

More information

[Mahagaonkar*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

[Mahagaonkar*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY POWER QUALITY IMPROVEMENT OF GRID CONNECTED WIND ENERGY SYSTEM BY USING STATCOM Mr.Mukund S. Mahagaonkar*, Prof.D.S.Chavan * M.Tech

More information

EXPERIMENTAL INVESTIGATION OF THE ROLE OF STABILIZERS IN THE ENHANCEMENT OF AUTOMATIC VOLTAGE REGULATORS PERFORMANCE

EXPERIMENTAL INVESTIGATION OF THE ROLE OF STABILIZERS IN THE ENHANCEMENT OF AUTOMATIC VOLTAGE REGULATORS PERFORMANCE Engineering Journal of Qatar University, Vol. 4, 1991, p. 91-102. EXPERIMENTAL INVESTIGATION OF THE ROLE OF STABILIZERS IN THE ENHANCEMENT OF AUTOMATIC VOLTAGE REGULATORS PERFORMANCE K. I. Saleh* and M.

More information

A Review on Improvement of Power Quality using D-STATCOM

A Review on Improvement of Power Quality using D-STATCOM A Review on Improvement of Power Quality using D-STATCOM Abhishek S. Thaknaik Electrical (electronics & power)engg, SGBAU/DES s COET, DhamangaonRly, Maharastra,India Kishor P. Deshmukh Electrical (electronics

More information

Enhancement of Power Quality in Distribution System Using D-Statcom for Different Faults

Enhancement of Power Quality in Distribution System Using D-Statcom for Different Faults Enhancement of Power Quality in Distribution System Using D-Statcom for Different s Dr. B. Sure Kumar 1, B. Shravanya 2 1 Assistant Professor, CBIT, HYD 2 M.E (P.S & P.E), CBIT, HYD Abstract: The main

More information

A Resonant Integrator Based PLL and AC Current Controller for Single Phase Grid Connected PWM-VSI

A Resonant Integrator Based PLL and AC Current Controller for Single Phase Grid Connected PWM-VSI 16th NATIONAL POWER SYSTEMS CONFERENCE, 15th-17th DECEMBER, 2010 31 A Resonant Integrator Based PLL and AC Current Controller for Single Phase Grid Connected PWM-VSI D. Venkatramanan Department of Electrical

More information

Design of Shunt Active Power Filter by using An Advanced Current Control Strategy

Design of Shunt Active Power Filter by using An Advanced Current Control Strategy Design of Shunt Active Power Filter by using An Advanced Current Control Strategy K.Sailaja 1, M.Jyosthna Bai 2 1 PG Scholar, Department of EEE, JNTU Anantapur, Andhra Pradesh, India 2 PG Scholar, Department

More information

Current Rebuilding Concept Applied to Boost CCM for PF Correction

Current Rebuilding Concept Applied to Boost CCM for PF Correction Current Rebuilding Concept Applied to Boost CCM for PF Correction Sindhu.K.S 1, B. Devi Vighneshwari 2 1, 2 Department of Electrical & Electronics Engineering, The Oxford College of Engineering, Bangalore-560068,

More information

SHUNT COMPENSATOR USED FOR POWER QUALITY IMPROVEMENT

SHUNT COMPENSATOR USED FOR POWER QUALITY IMPROVEMENT SHUNT COMPENSATOR USED FOR POWER QUALITY IMPROVEMENT Ramesh Kumar V 1, Dr. Dalvinder Kaur Mangal 2 1 Research Scholar, Department of Electrical Engineering, Sunrise University, Alwar 2 Asso. Prof., BMIET,

More information

Implementation of SRF based Multilevel Shunt Active Filter for Harmonic Control

Implementation of SRF based Multilevel Shunt Active Filter for Harmonic Control International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 3, Issue 8 (September 2012), PP. 16-20 Implementation of SRF based Multilevel Shunt

More information

Abstract: PWM Inverters need an internal current feedback loop to maintain desired

Abstract: PWM Inverters need an internal current feedback loop to maintain desired CURRENT REGULATION OF PWM INVERTER USING STATIONARY FRAME REGULATOR B. JUSTUS RABI and Dr.R. ARUMUGAM, Head of the Department of Electrical and Electronics Engineering, Anna University, Chennai 600 025.

More information

Implementation of D-STACTOM for Improvement of Power Quality in Radial Distribution System

Implementation of D-STACTOM for Improvement of Power Quality in Radial Distribution System Implementation of D-STACTOM for Improvement of Power Quality in Radial Distribution System Kolli Nageswar Rao 1, C. Hari Krishna 2, Kiran Kumar Kuthadi 3 ABSTRACT: D-STATCOM (Distribution Static Compensator)

More information

Mitigation of Voltage Sag/Swell Using UPQC

Mitigation of Voltage Sag/Swell Using UPQC Mitigation of Voltage Sag/Swell Using UPQC 1 Rajat Patel, 2 Prof.Maulik A. Chaudhari 1 PG Scholar, 2 Assistant Professor Electrical Department, Government engineering college, Bhuj Gujarat Technological

More information

Power Quality improvement of a three phase four wire system using UPQC

Power Quality improvement of a three phase four wire system using UPQC International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 2 Issue: 4 July-215 www.irjet.net p-issn: 2395-72 Power Quality improvement of a three phase four wire system

More information

IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 06, 2014 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 06, 2014 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 06, 2014 ISSN (online): 2321-0613 Modeling and Simulation of SRF Control Based Shunt Active Power Filter and Application

More information

Power Quality Improvement of Non-Linear Load by Using Instantaneous P-Q Theory

Power Quality Improvement of Non-Linear Load by Using Instantaneous P-Q Theory Power Quality Improvement of Non-Linear Load by Using Instantaneous P-Q Theory 1 R.V.L. Narayana Divakar, 2 P.Kishore, 3 CH.Ravi Kumar, 4 V.Madhu Kishore, 5 V.Pradeep Kumar 1 Assistant Professor, 2,3,4,5

More information

Power Quality Improvement of Unified Power Quality Conditioner Using Reference Signal Generation Method

Power Quality Improvement of Unified Power Quality Conditioner Using Reference Signal Generation Method Vol.2, Issue.3, May-June 2012 pp-682-686 ISSN: 2249-6645 Power Quality Improvement of Unified Power Quality Conditioner Using Reference Signal Generation Method C. Prakash 1, N. Suparna 2 1 PG Scholar,

More information

Virtual Instrumentation Applied to Calculation of Electrical Power Quantities in Single-Phase Systems

Virtual Instrumentation Applied to Calculation of Electrical Power Quantities in Single-Phase Systems European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ) International Conference on Renewable Energies and Power Quality (ICREPQ 2) Santiago de Compostela

More information

PLL simulation. Prepared by: Qian Wang Spinlab,Worcester Polytechnic Institute. Version 1.0

PLL simulation. Prepared by: Qian Wang Spinlab,Worcester Polytechnic Institute. Version 1.0 PLL simulation Prepared by: Qian Wang willwq@wpi.edu Spinlab,Worcester Polytechnic Institute Version. October, 6 Abstract This is a report for Phase-Locked Loop simulation. Contents Introduction. System

More information

Protection from Voltage Sags and Swells by Using FACTS Controller

Protection from Voltage Sags and Swells by Using FACTS Controller Protection from Voltage Sags and Swells by Using FACTS Controller M.R.Mohanraj 1, V.P.Suresh 2, G.Syed Zabiyullah 3 Assistant Professor, Department of Electrical and Electronics Engineering, Excel College

More information

Fuzzy Logic Controller Based Three-phase Shunt Active Filter for Line Harmonics Reduction

Fuzzy Logic Controller Based Three-phase Shunt Active Filter for Line Harmonics Reduction Journal of Computer Science 3 (: 76-8, 7 ISSN 549-3636 7 Science Publications Fuzzy Logic Controller Based Three-phase Shunt Active Filter for Line Harmonics Reduction C.Sharmeela, M.R.Mohan, G.Uma, J.Baskaran

More information

2020 P a g e. Figure.2: Line diagram of series active power filter.

2020 P a g e. Figure.2: Line diagram of series active power filter. Power Quality Improvement By UPQC Using ANN Controller Saleha Tabassum 1, B.Mouli Chandra 2 (Department of Electrical & Electronics Engineering KSRM College of Engineering, Kadapa.) (Asst. Professor Dept

More information

OVERVIEW OF SVC AND STATCOM FOR INSTANTANEOUS POWER CONTROL AND POWER FACTOR IMPROVEMENT

OVERVIEW OF SVC AND STATCOM FOR INSTANTANEOUS POWER CONTROL AND POWER FACTOR IMPROVEMENT OVERVIEW OF SVC AND STATCOM FOR INSTANTANEOUS POWER CONTROL AND POWER FACTOR IMPROVEMENT Harshkumar Sharma 1, Gajendra Patel 2 1 PG Scholar, Electrical Department, SPCE, Visnagar, Gujarat, India 2 Assistant

More information

Power Quality enhancement of a distribution line with DSTATCOM

Power Quality enhancement of a distribution line with DSTATCOM ower Quality enhancement of a distribution line with DSTATCOM Divya arashar 1 Department of Electrical Engineering BSACET Mathura INDIA Aseem Chandel 2 SMIEEE,Deepak arashar 3 Department of Electrical

More information

Arvind Pahade and Nitin Saxena Department of Electrical Engineering, Jabalpur Engineering College, Jabalpur, (MP), India

Arvind Pahade and Nitin Saxena Department of Electrical Engineering, Jabalpur Engineering College, Jabalpur, (MP), India e t International Journal on Emerging Technologies 4(1): 10-16(2013) ISSN No. (Print) : 0975-8364 ISSN No. (Online) : 2249-3255 Control of Synchronous Generator Excitation and Rotor Angle Stability by

More information

Active Elimination of Low-Frequency Harmonics of Traction Current-Source Active Rectifier

Active Elimination of Low-Frequency Harmonics of Traction Current-Source Active Rectifier Transactions on Electrical Engineering, Vol. 1 (2012), No. 1 30 Active Elimination of Low-Frequency Harmonics of Traction Current-Source Active Rectifier Jan Michalík1), Jan Molnár2) and Zdeněk Peroutka2)

More information

Simulation of Multi Converter Unified Power Quality Conditioner for Two Feeder Distribution System

Simulation of Multi Converter Unified Power Quality Conditioner for Two Feeder Distribution System Simulation of Multi Converter Unified Power Quality Conditioner for Two Feeder Distribution System G. Laxminarayana 1, S. Raja Shekhar 2 1, 2 Aurora s Engineering College, Bhongir, India Abstract: In this

More information

Implementation of UPQC for Voltage Sag Mitigation

Implementation of UPQC for Voltage Sag Mitigation Implementation of UPQC for Voltage Sag Mitigation C.H. Ram Jethmalani 1, V. Karthikeyan 2, and Narayanappa 3 1 Adhiyamaan College of Engineering, Hosur, India Email: malanisuryakumaran@gmail.com 2,3 Adhiyamaan

More information

Generation of Voltage Reference Signal in Closed-Loop Control of STATCOM

Generation of Voltage Reference Signal in Closed-Loop Control of STATCOM Generation of Voltage Reference Signal in Closed-Loop Control of STATCOM M. Tavakoli Bina 1,*, N. Khodabakhshi 1 1 Faculty of Electrical Engineering, K. N. Toosi University of Technology, * Corresponding

More information

Analysis, Modeling and Simulation of Dynamic Voltage Restorer (DVR)for Compensation of Voltage for sag-swell Disturbances

Analysis, Modeling and Simulation of Dynamic Voltage Restorer (DVR)for Compensation of Voltage for sag-swell Disturbances IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 3 Ver. I (May Jun. 2014), PP 36-41 Analysis, Modeling and Simulation of Dynamic Voltage

More information

IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 12 June 2016 ISSN (online): X

IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 12 June 2016 ISSN (online): X IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 12 June 2016 ISSN (online): 2349-784X A Synchronous Reference Frame Theory-Space Vector Modulation (SRF SPVM) based Active

More information

Space Vector PWM and Model Predictive Control for Voltage Source Inverter Control

Space Vector PWM and Model Predictive Control for Voltage Source Inverter Control Space Vector PWM and Model Predictive Control for Voltage Source Inverter Control Irtaza M. Syed, Kaamran Raahemifar Abstract In this paper, we present a comparative assessment of Space Vector Pulse Width

More information

Size Selection Of Energy Storing Elements For A Cascade Multilevel Inverter STATCOM

Size Selection Of Energy Storing Elements For A Cascade Multilevel Inverter STATCOM Size Selection Of Energy Storing Elements For A Cascade Multilevel Inverter STATCOM Dr. Jagdish Kumar, PEC University of Technology, Chandigarh Abstract the proper selection of values of energy storing

More information

MITIGATION OF VOLTAGE SAGS/SWELLS USING DYNAMIC VOLTAGE RESTORER (DVR)

MITIGATION OF VOLTAGE SAGS/SWELLS USING DYNAMIC VOLTAGE RESTORER (DVR) VOL. 4, NO. 4, JUNE 9 ISSN 89-668 6-9 Asian Research Publishing Network (ARPN). All rights reserved. MITIGATION OF VOLTAGE SAGS/SWELLS USING DYNAMIC VOLTAGE RESTORER (DVR) Rosli Omar and Nasrudin Abd Rahim

More information

Compare Stability Management in Power System Using 48- Pulse Inverter, D-STATCOM and Space Vector Modulation Based STATCOM

Compare Stability Management in Power System Using 48- Pulse Inverter, D-STATCOM and Space Vector Modulation Based STATCOM Ramchandra Sahu et al. 2019, 7:1 ISSN (Online): 2348-4098 ISSN (Print): 2395-4752 International Journal of Science, Engineering and Technology An Open Access Journal Compare Stability Management in Power

More information

Comparison of Various Reference Current Generation Techniques for Performance Analysis of Shunt Active Power Filter using MATLAB Simulation

Comparison of Various Reference Current Generation Techniques for Performance Analysis of Shunt Active Power Filter using MATLAB Simulation International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Comparison

More information

POWER QUALITY IMPROVEMENT USING SHUNT ACTIVE FILTER

POWER QUALITY IMPROVEMENT USING SHUNT ACTIVE FILTER Int. J. Engg. Res. & Sci. & Tech. 2015 xxxxxxxxxxxxxxxxxxxxxxxx, 2015 Research Paper ISSN 2319-5991 www.ijerst.com Special Issue, Vol. 1, No. 2, April 2015 2 nd National Conference on Recent Advances in

More information

IJESR/Nov 2012/ Volume-2/Issue-11/Article No-21/ ISSN International Journal of Engineering & Science Research

IJESR/Nov 2012/ Volume-2/Issue-11/Article No-21/ ISSN International Journal of Engineering & Science Research International Journal of Engineering & Science Research POWER QUALITY IMPROVEMENT BY USING DSTATCOM DURING FAULT AND NONLINEAR CONDITIONS T. Srinivas* 1, V.Ramakrishna 2, Eedara Aswani Kumar 3 1 M-Tech

More information

Voltage Unbalance Mitigation Using Positive Sequence Series Compensator

Voltage Unbalance Mitigation Using Positive Sequence Series Compensator IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 232-3331, Volume 9, Issue 3 Ver. I (May Jun. 214), PP 98-13 Voltage Unbalance Mitigation Using Positive Sequence

More information

Designing Of Distributed Power-Flow Controller

Designing Of Distributed Power-Flow Controller IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) ISSN: 2278-1676 Volume 2, Issue 5 (Sep-Oct. 2012), PP 01-09 Designing Of Distributed Power-Flow Controller 1 R. Lokeswar Reddy (M.Tech),

More information

Design Requirements for a Dynamic Voltage Restorer for Voltage Sags Mitigation in Low Voltage Distribution System

Design Requirements for a Dynamic Voltage Restorer for Voltage Sags Mitigation in Low Voltage Distribution System Design Requirements for a Dynamic Voltage Restorer for Voltage Sags Mitigation in Low Voltage Distribution System Rosli Omar, 1 N.A Rahim 2 1 aculty of Electrical Engineering, Universiti Teknikal Malaysia

More information

AC : PSCAD SIMULATION IN A POWER ELECTRONICS APPLICATION COURSE

AC : PSCAD SIMULATION IN A POWER ELECTRONICS APPLICATION COURSE AC 2007-2855: PSCAD SIMULATION IN A POWER ELECTRONICS APPLICATION COURSE Liping Guo, University of Northern Iowa Liping Guo received the B. E. degree in Automatic Control from Beijing Institute of Technology,

More information

Active Power Filters: A Comparative Analysis of Current Control Techniques for Four-Leg Full-Bridge Voltage Source Inverters

Active Power Filters: A Comparative Analysis of Current Control Techniques for Four-Leg Full-Bridge Voltage Source Inverters Active Power Filters: A Comparative Analysis of Current Control Techniques for Four-Leg Full-Bridge Voltage Source Inverters Juan Rueda, Ernesto Pieruccini, María Mantilla, Member, IEEE and Johann Petit,

More information

A Novel Approach to Simultaneous Voltage Sag/Swell and Load Reactive Power Compensations Using UPQC

A Novel Approach to Simultaneous Voltage Sag/Swell and Load Reactive Power Compensations Using UPQC A Novel Approach to Simultaneous Voltage Sag/Swell and Load Reactive Power Compensations Using UPQC N. Uma Maheshwar, Assistant Professor, EEE, Nalla Narasimha Reddy Group of Institutions. T. Sreekanth,

More information

Performance Analysis and Technical Feasibility of an iupqc in Industrial Grids

Performance Analysis and Technical Feasibility of an iupqc in Industrial Grids Journal of Power and Energy Engineering, 2014, 2, 500-508 Published Online April 2014 in SciRes. http://www.scirp.org/journal/jpee http://dx.doi.org/10.4236/jpee.2014.24068 Performance Analysis and Technical

More information

Control of Grid- Interfacing Inverters with Integrated Voltage Unbalance Correction

Control of Grid- Interfacing Inverters with Integrated Voltage Unbalance Correction IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 8, Issue 1 (Nov. - Dec. 2013), PP 101-110 Control of Grid- Interfacing Inverters with Integrated

More information