Gear Transmission Error Measurements based on the Phase Demodulation

Size: px
Start display at page:

Download "Gear Transmission Error Measurements based on the Phase Demodulation"

Transcription

1 Gear Transmission Error Measurements based on the Phase Demodulation JIRI TUMA Abstract. The paper deals with a simple gear set transmission error (TE) measurements at gearbox operational conditions that means under load and during rotation. The analysis method is focused on the processing of pulse signals generated by encoders attached to both the gears in mesh. The analysis technique benefits from demodulation of a phase-modulated signal. The theory is illustrated by experiments with a car gearbox and measurement errors are discussed. Keywords: Gears, gearboxes, transmission error, encoders, phase demodulation, synchronised averaging, average tooth mesh, measurement accuracy, angular vibration. 1. Introduction Noise and vibration problems in gearing are mainly concerned with the smoothness of the drive. The parameter that is employed to measure smoothness is Transmission Error (T. E.). This parameter can be expressed as a linear displacement at a base circle radius defined by the difference of the output gear s position from where it would be if the gear teeth were perfect and infinitely stiff. Many references have attested to the fact that a major goal in reducing gear noise is to reduce the transmission error of a gear set. The basic equation for T.E. of a simple gear set is given as TE n = 2 r n (1) 1 2 ( m) Θ Θ 1 2 where n 1, n2 - teeth numbers of pinion and wheel respectively, Θ 1, Θ 2 are angles of rotation of the mentioned gears and r 2 is a wheel radius. T.E. results not only from manufacturing inaccuracies such as profile errors, tooth pitch errors and run-out, but from a bad design. The pure tooth involute deflects under load due to the finite mesh stiffness caused by tooth deflection. A gearcase and shaft system deflects due to load as well. To complicate meters, a gear axis system is a very complicate dynamic system. Department of Control Systems and Instrumentation, VŠB - Technical University of Ostrava, 17.listopadu 15, Ostrava-Poruba, 78 33, Czech Republic, tel.: jiri.tuma@vsb.cz

2 While running under load one of very important parameters, tooth contact stiffness, is varying what excites the parametric vibration and consequently noise. There are many possible approaches to measuring T.E., but, as Derek Smith points out [1], in practice, measurements based on the use of encoders dominates. A possible alternative is the use of tangentially mounted accelerometers to measure the torsional accelerations of the two gears, which causes the problem of signal transfer from the rotational parts and its double integration. As it will shown later, the common encoders generating a string of pulses in hundreds per rotation are satisfying the sever requirements for measurement accuracy for the mentioned quantity in microns. The National Engineering Laboratory at East Kilbride developed a first workable system for laboratory use while Dr. R. G. Munro introduced the redesigned system for industrial use in the 196s. The sketch of the gear set consisting of the 21- and 44-tooth gears under test and attached incremental rotary encoders, designated by E1 and E2 is shown in figure 1. Both the encoders are of Heidenhain origin, the ERN 46-5 type. A perfectly uniform rotation of gear produces an encoder signal having in its frequency spectrum a single component at the frequency that is a multiple of the gear rotational frequency. As both the encoders generate 5 impulses per encoder rotation, the frequency of the single components in orders (a multiple of the encoder rotational frequency) is equal to the same number as the number of the impulses. A gearbox is a machine running in cyclic fashion, which is the reason to prefer frequency spectra of signals in term of dimensionless orders rather than frequency in Hz. The order spectra are evaluated using time records that are measured in dimensionless revolutions rather than seconds and the corresponding FFT spectra are measured in dimensionless orders rather than frequency. This technique is called order analysis or tracking analysis, as the rotation frequency is being tracked and used for analysis. The resolution of the order spectrum is equal to the reciprocal value of the revolution number per record corresponding to input data for the Fast Fourier Transform (FFT). As the measurement is focused on one complete gear revolution, the spectrum resolution is one order. Pulse signals from encoders are recorded by PULSE, the n 1 =21T Brüel & Kjær signal analyser. To simplify the phase pinion demodulation an Order Analyser instrument was employed Θ 1 which resulted in time history records corresponding to one E 1 complete gear revolution. A method of synchronised averaging in the time domain was employed for reducing random noise in Θ 2 wheel the measured data. As it is known, the order analysis is based on E 2 data resampling in such a way, that sampling frequency follows the mean frequency of shaft rotational speed during one complete shaft revolution. The mean rotational frequency is n 2 =44T evaluated by means a train of pulses generated once per a shaft revolution. The time interval between two consecutive pulses is determined by interpolation some 5 times more accurate than indicated by the actual sampling interval. Therefore the pulses Fig. 1. Measurement arrangement distribution inside this time record gives information about the instantaneous rotation angle of each of the gears under test. As a consequence of Shannon s sampling theorem a few pulses must be recorded during each mesh cycle. It means, that the number of pulses produced per encoder revolution must be a multiple of the tooth number. If five harmonics of toothmeshing frequency are required then the number of pulses per gear revolution must be at least ten times

3 higher than the number of teeth. The encoder generating 5 pulses per revolution seems to be an optimum. The length of resampled time record equals to 248 samples per gear revolution. The sample number is a power of two, which is required by FFT and in corresponding order spectrum, ranging to 8 orders, there is a space for ± 3 sideband components around the carrying component of 5 orders in a frequency spectrum. The frequency range of the mentioned Order Analyser in the described conditions limits the gear rotational speed to the value of 19 RPM. Gear loading has not any influence on the discussed sampling problem. As the pulse signal is not a sinusoid, its frequency spectrum consists of several harmonics of the basic pulse frequency. Variation of angular velocity during rotation causes the phase modulation of the carrying signal that can be any of the harmonic components. The phase modulation gives rise to sidebands around the carrying frequency in the frequency spectrum of the modulated harmonic signal. The phase modulation signal can be derived from the phase of the analytical signal that is evaluated using the Hilbert Transform technique, which is the topic of the following paper section. 2. Phase demodulation using the Hilbert transform An analytic time signal is a useful tool for demodulation. The analytic signal, z () t, is generally combined from real and imaginary parts z () t x() t + j y( t) = z( t) ( jϕ( t) ) = exp, (2) where y () t - the Hilbert transform of x ( t). The relationship between the FFT of the y ( t) and x( t) i ( N i) X i of the length, N, is given by Y = jsign 2. (3) As the angle of the complex values ranges from π to +π () t = arctan( y( t) x( t) ) ϕ, (4) the true angle of the analytical signal as the time function with jumps at π or +π must be obtained by unwrapping that is based on the fact that the absolute value of the difference between two consecutive angles is less than π. The principle of phase unwrapping for a harmonic signal modulated by another harmonic signal is shown in figure 2. The relationship between the phase of the analytical ϕ t, is as follows signal and the phase modulation signal, ( ) M () t = ω t + ϕ ( t) ϕ, (5) M where ω - an angular frequency of the carrier component. The phase modulation signal is a fluctuation of the phase angle around the linear term, ω t.

4 2π +π π 4 2 Unit -2-4,1,2,3,4,5,6,7,8,9 1 Discontinuities removing (2f f samp ϕ π) ϕ < π ϕ + 2π ϕ, ϕ > +π ϕ 2π ϕ 7 6 rad ,2,4,6,8 1,15,1,5 -,5 -,1 -,15 rad,2,4,6,8 1 Fig. 2. Principle of phase unwrapping 3. Encoder accuracy To evaluate errors in pulses distribution against the angle of rotation, both the encoders were mounted on a shaft what ensured the same rotational speed of them. As the running was not perfectly uniform from the point of the measurement method sensitivity, both the pulse signals were under influence of phase modulation. Using the analytical method described above, the difference between modulation signals gives the error in pulse distribution. RMS of Error in radians RPM x 635 RPM o 139 RPM Circle part E 2 E 1 1/order order Fig. 3. Encoder accuracy

5 The frequency spectrum of the resulting error is shown in figure 3. The frequency axis is in orders. The quantity order determines a part of a circle related to the error level in the spectrum. The error level at the distance corresponding to the tooth pitch of the adjacent teeth determines the final accuracy of the T.E. measurement. As it is evident the magnitude of an error at 21 and 44 order is less than 1-5 radians, i.e. approximately 2 angular seconds. 4. T.E. measurements A perfectly uniform rotation of gear produces an encoder signal having in its frequency spectrum a single component at the frequency that is a multiple of the gear rotational frequency. As both the encoders generate 5 impulses per a shaft rotation, the frequency of the single components in order is equal to the same number as it is the number of the impulses, i. e. 5 orders. The gear speed variation as an effect of loaded teeth deflection results in the phase modulation of the impulse signal base frequency. The phase-modulated signal contains sideband components around the carrying component. The distance of the dominating sideband components from the carrying components equals to the integer multiple of the tooth number as it is shown in figures 4 and 5. The frequency axis of both the frequency spectra is in order; it means the multiples of the gear rotational frequency. The frequency of the carrying component is equal to 5 orders while the sideband component associated with the corresponding gear is at the distance of ± 21k or ± 44k (where k = 1, 2,... ) order units from the mentioned carrying component frequency. Take notice of the fact that the dominating components in both the sidebands exceed the background noise level at least 1 times or even more. Both the spectra were evaluated from time signals that are a result of synchronised averaging of 1 revolutions of gears under test. Phase demodulation, which is based V 1 1,1,1 1 1 V,1,1 1 1 Enhanced Spectrum - 21-tooth gear Orders Fig. 4. Frequency spectrum of phase modulated signal generated by the E1 encoder 1 1 Enhanced Spectrum - 44-tooth gear Orders on the theory of the Hilbert transform and phase unwrapping, enable the evaluation of the angular vibration of both the gears in Fig. 5. Frequency spectrum of phase modulated signal generated by the E2 encoder

6 mesh individually. The unwrapped phase of the frequency modulated signal that is produced by the encoder E1 is shown in figure 6. The diagram forms almost a straight-line function. After subtracting a linear term from unwrapped phase, the dependence of the phase variation on time is obtained as it is shown in figure 7. Take note of the diagram scale. The relationship between the unwrapped phase and phase modulation signal results from the formulae (5). Unwrap Angular Vibration in ,,3,5,8 1, Time t /T Angular Vibration in,3,25,2,15,1,5 -,5 -,1 -,15 -,2,,2,4,6,8 1, Fig. 6. Unwrapped phase of E1 encoder signal versus time Fig. 7. Phase modulation signal versus time As it is shown in figure 8 the frequency spectrum of phase modulation signal contains a family of harmonics components to the basic 21-order component excited by toothmeshing of the 21-tooth gear. The low frequency components in the frequency spectrum result from nonuniform driving torque and overlap the toothmeshing response. The phase modulation signal in rees during the pinion revolution is shown in figure 9. The enhanced signal contains five harmonics of the toothmeshing frequency, each of them with 3 pairs of sidebands that cause the amplitude modulation of angle variation. When all these sidebands are removed a purely periodic signal is obtained. The filtration in the frequency domain can be considered as an averaging of the second stage. Therefore, one of these periods corresponding to the gear tooth pitch rotation can be taken as a representative to characterize angular vibration in average. The result of mentioned averaging is called the average toothsmesh. The term averaged toothmesh was introduced to associate vibration and noise measurement with a gear design [2]. 1,1,1 1 1 Spectrum of Ang. Vibration Orders Fig. 8. Frequency spectrum of phase modulation signal

7 Toothmeshing frequency harmonics with 3 sideband components Enhanced Time Signal,2,1 -,1 -,2,,2,4,6,8 1, One out of 21 periods Enhanced Time Signal Average without sidebands Av erage Toothmesh,2,2,1,1 de g -,1 -,1 -,2 -,2,5 1,,2,4,6,8 1, Tooth Pitch Rotation Gear revolution Fig. 9. The second stage of angular vibration averaging for the 21-tooth gear The same average toothmesh in angular variation can be evaluated for the 44-tooth gear as it is shown in figure 1. Angle variation can be easily transformed into the arc length variation. The difference between both the angle variations gives the transmission error. The only problem consists in the true phase delay between these periodic signals because the signals from the encoders are recorded separately. Solving of this problem is based on the similarity of responses both the gears to dynamic forces acting between mating teeth, for instance in acceleration some point on the gearcase. Both the encoder pulse signals are sampled together with the acceleration signal. Two-stage averaging of the twice-measured acceleration signal gives average toothmesh responses that are delayed. The lag for the maximum correlation gives the relative delay.,2,1 -,1 Enhanced Time Signal -,2,,2,4,6,8 1, Average Toothmesh,1,5 de g -,5 -,1,5 1,5 Tooth Pitch Rotation Gear revolution Fig. 1 The second stage of angular vibration averaging for the 44-tooth gear

8 T.E. is given as the difference between the angular vibration signals in the arc length produced by the mating gears. The result is shown in Figure 11. All the experimental data was taken from a car gearbox. The results correspond to the rotational speed of 5 RPM at the input shaft and almost full load. The measurement method was tested at the maximum rotational speed of 125 RPM. µm ,2,4,6,8 1 Tooth pitch rotation tooth tooth gear gear 44-tooth 44-tooth gear gear T.E. T.E. Fig. 11. Transmission error against rotation angle in range of the tooth pitch Conclusion The paper is focused on the problem of the simple gear set transmission error measurement (T.E.). Variation of T.E. is the cause of angular vibration of both the mating gears and consequently gearcase vibration and noise. This paper deals with only one measurement method that is based on the use of encoders generating a string of 5 pulses per gear revolution and reviews the phase demodulation for evaluating of the gear angular vibration. The theory is illustrated by experimental data. Acknowledgements This research has been conducted at the Technical University of Ostrava as a part of the research project No. CEZ 3212 and has been supported by the Czech Ministry of Education. The author benefits from the research work done for the SKODA Auto Company. References [1] Derek Smith J. Gear Noise and Vibration, 1 st ed. New York Basel : Marcel Dekker Inc., ISBN: [2] Tůma, Jiří. Analysis of Periodic and Quasi-Periodic Signals in Time Domain, In: Proceedings of the Noise 93, St. Petersburg (Russia). Auburn (USA) : Auburn University, 1993, Volume 6, pp

PHASE DEMODULATION OF IMPULSE SIGNALS IN MACHINE SHAFT ANGULAR VIBRATION MEASUREMENTS

PHASE DEMODULATION OF IMPULSE SIGNALS IN MACHINE SHAFT ANGULAR VIBRATION MEASUREMENTS PHASE DEMODULATION OF IMPULSE SIGNALS IN MACHINE SHAFT ANGULAR VIBRATION MEASUREMENTS Jiri Tuma VSB Technical University of Ostrava, Faculty of Mechanical Engineering Department of Control Systems and

More information

SIMPLE GEAR SET DYNAMIC TRANSMISSION ERROR MEASUREMENTS

SIMPLE GEAR SET DYNAMIC TRANSMISSION ERROR MEASUREMENTS SIMPLE GEAR SET DYNAMIC TRANSMISSION ERROR MEASUREMENTS Jiri Tuma Faculty of Mechanical Engineering, VSB-Technical University of Ostrava 17. listopadu 15, CZ-78 33 Ostrava, Czech Republic jiri.tuma@vsb.cz

More information

Lecture on Angular Vibration Measurements Based on Phase Demodulation

Lecture on Angular Vibration Measurements Based on Phase Demodulation Lecture on Angular Vibration Measurements Based on Phase Demodulation JiříTůma VSB Technical University of Ostrava Czech Republic Outline Motivation Principle of phase demodulation using Hilbert transform

More information

NOISE AND VIBRATION DIAGNOSTICS IN ROTATING MACHINERY

NOISE AND VIBRATION DIAGNOSTICS IN ROTATING MACHINERY NOISE AND VIBRATION DIAGNOSTICS IN ROTATING MACHINERY Jiří TŮMA Faculty of Mechanical Engineering, VŠB Technical University of Ostrava, 17. listopadu, 78 33 Ostrava-Poruba, CZECH REPUBLIC ABSTRACT The

More information

Theory and praxis of synchronised averaging in the time domain

Theory and praxis of synchronised averaging in the time domain J. Tůma 43 rd International Scientific Colloquium Technical University of Ilmenau September 21-24, 1998 Theory and praxis of synchronised averaging in the time domain Abstract The main topics of the paper

More information

VOLD-KALMAN ORDER TRACKING FILTERING IN ROTATING MACHINERY

VOLD-KALMAN ORDER TRACKING FILTERING IN ROTATING MACHINERY TŮMA, J. GEARBOX NOISE AND VIBRATION TESTING. IN 5 TH SCHOOL ON NOISE AND VIBRATION CONTROL METHODS, KRYNICA, POLAND. 1 ST ED. KRAKOW : AGH, MAY 23-26, 2001. PP. 143-146. ISBN 80-7099-510-6. VOLD-KALMAN

More information

Compensating for speed variation by order tracking with and without a tacho signal

Compensating for speed variation by order tracking with and without a tacho signal Compensating for speed variation by order tracking with and without a tacho signal M.D. Coats and R.B. Randall, School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney

More information

ANGULAR VIBRATION MEASUREMENTS OF THE POWER DRIWING SYSTEMS

ANGULAR VIBRATION MEASUREMENTS OF THE POWER DRIWING SYSTEMS Acta Metallurgica Slovaca,, 4, 3 (45-5) 45 ANGULAR VIBRATION MEASUREMENTS OF THE POWER DRIWING SYSTEMS Tůma J. Department of Control Systems and Instrumentation, Technical University of Ostrava, 7.listopadu

More information

Instrumentation and signal processing methods used for machine diagnostics

Instrumentation and signal processing methods used for machine diagnostics International Carpathian Control Conference ICCC 2006 Rožnov pod Radhoštěm CZECH REPUBLIC May 29-31, 2006 Instrumentation and signal processing methods used for machine diagnostics VSB Technical University

More information

NOISE REDUCTION IN SCREW COMPRESSORS BY THE CONTROL OF ROTOR TRANSMISSION ERROR

NOISE REDUCTION IN SCREW COMPRESSORS BY THE CONTROL OF ROTOR TRANSMISSION ERROR C145, Page 1 NOISE REDUCTION IN SCREW COMPRESSORS BY THE CONTROL OF ROTOR TRANSMISSION ERROR Dr. CHRISTOPHER S. HOLMES HOLROYD, Research & Development Department Rochdale, Lancashire, United Kingdom Email:

More information

SEPARATING GEAR AND BEARING SIGNALS FOR BEARING FAULT DETECTION. Wenyi Wang

SEPARATING GEAR AND BEARING SIGNALS FOR BEARING FAULT DETECTION. Wenyi Wang ICSV14 Cairns Australia 9-12 July, 27 SEPARATING GEAR AND BEARING SIGNALS FOR BEARING FAULT DETECTION Wenyi Wang Air Vehicles Division Defence Science and Technology Organisation (DSTO) Fishermans Bend,

More information

Rotating Machinery Fault Diagnosis Techniques Envelope and Cepstrum Analyses

Rotating Machinery Fault Diagnosis Techniques Envelope and Cepstrum Analyses Rotating Machinery Fault Diagnosis Techniques Envelope and Cepstrum Analyses Spectra Quest, Inc. 8205 Hermitage Road, Richmond, VA 23228, USA Tel: (804) 261-3300 www.spectraquest.com October 2006 ABSTRACT

More information

Fault Diagnosis of Wind Turbine Gearboxes Using Enhanced Tacholess Order Tracking

Fault Diagnosis of Wind Turbine Gearboxes Using Enhanced Tacholess Order Tracking Fault Diagnosis of Wind Turbine Gearboxes Using Enhanced Tacholess Order Tracking M ohamed A. A. Ismail 1, Nader Sawalhi 2 and Andreas Bierig 1 1 German Aerospace Centre (DLR), Institute of Flight Systems,

More information

Real-time Math Function of DL850 ScopeCorder

Real-time Math Function of DL850 ScopeCorder Real-time Math Function of DL850 ScopeCorder Etsurou Nakayama *1 Chiaki Yamamoto *1 In recent years, energy-saving instruments including inverters have been actively developed. Researchers in R&D sections

More information

Circuit Analysis-II. Circuit Analysis-II Lecture # 2 Wednesday 28 th Mar, 18

Circuit Analysis-II. Circuit Analysis-II Lecture # 2 Wednesday 28 th Mar, 18 Circuit Analysis-II Angular Measurement Angular Measurement of a Sine Wave ü As we already know that a sinusoidal voltage can be produced by an ac generator. ü As the windings on the rotor of the ac generator

More information

APPLICATION NOTE 3560/7702. Introduction

APPLICATION NOTE 3560/7702. Introduction APPLICATION NOTE Order Tracking of a Coast-down of a Large Turbogenerator by Svend Gade, Henrik Herlufsen and Hans Konstantin-Hansen, Brüel& Kjær, Denmark In this application note, it is demonstrated how

More information

9LEUDWLRQ 0HDVXUHPHQW DQG $QDO\VLV

9LEUDWLRQ 0HDVXUHPHQW DQG $QDO\VLV 9LEUDWLRQ 0HDVXUHPHQW DQG $QDO\VLV l l l l l l l l Why Analysis Spectrum or Overall Level Filters Linear vs. Log Scaling Amplitude Scales Parameters The Detector/Averager Signal vs. System analysis BA

More information

THE SINUSOIDAL WAVEFORM

THE SINUSOIDAL WAVEFORM Chapter 11 THE SINUSOIDAL WAVEFORM The sinusoidal waveform or sine wave is the fundamental type of alternating current (ac) and alternating voltage. It is also referred to as a sinusoidal wave or, simply,

More information

Application Note. Monitoring strategy Diagnosing gearbox damage

Application Note. Monitoring strategy Diagnosing gearbox damage Application Note Monitoring strategy Diagnosing gearbox damage Application Note Monitoring strategy Diagnosing gearbox damage ABSTRACT This application note demonstrates the importance of a systematic

More information

A study of Vibration Analysis for Gearbox Casing Using Finite Element Analysis

A study of Vibration Analysis for Gearbox Casing Using Finite Element Analysis A study of Vibration Analysis for Gearbox Casing Using Finite Element Analysis M. Sofian D. Hazry K. Saifullah M. Tasyrif K.Salleh I.Ishak Autonomous System and Machine Vision Laboratory, School of Mechatronic,

More information

Fundamentals of Vibration Measurement and Analysis Explained

Fundamentals of Vibration Measurement and Analysis Explained Fundamentals of Vibration Measurement and Analysis Explained Thanks to Peter Brown for this article. 1. Introduction: The advent of the microprocessor has enormously advanced the process of vibration data

More information

Current-Based Diagnosis for Gear Tooth Breaks in Wind Turbine Gearboxes

Current-Based Diagnosis for Gear Tooth Breaks in Wind Turbine Gearboxes Current-Based Diagnosis for Gear Tooth Breaks in Wind Turbine Gearboxes Dingguo Lu Student Member, IEEE Department of Electrical Engineering University of Nebraska-Lincoln Lincoln, NE 68588-5 USA Stan86@huskers.unl.edu

More information

NON-SELLABLE PRODUCT DATA. Order Analysis Type 7702 for PULSE, the Multi-analyzer System. Uses and Features

NON-SELLABLE PRODUCT DATA. Order Analysis Type 7702 for PULSE, the Multi-analyzer System. Uses and Features PRODUCT DATA Order Analysis Type 7702 for PULSE, the Multi-analyzer System Order Analysis Type 7702 provides PULSE with Tachometers, Autotrackers, Order Analyzers and related post-processing functions,

More information

GEAR TRANSMISSION ERROR MEASUREMENT ACCURACY USING LOW-COST DIGITAL ENCODERS

GEAR TRANSMISSION ERROR MEASUREMENT ACCURACY USING LOW-COST DIGITAL ENCODERS 11 International RASD Conference th 1- July 1 Pisa GEAR TRANSMISSION ERROR MEASUREMENT ACCURACY USING LOW-COST DIGITAL ENCODERS A. Palermo 1,*, L. Britte, K. Janssens, D. Mundo 1, W. Desmet 1 Dipartimento

More information

Copyright 2017 by Turbomachinery Laboratory, Texas A&M Engineering Experiment Station

Copyright 2017 by Turbomachinery Laboratory, Texas A&M Engineering Experiment Station HIGH FREQUENCY VIBRATIONS ON GEARS 46 TH TURBOMACHINERY & 33 RD PUMP SYMPOSIA Dietmar Sterns Head of Engineering, High Speed Gears RENK Aktiengesellschaft Augsburg, Germany Dr. Michael Elbs Manager of

More information

Prognostic Health Monitoring for Wind Turbines

Prognostic Health Monitoring for Wind Turbines Prognostic Health Monitoring for Wind Turbines Wei Qiao, Ph.D. Director, Power and Energy Systems Laboratory Associate Professor, Department of ECE University of Nebraska Lincoln Lincoln, NE 68588-511

More information

MODEL MODIFICATION OF WIRA CENTER MEMBER BAR

MODEL MODIFICATION OF WIRA CENTER MEMBER BAR MODEL MODIFICATION OF WIRA CENTER MEMBER BAR F.R.M. Romlay & M.S.M. Sani Faculty of Mechanical Engineering Kolej Universiti Kejuruteraan & Teknologi Malaysia (KUKTEM), Karung Berkunci 12 25000 Kuantan

More information

Vibration Analysis on Rotating Shaft using MATLAB

Vibration Analysis on Rotating Shaft using MATLAB IJSTE - International Journal of Science Technology & Engineering Volume 3 Issue 06 December 2016 ISSN (online): 2349-784X Vibration Analysis on Rotating Shaft using MATLAB K. Gopinath S. Periyasamy PG

More information

Phasor. Phasor Diagram of a Sinusoidal Waveform

Phasor. Phasor Diagram of a Sinusoidal Waveform Phasor A phasor is a vector that has an arrow head at one end which signifies partly the maximum value of the vector quantity ( V or I ) and partly the end of the vector that rotates. Generally, vectors

More information

Detection of Wind Turbine Gear Tooth Defects Using Sideband Energy Ratio

Detection of Wind Turbine Gear Tooth Defects Using Sideband Energy Ratio Wind energy resource assessment and forecasting Detection of Wind Turbine Gear Tooth Defects Using Sideband Energy Ratio J. Hanna Lead Engineer/Technologist jesse.hanna@ge.com C. Hatch Principal Engineer/Technologist

More information

Congress on Technical Diagnostics 1996

Congress on Technical Diagnostics 1996 Congress on Technical Diagnostics 1996 G. Dalpiaz, A. Rivola and R. Rubini University of Bologna, DIEM, Viale Risorgimento, 2. I-4136 Bologna - Italy DYNAMIC MODELLING OF GEAR SYSTEMS FOR CONDITION MONITORING

More information

A Multi-Probe Setup for the Measurement of Angular Vibrations in a Rotating Shaft

A Multi-Probe Setup for the Measurement of Angular Vibrations in a Rotating Shaft A Multi-Probe Setup for the Measurement of Angular Vibrations in a Rotating Shaft T.Addabbo1, R.Biondi2, S.Cioncolini2, A.Fort1, M.Mugnaini1, S.Rocchi1, V.Vignoli1 (1) Information Engineering Dept. University

More information

IET (2014) IET.,

IET (2014) IET., Feng, Yanhui and Qiu, Yingning and Infield, David and Li, Jiawei and Yang, Wenxian (2014) Study on order analysis for condition monitoring wind turbine gearbox. In: Proceedings of IET Renewable Power Generation

More information

Cepstral Removal of Periodic Spectral Components from Time Signals

Cepstral Removal of Periodic Spectral Components from Time Signals Cepstral Removal of Periodic Spectral Components from Time Signals Robert B. Randall 1, Nader Sawalhi 2 1 School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney 252,

More information

CHAPTER 6 INTRODUCTION TO SYSTEM IDENTIFICATION

CHAPTER 6 INTRODUCTION TO SYSTEM IDENTIFICATION CHAPTER 6 INTRODUCTION TO SYSTEM IDENTIFICATION Broadly speaking, system identification is the art and science of using measurements obtained from a system to characterize the system. The characterization

More information

CONTACTLESS MEASURING METHOD OF BLADE VIBRATION DURING TURBINE SPEED-UP

CONTACTLESS MEASURING METHOD OF BLADE VIBRATION DURING TURBINE SPEED-UP Engineering MECHANICS, Vol. 17, 2010, No. 3/4, p. 173 186 173 CONTACTLESS MEASURING METHOD OF BLADE VIBRATION DURING TURBINE SPEED-UP Pavel Procházka, František Vaněk, Jan Cibulka, Vítězslav Bula* A novel

More information

Condition based monitoring: an overview

Condition based monitoring: an overview Condition based monitoring: an overview Acceleration Time Amplitude Emiliano Mucchi Universityof Ferrara Italy emiliano.mucchi@unife.it Maintenance. an efficient way to assure a satisfactory level of reliability

More information

Shaft encoders are digital transducers that are used for measuring angular displacements and angular velocities.

Shaft encoders are digital transducers that are used for measuring angular displacements and angular velocities. Shaft Encoders: Shaft encoders are digital transducers that are used for measuring angular displacements and angular velocities. Encoder Types: Shaft encoders can be classified into two categories depending

More information

BLADE AND SHAFT CRACK DETECTION USING TORSIONAL VIBRATION MEASUREMENTS PART 2: RESAMPLING TO IMPROVE EFFECTIVE DYNAMIC RANGE

BLADE AND SHAFT CRACK DETECTION USING TORSIONAL VIBRATION MEASUREMENTS PART 2: RESAMPLING TO IMPROVE EFFECTIVE DYNAMIC RANGE BLADE AND SHAFT CRACK DETECTION USING TORSIONAL VIBRATION MEASUREMENTS PART 2: RESAMPLING TO IMPROVE EFFECTIVE DYNAMIC RANGE Kenneth P. Maynard, Martin Trethewey Applied Research Laboratory, The Pennsylvania

More information

Gear Noise Prediction in Automotive Transmissions

Gear Noise Prediction in Automotive Transmissions Gear Noise Prediction in Automotive Transmissions J. Bihr, Dr. M. Heider, Dr. M. Otto, Prof. K. Stahl, T. Kume and M. Kato Due to increasing requirements regarding the vibrational behavior of automotive

More information

Chapter 4 REVIEW OF VIBRATION ANALYSIS TECHNIQUES

Chapter 4 REVIEW OF VIBRATION ANALYSIS TECHNIQUES Chapter 4 REVIEW OF VIBRATION ANALYSIS TECHNIQUES In this chapter, a review is made of some current vibration analysis techniques used for condition monitoring in geared transmission systems. The perceived

More information

Exercise 1. Consider the following figure. The shaded portion of the circle is called the sector of the circle corresponding to the angle θ.

Exercise 1. Consider the following figure. The shaded portion of the circle is called the sector of the circle corresponding to the angle θ. 1 Radian Measures Exercise 1 Consider the following figure. The shaded portion of the circle is called the sector of the circle corresponding to the angle θ. 1. Suppose I know the radian measure of the

More information

Signal Analysis Techniques to Identify Axle Bearing Defects

Signal Analysis Techniques to Identify Axle Bearing Defects Signal Analysis Techniques to Identify Axle Bearing Defects 2011-01-1539 Published 05/17/2011 Giovanni Rinaldi Sound Answers Inc. Gino Catenacci Ford Motor Company Fund Todd Freeman and Paul Goodes Sound

More information

A Comparison of Different Techniques for Induction Motor Rotor Fault Diagnosis

A Comparison of Different Techniques for Induction Motor Rotor Fault Diagnosis Journal of Physics: Conference Series A Comparison of Different Techniques for Induction Motor Rotor Fault Diagnosis To cite this article: A Alwodai et al 212 J. Phys.: Conf. Ser. 364 1266 View the article

More information

Active Vibration Isolation of an Unbalanced Machine Tool Spindle

Active Vibration Isolation of an Unbalanced Machine Tool Spindle Active Vibration Isolation of an Unbalanced Machine Tool Spindle David. J. Hopkins, Paul Geraghty Lawrence Livermore National Laboratory 7000 East Ave, MS/L-792, Livermore, CA. 94550 Abstract Proper configurations

More information

Impact of Indexing Errors on Spur Gear Dynamics

Impact of Indexing Errors on Spur Gear Dynamics Impact of Indexing Errors on Spur Gear Dynamics Murat Inalpolat, Michael Handschuh and Ahmet Kahraman A transverse-torsional dynamic model of a spur gear pair is employed to investigate the influence of

More information

Data Sheet. AEDT-9140 Series High Temperature 115 C Three Channel Optical Incremental Encoder Modules 100 CPR to 1000 CPR. Description.

Data Sheet. AEDT-9140 Series High Temperature 115 C Three Channel Optical Incremental Encoder Modules 100 CPR to 1000 CPR. Description. AEDT-9140 Series High Temperature 115 C Three Channel Optical Incremental Encoder Modules 100 CPR to 1000 CPR Data Sheet Description The AEDT-9140 series are three channel optical incremental encoder modules.

More information

ME scope Application Note 01 The FFT, Leakage, and Windowing

ME scope Application Note 01 The FFT, Leakage, and Windowing INTRODUCTION ME scope Application Note 01 The FFT, Leakage, and Windowing NOTE: The steps in this Application Note can be duplicated using any Package that includes the VES-3600 Advanced Signal Processing

More information

PeakVue Analysis for Antifriction Bearing Fault Detection

PeakVue Analysis for Antifriction Bearing Fault Detection Machinery Health PeakVue Analysis for Antifriction Bearing Fault Detection Peak values (PeakVue) are observed over sequential discrete time intervals, captured, and analyzed. The analyses are the (a) peak

More information

Extraction of tacho information from a vibration signal for improved synchronous averaging

Extraction of tacho information from a vibration signal for improved synchronous averaging Proceedings of ACOUSTICS 2009 23-25 November 2009, Adelaide, Australia Extraction of tacho information from a vibration signal for improved synchronous averaging Michael D Coats, Nader Sawalhi and R.B.

More information

Fault Diagnosis of Gearbox Using Various Condition Monitoring Indicators for Non-Stationary Speed Conditions: A Comparative Analysis

Fault Diagnosis of Gearbox Using Various Condition Monitoring Indicators for Non-Stationary Speed Conditions: A Comparative Analysis nd International and 17 th National Conference on Machines and Mechanisms inacomm1-13 Fault Diagnosis of Gearbox Using Various Condition Monitoring Indicators for Non-Stationary Speed Conditions: A Comparative

More information

Linear Time-Invariant Systems

Linear Time-Invariant Systems Linear Time-Invariant Systems Modules: Wideband True RMS Meter, Audio Oscillator, Utilities, Digital Utilities, Twin Pulse Generator, Tuneable LPF, 100-kHz Channel Filters, Phase Shifter, Quadrature Phase

More information

Research Article Vibration Sideband Modulations and Harmonics Separation of a Planetary Helicopter Gearbox with Two Different Configurations

Research Article Vibration Sideband Modulations and Harmonics Separation of a Planetary Helicopter Gearbox with Two Different Configurations Advances in Acoustics and Vibration Volume 216, Article ID 982768, 9 pages http://dx.doi.org/1.1155/216/982768 Research Article Vibration Sideband Modulations and Harmonics Separation of a Planetary Helicopter

More information

Machine Diagnostics in Observer 9 Private Rules

Machine Diagnostics in Observer 9 Private Rules Application Note Machine Diagnostics in SKF @ptitude Observer 9 Private Rules Introduction When analysing a vibration frequency spectrum, it can be a difficult task to find out which machine part causes

More information

Investigating the Electromechanical Coupling in Piezoelectric Actuator Drive Motor Under Heavy Load

Investigating the Electromechanical Coupling in Piezoelectric Actuator Drive Motor Under Heavy Load Investigating the Electromechanical Coupling in Piezoelectric Actuator Drive Motor Under Heavy Load Tiberiu-Gabriel Zsurzsan, Michael A.E. Andersen, Zhe Zhang, Nils A. Andersen DTU Electrical Engineering

More information

Fault Detection of Double Stage Helical Gearbox using Vibration Analysis Techniques

Fault Detection of Double Stage Helical Gearbox using Vibration Analysis Techniques IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 08, 2016 ISSN (online): 2321-0613 Fault Detection of Double Stage Helical Gearbox using Vibration Analysis Techniques D.

More information

Precision power measurements for megawatt heating controls

Precision power measurements for megawatt heating controls ARTICLE Precision power measurements for megawatt heating controls Lars Alsdorf (right) explains Jürgen Hillebrand (Yokogawa) the test of the power controller. Precision power measurements carried out

More information

Fault diagnosis of massey ferguson gearbox using power spectral density

Fault diagnosis of massey ferguson gearbox using power spectral density Journal of Agricultural Technology 2009, V.5(1): 1-6 Fault diagnosis of massey ferguson gearbox using power spectral density K.Heidarbeigi *, Hojat Ahmadi, M. Omid and A. Tabatabaeefar Department of Power

More information

Practical performances of high-speed measurement of gear Transmission Error or torsional vibrations with optical encoders

Practical performances of high-speed measurement of gear Transmission Error or torsional vibrations with optical encoders Practical performances of high-speed measurement of gear Transmission Error or torsional vibrations with optical encoders Didier Rémond To cite this version: Didier Rémond. Practical performances of high-speed

More information

Review on Fault Identification and Diagnosis of Gear Pair by Experimental Vibration Analysis

Review on Fault Identification and Diagnosis of Gear Pair by Experimental Vibration Analysis Review on Fault Identification and Diagnosis of Gear Pair by Experimental Vibration Analysis 1 Ajanalkar S. S., 2 Prof. Shrigandhi G. D. 1 Post Graduate Student, 2 Assistant Professor Mechanical Engineering

More information

APPLICATION NOTE. Detecting Faulty Rolling Element Bearings. Faulty rolling-element bearings can be detected before breakdown.

APPLICATION NOTE. Detecting Faulty Rolling Element Bearings. Faulty rolling-element bearings can be detected before breakdown. APPLICATION NOTE Detecting Faulty Rolling Element Bearings Faulty rolling-element bearings can be detected before breakdown. The simplest way to detect such faults is to regularly measure the overall vibration

More information

Effect of parameters setting on performance of discrete component removal (DCR) methods for bearing faults detection

Effect of parameters setting on performance of discrete component removal (DCR) methods for bearing faults detection Effect of parameters setting on performance of discrete component removal (DCR) methods for bearing faults detection Bovic Kilundu, Agusmian Partogi Ompusunggu 2, Faris Elasha 3, and David Mba 4,2 Flanders

More information

Sinusoids and Phasors (Chapter 9 - Lecture #1) Dr. Shahrel A. Suandi Room 2.20, PPKEE

Sinusoids and Phasors (Chapter 9 - Lecture #1) Dr. Shahrel A. Suandi Room 2.20, PPKEE Sinusoids and Phasors (Chapter 9 - Lecture #1) Dr. Shahrel A. Suandi Room 2.20, PPKEE Email:shahrel@eng.usm.my 1 Outline of Chapter 9 Introduction Sinusoids Phasors Phasor Relationships for Circuit Elements

More information

ACOUSTIC NOISE AND VIBRATIONS OF ELECTRIC POWERTRAINS

ACOUSTIC NOISE AND VIBRATIONS OF ELECTRIC POWERTRAINS ACOUSTIC NOISE AND VIBRATIONS OF ELECTRIC POWERTRAINS Focus on electromagnetically-excited NVH for automotive applications and EV/HEV Part 4 NVH experimental characterization of electric chains LE BESNERAIS

More information

Synchronization of Matsuoka Neural Oscillator to Meshing Frequency for Estimation of Angular Position of Gears

Synchronization of Matsuoka Neural Oscillator to Meshing Frequency for Estimation of Angular Position of Gears The 14th IFToMM World Congress, Taipei, Taiwan, October 25-3, 215 DOI Number: 1.6567/IFToMM.14TH.WC.OS6.17 Synchronization of Matsuoka Neural Oscillator to Meshing Frequency for Estimation of Angular Position

More information

Optical Encoder Applications for Vibration Analysis

Optical Encoder Applications for Vibration Analysis Optical Encoder Applications for Vibration Analysis Jack D. Peters Accelent Technology LLC 19 Olde Harbour Trail Rochester, New York, 14612 jack4accelent@aol.com Abstract: The application and use of an

More information

Fault diagnosis of Spur gear using vibration analysis. Ebrahim Ebrahimi

Fault diagnosis of Spur gear using vibration analysis. Ebrahim Ebrahimi Fault diagnosis of Spur gear using vibration analysis Ebrahim Ebrahimi Department of Mechanical Engineering of Agricultural Machinery, Faculty of Engineering, Islamic Azad University, Kermanshah Branch,

More information

Combining synchronous averaging with a Gaussian mixture model novelty detection scheme for vibration-based condition monitoring of a gearbox

Combining synchronous averaging with a Gaussian mixture model novelty detection scheme for vibration-based condition monitoring of a gearbox Combining synchronous averaging with a Gaussian mixture model novelty detection scheme for vibration-based condition monitoring of a gearbox T Heyns a,b,, PS Heyns c, JP de Villiers a,b a Department of

More information

Theory of Telecommunications Networks

Theory of Telecommunications Networks Theory of Telecommunications Networks Anton Čižmár Ján Papaj Department of electronics and multimedia telecommunications CONTENTS Preface... 5 1 Introduction... 6 1.1 Mathematical models for communication

More information

Study of Improper Chamfering and Pitting Defects of Spur Gear Faults Using Frequency Domain Technique

Study of Improper Chamfering and Pitting Defects of Spur Gear Faults Using Frequency Domain Technique Study of Improper Chamfering and Pitting Defects of Spur Gear Faults Using Frequency Domain Technique 1 Vijay Kumar Karma, 2 Govind Maheshwari Mechanical Engineering Department Institute of Engineering

More information

Fault detection of a spur gear using vibration signal with multivariable statistical parameters

Fault detection of a spur gear using vibration signal with multivariable statistical parameters Songklanakarin J. Sci. Technol. 36 (5), 563-568, Sep. - Oct. 204 http://www.sjst.psu.ac.th Original Article Fault detection of a spur gear using vibration signal with multivariable statistical parameters

More information

Pulse Code Modulation (PCM)

Pulse Code Modulation (PCM) Project Title: e-laboratories for Physics and Engineering Education Tempus Project: contract # 517102-TEMPUS-1-2011-1-SE-TEMPUS-JPCR 1. Experiment Category: Electrical Engineering >> Communications 2.

More information

Chapter 6: Alternating Current. An alternating current is an current that reverses its direction at regular intervals.

Chapter 6: Alternating Current. An alternating current is an current that reverses its direction at regular intervals. Chapter 6: Alternating Current An alternating current is an current that reverses its direction at regular intervals. Overview Alternating Current Phasor Diagram Sinusoidal Waveform A.C. Through a Resistor

More information

Gearbox Vibration Source Separation by Integration of Time Synchronous Averaged Signals

Gearbox Vibration Source Separation by Integration of Time Synchronous Averaged Signals Gearbox Vibration Source Separation by Integration of Time Synchronous Averaged Signals Guicai Zhang and Joshua Isom United Technologies Research Center, East Hartford, CT 06108, USA zhangg@utrc.utc.com

More information

Appearance of wear particles. Time. Figure 1 Lead times to failure offered by various conventional CM techniques.

Appearance of wear particles. Time. Figure 1 Lead times to failure offered by various conventional CM techniques. Vibration Monitoring: Abstract An earlier article by the same authors, published in the July 2013 issue, described the development of a condition monitoring system for the machinery in a coal workshop

More information

Frequency Demodulation Analysis of Mine Reducer Vibration Signal

Frequency Demodulation Analysis of Mine Reducer Vibration Signal International Journal of Mineral Processing and Extractive Metallurgy 2018; 3(2): 23-28 http://www.sciencepublishinggroup.com/j/ijmpem doi: 10.11648/j.ijmpem.20180302.12 ISSN: 2575-1840 (Print); ISSN:

More information

Bakiss Hiyana binti Abu Bakar JKE, POLISAS BHAB

Bakiss Hiyana binti Abu Bakar JKE, POLISAS BHAB 1 Bakiss Hiyana binti Abu Bakar JKE, POLISAS 1. Explain AC circuit concept and their analysis using AC circuit law. 2. Apply the knowledge of AC circuit in solving problem related to AC electrical circuit.

More information

As before, the speed resolution is given by the change in speed corresponding to a unity change in the count. Hence, for the pulse-counting method

As before, the speed resolution is given by the change in speed corresponding to a unity change in the count. Hence, for the pulse-counting method Velocity Resolution with Step-Up Gearing: As before, the speed resolution is given by the change in speed corresponding to a unity change in the count. Hence, for the pulse-counting method It follows that

More information

Response spectrum Time history Power Spectral Density, PSD

Response spectrum Time history Power Spectral Density, PSD A description is given of one way to implement an earthquake test where the test severities are specified by time histories. The test is done by using a biaxial computer aided servohydraulic test rig.

More information

Novel Spectral Kurtosis Technology for Adaptive Vibration Condition Monitoring of Multi Stage Gearboxes

Novel Spectral Kurtosis Technology for Adaptive Vibration Condition Monitoring of Multi Stage Gearboxes Novel Spectral Kurtosis Technology for Adaptive Vibration Condition Monitoring of Multi Stage Gearboxes Len Gelman *a, N. Harish Chandra a, Rafal Kurosz a, Francesco Pellicano b, Marco Barbieri b and Antonio

More information

Applying digital signal processing techniques to improve the signal to noise ratio in vibrational signals

Applying digital signal processing techniques to improve the signal to noise ratio in vibrational signals Applying digital signal processing techniques to improve the signal to noise ratio in vibrational signals ALWYN HOFFAN, THEO VAN DER ERWE School of Electrical and Electronic Engineering Potchefstroom University

More information

Chapter 3 Simulation studies

Chapter 3 Simulation studies Chapter Simulation studies In chapter three improved order tracking techniques have been developed theoretically. In this chapter, two simulation models will be used to investigate the effectiveness of

More information

Influence of the gear geometry and the machine on the power-skiving cutter design

Influence of the gear geometry and the machine on the power-skiving cutter design PWS Präzisionswerkzeuge GmbH: Influence of the gear geometry and the machine on the power-skiving cutter design Author: Dr. Rainer Albert Fig. 1 As a method known for more than 100 years, power-skiving

More information

UNIT Explain the radiation from two-wire. Ans: Radiation from Two wire

UNIT Explain the radiation from two-wire. Ans:   Radiation from Two wire UNIT 1 1. Explain the radiation from two-wire. Radiation from Two wire Figure1.1.1 shows a voltage source connected two-wire transmission line which is further connected to an antenna. An electric field

More information

6.1 - Introduction to Periodic Functions

6.1 - Introduction to Periodic Functions 6.1 - Introduction to Periodic Functions Periodic Functions: Period, Midline, and Amplitude In general: A function f is periodic if its values repeat at regular intervals. Graphically, this means that

More information

Frequency Domain Analysis

Frequency Domain Analysis 1 Frequency Domain Analysis Concerned with analysing the frequency (wavelength) content of a process Application example: Electromagnetic Radiation: Represented by a Frequency Spectrum: plot of intensity

More information

CONTROLLING THE OSCILLATIONS OF A SWINGING BELL BY USING THE DRIVING INDUCTION MOTOR AS A SENSOR

CONTROLLING THE OSCILLATIONS OF A SWINGING BELL BY USING THE DRIVING INDUCTION MOTOR AS A SENSOR Proceedings, XVII IMEKO World Congress, June 7,, Dubrovnik, Croatia Proceedings, XVII IMEKO World Congress, June 7,, Dubrovnik, Croatia XVII IMEKO World Congress Metrology in the rd Millennium June 7,,

More information

Practical Machinery Vibration Analysis and Predictive Maintenance

Practical Machinery Vibration Analysis and Predictive Maintenance Practical Machinery Vibration Analysis and Predictive Maintenance By Steve Mackay Dean of Engineering Engineering Institute of Technology EIT Micro-Course Series Every two weeks we present a 35 to 45 minute

More information

Investigating the Electromechanical Coupling in Piezoelectric Actuator Drive Motor Under Heavy Load

Investigating the Electromechanical Coupling in Piezoelectric Actuator Drive Motor Under Heavy Load Downloaded from orbit.dtu.dk on: Nov 21, 2018 Investigating the Electromechanical Coupling in Piezoelectric Actuator Drive Motor Under Heavy Load Zsurzsan, Tiberiu-Gabriel; Andersen, Michael A. E.; Zhang,

More information

Multiparameter vibration analysis of various defective stages of mechanical components

Multiparameter vibration analysis of various defective stages of mechanical components SISOM 2009 and Session of the Commission of Acoustics, Bucharest 28-29 May Multiparameter vibration analysis of various defective stages of mechanical components Author: dr.ing. Doru TURCAN Abstract The

More information

CHAPTER 14 ALTERNATING VOLTAGES AND CURRENTS

CHAPTER 14 ALTERNATING VOLTAGES AND CURRENTS CHAPTER 4 ALTERNATING VOLTAGES AND CURRENTS Exercise 77, Page 28. Determine the periodic time for the following frequencies: (a) 2.5 Hz (b) 00 Hz (c) 40 khz (a) Periodic time, T = = 0.4 s f 2.5 (b) Periodic

More information

Topic 2. Signal Processing Review. (Some slides are adapted from Bryan Pardo s course slides on Machine Perception of Music)

Topic 2. Signal Processing Review. (Some slides are adapted from Bryan Pardo s course slides on Machine Perception of Music) Topic 2 Signal Processing Review (Some slides are adapted from Bryan Pardo s course slides on Machine Perception of Music) Recording Sound Mechanical Vibration Pressure Waves Motion->Voltage Transducer

More information

Structure of Speech. Physical acoustics Time-domain representation Frequency domain representation Sound shaping

Structure of Speech. Physical acoustics Time-domain representation Frequency domain representation Sound shaping Structure of Speech Physical acoustics Time-domain representation Frequency domain representation Sound shaping Speech acoustics Source-Filter Theory Speech Source characteristics Speech Filter characteristics

More information

DIAGNOSIS OF ROLLING ELEMENT BEARING FAULT IN BEARING-GEARBOX UNION SYSTEM USING WAVELET PACKET CORRELATION ANALYSIS

DIAGNOSIS OF ROLLING ELEMENT BEARING FAULT IN BEARING-GEARBOX UNION SYSTEM USING WAVELET PACKET CORRELATION ANALYSIS DIAGNOSIS OF ROLLING ELEMENT BEARING FAULT IN BEARING-GEARBOX UNION SYSTEM USING WAVELET PACKET CORRELATION ANALYSIS Jing Tian and Michael Pecht Prognostics and Health Management Group Center for Advanced

More information

END-OF-YEAR EXAMINATIONS ELEC321 Communication Systems (D2) Tuesday, 22 November 2005, 9:20 a.m. Three hours plus 10 minutes reading time.

END-OF-YEAR EXAMINATIONS ELEC321 Communication Systems (D2) Tuesday, 22 November 2005, 9:20 a.m. Three hours plus 10 minutes reading time. END-OF-YEAR EXAMINATIONS 2005 Unit: Day and Time: Time Allowed: ELEC321 Communication Systems (D2) Tuesday, 22 November 2005, 9:20 a.m. Three hours plus 10 minutes reading time. Total Number of Questions:

More information

Enayet B. Halim, Sirish L. Shah and M.A.A. Shoukat Choudhury. Department of Chemical and Materials Engineering University of Alberta

Enayet B. Halim, Sirish L. Shah and M.A.A. Shoukat Choudhury. Department of Chemical and Materials Engineering University of Alberta Detection and Quantification of Impeller Wear in Tailing Pumps and Detection of faults in Rotating Equipment using Time Frequency Averaging across all Scales Enayet B. Halim, Sirish L. Shah and M.A.A.

More information

Laboratory Assignment 5 Amplitude Modulation

Laboratory Assignment 5 Amplitude Modulation Laboratory Assignment 5 Amplitude Modulation PURPOSE In this assignment, you will explore the use of digital computers for the analysis, design, synthesis, and simulation of an amplitude modulation (AM)

More information

Degradation of BER by Group Delay in Digital Phase Modulation

Degradation of BER by Group Delay in Digital Phase Modulation The Fourth Advanced International Conference on Telecommunications Degradation of BER by Group Delay in Digital Phase Modulation A.Azizzadeh 1, L.Mohammadi 1 1 Iran Telecommunication Research Center (ITRC)

More information

Data Acquisition Systems. Signal DAQ System The Answer?

Data Acquisition Systems. Signal DAQ System The Answer? Outline Analysis of Waveforms and Transforms How many Samples to Take Aliasing Negative Spectrum Frequency Resolution Synchronizing Sampling Non-repetitive Waveforms Picket Fencing A Sampled Data System

More information

CHAPTER 9. Sinusoidal Steady-State Analysis

CHAPTER 9. Sinusoidal Steady-State Analysis CHAPTER 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source A sinusoidal voltage source (independent or dependent) produces a voltage that varies sinusoidally with time. A sinusoidal current source

More information