Multi-Pulse Converters for High Voltage and High Power Applications. 2.1 Operating Principles

Size: px
Start display at page:

Download "Multi-Pulse Converters for High Voltage and High Power Applications. 2.1 Operating Principles"

Transcription

1 Multi-Pulse Converters for High Voltage and High Power Applications Sewan Choi, Junyong Oh Seoul National Univ. of Technology Dept. of Control and Instrumentation Eng. 72 Kongnung-Dong, Nowon-Guy Seoul , Korea Phone : Fax : schoi@duck.snut.ac.kr Abstract - This paper proposes a multi-pulse converter for high voltage and high power applications such as HVDC conversion. The proposed technique, based on the dc current reinjection, further decreases the number of components in the auxiliary circuit to achieve the same pulse number Moreover, a control strategy over the whole range of phase delay angle is obtained along with sophisticated input- current and output voltage,analysis. With the pulse multiplication strategy the proposed schemes demonstrate 24-pulse, 36-pulse and 48-pulse characteristics both in the input current and in the output voltage. Experimental results fiom a 3KVA laboratory prototype verijl the proposed concept. Key words : multi-pulse, harmonics, HVDC. Introduction HVDC conversion is implemented mostly by monopolar or bipolar configurations of 2-pulse series - connected thyristor converters. In this case the resulting high contents of 2-pulse related harmonics upto the order of 50 can couple into nearby telephone circuits and cause noise in the communication network. This also may cause misoperation of protective relaying and circuit breakers[. To avoid such undesirable harmonic effects, tuned passive filters have been employed on the ac side of the converter. However, they generate their own harmonic problems including delayed system response following disturbances and suffer from the resonance problem with unknown system impedance. In order to increase the pulse number of the converter, additional bridges and the corresponding phase-shifting eansformers are necessary, and this increases VA rating and cost of the equipment. Several methods have been proposed to increase the pulse number without additional bridges and the corresponding phase-shifting transformers[2-4. A harmonic reduction technique has been proposed to utilize several thyristors connected to taps on the interphase reactor of parallel-connected thyhtor rectifiers[2]. A dc current rejnjection technique which multiplies the pulse number, and hence eliminates Junggoo Cho Korea Electrotechnology Reserch Institute 28- Sungju-dong, Changwon 64-20, Korea Phone : , Fax : jgcho@keri.re.kr harmonics without additional bridges and phase-shifting transformers has been applied to the series-connected thyristor converter for HVDC applications[3]. In this paper, a multi-pulse converter is proposed for high voltage and high power applications such as HVDC conversion. The proposed technique, based on the dc current reinjection [3], further decreases the number of components in the auxiliary circuit to achieve the same pulse number. Moreover, a control strategy over the whole range of phase delay angle is obtained along with sophisticated input current and output voltage analysis. With a pulse multiplication strategy the proposed schemes demonstrate 24-pulse, 36-pulse and 48-pulse characteristics both in the input current and in the output voltage. 2. Proposed 24-Pulse Scheme 2. Operating Principles Fig. shows the proposed 24-pulse converter.which is identical to the conventional 2-pulse series-connected converter with the addition of an auxiliary circuit consisting of transformer Tr,, Tr, and two voltage dividing capacitors C, and C, and two thyristors T, and T,. Output voltage vo, of the upper bridge and output voltage v,, of the lower bridge have 6-pulse characteristics according to the phase delay angle ct and Fig. Proposed 24-pulse converter

2 T r > t (a) T, ON (b) Tq ON Fig. 3 Operation of auxiliary circuit and carries output current I,. This induces the negative current i,,, = -(",)I,. With the repeated firing of the two thyristors, current i, is induced at the primary side of the transformer T, as shown in Fig. 2. The current i, is equally divided into two currents ip and iq and alters current iol in the positive rail and current ioz in the negative rail, respectively. Then, rectifier output currents io, and io2 can be expressed as, Fig. 2 Various waveforms (Vu=l(PU),I,=l(PU), N~,=0.984,a=3Oo) are displaced in phase by 30". Fig. 2 shows the various waveforms for the voltages and currents of the proposed 24-pulse scheme in Fig. at phase delay angle of 30". Assuming a negligible ripple voltage in capacitors C, and C,, voltage v, across the primary side of transformer Tr, is given by, vm = 4Vo, - v,) () 2 Voltage v, varies with each phase delay angle a and its fiequency is six times the mains fiequency. Fig. 3 describes the operation of two thyristors connected to the secondary,winding of transformer Tr, in the auxiliary circuit. Suppose that thyristor T, is fired at angle p, which is measured fiom the zero crossing of the voltage v,(see Fig. 2). Since v, is forward biased at this moment, thyristor T, is turned on and carries output current I,. This causes positive current i, = (NJNp)Io to be induced at the primary winding of transformer T,. Again, if thyristor Tq is fired at angle p,, thyristor Tq is turned on w io, = Io - -im (2) 2 Now, switching function Sa, for phase 'a' of the upper bridge is defined to relate bridge output current iol to bridge input current i,, as shown i.n Fig. 4. The switching functions for phase 'b ' and 'c ' (can also be defined by, s,, = S#,L - 20" SCI = S#,L + 20" (3) Similarly, the switching function!; for the lower bridge can be defined by, Sa, = Sm,L - 30" S, = S,,L - 30" (4) S, = S,L - 30" Then, the bridge input currents car be expressed in terms of the bridge output currents and switching fhctions as, Fig. 4Switching function Sa, for phase' a'

3 From the MMF balance equation of the main transformer shown in Fig., the input line current for phase 'a' can be expressed in terms of the bridge input currents as, in = io, + -(io, J5 - i,) Then, from (2)-(6) input current i, can be expressed as, It can easily be noticed that the input current waveform depends on the induced current i, that is, on turns ratio The of transformer Tr, and firing angles p, and p,. optimum turns ratio has been found to be N&=0.984 for diode rectifier in [5]. The optimum firing angles p, and p, for the lowest input current THD can be obtained at each phase delay angle a as shown in Fig. 5. Note that the minimum THD of 6.62% could be obtained over the whole range of angle a between 0" and 80". This illustrates that the input current has 24-pulse characteristic with elimination of harmonics upto the order of 9. The output voltage vw between nodes 'p' and 'q' is v, = v,, + vo2 and is identical to the output voltage waveform of the conventional 2-pulse converter as shown in Fig. 2. On the other hand, the output voltage v, of the proposed scheme is given by, vo = vpi + vx (8) When thyristor T, is turned on the voltage v, becomes v, = (N&) v, and when T, is turned on it becomes v, = - (N/N,) v,. The voltage v, is added to the voltage vw, and finally the output voltage v, has 24-pulse characteristic as shown in Fig Component Ratings In this section the VA ratings of the transformers and the thyristors employed in the proposed scheme are determined and the blocking capacitor is designed. The voltage v, of transformer Tr, varies with phase delay 0 I6. E:v PO. 800 a Fig. 6 VA rating of transformers T, and T, i angle a and has the largest RMS value at angle a = 90". Then the maximum VA rating of the transformer Tr, is obtained by, VA_ =0.443Vu ~0.984~ =0.6VoIs (9) The voltage across the transformer Tr, also varies with phase delay angle a and has the largest RMS value at angle a = 90". Then the maximum VA rating of the transformer Tr, is obtained by, VApl = Vu ~0.492 Io = 0.09V00 (0) The VA ratings of the transformers Tr, and Tr, at each phase delay angle are shown in Fig. 6. The total transformer VA rating in the auxiliary circuit becomes maximum of 0.25P0 at angle a = 90" and minimum of 0.066P0 at angle a = 0". The VA rating of the phaseshifting transformer has also been calculated and is listed in Table I. Ratings of the main thyristor and the auxiliary thyristor are also listed in Table I. Phase Shifting Transformer Table I. Component rating Transformer Tr, VAN.. I ~ VJV, N/A ls.yl TransformcrTr, IJ, N/A % VAN.. N/A VJV, I.44,.44 ~ Main Thyristor IJ. I I I I r/ THD * 6.6% I TappingThyristor. 0' s. a 65' 80' Fig. 5 Optimum fring angles e,, p, V-JV, I N/A I I I IJ. I N/A I I I 0.5

4 I I - Fig. 7 Capacitor current and Capacitor voltage A large ripple in voltage vcp due to small capacitance C, may distort the commutation voltage v,, which may in turn cause a commutation failure of the auxiliary thyristors. Therefore, capacitance C;(C,) should be determined taking into account the permissible level of the ripple voltage. Fig. 7 shows the current flowing through capacitor C,, ip,and the voltage across the capacitor, vcp. The ripple voltage amplitude Vripple ch be expressed as I =- *cp The average voltage V, of capacitor is, vcp = - Vsdc (3) 2 Defining a ripple factor K, = Vripple / V, of capacitor voltage, the capacitance can be determined by, cp =- KP vu 3. Pulse Multiplication J (a) 36-Pulse (b) 48-Pluse Fig. 9 Waveforms for auxiliary circuit (a=30") L Fig. 8. As shown in Fig. 9, firing order for natural commutation must be fiom the right to the left'when voltage v, is positive whereas it must be f?om the left to the right when voltage v, is negative. Equations ()-(9) fiom the analysis of input ciment and output voltage, which are also valid for higher pulse operation, give optimum tap position of the auxiliary thyristors and control angles for the thyristlors to minimize the input current harmonics. The optimum tap position is found to be NJN, =.309 for 36-pulse operation and N,,/NP = 0.977, N,/N, = 0.50 for 48-pulse operation. Fig. 0 shows the optimum firing angles for the lowest THD of the input current at each phase delay angle a. PSIM Simulation results for 36-pulse scheme and 48-pulse scheme are shown in Fig. and Fig. 2, respectively. With the appropriate firing of the auxiliary thyristors the minimum THD of the input current has been shown to be 4.0% for 36-pulse scheme imd 3.08 % for 48-pulse scheme over the range of phase delay angle a between 5" and 75". Component ratings of each multi-pulse scheme are listed in Table I. The proposed technique for 24-pulse operation described in section 2 can be extended for higher pulse operation such as 36-pulse, 48-pulse etc, al. For pulse multiplication, PT@ additional auxiliary thyristors are connected to the taps on the transformer T, as shown in - v. + - v. + N. i. N. i. ;. T,QTp;2 (a) 36-Pulse (b) 48-Pulse Fig. 8 Auxiliary circuit Fig. 0 Optimum firing angles

5 ~ a m a m mm Mm _m w m nl m, (a) Input current i, *mm 3". I m... om _m -5 m m m a m sm m (b) Output voltage v, Fig. Simulation results for 36-Pulse opration(a=30") a m.sa m 7".Ism 4" a m *m m (a) Input current i, Fig 3. HVDC sending end with the proposed scheme HVDC and monopolar HVDC configurations. 5. Experimental Results The proposed 24-pulse converter shown in Fig. has been implemented with the condition of turns ratio NJNp = 0.984, phase delay angle a = 30" and optimum firing angle, pp= 5" and ps= 45". Fig. 4(a) shows current i,,, which is equally divided into two currents ip and iq. Bridge output current io, and bridge input current i,, are shown in Fig. 4(b) and Fig. 4(c), respectively. Finally, Fig. 4(d) shows input current i,. which is near sinusoidal in shape with the absence of the S', 7h, ll*, 3*, lth and 9* harmonics. Voltage vw, shown in Fig. 4(e), is the output voltage of the conventional 2-pulse converter. Output voltage v, of the proposed converter is shown in Fig. 4(f). Note that the waveform for output voltage v, illustrates the 24-pulse characteristic. (b) Output voltage v, Fig. 2 Simulation results for 48-Pulse operation(a=30 ) 4. HVDC Applications Fig. 3 shows bipolar configuration of the proposed multi-pulse converter for HVDC sending end. Groupd is connected to node 'r' of upper converter system providing positive pole and node 'p' of lower converter system providing negative pole. Bipolar HVDC receiving end of the proposed multi-pulse converter can also be configured in the same way. The proposed scheme does not necessitate ac side filters for elimination of the lth and 3h harmonics due to multipulse operation. Moreover, the proposed multi-pulse converter schemes can be applied to back-to-back tie (a) Current i,,(b) Bridge output current io,

6 (c) Bridge input current in, have been determined via thorough input current and output voltage analysis. Wilh the proposed pulse multiplication, THDs both of input current and of output voltage could be kept minimum over the whole range of phase delay angle. Component ratings of each multipulse scheme have been compared. The proposed scheme is an economic way to realize high performance HVDC conversion. The experimental results from the proposed 24-pulse scheme validate the proposed pulse multiplication technique. References (d) Input current in (e) Voltage vw t I I I I [l] G. D. Breuer and R. L. Hauth, HVDC s Increasing Popularity, IEEE Potentials, pp. 8-2, May 988 [2] S. Miyairi, etc. al, New Method for Reducing Harmonics Involved in Input and Output of Rectifier with Interphase Transformer, IEEE Trans. on Industry Applications, pp , vol. IA-22, no. 5, Sep/Oct 986. [3] J.F. Baird and J. Arrillaga, Harmonic reduction in DC Ripple Reinjection, pp , IEE Proceedings, Vol. 27, Part C, No. 5, Sep. 980, [4] J. Arrillaga and M. VillalAanca, 24-Pulse HVDC Conversion, pp , IEE Proceeding, Vol. 38, Part C, No., Jan. 99, [5] S. Choi, J. Oh, K. Kim and J Cho, A New 24- Pulse Diode Rectifier for High Voltage and High Power Applications, IEEE Power Electronics Specialist Conference, pp , June 999 (f) Output voltage v, Fig. 4 Experimental results of the proposed 24-Pulse converter at a=30 (4Ndiv,200V/div) 6. Conclusions In this paper a multi-pulse converter for high voltage and high power applications has been proposed. The proposed schemes, based on the conventional 2-pulse converter, employ an auxiliary circuit consisting of thyristors and low KVA transformer. Tap position and control angles for minimum THD of the input current

New Pulse Multiplication Technique Based on Six-Pulse Thyristor Converters for High-Power Applications

New Pulse Multiplication Technique Based on Six-Pulse Thyristor Converters for High-Power Applications IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 38, NO. 1, JANUARY/FEBRUARY 2002 131 New Pulse Multiplication Technique Based on Six-Pulse Thyristor Converters for High-Power Applications Sewan Choi,

More information

New 24-Pulse Diode Rectifier Systems for Utility Interface of High-Power AC Motor Drives

New 24-Pulse Diode Rectifier Systems for Utility Interface of High-Power AC Motor Drives IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 33, NO. 2, MARCH/APRIL 1997 531 New 24-Pulse Diode Rectifier Systems for Utility Interface of High-Power AC Motor Drives Sewan Choi, Member, IEEE, Bang

More information

A New Active Interphase Reactor for 12-Pulse Rectifiers Provides Clean Power Utility Interface

A New Active Interphase Reactor for 12-Pulse Rectifiers Provides Clean Power Utility Interface A New Active Interphase Reactor for 12-Pulse Rectifiers Provides Clean Power Utility Interface Sewan Choi* Prasad N Enjeti' Honghee Lee ** Ira J Pitel**' * * *Magna-Power Electronics *Power Electronics

More information

16th NATIONAL POWER SYSTEMS CONFERENCE, 15th-17th DECEMBER, VARIATION OF HARMONICS AND RIPPLE WITH PULSE NUMBER Pulse Number

16th NATIONAL POWER SYSTEMS CONFERENCE, 15th-17th DECEMBER, VARIATION OF HARMONICS AND RIPPLE WITH PULSE NUMBER Pulse Number 16th NATIONAL POWER SYSTEMS CONFERENCE, 15th-17th DECEMBER, 2010 693 Novel 24-Pulse Rectifier Topology based on Single 3-Phase to Four 3-Phase Transformation using Conventional Transformers for Phase Shifting

More information

PULSE MULTIPLICATION IN FORCED- COMMUTATED CURRENT SOURCE CONVERTERS BY DC RIPPLE REINJECTION

PULSE MULTIPLICATION IN FORCED- COMMUTATED CURRENT SOURCE CONVERTERS BY DC RIPPLE REINJECTION Queensland University of Technology From the SelectedWorks of Lasantha Bernard Perera Spring September 26, 2004 PULSE MULTIPLICATION IN FORCED- COMMUTATED CURRENT SOURCE CONVERTERS BY DC RIPPLE REINJECTION

More information

Introduction to Rectifiers and their Performance Parameters

Introduction to Rectifiers and their Performance Parameters Electrical Engineering Division Page 1 of 10 Rectification is the process of conversion of alternating input voltage to direct output voltage. Rectifier is a circuit that convert AC voltage to a DC voltage

More information

THE rapid development of power electronics in recent

THE rapid development of power electronics in recent International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012 1 A COMPARISON OF WITH AND WITHOUT AC- DC MULTIPULSE CONVERTER FOR VECTOR CONTROL PWM CSI IM DRIVE NAGABABU THOTA,

More information

High Voltage DC Transmission 2

High Voltage DC Transmission 2 High Voltage DC Transmission 2 1.0 Introduction Interconnecting HVDC within an AC system requires conversion from AC to DC and inversion from DC to AC. We refer to the circuits which provide conversion

More information

A New Three-phase Low THD Power Supply with High-Frequency Isolation and 60V/200A Regulated DC Output

A New Three-phase Low THD Power Supply with High-Frequency Isolation and 60V/200A Regulated DC Output A New Three-phase Low THD Power Supply with High-Frequency Isolation and 60V/200A Regulated DC Output Falcondes Jose Mendes de Seixas (*I and Ivo Barbi (**) (*) UNESP - siio Paul0 State University Department

More information

Development of a Single-Phase PWM AC Controller

Development of a Single-Phase PWM AC Controller Pertanika J. Sci. & Technol. 16 (2): 119-127 (2008) ISSN: 0128-7680 Universiti Putra Malaysia Press Development of a Single-Phase PWM AC Controller S.M. Bashi*, N.F. Mailah and W.B. Cheng Department of

More information

Improving Passive Filter Compensation Performance With Active Techniques

Improving Passive Filter Compensation Performance With Active Techniques IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 50, NO. 1, FEBRUARY 2003 161 Improving Passive Filter Compensation Performance With Active Techniques Darwin Rivas, Luis Morán, Senior Member, IEEE, Juan

More information

Voltage and Current Waveforms Enhancement using Harmonic Filters

Voltage and Current Waveforms Enhancement using Harmonic Filters Voltage and Current Waveforms Enhancement using Harmonic Filters Rajeb Ibsaim rabsaim@yahoo.com, Azzawia University, Libya Amer Daeri ibnjubair1@yahoo.co.uk Azzawia University, Libya Abstract The demand

More information

13. DC to AC Converters

13. DC to AC Converters 13. DC to AC Converters Inverters Inverter is a device which converts DC voltages (or current) to AC voltages (or current).inverter converting voltage is called VOLTAGE SOURCE INVERTER (VSI), while inverter

More information

ISSN Vol.03,Issue.07, August-2015, Pages:

ISSN Vol.03,Issue.07, August-2015, Pages: WWW.IJITECH.ORG ISSN 2321-8665 Vol.03,Issue.07, August-2015, Pages:1276-1281 Comparison of an Active and Hybrid Power Filter Devices THAKKALAPELLI JEEVITHA 1, A. SURESH KUMAR 2 1 PG Scholar, Dept of EEE,

More information

Analysis of Harmonic Distortion in Non-linear Loads

Analysis of Harmonic Distortion in Non-linear Loads Analysis of Harmonic Distortion in Non-linear Loads Anne Ko Department of Electrical Power Engineering Mandalay Technological University, Mandalay, Myanmar.Phone:+95-09-2225761 anneko101082@gmail.com Wunna

More information

Power Quality Improvement by Input Current Harmonic Reduction Using Three-Phase Multi-Pulse AC-DC Converter

Power Quality Improvement by Input Current Harmonic Reduction Using Three-Phase Multi-Pulse AC-DC Converter Power Quality Improvement by Input Current Harmonic Reduction Using Three-Phase Multi-Pulse AC-DC Converter Sanjeev Kumar Rajoria M.Tech. Scholar, Power System, SKIT, Jaipur. Bharat Modi Reader, Department

More information

Third Harmonics Injection Applied To Three Phase/Three Level/Three Switch Unidirectional PWM Rectifier

Third Harmonics Injection Applied To Three Phase/Three Level/Three Switch Unidirectional PWM Rectifier Third Harmonics Injection Applied To Three Phase/Three Level/Three Switch Unidirectional PWM Rectifier R.Brindha 1, V.Ganapathy 1,S.Apnapriya 1,J.Venkataraman 1 SRM University, Chennai, India ABSTRACT-This

More information

Multi-Pulse Rectifier Solutions for Input Harmonics Mitigation Applicable Product: F7, G7, P7 and E7

Multi-Pulse Rectifier Solutions for Input Harmonics Mitigation Applicable Product: F7, G7, P7 and E7 White Paper Multi-Pulse Rectifier Solutions for Input Harmonics Mitigation Applicable Product: F7, G7, P7 and E7 Dr. Jun-koo Kang, Yaskawa Electric America Doc#: WP.AFD.02 Copyright Yaskawa Electric America,

More information

Power quality improvement of self- excited induction generator using Multipulse AC-DC converters - A comparison

Power quality improvement of self- excited induction generator using Multipulse AC-DC converters - A comparison Swati Devabhaktuni, Carib.j.SciTech,13,Vol.1,5-6 Power quality improvement of self- excited induction generator using Multipulse AC-DC converters - A comparison Authors & Affiliation: Swati Devabhaktuni

More information

High Power Factor Correction Circuit using Valley Charge-Pumping for Low Cost Electronic Ballasts

High Power Factor Correction Circuit using Valley Charge-Pumping for Low Cost Electronic Ballasts High Power Factor Correction Circuit using Valley Charge-Pumping for Low Cost Electronic Ballasts Gyun Chae, Yong-Sik Youn and Gyu-Hyeong Cho Department of Electrical Engineering Korea Advanced Institute

More information

Reduction in Harmonic Contents for Single-Phase Five-Level PWM Inverter

Reduction in Harmonic Contents for Single-Phase Five-Level PWM Inverter Available online www.ejaet.com European Journal of Advances in Engineering and Technology, 2016, 3(3): 55-59 Research Article ISSN: 2394-658X Reduction in Harmonic Contents for Single-Phase Five-Level

More information

Unit-II----Analysis of HVDC Converters

Unit-II----Analysis of HVDC Converters Unit-II----Analysis of HVDC Converters Introduction: HVDC converters converts AC to DC and transfer the DC power, then DC is again converted to AC by using inverter station. HVDC system mainly consists

More information

CHAPTER 6 THREE-LEVEL INVERTER WITH LC FILTER

CHAPTER 6 THREE-LEVEL INVERTER WITH LC FILTER 97 CHAPTER 6 THREE-LEVEL INVERTER WITH LC FILTER 6.1 INTRODUCTION Multi level inverters are proven to be an ideal technique for improving the voltage and current profile to closely match with the sinusoidal

More information

IMPLEMENTATION OF PERFORMANCE ANALYSIS OF 18-PULSE AC-DC CONVERTER FED SWITCHED RELUCTANCE MOTOR DRIVES TO ROBOTICS

IMPLEMENTATION OF PERFORMANCE ANALYSIS OF 18-PULSE AC-DC CONVERTER FED SWITCHED RELUCTANCE MOTOR DRIVES TO ROBOTICS International Journal on Intelligent Electronic Systems, Vol. 5, No.1, January 2011 1 Abstract IMPLEMENTATION OF PERFORMANCE ANALYSIS OF 18-PULSE AC-DC CONVERTER FED SWITCHED RELUCTANCE MOTOR DRIVES TO

More information

The unified power quality conditioner: the integration of series and shunt-active filters

The unified power quality conditioner: the integration of series and shunt-active filters Engineering Electrical Engineering fields Okayama University Year 1997 The unified power quality conditioner: the integration of series and shunt-active filters Hideaki Fujita Okayama University Hirofumi

More information

Implementation of SRF based Multilevel Shunt Active Filter for Harmonic Control

Implementation of SRF based Multilevel Shunt Active Filter for Harmonic Control International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 3, Issue 8 (September 2012), PP. 16-20 Implementation of SRF based Multilevel Shunt

More information

Topics in JNTU Syllabus Modules and Sub Modules Lecture. Basic characteristics L21 T1-Ch4, T2-Ch14 Characteristics. Modification of the control

Topics in JNTU Syllabus Modules and Sub Modules Lecture. Basic characteristics L21 T1-Ch4, T2-Ch14 Characteristics. Modification of the control SESSION PLAN Sl. Topics in JNTU Syllabus Modules and Sub Modules UNIT-III 9 Principal of DC link control Introduction Steady state equivalent circuit of a 2 terminal DC link Lecture L20 Suggested Books

More information

Power Quality Improvement of Distribution Network for Non-Linear Loads using Inductive Active Filtering Method Suresh Reddy D 1 Chidananda G Yajaman 2

Power Quality Improvement of Distribution Network for Non-Linear Loads using Inductive Active Filtering Method Suresh Reddy D 1 Chidananda G Yajaman 2 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 03, 2015 ISSN (online): 2321-0613 Power Quality Improvement of Distribution Network for Non-Linear Loads using Inductive

More information

A New Single-Phase PFC Rectifier (TOKUSADA Rectifier ) with Wide Output Voltage Control Range and High Efficiency

A New Single-Phase PFC Rectifier (TOKUSADA Rectifier ) with Wide Output Voltage Control Range and High Efficiency A New Single-Phase PFC Rectifier (TOKUSADA Rectifier ) with Wide Output Voltage Control Range and High Efficiency Yasuyuki Nishida & Takeshi Kondou Nihon University Tokusada, Tamura-cho, Kouriyama, JAPAN

More information

A HIGH RELIABILITY SINGLE-PHASE BOOST RECTIFIER SYSTEM FOR DIFFERENT LOAD VARIATIONS. Prasanna Srikanth Polisetty

A HIGH RELIABILITY SINGLE-PHASE BOOST RECTIFIER SYSTEM FOR DIFFERENT LOAD VARIATIONS. Prasanna Srikanth Polisetty GRT A HIGH RELIABILITY SINGLE-PHASE BOOST RECTIFIER SYSTEM FOR DIFFERENT LOAD VARIATIONS Prasanna Srikanth Polisetty Department of Electrical and Electronics Engineering, Newton s College of Engineering

More information

Volume 4, Number 1, 2018 Pages 1-14 Jordan Journal of Electrical Engineering ISSN (Print): , ISSN (Online):

Volume 4, Number 1, 2018 Pages 1-14 Jordan Journal of Electrical Engineering ISSN (Print): , ISSN (Online): JJEE Volume 4, Number 1, 2018 Pages 1-14 Jordan Journal of Electrical Engineering ISSN (Print): 2409-9600, ISSN (Online): 2409-9619 Control of Multi-Level Converter Using By-Pass Switches Rasha G. Shahin

More information

An Active Interphase Transformer for 12-Pulse Rectifier System to Get the Performance Like 24- Pulse Rectifier System

An Active Interphase Transformer for 12-Pulse Rectifier System to Get the Performance Like 24- Pulse Rectifier System An Active Interphase Transformer for 12-Pulse Rectifier System to Get the Performance Like 24- Pulse Rectifier System Milan Anandpara Tejas Panchal Vinod Patel Deaprtment of Electrical Engineering Deaprtment

More information

Harmonic Requirements

Harmonic Requirements Chapter 1 Harmonic Requirements 1.1 INTRODUCTION Placing limits upon the effects that nonlinear loads may produce on users of electric power requires definition of system and equipment parameters. The

More information

K.Vijaya Bhaskar. Dept of EEE, SVPCET. AP , India. S.P.Narasimha Prasad. Dept of EEE, SVPCET. AP , India.

K.Vijaya Bhaskar. Dept of EEE, SVPCET. AP , India. S.P.Narasimha Prasad. Dept of EEE, SVPCET. AP , India. A Closed Loop for Soft Switched PWM ZVS Full Bridge DC - DC Converter S.P.Narasimha Prasad. Dept of EEE, SVPCET. AP-517583, India. Abstract: - This paper propose soft switched PWM ZVS full bridge DC to

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.72 International Journal of Advance Engineering and Research Development Volume 4, Issue 8, August -2017 e-issn (O): 2348-4470 p-issn (P): 2348-6406 Analysis

More information

STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads

STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads Ponananthi.V, Rajesh Kumar. B Final year PG student, Department of Power Systems Engineering, M.Kumarasamy College of

More information

Power Quality Analysis in Power System with Non Linear Load

Power Quality Analysis in Power System with Non Linear Load International Journal of Electrical Engineering. ISSN 0974-2158 Volume 10, Number 1 (2017), pp. 33-45 International Research Publication House http://www.irphouse.com Power Quality Analysis in Power System

More information

CHAPTER 5 POWER QUALITY IMPROVEMENT BY USING POWER ACTIVE FILTERS

CHAPTER 5 POWER QUALITY IMPROVEMENT BY USING POWER ACTIVE FILTERS 86 CHAPTER 5 POWER QUALITY IMPROVEMENT BY USING POWER ACTIVE FILTERS 5.1 POWER QUALITY IMPROVEMENT This chapter deals with the harmonic elimination in Power System by adopting various methods. Due to the

More information

Control of buck-boost chopper type AC voltage regulator

Control of buck-boost chopper type AC voltage regulator International Journal of Research in Advanced Engineering and Technology ISSN: 2455-0876; Impact Factor: RJIF 5.44 www.engineeringresearchjournal.com Volume 2; Issue 3; May 2016; Page No. 52-56 Control

More information

Fig. 1 Schematic Diagram Showing Connections to the Active Filter With Non-Linear Load

Fig. 1 Schematic Diagram Showing Connections to the Active Filter With Non-Linear Load Control of Shunt Active Power Filter Using LabVIEW M. Chakravarthy, Dr. S N Saxena, Dr. B V Sanker Ram Department of Electrical & Electronics Engineering Gokraju Rangaraju Institute of Engineering & Technology,

More information

Improvement of Power Quality by Using 28-Pulse AC-DC Converter

Improvement of Power Quality by Using 28-Pulse AC-DC Converter Improvement of Power Quality by Using 28-Pulse AC-DC Converter 1 T. Suvarthan Rao, 2 A. Tejasri 1,2 Dept. of EEE, Godavari Institute of Engineering & Technology, Rajahmundry, AP, India Abstract With the

More information

Effective Harmonic Mitigation with Active Filters

Effective Harmonic Mitigation with Active Filters Advancing Power Quality White Paper Effective Harmonic Mitigation with Active Filters Written by: Ian Wallace Variable Speed Drive with no Harmonic Mitigation Industry standard variable speed drives, with

More information

Power Quality Improvement in Induction Motor Drive using 24-Pulse AC-DC Converter Employing Pulse Multiplication Technique

Power Quality Improvement in Induction Motor Drive using 24-Pulse AC-DC Converter Employing Pulse Multiplication Technique Power Quality Improvement in Induction Motor Drive using 24-Pulse AC-DC Converter Employing Pulse Multiplication Technique Greeshma C 1, Rajesh M 2 Student, Electrical &Electronics Department, Govt. College

More information

COMPARATIVE ANALYSIS OF MULTIPULSE AC-DC CONVERTERS IN VCIMD

COMPARATIVE ANALYSIS OF MULTIPULSE AC-DC CONVERTERS IN VCIMD OMPRTIVE NLYSIS OF MULTIPULSE D ONVERTERS IN VIMD M. Karthika, V.V. Vijetha Inti 2 ssistant professor, Dept of EEE, Vishnu Institute of Technology, himavaram, W.G.Dist, P, India ssistant professor, Dept

More information

Module 4. AC to AC Voltage Converters. Version 2 EE IIT, Kharagpur 1

Module 4. AC to AC Voltage Converters. Version 2 EE IIT, Kharagpur 1 Module 4 AC to AC Voltage Converters Version EE IIT, Kharagpur 1 Lesson 9 Introduction to Cycloconverters Version EE IIT, Kharagpur Instructional Objectives Study of the following: The cyclo-converter

More information

Boost-VSI Based on Space Vector Pulse Width Amplitude Modulation Technique Punith Kumar M R 1 Sudharani Potturi 2

Boost-VSI Based on Space Vector Pulse Width Amplitude Modulation Technique Punith Kumar M R 1 Sudharani Potturi 2 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 02, 2015 ISSN (online): 2321-0613 Boost-VSI Based on Space Vector Pulse Width Amplitude odulation Technique Punith Kumar

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May 2013

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May 2013 A Statcom-Control Scheme for Power Quality Improvement of Grid Connected Wind Energy System B.T.RAMAKRISHNARAO*, B.ESWARARAO**, L.NARENDRA**, K.PRAVALLIKA** * Associate.Professor, Dept.of EEE, Lendi Inst.Of

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN 332 An Improved Bridgeless SEPIC PFC Converter N. Madhumitha, Dr C. Christober Asir Rajan Department of Electrical & Electronics Engineering Pondicherry Engineering College madhudeez@pec.edu, asir_70@pec.edu

More information

TO LIMIT degradation in power quality caused by nonlinear

TO LIMIT degradation in power quality caused by nonlinear 1152 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 13, NO. 6, NOVEMBER 1998 Optimal Current Programming in Three-Phase High-Power-Factor Rectifier Based on Two Boost Converters Predrag Pejović, Member,

More information

ATYPICAL high-power gate-turn-off (GTO) currentsource

ATYPICAL high-power gate-turn-off (GTO) currentsource 1278 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 34, NO. 6, NOVEMBER/DECEMBER 1998 A Novel Power Factor Control Scheme for High-Power GTO Current-Source Converter Yuan Xiao, Bin Wu, Member, IEEE,

More information

HARMONIC contamination, due to the increment of nonlinear

HARMONIC contamination, due to the increment of nonlinear 612 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 44, NO. 5, OCTOBER 1997 A Series Active Power Filter Based on a Sinusoidal Current-Controlled Voltage-Source Inverter Juan W. Dixon, Senior Member,

More information

Lecture Note. DC-AC PWM Inverters. Prepared by Dr. Oday A Ahmed Website: https://odayahmeduot.wordpress.com

Lecture Note. DC-AC PWM Inverters. Prepared by Dr. Oday A Ahmed Website: https://odayahmeduot.wordpress.com Lecture Note 10 DC-AC PWM Inverters Prepared by Dr. Oday A Ahmed Website: https://odayahmeduot.wordpress.com Email: 30205@uotechnology.edu.iq Scan QR DC-AC PWM Inverters Inverters are AC converters used

More information

Title. Author(s)Fukuda, Shoji; Hiei, Issei. CitationIEEE Transactions on Industry Applications, 44(1): 2. Issue Date Doc URL. Rights.

Title. Author(s)Fukuda, Shoji; Hiei, Issei. CitationIEEE Transactions on Industry Applications, 44(1): 2. Issue Date Doc URL. Rights. Title Auxiliary Supply-Assisted 12-Pulse Phase-Controlled Authors)Fukuda, Shoji; Hiei, Issei CitationIEEE Transactions on Industry Applications, 441): 2 Issue Date 2008-01 Doc URL http://hdl.handle.net/2115/045

More information

A THREE-PHASE HIGH POWER FACTOR TWO-SWITCH BUCK- TYPE CONVERTER

A THREE-PHASE HIGH POWER FACTOR TWO-SWITCH BUCK- TYPE CONVERTER A THREE-PHASE HIGH POWER FACTOR TWO-SWITCH BUCK- TYPE CONVERTER SEEMA.V. 1 & PRADEEP RAO. J 2 1,2 Electrical and Electronics, The Oxford College of Engineering, Bangalore-68, India Email:Seema.aish1@gmail.com

More information

A Thyristor Controlled Three Winding Transformer as a Static Var Compensator

A Thyristor Controlled Three Winding Transformer as a Static Var Compensator Abstract: A Thyristor Controlled Three Winding Transformer as a Static Var Compensator Vijay Bendre, Prof. Pat Bodger, Dr. Alan Wood. Department of Electrical and Computer Engineering, The University of

More information

SHUNT ACTIVE POWER FILTER

SHUNT ACTIVE POWER FILTER 75 CHAPTER 4 SHUNT ACTIVE POWER FILTER Abstract A synchronous logic based Phase angle control method pulse width modulation (PWM) algorithm is proposed for three phase Shunt Active Power Filter (SAPF)

More information

International Journal of Advance Engineering and Research Development. 18 Pulse Uncontrolled Rectifier

International Journal of Advance Engineering and Research Development. 18 Pulse Uncontrolled Rectifier Scientific Journal of Impact Factor(SJIF): 3.134 International Journal of Advance Engineering and Research Development Volume 2,Issue 5, May -2015 18 Pulse Uncontrolled Rectifier Jay Patel e-issn(o): 2348-4470

More information

DC Chopper. Prof. Dr. Fahmy El-khouly

DC Chopper. Prof. Dr. Fahmy El-khouly DC Chopper Prof. Dr. Fahmy El-khouly Definitions: The power electronic circuit which converts directly from dc to dc is called dc-to-dc converter or dc-chopper. Chopper is a dc to dc transformer: The input

More information

Simulation and Analysis of a Multilevel Converter Topology for Solar PV Based Grid Connected Inverter

Simulation and Analysis of a Multilevel Converter Topology for Solar PV Based Grid Connected Inverter Smart Grid and Renewable Energy, 2011, 2, 56-62 doi:10.4236/sgre.2011.21007 Published Online February 2011 (http://www.scirp.org/journal/sgre) Simulation and Analysis of a Multilevel Converter Topology

More information

v o v an i L v bn V d Load L v cn D 1 D 3 D 5 i a i b i c D 4 D 6 D 2 Lecture 7 - Uncontrolled Rectifier Circuits III

v o v an i L v bn V d Load L v cn D 1 D 3 D 5 i a i b i c D 4 D 6 D 2 Lecture 7 - Uncontrolled Rectifier Circuits III Lecture 7 - Uncontrolled Rectifier Circuits III Three-phase bridge rectifier (p = 6) v o n v an v bn v cn i a i b i c D 1 D 3 D 5 D 4 D 6 D d i L R Load L Figure 7.1 Three-phase diode bridge rectifier

More information

Mitigation of harmonics by placing series apf for 12 pulse converter network

Mitigation of harmonics by placing series apf for 12 pulse converter network INT J CURR SCI 2016, 19(2): E 26-31 RESEARCH ARTICLE ISSN 2250-1770 Mitigation of harmonics by placing series apf for 12 pulse converter network Anupama S, S Mahaboob Basha and P Sravani* Department of

More information

A Phase-Controlled 12-Pulse Rectifier with Unity Displacement Factor without Phase Shifting Transformer

A Phase-Controlled 12-Pulse Rectifier with Unity Displacement Factor without Phase Shifting Transformer A Phase-Controlled 12-Pulse Rectifier with Unity Displacement Factor without Phase Shifting Transformer Yeddo B. Blauth Federal University of Rio Grande do Sul Electrical Engineering Department - DELET

More information

Modified Multilevel Inverter Topology for Driving a Single Phase Induction Motor

Modified Multilevel Inverter Topology for Driving a Single Phase Induction Motor Modified Multilevel Inverter Topology for Driving a Single Phase Induction Motor Divya Subramanian 1, Rebiya Rasheed 2 M.Tech Student, Federal Institute of Science And Technology, Ernakulam, Kerala, India

More information

ON-LINE NONLINEARITY COMPENSATION TECHNIQUE FOR PWM INVERTER DRIVES

ON-LINE NONLINEARITY COMPENSATION TECHNIQUE FOR PWM INVERTER DRIVES INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) ISSN 0976 6545(Print) ISSN 0976

More information

Indirect Current Control of LCL Based Shunt Active Power Filter

Indirect Current Control of LCL Based Shunt Active Power Filter International Journal of Electrical Engineering. ISSN 0974-2158 Volume 6, Number 3 (2013), pp. 221-230 International Research Publication House http://www.irphouse.com Indirect Current Control of LCL Based

More information

RECENTLY, the harmonics current in a power grid can

RECENTLY, the harmonics current in a power grid can IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 2, MARCH 2008 715 A Novel Three-Phase PFC Rectifier Using a Harmonic Current Injection Method Jun-Ichi Itoh, Member, IEEE, and Itsuki Ashida Abstract

More information

A Three-Phase AC-AC Buck-Boost Converter using Impedance Network

A Three-Phase AC-AC Buck-Boost Converter using Impedance Network A Three-Phase AC-AC Buck-Boost Converter using Impedance Network Punit Kumar PG Student Electrical and Instrumentation Engineering Department Thapar University, Patiala Santosh Sonar Assistant Professor

More information

A Novel Power Factor Correction Rectifier for Enhancing Power Quality

A Novel Power Factor Correction Rectifier for Enhancing Power Quality International Journal of Power Electronics and Drive System (IJPEDS) Vol. 6, No. 4, December 2015, pp. 772~780 ISSN: 2088-8694 772 A Novel Power Factor Correction Rectifier for Enhancing Power Quality

More information

Simulation of Soft Switched Pwm Zvs Full Bridge Converter

Simulation of Soft Switched Pwm Zvs Full Bridge Converter Simulation of Soft Switched Pwm Zvs Full Bridge Converter Deepak Kumar Nayak and S.Rama Reddy Abstract This paper deals with the analysis and simulation of soft switched PWM ZVS full bridge DC to DC converter.

More information

New Efficient Bridgeless Cuk Rectifiers for PFC Application on d.c machine

New Efficient Bridgeless Cuk Rectifiers for PFC Application on d.c machine International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 9, Issue 1 (November 2013), PP. 15-21 New Efficient Bridgeless Cuk Rectifiers for

More information

Lecture 19 - Single-phase square-wave inverter

Lecture 19 - Single-phase square-wave inverter Lecture 19 - Single-phase square-wave inverter 1. Introduction Inverter circuits supply AC voltage or current to a load from a DC supply. A DC source, often obtained from an AC-DC rectifier, is converted

More information

CHAPTER 4 MULTI-LEVEL INVERTER BASED DVR SYSTEM

CHAPTER 4 MULTI-LEVEL INVERTER BASED DVR SYSTEM 64 CHAPTER 4 MULTI-LEVEL INVERTER BASED DVR SYSTEM 4.1 INTRODUCTION Power electronic devices contribute an important part of harmonics in all kind of applications, such as power rectifiers, thyristor converters

More information

PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT CARRIER AND MODULATING SIGNAL

PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT CARRIER AND MODULATING SIGNAL Journal of Engineering Science and Technology Vol. 10, No. 4 (2015) 420-433 School of Engineering, Taylor s University PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT

More information

Module 5. DC to AC Converters. Version 2 EE IIT, Kharagpur 1

Module 5. DC to AC Converters. Version 2 EE IIT, Kharagpur 1 Module 5 DC to AC Converters Version EE II, Kharagpur 1 Lesson 34 Analysis of 1-Phase, Square - Wave Voltage Source Inverter Version EE II, Kharagpur After completion of this lesson the reader will be

More information

A New Phase Shifted Converter using Soft Switching Feature for Low Power Applications

A New Phase Shifted Converter using Soft Switching Feature for Low Power Applications International OPEN ACCESS Journal Of Modern Engineering Research (IJMER A New Phase Shifted Converter using Soft Switching Feature for Low Power Applications Aswathi M. Nair 1, K. Keerthana 2 1, 2 (P.G

More information

Technical Report. Zero Reactive Power Passive Current Harmonic Filter (ZRPPCHF) (In House Case Study) Prepared by. Dr. V. R. Kanetkar.

Technical Report. Zero Reactive Power Passive Current Harmonic Filter (ZRPPCHF) (In House Case Study) Prepared by. Dr. V. R. Kanetkar. Technical Report on Zero Reactive Power Passive Current Harmonic Filter (ZRPPCHF) (In House Case Study) Prepared by Dr. V. R. Kanetkar (February 2015) Shreem Electric Limited (Plot No. 43-46, L. K. Akiwate

More information

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 52, NO. 3, JUNE Juan Dixon, Senior Member, IEEE, and Luis Morán, Senior Member, IEEE IEEE

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 52, NO. 3, JUNE Juan Dixon, Senior Member, IEEE, and Luis Morán, Senior Member, IEEE IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 52, NO. 3, JUNE 2005 1 A Clean Four-Quadrant Sinusoidal Power Rectifier Using Multistage Converters for Subway Applications Juan Dixon, Senior Member,, and

More information

A 24-Pulse AC DC Converter Employing a Pulse Doubling Technique for Vector-Controlled Induction Motor Drives

A 24-Pulse AC DC Converter Employing a Pulse Doubling Technique for Vector-Controlled Induction Motor Drives A 24Pulse AC DC Converter Employing a Pulse Doubling Technique for VectorControlled Induction Motor Drives Bhim Singh, Vipin Garg and Gurumoorthy Bhuvaneshwari Department of Electrical Engineering, Indian

More information

CHAPTER 4 HARMONICS AND POWER FACTOR

CHAPTER 4 HARMONICS AND POWER FACTOR 4.1 Harmonics CHAPTER 4 HARMONICS AND POWER FACTOR In this research a comparative study of practical aspects of mixed use of diode and Thyristor converter technologies in Aluminium Smelters has been carried

More information

Linear Transformer based Sepic Converter with Ripple Free Output for Wide Input Range Applications

Linear Transformer based Sepic Converter with Ripple Free Output for Wide Input Range Applications Linear Transformer based Sepic Converter with Ripple Free Output for Wide Input Range Applications Karthik Sitapati Professor, EEE department Dayananda Sagar college of Engineering Bangalore, India Kirthi.C.S

More information

PI-VPI Based Current Control Strategy to Improve the Performance of Shunt Active Power Filter

PI-VPI Based Current Control Strategy to Improve the Performance of Shunt Active Power Filter PI-VPI Based Current Control Strategy to Improve the Performance of Shunt Active Power Filter B.S.Nalina 1 Ms.V.J.Vijayalakshmi 2 Department Of EEE Department Of EEE 1 PG student,skcet, Coimbatore, India

More information

POWERED electronic equipment with high-frequency inverters

POWERED electronic equipment with high-frequency inverters IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 53, NO. 2, FEBRUARY 2006 115 A Novel Single-Stage Power-Factor-Correction Circuit With High-Frequency Resonant Energy Tank for DC-Link

More information

A HIGHLY EFFICIENT ISOLATED DC-DC BOOST CONVERTER

A HIGHLY EFFICIENT ISOLATED DC-DC BOOST CONVERTER A HIGHLY EFFICIENT ISOLATED DC-DC BOOST CONVERTER 1 Aravind Murali, 2 Mr.Benny.K.K, 3 Mrs.Priya.S.P 1 PG Scholar, 2 Associate Professor, 3 Assistant Professor Abstract - This paper proposes a highly efficient

More information

Design and Simulation of New Efficient Bridgeless AC- DC CUK Rectifier for PFC Application

Design and Simulation of New Efficient Bridgeless AC- DC CUK Rectifier for PFC Application Design and Simulation of New Efficient Bridgeless AC- DC CUK Rectifier for PFC Application Thomas Mathew.T PG Student, St. Joseph s College of Engineering, C.Naresh, M.E.(P.hd) Associate Professor, St.

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 16.4. Power phasors in sinusoidal systems Apparent power is the product of the rms voltage and

More information

Modified SEPIC PFC Converter for Improved Power Factor and Low Harmonic Distortion

Modified SEPIC PFC Converter for Improved Power Factor and Low Harmonic Distortion Modified SEPIC PFC Converter for Improved Power Factor and Low Harmonic Distortion Amrutha M P 1, Priya G Das 2 1, 2 Department of EEE, Abdul Kalam Technological University, Palakkad, Kerala, India-678008

More information

IMPACT OF VARIABLE FREQUENCY DRIVES ON ELECTRICAL SYSTEM

IMPACT OF VARIABLE FREQUENCY DRIVES ON ELECTRICAL SYSTEM IMPACT OF VARIABLE FREQUENCY DRIVES ON ELECTRICAL SYSTEM 1 Vishal S Sheth, 2 Dabhoiwala Aliasgar 1 Department of Electrical Engineering A. D Patel Institute of Technology, Anand, India. 2 Department of

More information

An Introduction to Rectifier Circuits

An Introduction to Rectifier Circuits TRADEMARK OF INNOVATION An Introduction to Rectifier Circuits An important application of the diode is one that takes place in the design of the rectifier circuit. Simply put, this circuit converts alternating

More information

Understanding Input Harmonics and Techniques to Mitigate Them

Understanding Input Harmonics and Techniques to Mitigate Them Understanding Input Harmonics and Techniques to Mitigate Them Mahesh M. Swamy Yaskawa Electric America YASKAWA Page. 1 Organization Introduction Why FDs Generate Harmonics? Harmonic Limit Calculations

More information

Precise Analytical Solution for the Peak Gain of LLC Resonant Converters

Precise Analytical Solution for the Peak Gain of LLC Resonant Converters 680 Journal of Power Electronics, Vol. 0, No. 6, November 200 JPE 0-6-4 Precise Analytical Solution for the Peak Gain of LLC Resonant Converters Sung-Soo Hong, Sang-Ho Cho, Chung-Wook Roh, and Sang-Kyoo

More information

REDUCTION OF THD IN POWER SYSTEMS USING STATCOM

REDUCTION OF THD IN POWER SYSTEMS USING STATCOM REDUCTION OF THD IN POWER SYSTEMS USING STATCOM M.Devika Rani, M.R.P Reddy, Ch.Rambabu devikamothukuri@gmail.com, mrpreddy77@gmail.com, ram_feb7@rediffmail.com EEE Department, Sri Vasavi Engineering College,

More information

Circuit operation Let s look at the operation of this single diode rectifier when connected across an alternating voltage source v s.

Circuit operation Let s look at the operation of this single diode rectifier when connected across an alternating voltage source v s. Diode Rectifier Circuits One of the important applications of a semiconductor diode is in rectification of AC signals to DC. Diodes are very commonly used for obtaining DC voltage supplies from the readily

More information

A Novel Delta/Hexagon-Connected Transformer-Based 72-Pulse AC-DC Converter for Power Quality Improvement

A Novel Delta/Hexagon-Connected Transformer-Based 72-Pulse AC-DC Converter for Power Quality Improvement World Applied Sciences Journal 23 (3): 390-401, 2013 ISSN 1818-4952 IDOSI Publications, 2013 DOI: 10.5829/idosi.wasj.2013.23.03.1598 A Novel Delta/Hexagon-Connected Transformer-Based 72-Pulse AC-DC Converter

More information

Design of High-efficiency Soft-switching Converters for High-power Microwave Generation

Design of High-efficiency Soft-switching Converters for High-power Microwave Generation Journal of the Korean Physical Society, Vol. 59, No. 6, December 2011, pp. 3688 3693 Design of High-efficiency Soft-switching Converters for High-power Microwave Generation Sung-Roc Jang and Suk-Ho Ahn

More information

Comparison of Three Autotransformer Based 24-Pulse AC-DC Converters Incorporated DC Ripple Reinjection Technique Feeding VCIMD and DTCIMD Loads

Comparison of Three Autotransformer Based 24-Pulse AC-DC Converters Incorporated DC Ripple Reinjection Technique Feeding VCIMD and DTCIMD Loads Siavash NAKHAEE, Alireza JALILIAN Iran University of Science & Technology Comparison of Three Autotransformer Based 24-Pulse AC-DC Converters Incorporated DC Ripple Reinjection Technique Feeding VCIMD

More information

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 03, 2015 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 03, 2015 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 03, 2015 ISSN (online): 2321-0613 Mitigating the Harmonic Distortion in Power System using SVC With AI Technique Mr. Sanjay

More information

Dept. of Electrical Engineering, Korea Advanced Institute of Science and Technology. Fig. 1 Circiut schematic of single phase RPI

Dept. of Electrical Engineering, Korea Advanced Institute of Science and Technology. Fig. 1 Circiut schematic of single phase RPI THREE PHASE SINE WAVE VOLTAGE SOURCE INVERTER USING THE SOFT SWITCHED RESONANT POLES Jung G. Cho, Dong Y. Hu and Gyu H. Cho Dept. of Electrical Engineering, Korea Advanced Institute of Science and Technology

More information

PF and THD Measurement for Power Electronic Converter

PF and THD Measurement for Power Electronic Converter PF and THD Measurement for Power Electronic Converter Mr.V.M.Deshmukh, Ms.V.L.Jadhav Department name: E&TC, E&TC, And Position: Assistant Professor, Lecturer Email: deshvm123@yahoo.co.in, vandanajadhav19jan@gmail.com

More information

IMPORTANCE OF VSC IN HVDC

IMPORTANCE OF VSC IN HVDC IMPORTANCE OF VSC IN HVDC Snigdha Sharma (Electrical Department, SIT, Meerut) ABSTRACT The demand of electrical energy has been increasing day by day. To meet these high demands, reliable and stable transmission

More information

Nine-Level Cascaded H-Bridge Multilevel Inverter Divya Subramanian, Rebiya Rasheed

Nine-Level Cascaded H-Bridge Multilevel Inverter Divya Subramanian, Rebiya Rasheed Nine-Level Cascaded H-Bridge Multilevel Inverter Divya Subramanian, Rebiya Rasheed Abstract The multilevel inverter utilization have been increased since the last decade. These new type of inverters are

More information