MIDU: Enabling MIMO Full Duplex

Size: px
Start display at page:

Download "MIDU: Enabling MIMO Full Duplex"

Transcription

1 MIDU: Enabling MIMO Full Duplex Ehsan Aryafar Princeton NEC Labs Karthik Sundaresan NEC Labs Sampath Rangarajan NEC Labs Mung Chiang Princeton ACM MobiCom 2012

2 Background AP Current wireless radios are hlfd half duplex p1 p2

3 Background AP p1 p2 Current wireless radios are hlfd half duplex Same band Full duplex is hard Self interference is very high: 75 db for 15 dbm Tx power Transmitted signal is known self interference cancellation Self interference can be significantly reduced by adding a cancellation circuit: e.g., a cancelling antenna

4 Background AP p1 p2 Current wireless radios are hlfd half duplex Same band Full duplex is hard Self interference is very high: 75 db for 15 dbm Tx power Self interference can be significantly cancelled by adding a cancellation circuit: e.g., a cancelling antenna Can full duplex wireless double the capacity?

5 Full Duplex vs. MIMO Hardware complexity, performance, size, cost metrics

6 Full Duplex vs. MIMO Hardware complexity, performance, size, cost metrics Antenna Conserved (AC): Same # antennas

7 Full Duplex vs. MIMO Hardware complexity, performance, size, cost metrics Antenna Conserved (AC): Same # antennas RF Chain Conserved (RC): Same # chains

8 Full Duplex vs. MIMO Hardware complexity, SI loss: 6 db Ant Correlation: 0.1 performance, size, cost metrics Antenna Conserved (AC): Same # antennas RF Chain Conserved (RC): Same # chains ty (bit/ chann nel use) FD- RC HD FD- AC = 0.01 Significant FD gains in RC model Limited FD gains with small # 20 antennas in AC model higher gains with more antennas Capaci Number of Antennas

9 Full Duplex vs. MIMO Hardware complexity, SI loss: 6 db Ant Correlation: 0.1 performance, cost metrics Antenna Conserved (AC): Same # antennas = FD- RC HD Regions of pronounced 80 full FD- AC duplex gains in RF Chain Conserved (RC): Same # chains Significant FD gains in RC model ty (bit/ chann nel use) both RC and AC 60 models Limited FD gains with small # antennas in AC model high gains with more antennas Capaci Number of Antennas

10 Outline Background Design of MIDU Experimental Evaluation Conclusion

11 MIDU: MImo full DUplex Symmetric antenna T' R T placement d d π Input Signal

12 MIDU: MImo full DUplex Symmetric antenna placement RX Chain 2 level of antenna cancellation Tx cancellation followed by Rx cancellation Proved in theory to have additive gains under imbalancedgains/phase or imprecise placement π T' 1 π R' 1 R 1 T 1 TX Chain

13 MIDU: MImo full DUplex Symmetric antenna placement 2 level of antenna cancellation Tx cancellation followed by Rx cancellation Proved in theory to have additive gains under imbalancedgains/phase or imprecise placement Easy scalability lbl to MIMO R 3 R 2 R 1 T' 1 T' 2 T' 3 T 1 T 2 T 3 R' 1 R' 2 R' 3

14 Implementation WarpLab implementation Narrow band 625 KHz Open space environment MIDU + MU MIMO MIMO Virtex IV Pro FPGA

15 Implementation WarpLab implementation Narrow band 625 KHz Open space environment MIDU + MU MIMO MIMO Performance metric: SNR or the corresponding Shannon capacity Virtex IV Pro FPGA

16 Implementation WarpLab implementation Narrow band 625 KHz Open space environment MIDU + MU MIMO MIMO Performance metric: SNR or the corresponding Shannon capacity Virtex IV Pro FPGA Spectrum analyzerbased measurement or the SNR reported by WARP

17 Experimental Evaluation Feasibility Channel distance relationship Stability Impact on far field field users Cancellation R 1 R 2 R 3 Single level 2 level and MIMO T' 1 T' 2 T' 3 T 1 T 2 T 3 Comparison with MIMO Single link Single cell R' 1 R' 2 R' 3

18 Issue: How does symmetric antenna placement impact the far field users? Impact of MIDU on Far Field Users

19 Impact of MIDU on Far Field Users Issue: How does symmetric antenna placement impact the far field users? TX <3m> 19 18

20 Issue: How does symmetric antenna placement impact the far field users? Achieved SNR can be up to 4 db higher/lower Impact of MIDU on Far Field Users Inner Circle Outer Circle

21 Issue: How does symmetric antenna placement impact the far field users? Achieved SNR can be up to 4 db higher/lower In far field fi antenna cancellation has very limited effect due to signal scattering (fading) Similar results hold for RX cancellation Impact of MIDU on Far Field Users Inner Circle Outer Circle

22 Experimental Evaluation Feasibility Channel distance relationship Stability Impact on far field field users Cancellation R 1 R 2 R 3 Single level 2 level and MIMO T' 1 T' 2 T' 3 T 1 T 2 T 3 Comparison with MIMO Single link Single cell R' 1 R' 2 R' 3

23 Cancellation Issue: Is 2 level cancellation T' R T additive? Is MIDU scalable? Connect the receiver to a spectrum analyzer d π d Input Signal

24 Cancellation Issue: Is 2 level cancellation additive? Is MIDU scalable? db cancellation on each level separately Cancellation remains relatively unchanged with Tx power

25 Cancellation Issue: Is 2 level cancellation additive? Is MIDU scalable? RX Chain Θ R 1 Phase shifter on each path to handle insertion loss and delay T' 1 T 1 Θ+π R' 1 Θ+π Θ TX Chain

26 Cancellation Issue: Is 2 level cancellation additive? Is MIDU scalable? Phase shifter on each path to handle insertion loss and delay RX cancellation on top of TX cancellation is additive

27 Cancellation Issue: Is 2 level cancellation additive? Is MIDU scalable? Phase shifter on each path to handle insertion loss and delay RX cancellation on top of TX cancellation is additive 4 db decrease in cancellation for the first added pair, 5 db with 3 total pairs

28 Experimental Evaluation Feasibility Channel distance relationship Stability Impact on far field field users Cancellation R 1 R 2 R 3 Single level 2 level and MIMO T' 1 T' 2 T' 3 T 1 T 2 T 3 Comparison with MIMO Single link Single cell R' 1 R' 2 R' 3

29 Comparison with MIMO Compare MIDU to MU MIMO RF Chain conserved model Multi user beamfoming/filtering for MU MIMO in each direction UL DL interference in MIDU R 2 MIDU BS R 1 R 6 Metric: Shannon capacity of the measured SNR R 3 R 5 2m R 4

30 Comparison with MIMO Compare MIDU to MU MIMO M: #UL Streams N: #DL Streams RF Chain conserved model Multi user beamfoming/filtering for MU MIMO in each direction UL DL interference in MIDU Full duplex gains diminish as the number of streams is scaled

31 Comparison with MIMO Compare MIDU to MU MIMO 3 DL Streams Var UL Streams RF Chain conserved model Multi user beamfoming/filtering for MU MIMO in each direction UL DL interference in MIDU Full duplex gains diminish as the number of streams is scaled For maximum full duplex gains, the numberof streams between UL and DL should be dis proportionate

32 Comparison with MIMO Compare MIDU to MU MIMO 3 DL Streams Var UL Streams RF Chain conserved model Multi user beamfoming/filtering for MU MIMO in each direction UL DL interference in MIDU Full duplex has great potential in practical single sng cell MU-MIMO M MO schemes s in which the number of streams is small Full duplex gains diminish as the number of streams is scaled For maximum full duplex gains, the numberof streams between UL and DL should be dis proportionate

33 Related Work Single antenna full duplex M. Knox, Self jamming for full duplex Enhanced Circulator design for full duplex wireless Tx Signal Tx Output Interference Cancellation Circuit + Rx Input Rx Signal

34 Related Work Single antenna full duplex M. Knox, Self jamming for full duplex Asymmetric Antenna cancellation J. Choi, et. al., Achieving single channel full duplex

35 Related Work Single antenna full duplex M. Knox, Self jamming for full duplex Asymmetric Antenna cancellation J. Choi, et. al., Achieving single channel full duplex Analogue cancellation M. Jain, et. al., Practical full duplex M. Durate, et. al., Fullduplex withoff the shelf radios"

36 Related Work Single antenna full duplex M. Knox, Self jamming for full duplex Asymmetric Antenna cancellation J. Choi, et. al., Achieving single channel full duplex Analogue cancellation M. Jain, et. al., Practical full duplex M. Durate, et. al., Fullduplex withoff the shelf radios" Our work presents the design and implementation of the first MIMO full duplex system

37 In Summary Designed and implemented MIDU, the first MIMO full duplex wireless system Enabled two stages of antenna cancellation with additive gains that provided as high as 45 db self interference cancellation Built a prototype of MIDU with joint operation of 3x3 MIMO + Full Duplex in practice Provided guidelines for the design of an efficient MAC for single cells employing MIDU nodes NEC Labs: labs.com/ Princeton EdgeLab:

MIDU: Enabling MIMO Full Duplex

MIDU: Enabling MIMO Full Duplex MIDU: Enabling MIMO Full Duplex Ehsan Aryafar, Mohammad (Amir) Khojastepour 2, Karthikeyan Sundaresan 2, Sampath Rangarajan 2, and Mung Chiang Princeton University, Princeton, NJ, USA 2 NEC Laboratories

More information

Empowering Full-Duplex Wireless Communication by Exploiting Directional Diversity

Empowering Full-Duplex Wireless Communication by Exploiting Directional Diversity Empowering Full-Duplex Wireless Communication by Exploiting Directional Diversity Evan Everett, Melissa Duarte, Chris Dick, and Ashutosh Sabharwal Abstract The use of directional antennas in wireless networks

More information

Fractional Delay Filter Based Wideband Self- Interference Cancellation

Fractional Delay Filter Based Wideband Self- Interference Cancellation , pp.22-27 http://dx.doi.org/10.14257/astl.2013 Fractional Delay Filter Based Wideband Self- Interference Cancellation Hao Liu The National Communication Lab. The University of Electronic Science and Technology

More information

Prof. Xinyu Zhang. Dept. of Electrical and Computer Engineering University of Wisconsin-Madison

Prof. Xinyu Zhang. Dept. of Electrical and Computer Engineering University of Wisconsin-Madison Prof. Xinyu Zhang Dept. of Electrical and Computer Engineering University of Wisconsin-Madison 1" Overview of MIMO communications Single-user MIMO Multi-user MIMO Network MIMO 3" MIMO (Multiple-Input Multiple-Output)

More information

PAFD: Phased Array Full-Duplex

PAFD: Phased Array Full-Duplex PAFD: Phased Array Full-Duplex Ehsan Aryafar 1 and Alireza Keshavarz-Haddad 2 1 Portland State University, Department of Computer Science, Portland, OR, 97201 2 Shiraz University, School of Electrical

More information

On the Capacity Regions of Single-Channel and Multi-Channel Full-Duplex Links. Jelena Marašević and Gil Zussman EE department, Columbia University

On the Capacity Regions of Single-Channel and Multi-Channel Full-Duplex Links. Jelena Marašević and Gil Zussman EE department, Columbia University On the Capacity Regions of Single-Channel and Multi-Channel Full-Duplex Links Jelena Marašević and Gil Zussman EE department, Columbia University MobiHoc 16, July 216 Full-Duplex Wireless (Same channel)

More information

Experiment-Driven Characterization of Full-Duplex Wireless Systems

Experiment-Driven Characterization of Full-Duplex Wireless Systems Experiment-Driven Characterization of Full-Duplex Wireless Systems Melissa Duarte Advisor: Ashutosh Sabhawal Department of ECE Rice University August 04 2011 1 Full-Duplex Wireless Node 1 Node 2 Same time

More information

Converged Wireless Access: The New Normal

Converged Wireless Access: The New Normal Converged Wireless Access: The New Normal Karthik Sundaresan WNPE, Univ of Washington, June 2016 www.nec-labs.com 5G Services Services drive network requirements for 5G Source: Ericcson 2 5G Services Services

More information

Massive MIMO Full-duplex: Theory and Experiments

Massive MIMO Full-duplex: Theory and Experiments Massive MIMO Full-duplex: Theory and Experiments Ashu Sabharwal Joint work with Evan Everett, Clay Shepard and Prof. Lin Zhong Data Rate Through Generations Gains from Spectrum, Densification & Spectral

More information

Division Free Duplex in Small Form Factors. Leo Laughlin,ChunqingZhang, Mark Beach, Kevin Morris, and John Haine

Division Free Duplex in Small Form Factors. Leo Laughlin,ChunqingZhang, Mark Beach, Kevin Morris, and John Haine Division Free Duplex in Small Form Factors Leo Laughlin,ChunqingZhang, Mark Beach, Kevin Morris, and John Haine Outline Duplexing Electrical Balance duplexers Active self-interference cancellation Electrical

More information

FD 2 : A Directional Full Duplex Communication

FD 2 : A Directional Full Duplex Communication FD 2 : A Directional Full Duplex Communication System for Indoor Wireless Networks Ehsan Aryafar and Alireza Keshavarz-Haddad Abstract We present the design and implementation of FD 2, a directional full-duplex

More information

Full-Duplex Communications for Wireless Links with Asymmetric Capacity Requirements

Full-Duplex Communications for Wireless Links with Asymmetric Capacity Requirements Full-Duplex Communications for Wireless Links with Asymmetric Capacity Requirements Orion Afisiadis, Andrew C. M. Austin, Alexios Balatsoukas-Stimming, and Andreas Burg Telecommunication Circuits Laboratory,

More information

Full-duplex Wireless: From Experiments to Theory

Full-duplex Wireless: From Experiments to Theory Full-duplex Wireless: From Experiments to Theory Achaleshwar Sahai, Melissa Duarte #, Evan Everett, Jingwen Bai, Gaurav Patel, Chris Dick* and Ashu Sabharwal Department of ECE Rice University # Now at

More information

Cooperative versus Full-Duplex Communication in Cellular Networks: A Comparison of the Total Degrees of Freedom. Amr El-Keyi and Halim Yanikomeroglu

Cooperative versus Full-Duplex Communication in Cellular Networks: A Comparison of the Total Degrees of Freedom. Amr El-Keyi and Halim Yanikomeroglu Cooperative versus Full-Duplex Communication in Cellular Networks: A Comparison of the Total Degrees of Freedom Amr El-Keyi and Halim Yanikomeroglu Outline Introduction Full-duplex system Cooperative system

More information

Reference Receiver Based Digital Self-Interference Cancellation in MIMO Full-Duplex Transceivers

Reference Receiver Based Digital Self-Interference Cancellation in MIMO Full-Duplex Transceivers Reference Receiver Based Digital Self-Interference Cancellation in MIMO Full-Duplex Transceivers Dani Korpi, Lauri Anttila, and Mikko Valkama Tampere University of Technology, Department of Electronics

More information

Design and Characterization of a Full-duplex. Multi-antenna System for WiFi networks

Design and Characterization of a Full-duplex. Multi-antenna System for WiFi networks Design and Characterization of a Full-duplex 1 Multi-antenna System for WiFi networks Melissa Duarte, Ashutosh Sabharwal, Vaneet Aggarwal, Rittwik Jana, K. K. Ramakrishnan, Christopher Rice and N. K. Shankaranayanan

More information

flexicon.ee.columbia.edu Harish Krishnaswamy, Gil Zussman, Jin Zhou, Jelena (Marašević) Diakonikolas, Tolga Dinc, Negar Reiskarimian, Tingjun Chen

flexicon.ee.columbia.edu Harish Krishnaswamy, Gil Zussman, Jin Zhou, Jelena (Marašević) Diakonikolas, Tolga Dinc, Negar Reiskarimian, Tingjun Chen Full-Duplex in a Hand-held Device - From Fundamental Physics to Complex Integrated Circuits, Systems and Networks: An Overview of the Columbia FlexICoN project Harish Krishnaswamy, Gil Zussman, Jin Zhou,

More information

Beamforming on mobile devices: A first study

Beamforming on mobile devices: A first study Beamforming on mobile devices: A first study Hang Yu, Lin Zhong, Ashutosh Sabharwal, David Kao http://www.recg.org Two invariants for wireless Spectrum is scarce Hardware is cheap and getting cheaper 2

More information

Full Duplex Radios. Sachin Katti Kumu Networks & Stanford University 4/17/2014 1

Full Duplex Radios. Sachin Katti Kumu Networks & Stanford University 4/17/2014 1 Full Duplex Radios Sachin Katti Kumu Networks & Stanford University 4/17/2014 1 It is generally not possible for radios to receive and transmit on the same frequency band because of the interference that

More information

Advanced Self-Interference Cancellation and Multiantenna Techniques for Full-Duplex Radios

Advanced Self-Interference Cancellation and Multiantenna Techniques for Full-Duplex Radios Advanced Self-Interference Cancellation and Multiantenna Techniques for Full-Duplex Radios Dani Korpi 1, Sathya Venkatasubramanian 2, Taneli Riihonen 2, Lauri Anttila 1, Sergei Tretyakov 2, Mikko Valkama

More information

Wireless Physical Layer Concepts: Part III

Wireless Physical Layer Concepts: Part III Wireless Physical Layer Concepts: Part III Raj Jain Professor of CSE Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-08/

More information

Interference Alignment for Heterogeneous Full-Duplex Cellular Networks. Amr El-Keyi and Halim Yanikomeroglu

Interference Alignment for Heterogeneous Full-Duplex Cellular Networks. Amr El-Keyi and Halim Yanikomeroglu Interference Alignment for Heterogeneous Full-Duplex Cellular Networks Amr El-Keyi and Halim Yanikomeroglu 1 Outline Introduction System Model Main Results Outer bounds on the DoF Optimum Antenna Allocation

More information

Handset MIMO antenna measurement using a Spatial Fading Emulator

Handset MIMO antenna measurement using a Spatial Fading Emulator Handset MIMO antenna measurement using a Spatial Fading Emulator Atsushi Yamamoto Panasonic Corporation, Japan Panasonic Mobile Communications Corporation, Japan NTT DOCOMO, INC., Japan Aalborg University,

More information

Wireless Communication

Wireless Communication Wireless Communication Systems @CS.NCTU Lecture 14: Full-Duplex Communications Instructor: Kate Ching-Ju Lin ( 林靖茹 ) 1 Outline What s full-duplex Self-Interference Cancellation Full-duplex and Half-duplex

More information

Fairness and Delay in Heterogeneous Half- and Full-Duplex Wireless Networks

Fairness and Delay in Heterogeneous Half- and Full-Duplex Wireless Networks Fairness and Delay in Heterogeneous Half- and Full-Duplex Wireless Networks Tingjun Chen *, Jelena Diakonikolas, Javad Ghaderi *, and Gil Zussman * * Electrical Engineering, Columbia University Simons

More information

FlexRadio: Fully Flexible Radios and Networks

FlexRadio: Fully Flexible Radios and Networks FlexRadio: Fully Flexible Radios and Networks Bo Chen, Vivek Yenamandra, and Kannan Srinivasan, The Ohio State University https://www.usenix.org/conference/nsdi5/technical-sessions/presentation/chen This

More information

ADAM: An Adaptive Beamforming System for Multicasting in Wireless LANs

ADAM: An Adaptive Beamforming System for Multicasting in Wireless LANs IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 5, OCTOBER 2013 1595 ADAM: An Adaptive Beamforming System for Multicasting in Wireless LANs Ehsan Aryafar, Member, IEEE, Mohammad Ali Khojastepour, Member,

More information

SDR-BASED TEST BENCH TO EVALUATE ANALOG CANCELLATION TECHNIQUES FOR IN-BAND FULL-DUPLEX TRANSCEIVER

SDR-BASED TEST BENCH TO EVALUATE ANALOG CANCELLATION TECHNIQUES FOR IN-BAND FULL-DUPLEX TRANSCEIVER SDR-BASED TEST BENCH TO EVALUATE ANALOG CANCELLATION TECHNIQUES FOR IN-BAND FULL-DUPLEX TRANSCEIVER Patrick Rosson, David Dassonville, Xavier Popon, Sylvie Mayrargue CEA-Leti Minatec Campus Cleen Workshop,

More information

Reconfigurable antennas for WiFi networks. Daniele Piazza Founder and CTO Adant Technologies Inc

Reconfigurable antennas for WiFi networks. Daniele Piazza Founder and CTO Adant Technologies Inc Reconfigurable antennas for WiFi networks Daniele Piazza Founder and CTO Adant Technologies Inc Company Overview Adant Padova, Italy Adant SF Bay Area Adant Taiwan Adant designs, licenses, and manufactures

More information

Bringing Multi-Antenna Gain to Energy-Constrained Wireless Devices Sanjib Sur, Teng Wei, Xinyu Zhang

Bringing Multi-Antenna Gain to Energy-Constrained Wireless Devices Sanjib Sur, Teng Wei, Xinyu Zhang Bringing Multi-Antenna Gain to Energy-Constrained Wireless Devices Sanjib Sur, Teng Wei, Xinyu Zhang University of Wisconsin - Madison 1 Power Consumption of MIMO MIMO boosts the wireless throughput by

More information

(some) Device Localization, Mobility Management and 5G RAN Perspectives

(some) Device Localization, Mobility Management and 5G RAN Perspectives (some) Device Localization, Mobility Management and 5G RAN Perspectives Mikko Valkama Tampere University of Technology Finland mikko.e.valkama@tut.fi +358408490756 December 16th, 2016 TAKE-5 and TUT, shortly

More information

802.11ax Design Challenges. Mani Krishnan Venkatachari

802.11ax Design Challenges. Mani Krishnan Venkatachari 802.11ax Design Challenges Mani Krishnan Venkatachari Wi-Fi: An integral part of the wireless landscape At the center of connected home Opening new frontiers for wireless connectivity Wireless Display

More information

Full Duplex Radios. Daniel J. Steffey

Full Duplex Radios. Daniel J. Steffey Full Duplex Radios Daniel J. Steffey Source Full Duplex Radios* ACM SIGCOMM 2013 Dinesh Bharadia Emily McMilin Sachin Katti *All source information and graphics/charts 2 Problem It is generally not possible

More information

The Myth of Spatial Reuse with Directional Antennas in Indoor Wireless Networks

The Myth of Spatial Reuse with Directional Antennas in Indoor Wireless Networks The Myth of Spatial Reuse with Directional Antennas in Indoor Wireless Networks Sriram Lakshmanan, Karthikeyan Sundaresan 2, Sampath Rangarajan 2 and Raghupathy Sivakumar Georgia Institute of Technology,

More information

On Self-interference Suppression Methods for Low-complexity Full-duplex MIMO

On Self-interference Suppression Methods for Low-complexity Full-duplex MIMO On Self-interference Suppression Methods for Low-complexity Full-duplex MIMO Alexios Balatsoukas-Stimming, Pavle Belanovic, Konstantinos Alexandris, Andreas Burg Telecommunications Circuits Laboratory

More information

How to Split UL/DL Antennas in Full-Duplex Cellular Networks

How to Split UL/DL Antennas in Full-Duplex Cellular Networks School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Ericsson Research Stockholm, Sweden https://people.kth.se/~jmbdsj/index.html jmbdsj@kth.se How to Split UL/DL Antennas

More information

A Practical Approach to Bitrate Control in Wireless Mesh Networks using Wireless Network Utility Maximization

A Practical Approach to Bitrate Control in Wireless Mesh Networks using Wireless Network Utility Maximization A Practical Approach to Bitrate Control in Wireless Mesh Networks using Wireless Network Utility Maximization EE359 Course Project Mayank Jain Department of Electrical Engineering Stanford University Introduction

More information

Doodle Labs Prism-WiFi Transceiver NM-4900 High Performance COFDM/MIMO Broadband Transceiver with minipcie

Doodle Labs Prism-WiFi Transceiver NM-4900 High Performance COFDM/MIMO Broadband Transceiver with minipcie Doodle Labs Prism-WiFi Transceiver NM-4900 High Performance COFDM/MIMO Broadband Transceiver with minipcie Prism-WiFi Transceiver Overview Doodle Labs Prism-WiFi are frequency shifted long range Industrial

More information

Propagation Channel Modeling for Wideband Radio Systems

Propagation Channel Modeling for Wideband Radio Systems UEC Tokyo EuCAP 204 April 9, 204 Propagation Channel Modeling for Wideband Radio Systems - How to create realistic MIMO propagation environment for OTA measurements - Yoshio Karasawa Advanced Wireless

More information

Power Control in Full Duplex Underlay Cognitive Radio Networks: A Control Theoretic Approach

Power Control in Full Duplex Underlay Cognitive Radio Networks: A Control Theoretic Approach 24 IEEE Military Communications Conference Power Control in Full Duplex Underlay Cognitive Radio Networks: A Control Theoretic Approach Ningkai Tang, Shiwen Mao, and Sastry Kompella Department of Electrical

More information

A Survey on Wireless Full-Duplex: Research and Development Tracks

A Survey on Wireless Full-Duplex: Research and Development Tracks A Survey on Wireless Full-Duplex: Research and Development Tracks Omid Taghizadeh Institute for Theoretical Information Technology RWTH Aachen University, D-52074 Aachen, Germany 1 Outline Full-duplex

More information

COSMOS Millimeter Wave June Contact: Shivendra Panwar, Sundeep Rangan, NYU Harish Krishnaswamy, Columbia

COSMOS Millimeter Wave June Contact: Shivendra Panwar, Sundeep Rangan, NYU Harish Krishnaswamy, Columbia COSMOS Millimeter Wave June 1 2018 Contact: Shivendra Panwar, Sundeep Rangan, NYU Harish Krishnaswamy, Columbia srangan@nyu.edu, hk2532@columbia.edu Millimeter Wave Communications Vast untapped spectrum

More information

mm Wave Communications J Klutto Milleth CEWiT

mm Wave Communications J Klutto Milleth CEWiT mm Wave Communications J Klutto Milleth CEWiT Technology Options for Future Identification of new spectrum LTE extendable up to 60 GHz mm Wave Communications Handling large bandwidths Full duplexing on

More information

Using the epmp Link Budget Tool

Using the epmp Link Budget Tool Using the epmp Link Budget Tool The epmp Series Link Budget Tool can offer a help to determine the expected performances in terms of distances of a epmp Series system operating in line-of-sight (LOS) propagation

More information

5G: Opportunities and Challenges Kate C.-J. Lin Academia Sinica

5G: Opportunities and Challenges Kate C.-J. Lin Academia Sinica 5G: Opportunities and Challenges Kate C.-J. Lin Academia Sinica! 2015.05.29 Key Trend (2013-2025) Exponential traffic growth! Wireless traffic dominated by video multimedia! Expectation of ubiquitous broadband

More information

Planning of LTE Radio Networks in WinProp

Planning of LTE Radio Networks in WinProp Planning of LTE Radio Networks in WinProp AWE Communications GmbH Otto-Lilienthal-Str. 36 D-71034 Böblingen mail@awe-communications.com Issue Date Changes V1.0 Nov. 2010 First version of document V2.0

More information

Selected answers * Problem set 6

Selected answers * Problem set 6 Selected answers * Problem set 6 Wireless Communications, 2nd Ed 243/212 2 (the second one) GSM channel correlation across a burst A time slot in GSM has a length of 15625 bit-times (577 ) Of these, 825

More information

Doodle Labs Prism-WiFi Transceiver NM-4965 High Performance COFDM/MIMO Broadband Transceiver with minipcie

Doodle Labs Prism-WiFi Transceiver NM-4965 High Performance COFDM/MIMO Broadband Transceiver with minipcie Doodle Labs Prism-WiFi Transceiver NM-4965 High Performance COFDM/MIMO Broadband Transceiver with minipcie Prism-WiFi Transceiver Overview Doodle Labs Prism-WiFi are frequency shifted long range Industrial

More information

MIMO - A Key to Broadband Wireless. Volker Jungnickel. Fraunhofer. Institut. Nachrichtentechnik Heinrich-Hertz-Institut

MIMO - A Key to Broadband Wireless. Volker Jungnickel. Fraunhofer. Institut. Nachrichtentechnik Heinrich-Hertz-Institut MIMO - A Key to Broadband Wireless Volker Jungnickel Outline Introduction Channel properties Algorithms Real-time implementation Conclusions 2 Introduction People really want wireless internet access anywhere,

More information

MIMO in 4G Wireless. Presenter: Iqbal Singh Josan, P.E., PMP Director & Consulting Engineer USPurtek LLC

MIMO in 4G Wireless. Presenter: Iqbal Singh Josan, P.E., PMP Director & Consulting Engineer USPurtek LLC MIMO in 4G Wireless Presenter: Iqbal Singh Josan, P.E., PMP Director & Consulting Engineer USPurtek LLC About the presenter: Iqbal is the founder of training and consulting firm USPurtek LLC, which specializes

More information

RF Interference Cancellation - a Key Technology to support an Integrated Communications Environment

RF Interference Cancellation - a Key Technology to support an Integrated Communications Environment RF Interference Cancellation - a Key Technology to support an Integrated Communications Environment Abstract Steve Nightingale, Giles Capps, Craig Winter and George Woloszczuk Cobham Technical Services,

More information

Scalable Front-End Digital Signal Processing for a Phased Array Radar Demonstrator. International Radar Symposium 2012 Warsaw, 24 May 2012

Scalable Front-End Digital Signal Processing for a Phased Array Radar Demonstrator. International Radar Symposium 2012 Warsaw, 24 May 2012 Scalable Front-End Digital Signal Processing for a Phased Array Radar Demonstrator F. Winterstein, G. Sessler, M. Montagna, M. Mendijur, G. Dauron, PM. Besso International Radar Symposium 2012 Warsaw,

More information

WiMAX Summit Testing Requirements for Successful WiMAX Deployments. Fanny Mlinarsky. 28-Feb-07

WiMAX Summit Testing Requirements for Successful WiMAX Deployments. Fanny Mlinarsky. 28-Feb-07 WiMAX Summit 2007 Testing Requirements for Successful WiMAX Deployments Fanny Mlinarsky 28-Feb-07 Municipal Multipath Environment www.octoscope.com 2 WiMAX IP-Based Architecture * * Commercial off-the-shelf

More information

HOW DO MIMO RADIOS WORK? Adaptability of Modern and LTE Technology. By Fanny Mlinarsky 1/12/2014

HOW DO MIMO RADIOS WORK? Adaptability of Modern and LTE Technology. By Fanny Mlinarsky 1/12/2014 By Fanny Mlinarsky 1/12/2014 Rev. A 1/2014 Wireless technology has come a long way since mobile phones first emerged in the 1970s. Early radios were all analog. Modern radios include digital signal processing

More information

Many-antenna base stations are interesting systems. Lin Zhong

Many-antenna base stations are interesting systems. Lin Zhong Many-antenna base stations are interesting systems Lin Zhong http://recg.org 2 How we got started Why many-antenna base station What we have learned What we are doing now 3 How we started Why a mobile

More information

RADWIN SOLUTIONS. ENTRPRISE Broadband Wireless Access. Video Surveillance. Remote area BB Connectivity. Small Cell Backhaul

RADWIN SOLUTIONS. ENTRPRISE Broadband Wireless Access. Video Surveillance. Remote area BB Connectivity. Small Cell Backhaul RADWIN SOLUTIONS ENTRPRISE Broadband Wireless Access Video Surveillance Remote area BB Connectivity Small Cell Backhaul Multipath/LOS/nLOS/NLOS 7/22/2015 2 Confidential Information Small Cell Deployment

More information

Low-Complexity Beam Allocation for Switched-Beam Based Multiuser Massive MIMO Systems

Low-Complexity Beam Allocation for Switched-Beam Based Multiuser Massive MIMO Systems Low-Complexity Beam Allocation for Switched-Beam Based Multiuser Massive MIMO Systems Jiangzhou Wang University of Kent 1 / 31 Best Wishes to Professor Fumiyuki Adachi, Father of Wideband CDMA [1]. [1]

More information

GRT-duplex: A Novel SDR Platform for Full-Duplex WiFi

GRT-duplex: A Novel SDR Platform for Full-Duplex WiFi Mobile Netw Appl (2016) 21:983 993 DOI 10.1007/s11036-016-0710-z GRT-duplex: A Novel SDR Platform for Full-Duplex WiFi Haoyang Wu 1 Tao Wang 1,2 Jiahua Chen 1 Sanjun Liu 3 Shuyi Tian 3 Songwu Lu 1,4 Meng

More information

802.11ax introduction and measurement solution

802.11ax introduction and measurement solution 802.11ax introduction and measurement solution Agenda IEEE 802.11ax 802.11ax overview & market 802.11ax technique / specification 802.11ax test items Keysight Product / Solution Demo M9421A VXT for 802.11ax

More information

AN-1374 Use of LMV225 Linear-In-dB RF Power Detector In CDMA2000 1X and EV_DO Mobile. and Access Terminal

AN-1374 Use of LMV225 Linear-In-dB RF Power Detector In CDMA2000 1X and EV_DO Mobile. and Access Terminal Use of LMV225 Linear-In-dB RF Power Detector In CDMA2000 1X and EV_DO Mobile Station and Access Terminal Introduction Since the commercialization of CDMA IS-95 cellular network started in 1996, Code Division

More information

Power-Controlled Medium Access Control. Protocol for Full-Duplex WiFi Networks

Power-Controlled Medium Access Control. Protocol for Full-Duplex WiFi Networks Power-Controlled Medium Access Control 1 Protocol for Full-Duplex WiFi Networks Wooyeol Choi, Hyuk Lim, and Ashutosh Sabharwal Abstract Recent advances in signal processing have demonstrated in-band full-duplex

More information

Doodle Labs Prism-WiFi Transceiver NM-1370 High Performance COFDM/MIMO Broadband Transceiver with minipcie

Doodle Labs Prism-WiFi Transceiver NM-1370 High Performance COFDM/MIMO Broadband Transceiver with minipcie Doodle Labs Prism-WiFi Transceiver NM-1370 High Performance COFDM/MIMO Broadband Transceiver with minipcie Prism-WiFi Transceiver Overview Doodle Labs Prism-WiFi are frequency shifted long range Industrial

More information

ProBeam: A Prac,cal Mul,cell Beamforming System for Small- cell Networks

ProBeam: A Prac,cal Mul,cell Beamforming System for Small- cell Networks ProBeam: A Prac,cal Mul,cell Beamforming System for Small- cell Networks Jongwon Yoon Karthik Sundaresan Mohammad Khojastepour U. Wisconsin- Madison NEC Labs NEC Labs Sampath Rangarajan NEC Labs Suman

More information

2016 Spring Technical Forum Proceedings

2016 Spring Technical Forum Proceedings Full Duplex DOCSIS Technology over HFC Networks Belal Hamzeh CableLabs, Inc. Abstract DOCSIS 3.1 technology provides a significant increase in network capacity supporting 10 Gbps downstream capacity and

More information

Multi-Aperture Phased Arrays Versus Multi-beam Lens Arrays for Millimeter-Wave Multiuser MIMO

Multi-Aperture Phased Arrays Versus Multi-beam Lens Arrays for Millimeter-Wave Multiuser MIMO Multi-Aperture Phased Arrays Versus Multi-beam Lens Arrays for Millimeter-Wave Multiuser MIMO Asilomar 2017 October 31, 2017 Akbar M. Sayeed Wireless Communications and Sensing Laboratory Electrical and

More information

Digitally-Controlled RF Self- Interference Canceller for Full-Duplex Radios

Digitally-Controlled RF Self- Interference Canceller for Full-Duplex Radios Digitally-Controlled RF Self- nterference Canceller for Full-Duplex Radios Joose Tamminen 1, Matias Turunen 1, Dani Korpi 1, Timo Huusari 2, Yang-Seok Choi 2, Shilpa Talwar 2, and Mikko Valkama 1 1 Dept.

More information

In-band Full Duplex Radios and System Performance

In-band Full Duplex Radios and System Performance January 25 In-band Full Duplex Radios and System Performance Date: 25--2 doc.: IEEE 82.-5-43--ax Authors: Name Affiliations Address Phone email Kapseok Chang 28 Gajeong-ro, Yuseonggu, Daejeon 35-7, Korea

More information

A Power-Efficient Implementation of In-Band Full-Duplex Communication System (ReflectFX)

A Power-Efficient Implementation of In-Band Full-Duplex Communication System (ReflectFX) 016 International Symposium on Signal, Image, Video and Communications (ISIVC) A Power-Efficient Implementation of In-Band Full-Duplex Communication System (ReflectFX) Seiran Khaledian, Farhad Farzami,

More information

03_57_104_final.fm Page 97 Tuesday, December 4, :17 PM. Problems Problems

03_57_104_final.fm Page 97 Tuesday, December 4, :17 PM. Problems Problems 03_57_104_final.fm Page 97 Tuesday, December 4, 2001 2:17 PM Problems 97 3.9 Problems 3.1 Prove that for a hexagonal geometry, the co-channel reuse ratio is given by Q = 3N, where N = i 2 + ij + j 2. Hint:

More information

Design and Experimental Evaluation of Multi-User Beamforming in Wireless LANs

Design and Experimental Evaluation of Multi-User Beamforming in Wireless LANs Design and Experimental Evaluation of Multi-User Beamforming in Wireless LANs Ehsan Aryafar 1, Narendra Anand 1, Theodoros Salonidis 2, and Edward W. Knightly 1 1 Rice University, Houston, TX, USA 2 Technicolor,

More information

Proposal for Uplink MIMO Schemes in IEEE m

Proposal for Uplink MIMO Schemes in IEEE m Proposal for Uplink MIMO Schemes in IEEE 802.16m Document Number: IEEE C802.16m-08/615 Date Submitted: 2008-07-07 Source: Jun Yuan, Hosein Nikopourdeilami, Mo-Han Fong, Robert Novak, Dongsheng Yu, Sophie

More information

Testing c2k Mobile Stations Using a Digitally Generated Faded Signal

Testing c2k Mobile Stations Using a Digitally Generated Faded Signal Testing c2k Mobile Stations Using a Digitally Generated Faded Signal Agenda Overview of Presentation Fading Overview Mitigation Test Methods Agenda Fading Presentation Fading Overview Mitigation Test Methods

More information

Real-time Distributed MIMO Systems. Hariharan Rahul Ezzeldin Hamed, Mohammed A. Abdelghany, Dina Katabi

Real-time Distributed MIMO Systems. Hariharan Rahul Ezzeldin Hamed, Mohammed A. Abdelghany, Dina Katabi Real-time Distributed MIMO Systems Hariharan Rahul Ezzeldin Hamed, Mohammed A. Abdelghany, Dina Katabi Dense Wireless Networks Stadiums Concerts Airports Malls Interference Limits Wireless Throughput APs

More information

Full Duplex CMOS Transceiver with On-Chip Self-Interference Cancelation. Seyyed Amir Ayati

Full Duplex CMOS Transceiver with On-Chip Self-Interference Cancelation. Seyyed Amir Ayati Full Duplex CMOS Transceiver with On-Chip Self-Interference Cancelation by Seyyed Amir Ayati A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved

More information

Wireless TDMA Mesh Networks

Wireless TDMA Mesh Networks Wireless TDMA Mesh Networks Vinay Ribeiro Department of Computer Science and Engineering IIT Delhi Outline What are mesh networks Applications of wireless mesh Quality-of-service Design and development

More information

Analog and Digital Self-interference Cancellation in Full-Duplex MIMO-OFDM Transceivers with Limited Resolution in A/D Conversion

Analog and Digital Self-interference Cancellation in Full-Duplex MIMO-OFDM Transceivers with Limited Resolution in A/D Conversion Analog and Digital Self-interference Cancellation in Full-Duplex MIMO- Transceivers with Limited Resolution in A/D Conversion Taneli Riihonen and Risto Wichman Aalto University School of Electrical Engineering,

More information

CorteXlab: research. opportunities. Jean-Marie Gorce

CorteXlab: research. opportunities. Jean-Marie Gorce CorteXlab: research opportunities Jean-Marie Gorce jean-marie.gorce@insa-lyon.fr CorteXlab inauguration Tuesday, October 28, 2014 Which theoretical framework? EM theory Information theory Queuing theory

More information

What s Behind 5G Wireless Communications?

What s Behind 5G Wireless Communications? What s Behind 5G Wireless Communications? Marc Barberis 2015 The MathWorks, Inc. 1 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile Broadband IoT

More information

Technical Aspects of LTE Part I: OFDM

Technical Aspects of LTE Part I: OFDM Technical Aspects of LTE Part I: OFDM By Mohammad Movahhedian, Ph.D., MIET, MIEEE m.movahhedian@mci.ir ITU regional workshop on Long-Term Evolution 9-11 Dec. 2013 Outline Motivation for LTE LTE Network

More information

Multiple Antenna Systems in WiMAX

Multiple Antenna Systems in WiMAX WHITEPAPER An Introduction to MIMO, SAS and Diversity supported by Airspan s WiMAX Product Line We Make WiMAX Easy Multiple Antenna Systems in WiMAX An Introduction to MIMO, SAS and Diversity supported

More information

Outline / Wireless Networks and Applications Lecture 7: Physical Layer OFDM. Frequency-Selective Radio Channel. How Do We Increase Rates?

Outline / Wireless Networks and Applications Lecture 7: Physical Layer OFDM. Frequency-Selective Radio Channel. How Do We Increase Rates? Page 1 Outline 18-452/18-750 Wireless Networks and Applications Lecture 7: Physical Layer OFDM Peter Steenkiste Carnegie Mellon University RF introduction Modulation and multiplexing Channel capacity Antennas

More information

Reconfigurable Hybrid Beamforming Architecture for Millimeter Wave Radio: A Tradeoff between MIMO Diversity and Beamforming Directivity

Reconfigurable Hybrid Beamforming Architecture for Millimeter Wave Radio: A Tradeoff between MIMO Diversity and Beamforming Directivity Reconfigurable Hybrid Beamforming Architecture for Millimeter Wave Radio: A Tradeoff between MIMO Diversity and Beamforming Directivity Hybrid beamforming (HBF), employing precoding/beamforming technologies

More information

Ten Things You Should Know About MIMO

Ten Things You Should Know About MIMO Ten Things You Should Know About MIMO 4G World 2009 presented by: David L. Barner www/agilent.com/find/4gworld Copyright 2009 Agilent Technologies, Inc. The Full Agenda Intro System Operation 1: Cellular

More information

The Performance Analysis of Full-Duplex System Linjun Wu

The Performance Analysis of Full-Duplex System Linjun Wu International Conference on Electromechanical Control Technology and Transportation (ICECTT 2015) The Performance Analysis of Full-Duplex System Linjun Wu College of Information Science and Engineering,

More information

ADVANCED WIRELESS TECHNOLOGIES. Aditya K. Jagannatham Indian Institute of Technology Kanpur

ADVANCED WIRELESS TECHNOLOGIES. Aditya K. Jagannatham Indian Institute of Technology Kanpur ADVANCED WIRELESS TECHNOLOGIES Aditya K. Jagannatham Indian Institute of Technology Kanpur Wireless Signal Fast Fading The wireless signal can reach the receiver via direct and scattered paths. As a result,

More information

W-CDMA for UMTS Principles

W-CDMA for UMTS Principles W-CDMA for UMTS Principles Introduction CDMA Background/ History Code Division Multiple Access (CDMA) Why CDMA? CDMA Principles / Spreading Codes Multi-path Radio Channel and Rake Receiver Problems to

More information

Combination of Dynamic-TDD and Static-TDD Based on Adaptive Power Control

Combination of Dynamic-TDD and Static-TDD Based on Adaptive Power Control Combination of Dynamic-TDD and Static-TDD Based on Adaptive Power Control Howon Lee and Dong-Ho Cho Department of Electrical Engineering and Computer Science Korea Advanced Institute of Science and Technology

More information

mm-wave Transceiver Challenges for the 5G and 60GHz Standards Prof. Emanuel Cohen Technion

mm-wave Transceiver Challenges for the 5G and 60GHz Standards Prof. Emanuel Cohen Technion mm-wave Transceiver Challenges for the 5G and 60GHz Standards Prof. Emanuel Cohen Technion November 11, 11, 2015 2015 1 mm-wave advantage Why is mm-wave interesting now? Available Spectrum 7 GHz of virtually

More information

Advanced Architectures for Self- Interference Cancellation in Full-Duplex Radios: Algorithms and Measurements

Advanced Architectures for Self- Interference Cancellation in Full-Duplex Radios: Algorithms and Measurements Advanced Architectures for Self- Interference Cancellation in Full-Duplex Radios: Algorithms and Measurements Dani Korpi, Mona AghababaeeTafreshi, Mauno Piililä, Lauri Anttila, Mikko Valkama Department

More information

Interference management Within 3GPP LTE advanced

Interference management Within 3GPP LTE advanced Interference management Within 3GPP LTE advanced Konstantinos Dimou, PhD Senior Research Engineer, Wireless Access Networks, Ericsson research konstantinos.dimou@ericsson.com 2013-02-20 Outline Introduction

More information

MIMO I: Spatial Diversity

MIMO I: Spatial Diversity MIMO I: Spatial Diversity COS 463: Wireless Networks Lecture 16 Kyle Jamieson [Parts adapted from D. Halperin et al., T. Rappaport] What is MIMO, and why? Multiple-Input, Multiple-Output (MIMO) communications

More information

Interference-Aware Receivers for LTE SU-MIMO in OAI

Interference-Aware Receivers for LTE SU-MIMO in OAI Interference-Aware Receivers for LTE SU-MIMO in OAI Elena Lukashova, Florian Kaltenberger, Raymond Knopp Communication Systems Dep., EURECOM April, 2017 1 / 26 MIMO in OAI OAI has been used intensively

More information

Interference: An Information Theoretic View

Interference: An Information Theoretic View Interference: An Information Theoretic View David Tse Wireless Foundations U.C. Berkeley ISIT 2009 Tutorial June 28 Thanks: Changho Suh. Context Two central phenomena in wireless communications: Fading

More information

Various Applications of Full Duplex Techniques in Wireless Communication Networks

Various Applications of Full Duplex Techniques in Wireless Communication Networks Various Applications of Full Duplex Techniques in Wireless Communication Networks Hyungsik Ju Department of Electrical and Computer Engineering National University of Singapore 2014. 04. 04 Introduction

More information

Wideband Full-Duplex Wireless via FrequencyDomain Equalization: Design and Experimentation

Wideband Full-Duplex Wireless via FrequencyDomain Equalization: Design and Experimentation To appear in Proc. ACM MobiCom 9 Wideband Full-Duplex Wireless via FrequencyDomain Equalization: Design and Experimentation Tingjun Chen, Mahmood Baraani Dastjerdi, Jin Zhou, Harish Krishnaswamy, Gil Zussman

More information

Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA. OFDM-Based Radio Access in Downlink. Features of Evolved UTRA and UTRAN

Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA. OFDM-Based Radio Access in Downlink. Features of Evolved UTRA and UTRAN Evolved UTRA and UTRAN Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA Evolved UTRA (E-UTRA) and UTRAN represent long-term evolution (LTE) of technology to maintain continuous

More information

DUAL-POLARIZED, DIFFERENTIAL LINE FEED MICROSTRIP CIRCULAR PATCH ANTENNA FOR FULL DUPLEX COMMUNICATION

DUAL-POLARIZED, DIFFERENTIAL LINE FEED MICROSTRIP CIRCULAR PATCH ANTENNA FOR FULL DUPLEX COMMUNICATION DUAL-POLARIZED, DIFFERENTIAL LINE FEED MICROSTRIP CIRCULAR PATCH ANTENNA FOR FULL DUPLEX COMMUNICATION R.SOWMIYA2,B.SOWMYA2,S.SUSHMA2,R.VISHNUPRIYA2 2 Student T.R.P ENGINEERING COLLEGE Tiruchirappalli

More information

Direction of Arrival Estimation in Smart Antenna for Marine Communication. Deepthy M Vijayan, Sreedevi K Menon /16/$31.

Direction of Arrival Estimation in Smart Antenna for Marine Communication. Deepthy M Vijayan, Sreedevi K Menon /16/$31. International Conference on Communication and Signal Processing, April 6-8, 2016, India Direction of Arrival Estimation in Smart Antenna for Marine Communication Deepthy M Vijayan, Sreedevi K Menon Abstract

More information

Mobile Radio Systems (Wireless Communications)

Mobile Radio Systems (Wireless Communications) Mobile Radio Systems (Wireless Communications) Klaus Witrisal witrisal@tugraz.at Signal Processing and Speech Communication Lab, TU Graz Lecture 1 WS2015/16 (6 October 2016) Key Topics of this Lecture

More information

One Cell Reuse OFDM/TDMA using. broadband wireless access systems

One Cell Reuse OFDM/TDMA using. broadband wireless access systems One Cell Reuse OFDM/TDMA using subcarrier level adaptive modulation for broadband wireless access systems Seiichi Sampei Department of Information and Communications Technology, Osaka University Outlines

More information