Interference-Aware Receivers for LTE SU-MIMO in OAI

Size: px
Start display at page:

Download "Interference-Aware Receivers for LTE SU-MIMO in OAI"

Transcription

1 Interference-Aware Receivers for LTE SU-MIMO in OAI Elena Lukashova, Florian Kaltenberger, Raymond Knopp Communication Systems Dep., EURECOM April, / 26

2 MIMO in OAI OAI has been used intensively for MIMO research Advanced receivers for Multi-user MIMO (transmission mode 5) 1 Channel sounding campaings 2 Massive MIMO beamforming (transmission mode 7) using reciprocity 3 But basic SU-MIMO was long neglected This work describes the receiver architectures that have been implemented for 2x2 TM3 (open-loop) and TM4 (closed loop) 1 Wagner and Kaltenberger, Interference-Aware Receiver Design for MU-MIMO in LTE: Real-Time Performance Measurements. 2 Kaltenberger et al., Broadband Wireless Channel Measurements for High Speed Trains. 3 Jiang et al., MIMO-TDD Reciprocity and Hardware Imbalances: Experimental Results. 2 / 26

3 Receiver Architectures ML receivers are optimum, but have high computational complexity. Linear receivers have poor perfomance (especially in fixed point) Reduced complexity Maximum-Likelihood (R-ML) receivers based on Interference-Aware (IA) soft bit LLR metrics 4. Parallel Interference Aware (PIA) receiver: suboptimal IA detection of first stream + successive interference cancellation (IA-SIC): does not introduce any informational loss compared to ML MIMO receiver 4 Ghaffar and Knopp, Low Complexity Metrics for BICM SISO and MIMO Systems. 3 / 26

4 Signal model for TM3 and TM4 The received signal vector y l C 2 1 for the l-th subcarrier seen by the UE is given by: y l = H l P l x l + n l, [ ] K 1 e jφ H l = + K + 1 e jφ 1 } {{ } LOS component l = 1, 2..., L, where 1 K + 1 H l, }{{} NLOS component φ is a phase-shift and K is the Rician K-factor, P is a precoding matrix. y = H eff x + n, H eff = [h eff0 h eff1 ]. 4 / 26

5 Precoding in TM3 and TM4 TM3 Cyclic Delay Diversity applies a different phase delay for each modulation symbol i: For 2 transmission layers, W(i) = 1 2 I, D(i) = P CDD (i) = W(i)D(i)U. [ e πi ], U = 1 [ ] e jπ. TM4 precoders for 2 transmission layers: choose P from the following options { [ ] P, 1 [ ]} j j 5 / 26

6 R-ML Parallel Interference-Aware Receiver Both codewords undergo matched filtering and are handled in the same manner using interference-aware low-complexity Log-Likelihood Ratio (LLR) metrics: LLR 0 M0_M1_llr LLR 1 M1_M0_llr 6 / 26

7 R-ML Successive Interference Canceling Receiver After Matched filter, CW 0 is handled identical to the PIA detection, while CW 1 receives interference-free treatment: LLR 0 M0_M1_llr LLR 1 M1_llr 7 / 26

8 Mutual Information Potential of PIA and SIC receivers Based on the MI chain rule, the SIC receiver is informationally lossless compared to the joint ML detection. I ML = I SIC = I (X 0; Y MF H eff ) }{{} + I (X 1; Y MF X 0, H eff ) }{{} MI for the first CW MI for the second CW using SIC I ML I PIA0 +I PIA1 = I (X 0; Y MF H eff ) }{{} + I (X 1; Y MF H eff ) }{{} MI for the first CW MI for the second CW using PIA 8 / 26

9 Mutual Information Potential MI,[bit/symb] SIC 64 64QAM PIA 64 64QAM SIC 16 64QAM PIA 16 64QAM SIC 16 16QAM PIA 16 16QAM SNR, [db] Our SIC receiver possesses higher MI potential compared to PIA. The main gains come from 64 64QAM constellations. 9 / 26

10 OAI Simulation Parameters Fading environment: 1-tap and 8-tap Rayleigh and Rician channels, EPA model with moderate (EPAM) and high (EPAH) correlation. Rician channel: AoA α { π 4, π 8 } radians and K-factor of 9.5 db; Throughput simulations: 3000 packets with 1 PDCCH symbol. Bandwidth 5MHz. 10 MCS 0 28, MCS 0 MCS Target BLER Perfect Channel Estimation. 10 / 26

11 Imperical Performance: Rician channel 35 Total Throughput, [Mbit/s] SIC Rice AoA π 4 PIA Rice AoA π 4 SIC Rice AoA π 8 PIA Rice AoA π 8 4Mbit/s SNR, [db] Our SIC receiver demonstrates 4Mbit/s throughput gain in Rician channel compared to PIA. 11 / 26

12 Computational Effort SIC16-16 PIA16-16 SIC64-64 PIA64-64 Trial processing duration (µs) 1,488 1,197 1, MF and LLR SIC block Full rec For the high modulation order the SIC receiver is 25% more time efficient than PIA receiver, since the SIC block that takes less time than the 64 64QAM IA LLR metric for the CW / 26

13 Link Adaptation in TM3 and TM4 Channel State Information: the Rank Indicator (RI) the Precoder Matrix Indicator (PMI) the Channel Quality Indicator (CQI) To tune the transmission in the way to guarantee high levels of throughput under certain reliability constrains, the UE estimates: the RI and the CQI for TM3 the RI, the PMI and the CQI for TM4 13 / 26

14 Rank Indicator Estimation RI 2: CDD in TM3 and CLSM in TM4 RI 1: Alamouti precoding. Proposed criteria for 2 2 MIMO: Condition Number κ(h). κ(h) = H F H 1 F, If κ(h) is less than a certain threshold T, the UE reports RI 2, otherwise RI = / 26

15 Rank Indicator Estimation CLSM transmissions, [%] tap Rayleigh EPAH T, [db] T, [db] With the increase of the correlation level, the amount of the simultaneous transmission of the two transport blocks given the same values of threshold T decreases. Theoretically we might expect that in the highly correlated channels rank adaptation is important. 15 / 26

16 Rank Indicator Estimation SIC EPAH PIA EPAH Throughput, [Mbps] T = 5dB T = 10dB T = 15dB T = 20dB T = 25dB no RA SNR, [db] SNR, [db] The throughput values are the highest, if the enodeb always sends two transport blocks regardless of the channel conditions. Thus, the R-ML PIA and SIC detection demonstrate high throughput when no rank adaptation is applied. 16 / 26

17 Precoder Estimation for TM4 For TM4 with 2 active antenna ports the 3GPP standard defines 2 precoding options: { [ ] P, 1 [ ]} j j The two most common metrics: maximum mutual information criteria. It involves a time-consuming computation of MI or heavy look-up tables. maximum SNR criteria. Intuitive and light implementation solution is to min BLER of CW 0 to increase probability of decoding for CW Ghaffar and Knopp, Making multiuser MIMO work for LTE. 17 / 26

18 Comparison of the max MI and max SNR Criterion 12 MI for 2 CWs,[bit/symb] MI based MI based MI based SNR based SNR based SNR based SNR, [db] The MI-based criterion outperforms the SNR-based computation only when CW 0 is mapped on 16QAM, and CW 1 belongs to 64QAM. This gap vanishes when both codewords belong to the same constellation. 18 / 26

19 Current status in OAI Our PIA and SIC receivers are implemented in dlsim simulator. TM3 has been tested with PIA receiver in real-time, SIC and TM4 to come soon. RI and PMI estimation are supported, CQI to come soon. HARQ for both SU-MIMO with both PIA and SIC is supported. TM3 enb in test phase. Work on 5G receivers has begun. 19 / 26

20 5G MIMO Schemes MIMO CLSM schemes for 5G 6 : 1 CW for 1 to 4-layer transmission 2 CWs for 5 to 8-layer transmission. SIC can no longer be used in the same way! Possible solutions for 2 layers PIA can still be used SIC can be used, but without CRC risk of error propagation 6 3GPP, Study on New Radio Access Technology.Physical Layer Aspects. 20 / 26

21 Possible solutions for 4 layers Extend LLR metrics to take into account 4 interfering symbols; Reduce 4 4 channel such that the interference is reduced to 2 2 matrix so that the existing LLR metrics can be used. Apply practically feasible Block QR decomposition: 7 HP = Q 0Q 1R, [ ] [ ] [ ] Q00 Q 01 I 0 R00 R 01 y = x + n = Q Q 10 Q 11 0 Q1 0 R 0Q 1Rx + n 11 Signal Transformation [ ] Q T R00 R 01 0 y = x + Q 0 Q1R T 0 n, 11 Apply PIA or SIC to the 2x2 sub-blocks. 7 Thomas et al., Detection using block QR decomposition for MIMO HetNets. 21 / 26

22 Thank You! 22 / 26

23 Interference-Aware soft bit LLR metrics The distance metric of ML detector D(y H eff x) = arg min y h eff0 x 0 h eff1 x 1 2 x 2 M 0,M 1 LLR of x 0 using the MaxLog approximation of ML receiver of IA detection: λ (y, H, x) = max { D(y H eff x)} x 2 M 0,M 1 The IA detection allows to reduce the complexity from dual stream 2 M0+M1 to single stream 2 M0 thanks to defining for each symbol x 0 a single optimal interfering symbol x 1. The exact metrics for QPSK, 16QAM, 64QAM are derived by Ghaffar and Knopp 8. 8 Ghaffar and Knopp, Low Complexity Metrics for BICM SISO and MIMO Systems. 23 / 26

24 Interference-Aware soft bit LLR metrics λ = max x 2 M 0,M 1 { h eff0 2 x 0 2 h eff1 2 x [ R(y MF0 )R(x 0 ) + I(y MF0 )I(x 0 ) ] η 0 = R(ρ)R(x 0 ) + I(ρ)I(x 0 ) R(y MF1 ), η 1 = R(ρ)I(x 0 ) I(ρ)R(x 0 ) I(y MF1 ) 2 η 0 R(x 0 ) 2 η 1 R(x 1 ) }, To maximize λ, the signs of the real and imaginary parts of the interfering symbol x 1 should be opposite to η 0 and η 1 respectively, and R(x 1 ) opt = η 0 h eff1 2, I(x 1 ) opt = η 1 h eff / 26

25 Optimal MCS in Rayleigh channel MCS SIC Rayleigh PIA Rayleigh SNR, [db] SNR, [db] MCS 0 MCS 1 The SIC receiver supports higher MCS for CW 1 thanks to the interference-free detection of the second stream. 25 / 26

26 Precoder Estimation for TM4 We propose to evaluate the correlation coefficient ρ 10 = h H eff1 h eff0. P = [ [ 1 1 j j ] ], for R(ρ 10 ) I(ρ 10 ), for R(ρ 10 ) < I(ρ 10 ) 26 / 26

Carrier Aggregation and MU-MIMO: outcomes from SAMURAI project

Carrier Aggregation and MU-MIMO: outcomes from SAMURAI project Carrier Aggregation and MU-MIMO: outcomes from SAMURAI project Presented by Florian Kaltenberger Swisscom workshop 29.5.2012 Eurecom, Sophia-Antipolis, France Outline Motivation The SAMURAI project Overview

More information

MU-MIMO in LTE/LTE-A Performance Analysis. Rizwan GHAFFAR, Biljana BADIC

MU-MIMO in LTE/LTE-A Performance Analysis. Rizwan GHAFFAR, Biljana BADIC MU-MIMO in LTE/LTE-A Performance Analysis Rizwan GHAFFAR, Biljana BADIC Outline 1 Introduction to Multi-user MIMO Multi-user MIMO in LTE and LTE-A 3 Transceiver Structures for Multi-user MIMO Rizwan GHAFFAR

More information

Improving MU-MIMO Performance in LTE-(Advanced) by Efficiently Exploiting Feedback Resources and through Dynamic Scheduling

Improving MU-MIMO Performance in LTE-(Advanced) by Efficiently Exploiting Feedback Resources and through Dynamic Scheduling Improving MU-MIMO Performance in LTE-(Advanced) by Efficiently Exploiting Feedback Resources and through Dynamic Scheduling Ankit Bhamri, Florian Kaltenberger, Raymond Knopp, Jyri Hämäläinen Eurecom, France

More information

The Case for Optimum Detection Algorithms in MIMO Wireless Systems. Helmut Bölcskei

The Case for Optimum Detection Algorithms in MIMO Wireless Systems. Helmut Bölcskei The Case for Optimum Detection Algorithms in MIMO Wireless Systems Helmut Bölcskei joint work with A. Burg, C. Studer, and M. Borgmann ETH Zurich Data rates in wireless double every 18 months throughput

More information

3G/4G Mobile Communications Systems. Dr. Stefan Brück Qualcomm Corporate R&D Center Germany

3G/4G Mobile Communications Systems. Dr. Stefan Brück Qualcomm Corporate R&D Center Germany 3G/4G Mobile Communications Systems Dr. Stefan Brück Qualcomm Corporate R&D Center Germany Chapter VI: Physical Layer of LTE 2 Slide 2 Physical Layer of LTE OFDM and SC-FDMA Basics DL/UL Resource Grid

More information

Implementation and Complexity Analysis of List Sphere Detector for MIMO-OFDM systems

Implementation and Complexity Analysis of List Sphere Detector for MIMO-OFDM systems Implementation and Complexity Analysis of List Sphere Detector for MIMO-OFDM systems Markus Myllylä University of Oulu, Centre for Wireless Communications markus.myllyla@ee.oulu.fi Outline Introduction

More information

Multiple Antenna Techniques

Multiple Antenna Techniques Multiple Antenna Techniques In LTE, BS and mobile could both use multiple antennas for radio transmission and reception! In LTE, three main multiple antenna techniques! Diversity processing! The transmitter,

More information

ELEC E7210: Communication Theory. Lecture 11: MIMO Systems and Space-time Communications

ELEC E7210: Communication Theory. Lecture 11: MIMO Systems and Space-time Communications ELEC E7210: Communication Theory Lecture 11: MIMO Systems and Space-time Communications Overview of the last lecture MIMO systems -parallel decomposition; - beamforming; - MIMO channel capacity MIMO Key

More information

Interference-Aware Receiver Structure for Multi-User MIMO and LTE

Interference-Aware Receiver Structure for Multi-User MIMO and LTE Interference-Aware Receiver Structure for Multi-User MIMO and LTE Rizwan Ghaffar, Raymond Knopp Eurecom, 9 route des Crêtes B.P.93 0690 Sophia Antipolis Cedex FRANCE Email: rizwan.ghaffar@eurecom.fr, raymond.knopp@eurecom.fr

More information

On Scalability, Robustness and Accuracy of physical layer abstraction for large-scale system-level evaluations of LTE networks

On Scalability, Robustness and Accuracy of physical layer abstraction for large-scale system-level evaluations of LTE networks On Scalability, Robustness and Accuracy of physical layer abstraction for large-scale system-level evaluations of LTE networks Florian Kaltenberger, Imran Latif, Raymond Knopp Eurecom Campus SophiaTech

More information

MIMO Systems and Applications

MIMO Systems and Applications MIMO Systems and Applications Mário Marques da Silva marques.silva@ieee.org 1 Outline Introduction System Characterization for MIMO types Space-Time Block Coding (open loop) Selective Transmit Diversity

More information

LTE-Advanced research in 3GPP

LTE-Advanced research in 3GPP LTE-Advanced research in 3GPP GIGA seminar 8 4.12.28 Tommi Koivisto tommi.koivisto@nokia.com Outline Background and LTE-Advanced schedule LTE-Advanced requirements set by 3GPP Technologies under investigation

More information

CHAPTER 8 MIMO. Xijun Wang

CHAPTER 8 MIMO. Xijun Wang CHAPTER 8 MIMO Xijun Wang WEEKLY READING 1. Goldsmith, Wireless Communications, Chapters 10 2. Tse, Fundamentals of Wireless Communication, Chapter 7-10 2 MIMO 3 BENEFITS OF MIMO n Array gain The increase

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /ICCE.2012.

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /ICCE.2012. Zhu, X., Doufexi, A., & Koçak, T. (2012). A performance enhancement for 60 GHz wireless indoor applications. In ICCE 2012, Las Vegas Institute of Electrical and Electronics Engineers (IEEE). DOI: 10.1109/ICCE.2012.6161865

More information

An LTE compatible massive MIMO testbed based on OpenAirInterface. Xiwen JIANG, Florian Kaltenberger EURECOM

An LTE compatible massive MIMO testbed based on OpenAirInterface. Xiwen JIANG, Florian Kaltenberger EURECOM An LTE compatible massive MIMO testbed based on OpenAirInterface Xiwen JIANG, Florian Kaltenberger EURECOM Testbed Overview Open source platform Based on OAI hardware and software 3GPP LTE compatible Incorporate

More information

Realization of Peak Frequency Efficiency of 50 Bit/Second/Hz Using OFDM MIMO Multiplexing with MLD Based Signal Detection

Realization of Peak Frequency Efficiency of 50 Bit/Second/Hz Using OFDM MIMO Multiplexing with MLD Based Signal Detection Realization of Peak Frequency Efficiency of 50 Bit/Second/Hz Using OFDM MIMO Multiplexing with MLD Based Signal Detection Kenichi Higuchi (1) and Hidekazu Taoka (2) (1) Tokyo University of Science (2)

More information

Performance Analysis of LTE Downlink System with High Velocity Users

Performance Analysis of LTE Downlink System with High Velocity Users Journal of Computational Information Systems 10: 9 (2014) 3645 3652 Available at http://www.jofcis.com Performance Analysis of LTE Downlink System with High Velocity Users Xiaoyue WANG, Di HE Department

More information

Block Error Rate and UE Throughput Performance Evaluation using LLS and SLS in 3GPP LTE Downlink

Block Error Rate and UE Throughput Performance Evaluation using LLS and SLS in 3GPP LTE Downlink Block Error Rate and UE Throughput Performance Evaluation using LLS and SLS in 3GPP LTE Downlink Ishtiaq Ahmad, Zeeshan Kaleem, and KyungHi Chang Electronic Engineering Department, Inha University Ishtiaq001@gmail.com,

More information

A Comprehensive Study of Open-loop Spatial Multiplexing and Transmit Diversity for Downlink LTE

A Comprehensive Study of Open-loop Spatial Multiplexing and Transmit Diversity for Downlink LTE International Journal of Computer Science and Telecommunications [Volume 5, Issue 2, February 2014] 1 ISSN 2047-3338 A Comprehensive Study of Open-loop Spatial Multiplexing and Transmit Diversity for Downlink

More information

Aalborg Universitet. DOI (link to publication from Publisher): /2011/ Publication date: 2011

Aalborg Universitet. DOI (link to publication from Publisher): /2011/ Publication date: 2011 Aalborg Universitet MU-MIMO in LTE Systems Duplicy, Jonathan; Badic, Biljana ; Balraj, Rajarajan ; Ghaffar, Rizwan ; Horvath, Peter ; Kaltenberger, Florian ; Knopp, Raymond ; Z. Kovacs, Istvan ; Nguyen,

More information

LTE Channel State Information (CSI)

LTE Channel State Information (CSI) LTE Channel State Information (CSI) Presented by: Sandy Fraser, Agilent Technologies Agenda Channel State Information (CSI) different forms and definitions Channel Quality Information, Pre-Coding Matrix

More information

Analysis of Space-Time Block Coded Spatial Modulation in Correlated Rayleigh and Rician Fading Channels

Analysis of Space-Time Block Coded Spatial Modulation in Correlated Rayleigh and Rician Fading Channels Analysis of Space-Time Block Coded Spatial Modulation in Correlated Rayleigh and Rician Fading Channels B Kumbhani, V K Mohandas, R P Singh, S Kabra and R S Kshetrimayum Department of Electronics and Electrical

More information

MU-MIMO in 4G systems

MU-MIMO in 4G systems SUBMISSION TO EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, MU-MIMO SPECIAL ISSUE, NOV. 20. 1 MU-MIMO in 4G systems Jonathan Duplicy, Biljana Badic, RajaRajan Balraj, Rizwan Ghaffar, Péter

More information

Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA. OFDM-Based Radio Access in Downlink. Features of Evolved UTRA and UTRAN

Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA. OFDM-Based Radio Access in Downlink. Features of Evolved UTRA and UTRAN Evolved UTRA and UTRAN Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA Evolved UTRA (E-UTRA) and UTRAN represent long-term evolution (LTE) of technology to maintain continuous

More information

Calculation of the Spatial Preprocessing and Link Adaption Feedback for 3GPP UMTS/LTE

Calculation of the Spatial Preprocessing and Link Adaption Feedback for 3GPP UMTS/LTE Calculation of the Spatial Preprocessing and Link Adaption Feedback for GPP UMTS/LTE Stefan Schwarz, Christian Mehlführer and Markus Rupp Institute of Communications and Radio-Frequency Engineering, Vienna

More information

Channel Estimation for Downlink LTE System Based on LAGRANGE Polynomial Interpolation

Channel Estimation for Downlink LTE System Based on LAGRANGE Polynomial Interpolation Channel Estimation for Downlink LTE System Based on LAGRANGE Polynomial Interpolation Mallouki Nasreddine,Nsiri Bechir,Walid Hakimiand Mahmoud Ammar University of Tunis El Manar, National Engineering School

More information

Performance Evaluation of STBC MIMO Systems with Linear Precoding

Performance Evaluation of STBC MIMO Systems with Linear Precoding elfor Journal, Vol., No., 00. Performance Evaluation of SBC MIMO Systems with Linear Precoding Ancuţa Moldovan, udor Palade, Emanuel Puşchiţă, Irina Vermeşan, and Rebeca Colda Abstract It is known that

More information

Ten Things You Should Know About MIMO

Ten Things You Should Know About MIMO Ten Things You Should Know About MIMO 4G World 2009 presented by: David L. Barner www/agilent.com/find/4gworld Copyright 2009 Agilent Technologies, Inc. The Full Agenda Intro System Operation 1: Cellular

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /PIMRC.2009.

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /PIMRC.2009. Beh, K. C., Doufexi, A., & Armour, S. M. D. (2009). On the performance of SU-MIMO and MU-MIMO in 3GPP LTE downlink. In IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications,

More information

Link Abstraction for Multi-User MIMO in LTE using Interference-Aware Receiver

Link Abstraction for Multi-User MIMO in LTE using Interference-Aware Receiver Link Abstraction for Multi-User MIMO in LTE using Interference-Aware Receiver Imran Latif, Florian Kaltenberger, Raymond Knopp Eurecom 9, Route des Cretes, B.P. 93 694 Sophia Antipolis, France Email: (first

More information

CHAPTER 4 LINK ADAPTATION USING NEURAL NETWORK

CHAPTER 4 LINK ADAPTATION USING NEURAL NETWORK CHAPTER 4 LINK ADAPTATION USING NEURAL NETWORK 4.1 INTRODUCTION For accurate system level simulator performance, link level modeling and prediction [103] must be reliable and fast so as to improve the

More information

Cohere Technologies Performance evaluation of OTFS waveform in single user scenarios Agenda item: Document for: Discussion

Cohere Technologies Performance evaluation of OTFS waveform in single user scenarios Agenda item: Document for: Discussion 1 TSG RA WG1 Meeting #86 R1-167593 Gothenburg, Sweden, August 22-26, 2016 Source: Cohere Technologies Title: Performance evaluation of OTFS waveform in single user scenarios Agenda item: 8.1.2.1 Document

More information

On the Definition of Reference Scenarios for LTE-A Link Level Simulations within COST IC1004

On the Definition of Reference Scenarios for LTE-A Link Level Simulations within COST IC1004 EUROPEAN COOPERATION IN THE FIELD OF SCIENTIFIC AND TECHNICAL RESEARCH IC1004 TD(13)06043 Málaga, Spain 6-8 February, 013 EURO-COST SOURCE: UPC - Universitat Politècnica de Catalunya (Spain) On the Definition

More information

SOURCE: Signal Theory and Communications Department Universitat Politecnica de Catalunya, Barcelona, Spain

SOURCE: Signal Theory and Communications Department Universitat Politecnica de Catalunya, Barcelona, Spain EUROPEAN COOPERATION IN THE FIELD OF SCIENTIFIC AND TECHNICAL RESEARCH EURO-COST SOURCE: Signal Theory and Communications Department Universitat Politecnica de Catalunya, Barcelona, Spain COST 2 TD(9)779

More information

Performance Analysis of MIMO over MIMO-LTE for QPSK Considering Rayleigh Fading Distribution

Performance Analysis of MIMO over MIMO-LTE for QPSK Considering Rayleigh Fading Distribution Performance Analysis of MIMO over MIMO-LTE for QPSK Considering Rayleigh Fading Distribution Ankita Rajkhowa 1, Darshana Kaushik 2, Bhargab Jyoti Saikia 3, Parismita Gogoi 4 1 Project Associate, Department

More information

On limits of Wireless Communications in a Fading Environment: a General Parameterization Quantifying Performance in Fading Channel

On limits of Wireless Communications in a Fading Environment: a General Parameterization Quantifying Performance in Fading Channel Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol. 2, No. 3, September 2014, pp. 125~131 ISSN: 2089-3272 125 On limits of Wireless Communications in a Fading Environment: a General

More information

Interference Mitigation in MIMO Interference Channel via Successive Single-User Soft Decoding

Interference Mitigation in MIMO Interference Channel via Successive Single-User Soft Decoding Interference Mitigation in MIMO Interference Channel via Successive Single-User Soft Decoding Jungwon Lee, Hyukjoon Kwon, Inyup Kang Mobile Solutions Lab, Samsung US R&D Center 491 Directors Pl, San Diego,

More information

1 Multiple antenna techniques 1

1 Multiple antenna techniques 1 1 2 Contents 1 Multiple antenna techniques 1 2 Multiple antenna techniques 3 2.1 Fundamentals of Multiple antenna Theory................... 3 2.1.1 Overview................................ 3 2.1.2 MIMO

More information

Performance Analysis of MIMO-LTE for MQAM over Fading Channels

Performance Analysis of MIMO-LTE for MQAM over Fading Channels IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 12, Issue 1, Ver. III (Jan.-Feb. 2017), PP 11-17 www.iosrjournals.org Performance Analysis

More information

VOL. 3, NO.11 Nov, 2012 ISSN Journal of Emerging Trends in Computing and Information Sciences CIS Journal. All rights reserved.

VOL. 3, NO.11 Nov, 2012 ISSN Journal of Emerging Trends in Computing and Information Sciences CIS Journal. All rights reserved. Effect of Fading Correlation on the Performance of Spatial Multiplexed MIMO systems with circular antennas M. A. Mangoud Department of Electrical and Electronics Engineering, University of Bahrain P. O.

More information

1

1 sebastian.caban@nt.tuwien.ac.at 1 This work has been funded by the Christian Doppler Laboratory for Wireless Technologies for Sustainable Mobility and the Vienna University of Technology. Outline MIMO

More information

Field Experiments of 2.5 Gbit/s High-Speed Packet Transmission Using MIMO OFDM Broadband Packet Radio Access

Field Experiments of 2.5 Gbit/s High-Speed Packet Transmission Using MIMO OFDM Broadband Packet Radio Access NTT DoCoMo Technical Journal Vol. 8 No.1 Field Experiments of 2.5 Gbit/s High-Speed Packet Transmission Using MIMO OFDM Broadband Packet Radio Access Kenichi Higuchi and Hidekazu Taoka A maximum throughput

More information

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 2.114

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 2.114 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY PERFORMANCE IMPROVEMENT OF CONVOLUTION CODED OFDM SYSTEM WITH TRANSMITTER DIVERSITY SCHEME Amol Kumbhare *, DR Rajesh Bodade *

More information

Research Article MU-MIMO in LTE Systems

Research Article MU-MIMO in LTE Systems Hindawi Publishing Corporation EURASIP Journal on Wireless Communications and Networking Volume 2011, Article ID 496763, 13 pages doi:10.1155/2011/496763 Research Article MU-MIMO in LTE Systems Jonathan

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /MC-SS.2011.

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /MC-SS.2011. Zhu, X., Doufexi, A., & Koçak, T. (2011). Beamforming performance analysis for OFDM based IEEE 802.11ad millimeter-wave WPANs. In 8th International Workshop on Multi-Carrier Systems & Solutions (MC-SS),

More information

UNDERSTANDING LTE WITH MATLAB

UNDERSTANDING LTE WITH MATLAB UNDERSTANDING LTE WITH MATLAB FROM MATHEMATICAL MODELING TO SIMULATION AND PROTOTYPING Dr Houman Zarrinkoub MathWorks, Massachusetts, USA WILEY Contents Preface List of Abbreviations 1 Introduction 1.1

More information

LTE Transmission Modes and Beamforming White Paper

LTE Transmission Modes and Beamforming White Paper LTE Transmission Modes and Beamforming White Paper Multiple input multiple output (MIMO) technology is an integral part of 3GPP E-UTRA long term evolution (LTE). As part of MIMO, beamforming is also used

More information

Resource allocation for Hybrid ARQ based Mobile Ad Hoc networks

Resource allocation for Hybrid ARQ based Mobile Ad Hoc networks Resource allocation for Hybrid ARQ based Mobile Ad Hoc networks Philippe Ciblat Joint work with N. Ksairi, A. Le Duc, C. Le Martret, S. Marcille Télécom ParisTech, France Part 1 : Introduction to HARQ

More information

AN EFFICIENT LINK PERFOMANCE ESTIMATION TECHNIQUE FOR MIMO-OFDM SYSTEMS

AN EFFICIENT LINK PERFOMANCE ESTIMATION TECHNIQUE FOR MIMO-OFDM SYSTEMS AN EFFICIENT LINK PERFOMANCE ESTIMATION TECHNIQUE FOR MIMO-OFDM SYSTEMS 1 K. A. Narayana Reddy, 2 G. Madhavi Latha, 3 P.V.Ramana 1 4 th sem, M.Tech (Digital Electronics and Communication Systems), Sree

More information

K-Best Decoders for 5G+ Wireless Communication

K-Best Decoders for 5G+ Wireless Communication K-Best Decoders for 5G+ Wireless Communication Mehnaz Rahman Gwan S. Choi K-Best Decoders for 5G+ Wireless Communication Mehnaz Rahman Department of Electrical and Computer Engineering Texas A&M University

More information

1. Introduction. Noriyuki Maeda, Hiroyuki Kawai, Junichiro Kawamoto and Kenichi Higuchi

1. Introduction. Noriyuki Maeda, Hiroyuki Kawai, Junichiro Kawamoto and Kenichi Higuchi NTT DoCoMo Technical Journal Vol. 7 No.2 Special Articles on 1-Gbit/s Packet Signal Transmission Experiments toward Broadband Packet Radio Access Configuration and Performances of Implemented Experimental

More information

A REVIEW OF RESOURCE ALLOCATION TECHNIQUES FOR THROUGHPUT MAXIMIZATION IN DOWNLINK LTE

A REVIEW OF RESOURCE ALLOCATION TECHNIQUES FOR THROUGHPUT MAXIMIZATION IN DOWNLINK LTE A REVIEW OF RESOURCE ALLOCATION TECHNIQUES FOR THROUGHPUT MAXIMIZATION IN DOWNLINK LTE 1 M.A. GADAM, 2 L. MAIJAMA A, 3 I.H. USMAN Department of Electrical/Electronic Engineering, Federal Polytechnic Bauchi,

More information

Robust CSI feedback for high user velocity

Robust CSI feedback for high user velocity TU WIEN DIPLOMA THESIS Robust CSI feedback for high user velocity Institute of Telecommunications of Vienna University of Technology Laura Portolés Colón 11/18/2014 1 Abstract The significant growth of

More information

Link Abstraction Models Based on Mutual Information for LTE Downlink

Link Abstraction Models Based on Mutual Information for LTE Downlink EUROPEAN COOPERATION IN THE FIELD OF SCIENTIFIC AND TECHNICAL RESEARCH COST 2100 TD(10)11052 Aalborg, Denmark 2010/June/02-04 EURO-COST SOURCE: UPC - Universitat Politècnica de Catalunya UPV Universidad

More information

Performance Evaluation of V-BLAST MIMO System Using Rayleigh & Rician Channels

Performance Evaluation of V-BLAST MIMO System Using Rayleigh & Rician Channels International Journal of Information & Computation Technology. ISSN 0974-2239 Volume 4, Number 15 (2014), pp. 1549-1558 International Research Publications House http://www. irphouse.com Performance Evaluation

More information

MIMO-LTE A relevant Step towards 4G. Prof. Dr.-Ing. Thomas Kaiser CEO mimoon GmbH

MIMO-LTE A relevant Step towards 4G. Prof. Dr.-Ing. Thomas Kaiser CEO mimoon GmbH MIMO-LTE A relevant Step towards 4G Prof. Dr.-Ing. Thomas Kaiser CEO mimoon GmbH MobiMedia, mimoon is a supplier of embedded communications software for the next generation of MIMO-based wireless communication

More information

HOW DO MIMO RADIOS WORK? Adaptability of Modern and LTE Technology. By Fanny Mlinarsky 1/12/2014

HOW DO MIMO RADIOS WORK? Adaptability of Modern and LTE Technology. By Fanny Mlinarsky 1/12/2014 By Fanny Mlinarsky 1/12/2014 Rev. A 1/2014 Wireless technology has come a long way since mobile phones first emerged in the 1970s. Early radios were all analog. Modern radios include digital signal processing

More information

LTE-Advanced and Release 10

LTE-Advanced and Release 10 LTE-Advanced and Release 10 1. Carrier Aggregation 2. Enhanced Downlink MIMO 3. Enhanced Uplink MIMO 4. Relays 5. Release 11 and Beyond Release 10 enhances the capabilities of LTE, to make the technology

More information

MIMO-OFDM for LTE 최수용. 연세대학교전기전자공학과

MIMO-OFDM for LTE 최수용.   연세대학교전기전자공학과 MIMO-OFDM for LTE 최수용 csyong@yonsei.ac.kr http://web.yonsei.ac.kr/sychoi/ 연세대학교전기전자공학과 LTE 시스템의특징 : Architecture LTE(Long Term Evolution) (=E-UTRAN) SAE(System Architecture Evolution) (=EPC) EPS(Evolved

More information

Application of QAP in Modulation Diversity (MoDiv) Design

Application of QAP in Modulation Diversity (MoDiv) Design Application of QAP in Modulation Diversity (MoDiv) Design Hans D Mittelmann School of Mathematical and Statistical Sciences Arizona State University INFORMS Annual Meeting Philadelphia, PA 4 November 2015

More information

Noncoherent Communications with Large Antenna Arrays

Noncoherent Communications with Large Antenna Arrays Noncoherent Communications with Large Antenna Arrays Mainak Chowdhury Joint work with: Alexandros Manolakos, Andrea Goldsmith, Felipe Gomez-Cuba and Elza Erkip Stanford University September 29, 2016 Wireless

More information

FREE SPACE EXPERIMENTS WITH MIMO UMTS HIGH SPEED DOWNLINK PACKET ACCESS

FREE SPACE EXPERIMENTS WITH MIMO UMTS HIGH SPEED DOWNLINK PACKET ACCESS FREE SPACE EXPERIMENTS WITH MIMO UMTS HIGH SPEED DOWNLINK PACKET ACCESS Christian Mehlführer, Lukas Mayer, Robert Langwieser, Arpad L. Scholtz, and Markus Rupp Institute of Communications and Radio-Frequency

More information

A Physical Layer Abstraction for Maximum Likelihood Demodulation of MIMO Signals

A Physical Layer Abstraction for Maximum Likelihood Demodulation of MIMO Signals A Physical Layer Abstraction for Maximum Likelihood Demodulation of MIMO Signals R. Ramésh, Havish Koorapaty, Thomas Cheng and Kumar Balachandran Ericsson Research, RTP P.O. Box 139, Research Triangle

More information

IMPROVED QR AIDED DETECTION UNDER CHANNEL ESTIMATION ERROR CONDITION

IMPROVED QR AIDED DETECTION UNDER CHANNEL ESTIMATION ERROR CONDITION IMPROVED QR AIDED DETECTION UNDER CHANNEL ESTIMATION ERROR CONDITION Jigyasha Shrivastava, Sanjay Khadagade, and Sumit Gupta Department of Electronics and Communications Engineering, Oriental College of

More information

Beamforming for 4.9G/5G Networks

Beamforming for 4.9G/5G Networks Beamforming for 4.9G/5G Networks Exploiting Massive MIMO and Active Antenna Technologies White Paper Contents 1. Executive summary 3 2. Introduction 3 3. Beamforming benefits below 6 GHz 5 4. Field performance

More information

4x4 Time-Domain MIMO encoder with OFDM Scheme in WIMAX Context

4x4 Time-Domain MIMO encoder with OFDM Scheme in WIMAX Context 4x4 Time-Domain MIMO encoder with OFDM Scheme in WIMAX Context Mohamed.Messaoudi 1, Majdi.Benzarti 2, Salem.Hasnaoui 3 Al-Manar University, SYSCOM Laboratory / ENIT, Tunisia 1 messaoudi.jmohamed@gmail.com,

More information

Resource Allocation Strategies Based on the Signal-to-Leakage-plus-Noise Ratio in LTE-A CoMP Systems

Resource Allocation Strategies Based on the Signal-to-Leakage-plus-Noise Ratio in LTE-A CoMP Systems Resource Allocation Strategies Based on the Signal-to-Leakage-plus-Noise Ratio in LTE-A CoMP Systems Rana A. Abdelaal Mahmoud H. Ismail Khaled Elsayed Cairo University, Egypt 4G++ Project 1 Agenda Motivation

More information

Multiple Antennas in Wireless Communications

Multiple Antennas in Wireless Communications Multiple Antennas in Wireless Communications Luca Sanguinetti Department of Information Engineering Pisa University luca.sanguinetti@iet.unipi.it April, 2009 Luca Sanguinetti (IET) MIMO April, 2009 1 /

More information

Link Abstraction for Variable Bandwidth with Incremental Redundancy HARQ in LTE

Link Abstraction for Variable Bandwidth with Incremental Redundancy HARQ in LTE Link Abstraction for Variable Bandwidth with Incremental Redundancy HARQ in LTE Imran Latif, Florian Kaltenberger, Raymond Knopp, and Joan Olmos EURECOM, Sophia Antipolis, France, Email: first.lastname@eurecom.fr

More information

Transforming MIMO Test

Transforming MIMO Test Transforming MIMO Test MIMO channel modeling and emulation test challenges Presented by: Kevin Bertlin PXB Product Engineer Page 1 Outline Wireless Technologies Review Multipath Fading and Antenna Diversity

More information

MIMO I: Spatial Diversity

MIMO I: Spatial Diversity MIMO I: Spatial Diversity COS 463: Wireless Networks Lecture 16 Kyle Jamieson [Parts adapted from D. Halperin et al., T. Rappaport] What is MIMO, and why? Multiple-Input, Multiple-Output (MIMO) communications

More information

System-Level Performance of Downlink Non-orthogonal Multiple Access (NOMA) Under Various Environments

System-Level Performance of Downlink Non-orthogonal Multiple Access (NOMA) Under Various Environments System-Level Permance of Downlink n-orthogonal Multiple Access (N) Under Various Environments Yuya Saito, Anass Benjebbour, Yoshihisa Kishiyama, and Takehiro Nakamura 5G Radio Access Network Research Group,

More information

3G Evolution. Outline. Chapter: Multi-antenna configurations. Introduction. Introduction. Multi-antenna techniques. Multiple receiver antennas, SIMO

3G Evolution. Outline. Chapter: Multi-antenna configurations. Introduction. Introduction. Multi-antenna techniques. Multiple receiver antennas, SIMO Chapter: 3G Evolution 6 Outline Introduction Multi-antenna configurations Multi-antenna t techniques Vanja Plicanic vanja.plicanic@eit.lth.se lth Multi-antenna techniques Multiple transmitter antennas,

More information

Channel Model and Throughput Analysis for LEO OFDM Satellite Communication System

Channel Model and Throughput Analysis for LEO OFDM Satellite Communication System Vol.6, No.6 (013), pp.109-1 http://dx.doi.org/10.1457/ijfgcn.013.6.6.1 Channel Model and Throughput Analysis for LEO OFDM Satellite Communication System Zhenyu Na 1, Qinyang Guan, Ce Fu 1, Yang Cui 3 and

More information

Wireless Physical Layer Concepts: Part III

Wireless Physical Layer Concepts: Part III Wireless Physical Layer Concepts: Part III Raj Jain Professor of CSE Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-08/

More information

Performance Studies on LTE Advanced in the Easy-C Project Andreas Weber, Alcatel Lucent Bell Labs

Performance Studies on LTE Advanced in the Easy-C Project Andreas Weber, Alcatel Lucent Bell Labs Performance Studies on LTE Advanced in the Easy-C Project 19.06.2008 Andreas Weber, Alcatel Lucent Bell Labs All Rights Reserved Alcatel-Lucent 2007 Agenda 1. Introduction 2. EASY C 3. LTE System Simulator

More information

IMPLEMENTATION OF TM4 INTO OAI SOFTMODEM

IMPLEMENTATION OF TM4 INTO OAI SOFTMODEM IMPLEMENTATION OF TM4 INTO OAI SOFTMODEM Joint ETSI - OSA Workshop: Open Implementations and Standardization Pre Event Training December 08 Fraunhofer Institute for Integrated Circuits (IIS) Khodr Saaifan

More information

DOWNLINK ADAPTIVE CLOSED LOOP MIMO RESEARCH FOR 2 ANTENNAS IN TD-LTE SYSTEM

DOWNLINK ADAPTIVE CLOSED LOOP MIMO RESEARCH FOR 2 ANTENNAS IN TD-LTE SYSTEM DOWNLINK ADAPTIVE CLOSED LOOP MIMO RESEARCH FOR 2 ANTENNAS IN TD-LTE SYSTEM 1 XIAOTAO XU, 2 WENBING JIN 1 Asstt Prof., Department of Mechanical and Electrical Engineering, Hangzhou, China 2 Assoc. Prof.,

More information

ARQ strategies for MIMO eigenmode transmission with adaptive modulation and coding

ARQ strategies for MIMO eigenmode transmission with adaptive modulation and coding ARQ strategies for MIMO eigenmode transmission with adaptive modulation and coding Elisabeth de Carvalho and Petar Popovski Aalborg University, Niels Jernes Vej 2 9220 Aalborg, Denmark email: {edc,petarp}@es.aau.dk

More information

BER Performance of CRC Coded LTE System for Various Modulation Schemes and Channel Conditions

BER Performance of CRC Coded LTE System for Various Modulation Schemes and Channel Conditions Scientific Research Journal (SCIRJ), Volume II, Issue V, May 2014 6 BER Performance of CRC Coded LTE System for Various Schemes and Conditions Md. Ashraful Islam ras5615@gmail.com Dipankar Das dipankar_ru@yahoo.com

More information

An Improved Detection Technique For Receiver Oriented MIMO-OFDM Systems

An Improved Detection Technique For Receiver Oriented MIMO-OFDM Systems 9th International OFDM-Workshop 2004, Dresden 1 An Improved Detection Technique For Receiver Oriented MIMO-OFDM Systems Hrishikesh Venkataraman 1), Clemens Michalke 2), V.Sinha 1), and G.Fettweis 2) 1)

More information

Research Article The Study of Indoor and Field Trials on 2 8MIMO Architecture in TD-LTE Network

Research Article The Study of Indoor and Field Trials on 2 8MIMO Architecture in TD-LTE Network Antennas and Propagation Volume 13, Article ID 18179, 9 pages http://dx.doi.org/.11/13/18179 Research Article The Study of Indoor and Field Trials on 2 8MIMO Architecture in TD-LTE Network Xiang Zhang,

More information

MIMO in 3G STATUS. MIMO for high speed data in 3G systems. Outline. Information theory for wireless channels

MIMO in 3G STATUS. MIMO for high speed data in 3G systems. Outline. Information theory for wireless channels MIMO in G STATUS MIMO for high speed data in G systems Reinaldo Valenzuela Wireless Communications Research Department Bell Laboratories MIMO (multiple antenna technologies) provides higher peak data rates

More information

Mean Mutual Information Per Coded Bit based Precoding in MIMO-OFDM Systems

Mean Mutual Information Per Coded Bit based Precoding in MIMO-OFDM Systems Mean Mutual Information Per Coded Bit based Precoding in MIMO-OFDM Systems Taiwen Tang, Roya Doostnejad, Member, IEEE and Teng Joon Lim, Senior Member, IEEE Abstract This work proposes a per-subband multiple

More information

Performance Comparison of Downlink User Multiplexing Schemes in IEEE ac: Multi-User MIMO vs. Frame Aggregation

Performance Comparison of Downlink User Multiplexing Schemes in IEEE ac: Multi-User MIMO vs. Frame Aggregation 2012 IEEE Wireless Communications and Networking Conference: MAC and Cross-Layer Design Performance Comparison of Downlink User Multiplexing Schemes in IEEE 80211ac: Multi-User MIMO vs Frame Aggregation

More information

1. MIMO capacity basics

1. MIMO capacity basics Introduction to MIMO: Antennas & Propagation aspects Björn Lindmark. MIMO capacity basics. Physical interpretation of the channel matrix Example x in free space 3. Free space vs. multipath: when is scattering

More information

3GPP Long Term Evolution LTE

3GPP Long Term Evolution LTE Chapter 27 3GPP Long Term Evolution LTE Slides for Wireless Communications Edfors, Molisch, Tufvesson 630 Goals of IMT-Advanced Category 1 2 3 4 5 peak data rate DL / Mbit/s 10 50 100 150 300 max DL modulation

More information

MIMO RFIC Test Architectures

MIMO RFIC Test Architectures MIMO RFIC Test Architectures Christopher D. Ziomek and Matthew T. Hunter ZTEC Instruments, Inc. Abstract This paper discusses the practical constraints of testing Radio Frequency Integrated Circuit (RFIC)

More information

PERFORMANCE ANALYSIS OF AN UPLINK MISO-CDMA SYSTEM USING MULTISTAGE MULTI-USER DETECTION SCHEME WITH V-BLAST SIGNAL DETECTION ALGORITHMS

PERFORMANCE ANALYSIS OF AN UPLINK MISO-CDMA SYSTEM USING MULTISTAGE MULTI-USER DETECTION SCHEME WITH V-BLAST SIGNAL DETECTION ALGORITHMS PERFORMANCE ANALYSIS OF AN UPLINK MISO-CDMA SYSTEM USING MULTISTAGE MULTI-USER DETECTION SCHEME WITH V-BLAST SIGNAL DETECTION ALGORITHMS 1 G.VAIRAVEL, 2 K.R.SHANKAR KUMAR 1 Associate Professor, ECE Department,

More information

Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques

Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques 1 Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques Bin Song and Martin Haardt Outline 2 Multi-user user MIMO System (main topic in phase I and phase II) critical problem Downlink

More information

Adaptive Beamforming for Next Generation Cellular System

Adaptive Beamforming for Next Generation Cellular System DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY FACULTY OF ENGINEERING LTH LUND UNIVERSITY SE-221 00 LUND, SWEDEN Adaptive Beamforming for Next Generation Cellular System Sebastian Andersson William

More information

Lecture 12: Summary Advanced Digital Communications (EQ2410) 1

Lecture 12: Summary Advanced Digital Communications (EQ2410) 1 : Advanced Digital Communications (EQ2410) 1 Monday, Mar. 7, 2016 15:00-17:00, B23 1 Textbook: U. Madhow, Fundamentals of Digital Communications, 2008 1 / 15 Overview 1 2 3 4 2 / 15 Equalization Maximum

More information

Interference management Within 3GPP LTE advanced

Interference management Within 3GPP LTE advanced Interference management Within 3GPP LTE advanced Konstantinos Dimou, PhD Senior Research Engineer, Wireless Access Networks, Ericsson research konstantinos.dimou@ericsson.com 2013-02-20 Outline Introduction

More information

Review on Improvement in WIMAX System

Review on Improvement in WIMAX System IJIRST International Journal for Innovative Research in Science & Technology Volume 3 Issue 09 February 2017 ISSN (online): 2349-6010 Review on Improvement in WIMAX System Bhajankaur S. Wassan PG Student

More information

On the Value of Coherent and Coordinated Multi-point Transmission

On the Value of Coherent and Coordinated Multi-point Transmission On the Value of Coherent and Coordinated Multi-point Transmission Antti Tölli, Harri Pennanen and Petri Komulainen atolli@ee.oulu.fi Centre for Wireless Communications University of Oulu December 4, 2008

More information

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) Long Term Evolution (LTE) What is LTE? LTE is the next generation of Mobile broadband technology Data Rates up to 100Mbps Next level of

More information

Diversity techniques for OFDM based WLAN systems: A comparison between hard, soft quantified and soft no quantified decision

Diversity techniques for OFDM based WLAN systems: A comparison between hard, soft quantified and soft no quantified decision Diversity techniques for OFDM based WLAN systems: A comparison between hard, soft quantified and soft no quantified decision Pablo Corral 1, Juan Luis Corral 2 and Vicenç Almenar 2 Universidad Miguel ernández,

More information

Comparison of MIMO OFDM System with BPSK and QPSK Modulation

Comparison of MIMO OFDM System with BPSK and QPSK Modulation e t International Journal on Emerging Technologies (Special Issue on NCRIET-2015) 6(2): 188-192(2015) ISSN No. (Print) : 0975-8364 ISSN No. (Online) : 2249-3255 Comparison of MIMO OFDM System with BPSK

More information

Throughput Enhancement for MIMO OFDM Systems Using Transmission Control and Adaptive Modulation

Throughput Enhancement for MIMO OFDM Systems Using Transmission Control and Adaptive Modulation Throughput Enhancement for MIMOOFDM Systems Using Transmission Control and Adaptive Modulation Yoshitaka Hara Mitsubishi Electric Information Technology Centre Europe B.V. (ITE) 1, allee de Beaulieu, Rennes,

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /PIMRC.2011.

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /PIMRC.2011. Zhu, X., Doufexi, A., & Koçak, T. (2011). A performance evaluation of 60 GHz MIMO systems for IEEE 802.11ad WPANs. In IEEE 22nd International Symposium on Personal Indoor and Mobile Radio Communications

More information