COORDINATED TRACKING OF AN ACOUSTIC SIGNAL BY A TEAM OF AUTONOMOUS UNDERWATER VEHICLES

Size: px
Start display at page:

Download "COORDINATED TRACKING OF AN ACOUSTIC SIGNAL BY A TEAM OF AUTONOMOUS UNDERWATER VEHICLES"

Transcription

1 COORDINATED TRACKING OF AN ACOUSTIC SIGNAL BY A TEAM OF AUTONOMOUS UNDERWATER VEHICLES Darren K. Maczka 1, Davide Spinello 1, Daniel J. Stilwell 1, Aditya S. Gadre 1, and Wayne L. Neu 2 1 Bradley Department of Electrical and Computer Engineering, Virginia Tech 2 Aerospace and Ocean Engineering Department, Virginia Tech * Phone: (540) , Fax: (540) , stilwell@vt.edu We describe an approach to decentralized control and distributed data fusion that enables a team of autonomous underwater vehicles to cooperatively and autonomously localize and track a source of acoustic noise, and we report on field experiments that demonstrate the efficacy of our approach. A principal challenge of subsea coordination is the the extremely low-bandwidth acoustic communication channel that is available underwater. To address this challenge, and to enable coordination despite extremely limited communication, we have devised a new class of decentralized control algorithm that utilizes local models of the environment that are embedded onboard each AUV. Each AUV implements a centralized control law, but with locally estimated variables in the place of state variables that would normally be communicated between vehicles. We show both in theory and in successful field trials that surprisingly little communication is required to implement meaningful underwater vehicle coordination. INTRODUCTION Cooperative sensing of an object is one of the many proposed capabilities for mobile sensor networks. Mobility, coupled with data fusion algorithms and motion control algorithms, enables a team of mobile sensors to adjust their relative geometry in real-time to enhance sensing performance. These ideas have been applied to a variety of applications, including target tracking [1, 2, 3, 4], formation and coverage control [5, 6, 7, 8], and environmental tracking and monitoring [9, 10, 11]. We apply these ideas to the problem of tracking and maneuvering relative to an acoustic source using a team of autonomous underwater vehicles equipped with towed hydrophone arrays. Unlike in-air applications which utilize radio-frequency communications, underwater applications are challenged by the severely bandwidth-limited acoustic subsea communication channel. We address the challenge of limited communication by introducing a new class of data fusion and motion control algorithms that are well-suited for applications in which communication between sensor nodes is infrequent. We describe initial results from field trials in which a team of autonomous underwater vehicles (AUVs) cooperatively localize a source of acoustic noise and maneuver to minimize the joint localization error of the acoustic source. This is equivalent to directing 1

2 the AUVs to locations at which their geometry relative to the acoustic source yields improved localization performance. Each AUV tows a small hydrophone array that measures the bearing angle between itself and the acoustic source. To estimate the location of the acoustic source, we utilize a generalized extended Kalman filter for which local estimates from different sensors can be easily fused. Although similar demonstrations have been performed with system in air, we successfully demonstrate that our approach to decentralized control yields significantly reduced communication requirements and is well-suited to subsea applications. In works that address control of sensor motion in mobile sensor networks, the estimation problem is commonly solved by assuming that the observation noise is independent of the process state, see for example [1, 12, 3, 4]. However, as pointed out in [13], this assumption is not realistic when bearing-only sensors are employed. In order to account for state dependent measurement noise, we compute acoustic source location estimates using a generalized extended Kalman filter that is proposed in [14]. Cooperative object localization with limited communication is addressed in [4] by coupling estimation and motion control algorithms with consensus filters in order to achieve asymptotic agreement between agents. A similar idea appears in [9] for environmental tracking applications. In this work we address constrained underwater communication due to low communication bandwidth by considering a new class of distributed motion control algorithms that were developed to operate with only occasional communication between vehicles. To enable coordination despite limited communication, we embed a local observer on board each AUV to estimate states of the other AUVs in the team. The local observer used herein generalizes the observer proposed in [15] to the case of sensor networks with limited communication between vehicles. Each AUV simultaneously implements a centralized control law, but with locally estimated variables in the place of state variables that would be communicated directly from other AUVs in a centralized implementation. Asymptotic convergence of the estimators allows for the implementation of a system which is asymptotically equivalent to the centralized one proposed in [1]. PLATFORMS AND SENSORS Virginia Tech 475 AUV Experiments are conducted using the Virginia Tech 475 autonomous underwater vehicle (AUV). The 475 AUV is a small, low-cost, yet fully field-deployable AUV that is utilized for a wide variety of experimental activities and demonstrations. It costs only $10,000 in components and machining labor, and has hosted a variety of mission sensors and mission software modules that were developed by researchers at Virginia Tech and at other institutions. Specifications of the 475 are listed in Table 1. The 475 was designed to facilitate rapid integration of new payloads. Hardpoints on the bottom of the AUV are available for mounting external payloads, and a watertight bulkhead connector is also available to provide regulated power and a bi-directional data interface to the payload. The AUV uses the WHOI micromodem for communication and ranging. The syn- 2

3 chronous transmission feature of the modem enables an AUV to compute the range to a node in the network whenever the AUV receives a data packet from that node. For the experimental activities described herein, navigation is accomplished by ranging between AUVs using a distributed navigation filter. Parameter Length Diameter Mass Propulsion/Control CPU/Software Communications Table 1. Specification Specification of the 475 AUV. 34 inches 4.75 inches 18.3 lbs. Brushless direct-drive DC motor and four independently controlled flaps x86 compatible; LINUX OS, database server architecture utilizing TCP/IP client/server connections 900MHz RF modem; Wi-Fi with external antenna; WHOI micromodem for acoustic communication Navigation GPS, transponder-based acoustic navigation; timesynchronized acoustic navigation for AUV to AUV ranging and AUV to chase boat ranging; gyro-stabilized dead reckoning Endurance 8+ hours at 3 knots Bearing sensor A custom towed hydrophone array was designed and fabricated to support experiments in distributed data fusion and decentralized control. Shown in Figure 2, the towed array is a uniform linear array consisting of eight hydrophone transducer elements enclosed in a streamlined package. As the intent was to tow the array with the existing Virginia Tech 475 AUVs, a primary design constraint was the physical size and the hydrodynamic efficiency of the array. To meet these requirements, the array was designed to be as small as possible while still maintaining neutral buoyancy and acoustic transparency. Onboard electronics includes an Ethernet interface for communicating with the AUV, analog signal conditioning, frequency shifting(mixing), and data acquisition. No data processing occurs on the array hardware; this task is offloaded to the host vehicle. The software written for the host vehicle accepts raw data transmitted over Ethernet and processes it to identify a usable signal. Once a usable signal has been identified, a beamforming algorithm extracts bearing information, which is then fed through a generalized extended Kalman filter [16]. The output of the filter is made available to other processes for tracking and control. Bearing measurements of an acoustic source by the towed-array are most accurate when the acoustic source is broadside to the sensor, and accuracy becomes increasingly poor as the acoustic source appears closer to endfire. In other words, the noise statistics of the 3

4 Figure 1. Virginia Tech 475 AUV. Figure 2. Virginia Tech 475 AUV with towed hydrophone array. 4

5 Figure 3. Virginia Tech 475 AUV with hydrophone mount. bearing sensor are a function of the bearing angle. While this fact is well-known, it plays an important role in our work, and we briefly present a noise model for the bearing sensor. As depicted in Figure 4, the position of the acoustic source is denoted x and the position of sensor i is denoted q i. The heading angle of sensor i, as might be measured by a magnetic compass, is denoted ψ i. The vectors e N and e E are the north and east basis vectors, respectively. Each sensor obtains a bearing measurement to the source, denoted z i and defined by z i = h(x, q i, ψ i ) + v i (1) h(x, q i, ψ i ) = γ(x, q i, ψ i ) π 2 where γ(x, q i, ψ i ) is the relative angle of the sensor with respect to the source, as shown in Figure 4. The bearing angle measured by the sensor is zero when the acoustic source is broadside to the sensor, thus the term π 2 in (2). The sensor noise v i is zero mean Gaussian, v i N(0, σ i (x, q i, ψ i )) As the sensor obtains discrete-time measurements, we further assume that each sample v i [k] is independent. Of particular interest is that the covariance of the measurement noise σ i is dependent on the state of the sensor and the acoustic source. For a uniform linear acoustic array it is shown in [17] that σ i = E { v i v i } = 5 κg cos 2 h (2) (3)

6 where κ is a constant depending on physical parameters of the sensor array and g is the inverse of the signal to noise ratio which is dependent on the distance between the acoustic source and the sensor, see [1] source x q i γ i β i ψ i x e E q i Figure 4. Geometric configuration of a bearing-only sensor and acoustic source at time instance k e N Generalized extended Kalman filter for state-dependent sensor noise The objective is to estimate the source position x[k] using time-varying measurements z i [k]. Typically this class of source tracking problems is solved by applying an extended Kalman filter, see for example [1] and [18], which assumes that the measurement noise is independent from the state of the system. However, in our case the sensor noise statistics are dependent on the state of the system, which violates the assumptions required for the Kalman filter. To correctly address the state-dependent noise in the measurements, we utilize a generalized extended Kalman filter described in [14] to generate an estimate ˆx i and the covariance P i. As with the extended Kalman filter, the modified algorithm consists of prediction and update steps. The prediction steps are identical to a standard Kalman filter. The local state and covariance update equations are ˆx i [k k] = ˆx i [k k 1] [ P 1 i [k k 1] + R i [k] ] 1 si [k] [ s i [k] = ζ i x h i + 1 ( ) ] 1 ζ2 i x σ i σ i 2σ σ i [ 1 R i [k] = x h i x h i σ i + ζ i ( ) x h i x σ i + x σ i x h i 2σ 2 i + 1 4σ 2 i ˆx i [k k 1] ( ζ 2 i + 1 ) ] x σ i x σ i σ i ln σ i ˆx i [k k 1] (4a) (4b) (4c) 6

7 P 1 i [k k] = P 1 i [k k 1] + U i [k] (4d) [ 1 U i [k] = x h i x h i + 1 ] σ i 2σi 2 x σ i x σ i (4e) ˆx i [k k 1] where ζ i = z i h i. Note that if σ i did not depend on x then the gradient term x σ would be zero and (4) would reduce to the standard extended Kalman filter update equations. Since our nonlinear control formulation involves computing gradients of the covariance with respect to the system state, using a filter that correctly treats state-dependent noise is shown to make a significant difference in the performance of the closed-loop system. Data Fusion Note that a generalized extended Kalman filter (4) is implemented on each sensor. Whenever a sensor receives data from another sensor, the external information is fused to obtain a source position estimate that accounts for the shared data. In [16] data fusion equations are derived by considering the joint probability distribution of measurements taken from different sensors. Using the maximum likelihood approach one obtains equations analogous to (4) that account for shared measurements and predictions. In practice, unknown and unequal biases in the sensors measurements, along with long periods of no communication, restrict the utility of a rigorously developed approach to data fusion based on joint likelihood functions. Instead, we have found that consensus algorithms work very well in practice for the data fusion problem addressed herein. Consensus algorithms represent a wide class of weighted averaging protocols whose asymptotic behaviors are well-known in both deterministic and stochastic settings (see, for example, [19, 20]). Indeed, we find that a true average of estimates is appropriate for our measurements. Let I i [k] be the set of indices of all sensors that communicate with vehicle i at time k, and I i [k] the cardinality of the set I i [k]. Also note that i I i [k], for all k. The fused estimate of the source state for vehicle i is obtained as ˆx f i[k k] = 1 I i [k] j I i [k] ˆx j [k k] (5) Note that since i I i [k] the operation on the right-hand side of (5) is always well defined. In particular, if at time k vehicle i does not receive any estimate then ˆx f i[k k] = ˆx i [k k], where ˆx i [k k] is given by (4). Time-varying network topology Since communication between vehicles is sparse, the corresponding network topology is always disconnected. Networks that are not connected in a frozen-time sense pose technical challenges for analysis and design of decentralized control systems. To address this challenge, we have shown that it is sufficient that a formally defined average network be connected if the network switches sufficiently fast among topologies. The required switching rate defines our notion of a network time-constant. For a given mission specification, 7

8 we can compute the network time-constant as a function of the system dynamics and determine how fast agents must communicate. These ideas are discussed more fully and applied to multi-vehicle coordination problems in [20, 21], among others. OBSERVER-BASED DECENTRALIZED CONTROL To enable coordination with limited communication, we embed a local observer onboard each AUV to estimate the location, sensor output, and target estimate of every other AUV. Then each AUV independently implements the same centralized control law, but with estimated variables in the place of state variables that would be communicated directly from other vehicles in a centralized implementation. In general, this approach presents significant technical challenges because there is no separation principle for decentralized systems. In other words, the closed-loop system composed of observers and control laws embedded on each AUV may not be stable even if the control law and the observer error dynamics are each individually stable. Thus our principal contribution is to develop methods for simultaneously designing control laws and distributed observers with guaranteed performance properties (e.g., stability). We consider an acoustic source modeled by the dynamics x[k + 1] = f s (x[k]) + v(k) where v(k) N(0, σ). The team of N mobile sensors (e.g., AUVs) is modeled by the dynamics q i [k + 1] = f i (q i [k], u i [k]), i {1,..., N} where u i is the control signal for sensor i. We make no assumptions on the fidelity of the sensor (AUV) motion model within our general framework, although we have found that a simple point-mass model where the states consist of position variables and perhaps velocity variables is useful. We have also employed a kinematic model that explicitly accounts for the heading of the sensor for situations where heading is important. The state of the entire system, consisting of N sensors and an acoustic source, is represented q = [q s, q 1,..., q N] Each mobile sensor maintains an estimate of the entire system state, denoted ˆq i. Note that ˆq i is an estimate of q and not an estimate of q i. For notational convenience, we collect all of the state estimates, the outputs, and the inputs (control signals) into vectors, ˆq = [ˆq 1,..., ˆq N] g(ˆq) = [g(ˆq 1 ),..., g(ˆq N ) ] u(ˆq) = [u 1 (ˆq 1 ),..., u(ˆq N ) ] 8

9 Our task is now to implement control signals u i (ˆq i ) on each mobile sensor so that the system behaves as desired, and to implement observers on each mobile sensor so that each estimate ˆq i asymptotically agrees with all other estimates and the true system state q. Our approach is to simultaneously minimize an objective function J(q) corresponding to the desired behavior of the team of sensors and an additional quadratic term corresponding to the observers estimation error. Thus we seek approaches that minimize the functional F (q, ˆq, k) = J(ˆq) (g(ˆq) g(q)) A[k](g(ˆq) g(q)) (6) The matrix A[k] models the intermittent communication that occurs between mobile sensors. When there is no communication between two sensors, the corresponding terms in A is zero and right-most term in (6) has no effect on the corresponding components of ˆq. When there is communication, the corresponding terms in A are unity. The desired behavior of the team is encoded in the functional J(q). A variety of behaviors are possible, including trajectory (or location) estimate error minimization, formation flying, and multiple source discrimination, among many others. In this paper, we consider minimization of the trajectory estimation error and formation flying relative to the estimated location of the acoustic source. Gradient descent Minimization of (6) using gradient descent is discussed in detail in [22], and we provide only an outline here. Each mobile sensor computes the control signal u(q) = Γ q J(q) using its estimate of the system state ˆq, where Γ is diagonal matrix of control gains. Sensor i uses only the component u i (q) of u(q) for its local control decision, but uses the remaining components of u(q) to update its estimate of the state of other mobile sensors in the absence of communication from other sensors. When communicated information from other sensors is available, the same gradient approach yields ˆq[k + 1] = ˆq[k] + T (u(q[k]) + K(ˆq[k])A[k](g(ˆq[k]) 1 N g(q[k]))) where the observer gain K(q) is derived in [22], T is the period between control updates, and 1 N is the N-vector with all entries unity. Note that the gradient approach yields a standard observer structure when information from other sensors is available. Receding horizon nonlinear optimization Gradient descent works well in many circumstances and has a small computational requirement. However, state trajectories resulting from gradient descent can become trapped in local minima of the objective function F, and these local minima may represent physically undesirable solutions. To address the phenomena of local minima, we adopt a receding horizon control (RHC) approach [23]. RHC is a control technique in which the 9

10 finite-time optimal controls are computed for the finite-time horizon H. The optimal control is usually recomputed periodically with a period that is much shorter than H. The objective function is defined V H (x, u, k) = k+h i=k L(x[i], u[i]) + Q(x[k + H]) (7) where L is the integral cost and Q defines the terminal cost. At each control time k an optimality problem is solved which generates a control sequence u = {u [k],, u [k + H]} that minimizes the objective function (7) and obtains the solution V H(x, u) = min {V H (x, u) u U, x X } (8) where U and X are sets that describe constraints on the input and state, respectively. This finite-time constrained optimization problem can be solved numerically using a variety of methods, including the Nonmonotone Spectral Projected Gradient Method [24] RESULTS Field Experiments Gradient descent was demonstrated in a field trail at Claytor Lake, a 4,500 acre hydroelectric impoundment of the New River near Dublin, VA. For this initial demonstration, conducted summer 2008, a static acoustic source was utilized, and the objective of the mobile sensors was to maneuver so that the localization error of the acoustic source was minimized. That is, we chose J(q) in (6) to be J(q) = det U 1 (q) (9) where U 1 is defined in (4e) and q consists of position variables since it is assumed that the acoustic source is stationary. Two Virginia Tech 475 AUVs were equipped with towed array sensors to measure the relative bearing to an acoustic source located on a support craft. The vehicles were able to communicate with one another using a WHOI micromodem. The goal of the experiments was to demonstrate that with only intermittent communication the two vehicles could control trajectories to jointly minimize the cost function (6). Intuition along with inspection of the cost function suggest that at steady-state, both vehicles should circle the estimated location of the acoustic source so that their sensors are broadside to the acoustic source and so that both vehicles are separated by π/2 around the circle. The results of the demonstration are shown in Figure 5. The acoustic source was mounted on a chase boat that moved throughout the experiment due to wind. Its position was within the area enclosed by the solid circle for the duration of the mission. The two vehicles start at the position denoted by the solid triangle and are commanded on an initial straight line path. At the position denoted by the solid square the towed array sensor reports an 10

11 initial bearing measurement to the acoustic source, and the gradient descent controller is activated. The curved path around the source position results from the controller driving the relative bearing of each vehicle to π/2. The AUVs choose to do this because the bearing sensor works best when the acoustic source is broadside to the sensor. The dotted lines are visual aids that show same-time positions for the AUVs. It is evident that the velocity of red AUV increases while the velocity of blue AUV decreases, and that the relative separation between vehicles increases over the length of the mission. The commanded speed of each vehicle is plotted in Figure 6. The dots in Figure 6 denote times when communication allowed a fusion event to occur. Blue dots indicate that blue AUV received a data packet, while red dots indicate that red AUV receives a data packet. Speed commands are in the range of 0.8 m/s to 1.5 m/s. Several fusion events occur in the beginning the mission, which cause each local observer to achieve a reasonable level of agreement. There are few fusion events in the middle of the mission, but each local observer maintains an estimate of the evolving state of the other vehicle, and the combined actions of each vehicle proceed as expected. It is interesting to note that while no fusion events occur towards the end of the mission, the commanded speeds begin fluctuating to slow the sensor separation based on the information inferred by the local observers which indicated that the vehicles are approaching their optimal positions. The magnitude of the acoustic source estimation error is plotted in Figure 7, which shows that the local position estimates converge when fusion events occur. During a period of no communication in the middle of the experiment the two estimates diverge from each other which is expected due to unmodeled biases present in each sensor. The vehicles achieve a desired relative bearing and geometry with respect to the target that minimizes the joint localization error of the acoustic source. Importantly, we do not explicitly command one vehicle to speed up while the other slows down. The behavior of each vehicle is an emergent consequence of making joint decisions, aided by a local observer when no communication occurs, to minimize the cost function (6). 11

12 Figure 5 Vehicle trajectories; triangles denotes initial condition, squares denotes location of vehicles when bearing angle is first measured, the black circle indicates true position of acoustic source throughout the experiment Figure 6. Speed of AUVs during demonstration shown in Figure 5. 12

13 Figure 7 Agreement between AUVs on the location estimate of the acoustic source during demonstration shown in Figure 5. 13

14 Receding horizon control example Receding horizon optimal control has been implemented in simulation with the dual objectives of estimating the trajectory of a moving acoustic source and formation flying relative to the acoustic source. Initially, two AUVs utilize a similar objective function as in (9). The functionals in the receding horizon objective function (7) are L(q, u) = c 1 det U 1 (q) (10) Q(q) = c 2 det U 1 (q) (11) where c 1 and c 2 are constants. Once an initial maneuver to reduce trajectory estimation error is complete, the AUVs utilize a new objective function that enables them to perform formation flying relative to the moving acoustic source. Distributed trajectory estimation continues during formation flying, although the AUVs no longer maneuver explicitly to decrease estimation error. During formation flying, the functionals in the receding horizon objective functionals encode the distance between two AUVs, the orientation of the formation with respect to the velocity vector of the acoustic source, and the relative angle between the average velocity of the AUVs and the velocity of the acoustic source. The simulation results show the trajectory of two sensors and a single acoustic source over a time period of three minutes. During the first 60 seconds of the simulation the sensors use the estimation covariance objective function to improve estimation performance. The determinant of estimation error covariance is shown in Figure 8(b). The initial maneuver, in which the AUVs maneuver to decrease estimation error, appears in Figure 8(a). We see that the sensors maneuver to simultaneously increase their relative spacing with respect to the acoustic source and orient themselves so that the acoustic source is broadside to the sensor. After 60 seconds the controller switches to the formation objective as shown in Figure 9. The objectives are (1) the distance between two AUVs is 20m, the orientation of the formation with respect to the velocity of the acoustic source is 0, and the relative angle between the average velocity of the AUVs and the velocity of the acoustic source is π/2. The choices causes the AUVs to maneuver away at a right angle from the estimated path of the acoustic source. For the purposes of illustration, the acoustic sources changes direction during the time period between Figures 9 (b) and (c). Throughout the simulation, we assume that each AUV successfully transmits a data packet ever 20 seconds. 14

15 source sensor start location y (m) x (m) Figure 8 Simulation of two AUVs maneuvering relative to a moving acoustic source; (a) initial maneuver to minimize trajectory estimation error; (b) determinant of estimation error covariance with respect to time. 15

16 200 source sensor sensor start location y (m) 100 y (m) x (m) (a) x (m) (b) y (m) 100 y (m) x (m) (c) x (m) (d) Figure 9 Continuation of simulation shown in Figure 8 where two AUVs have switched to formation control relative to a moving acoustic source; (a) t = 60 seconds, (b) t = 90 seconds, (c) t = 120 seconds, (d) t = 150 seconds. 16

17 ACKNOWLEDGMENT The authors are extremely grateful support of the Office of Naval Research via grant N REFERENCES [1] T. H. Chung, J. W. Burdick, and R. M. Murray, Decentralized motion control of mobile sensing agents in a network, in Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, Florida, May [2] T. H. Chung, V. Gupta, J. W. Burdick, and R. M. Murray, On a decentralized active sensing strategy using mobile sensor platforms in a network, in Proceedings of the IEEE conference on Decision and Control, Paradise Island, Bahamas, December [3] S. Martínez and F. Bullo, Optimal sensor placement and motion coordination for target tracking, Automatica, vol. 42, no. 4, pp , [4] P. Yang, R. A. Freeman, and K. M. Lynch, Distributed cooperative active sensing using consensus filters, in Proceedings of the IEEE International Conference on Robotics and Automation, Roma, Italy, Feb [5] C. Belta and V. Kumar, Abstraction and control for groups of robots, IEEE Transactions on Robotics, vol. 20, no. 5, pp , October [6] J. Cortés, S. Martínez, T. Karatas, and F. Bullo, Coverage control for mobile sensing networks, IEEE Transactions on Robotics and Automation, vol. 20, no. 2, pp , [7] J. A. Fax and R. M. Murray, Information flow and cooperative control of vehicle formations, IEEE Transactions on Automatic Control, vol. 49, no. 9, pp , September [8] R. A. Freeman, P. Yang, and K. M. Lynch, Distributed estimation and control of swarm formation statistics, in Proceedings of the American Control Conference, Minneapolis, Minnesota USA, June , pp [9] M. Porfiri, D. G. Roberson, and D. J. Stilwell, Tracking and formation control of multiple autonomous agents: A two-level consensus approach, Automatica, vol. 43, no. 8, pp , [10] S. Simic and S. Sastry, Distributed environmental monitoring using random sensor networks, in Proceeding of the 2nd International Workshop on Information Processing in Sensor Networks, Palo Alto, CA, 2003, pp [11] S. Susca, S. Martínez, and F. Bullo, Monitoring environmental boundaries with a robotic sensor network, in Proceedings of the American Control Conference, 2006, pp

18 [12] A. Farina, Target tracking with bearings-only measurements, Signal Processing, vol. 78, pp , [13] A. Logothetis, A. Isaksson, and R. J. Evans, An information theoretic approach to observer path design for bearings-only tracking, in Proceedings of the 36th Conference on Decision and Control, San Diego, California, Dec. 1997, pp [14] D. Spinello and D. J. Stilwell, Nonlinear estimation with state-dependent Gaussian observation noise, submitted for publication. [15] K. Shimizu, Nonlinear state observers by the gradient descent method, Anchorage, Alaska, USA, pp , September [16] D. Spinello and D. J. Stilwell, Nonlinear estimation with state-dependent gaussian observation noise, Virginia Polytechnic Institute and State University, Tech. Rep., [Online]. Available: [17] A. Gadre, M. Roan, and D. J. Stilwell, Sensor error model for a uniform linear array, Virginia Polytechnic Institute and State University, Tech. Rep., [Online]. Available: [18] P. Yang, R. Freeman, and K. Lynch, Distributed cooperative active sensing using consensus filters, in Proc. IEEE International Conference on Robotics and Automation, 2007, pp [19] W. Ren, R. Beard, and E. Atkins, A survey of consensus problems in multi-agent coordination, in Proc. American Control Conference the 2005, 2005, pp vol. 3. [20] M. Porfiri and D. Stilwell, Consensus seeking over random weighted directed graphs, vol. 52, no. 9, pp , [21] M. Porfiri, D. G. Roberson, and D. J. Stilwell, Fast switching analysis of linear switched systems using exponential splitting, SIAM Journal of Control and Optimization, vol. 47, no. 5, p , [22] A. S. Gadre, D. K. Maczka, D. Spinello, B. R. McCarter, D. J. Stilwell, W. L. Neu, M. J. Roan, and J. H. Hennage, Cooperative localization of an acoustic source using towed hydrophone arrays, in Proc. IEEE Workshop on Autonomous Underwater Vehicles, [23] H. Michalska and D. Q. Mayne, Robust receding horizon control of constrained nonlinear systems, vol. 38, no. 11, pp , [24] E. G. Birgin, J. M. Martínez, and M. Raydan, Nonmonotone spectral projected gradient methods on convex sets, SIAM Journal on Optimization, vol. 10, no. 4, pp , [Online]. Available: 18

Structure and Synthesis of Robot Motion

Structure and Synthesis of Robot Motion Structure and Synthesis of Robot Motion Motion Synthesis in Groups and Formations I Subramanian Ramamoorthy School of Informatics 5 March 2012 Consider Motion Problems with Many Agents How should we model

More information

Navigation of an Autonomous Underwater Vehicle in a Mobile Network

Navigation of an Autonomous Underwater Vehicle in a Mobile Network Navigation of an Autonomous Underwater Vehicle in a Mobile Network Nuno Santos, Aníbal Matos and Nuno Cruz Faculdade de Engenharia da Universidade do Porto Instituto de Sistemas e Robótica - Porto Rua

More information

Tracking of Rapidly Time-Varying Sparse Underwater Acoustic Communication Channels

Tracking of Rapidly Time-Varying Sparse Underwater Acoustic Communication Channels Tracking of Rapidly Time-Varying Sparse Underwater Acoustic Communication Channels Weichang Li WHOI Mail Stop 9, Woods Hole, MA 02543 phone: (508) 289-3680 fax: (508) 457-2194 email: wli@whoi.edu James

More information

Chapter 2 Distributed Consensus Estimation of Wireless Sensor Networks

Chapter 2 Distributed Consensus Estimation of Wireless Sensor Networks Chapter 2 Distributed Consensus Estimation of Wireless Sensor Networks Recently, consensus based distributed estimation has attracted considerable attention from various fields to estimate deterministic

More information

Some results on optimal estimation and control for lossy NCS. Luca Schenato

Some results on optimal estimation and control for lossy NCS. Luca Schenato Some results on optimal estimation and control for lossy NCS Luca Schenato Networked Control Systems Drive-by-wire systems Swarm robotics Smart structures: adaptive space telescope Wireless Sensor Networks

More information

AN AIDED NAVIGATION POST PROCESSING FILTER FOR DETAILED SEABED MAPPING UUVS

AN AIDED NAVIGATION POST PROCESSING FILTER FOR DETAILED SEABED MAPPING UUVS MODELING, IDENTIFICATION AND CONTROL, 1999, VOL. 20, NO. 3, 165-175 doi: 10.4173/mic.1999.3.2 AN AIDED NAVIGATION POST PROCESSING FILTER FOR DETAILED SEABED MAPPING UUVS Kenneth Gade and Bjørn Jalving

More information

On the GNSS integer ambiguity success rate

On the GNSS integer ambiguity success rate On the GNSS integer ambiguity success rate P.J.G. Teunissen Mathematical Geodesy and Positioning Faculty of Civil Engineering and Geosciences Introduction Global Navigation Satellite System (GNSS) ambiguity

More information

Autonomous Underwater Vehicle Navigation.

Autonomous Underwater Vehicle Navigation. Autonomous Underwater Vehicle Navigation. We are aware that electromagnetic energy cannot propagate appreciable distances in the ocean except at very low frequencies. As a result, GPS-based and other such

More information

PHINS, An All-In-One Sensor for DP Applications

PHINS, An All-In-One Sensor for DP Applications DYNAMIC POSITIONING CONFERENCE September 28-30, 2004 Sensors PHINS, An All-In-One Sensor for DP Applications Yves PATUREL IXSea (Marly le Roi, France) ABSTRACT DP positioning sensors are mainly GPS receivers

More information

Distributed estimation and consensus. Luca Schenato University of Padova WIDE 09 7 July 2009, Siena

Distributed estimation and consensus. Luca Schenato University of Padova WIDE 09 7 July 2009, Siena Distributed estimation and consensus Luca Schenato University of Padova WIDE 09 7 July 2009, Siena Joint work w/ Outline Motivations and target applications Overview of consensus algorithms Application

More information

Communication-Aware Motion Planning in Fading Environments

Communication-Aware Motion Planning in Fading Environments Communication-Aware Motion Planning in Fading Environments Yasamin Mostofi Department of Electrical and Computer Engineering University of New Mexico, Albuquerque, NM 873, USA Abstract In this paper we

More information

Integrated Navigation System

Integrated Navigation System Integrated Navigation System Adhika Lie adhika@aem.umn.edu AEM 5333: Design, Build, Model, Simulate, Test and Fly Small Uninhabited Aerial Vehicles Feb 14, 2013 1 Navigation System Where am I? Position,

More information

Optimization Techniques for Alphabet-Constrained Signal Design

Optimization Techniques for Alphabet-Constrained Signal Design Optimization Techniques for Alphabet-Constrained Signal Design Mojtaba Soltanalian Department of Electrical Engineering California Institute of Technology Stanford EE- ISL Mar. 2015 Optimization Techniques

More information

Timothy H. Chung EDUCATION RESEARCH

Timothy H. Chung EDUCATION RESEARCH Timothy H. Chung MC 104-44, Pasadena, CA 91125, USA Email: timothyc@caltech.edu Phone: 626-221-0251 (cell) Web: http://robotics.caltech.edu/ timothyc EDUCATION Ph.D., Mechanical Engineering May 2007 Thesis:

More information

Team-Triggered Coordination of Robotic Networks for Optimal Deployment

Team-Triggered Coordination of Robotic Networks for Optimal Deployment Team-Triggered Coordination of Robotic Networks for Optimal Deployment Cameron Nowzari 1, Jorge Cortés 2, and George J. Pappas 1 Electrical and Systems Engineering 1 University of Pennsylvania Mechanical

More information

Measurement Level Integration of Multiple Low-Cost GPS Receivers for UAVs

Measurement Level Integration of Multiple Low-Cost GPS Receivers for UAVs Measurement Level Integration of Multiple Low-Cost GPS Receivers for UAVs Akshay Shetty and Grace Xingxin Gao University of Illinois at Urbana-Champaign BIOGRAPHY Akshay Shetty is a graduate student in

More information

Real-time Adaptive Robot Motion Planning in Unknown and Unpredictable Environments

Real-time Adaptive Robot Motion Planning in Unknown and Unpredictable Environments Real-time Adaptive Robot Motion Planning in Unknown and Unpredictable Environments IMI Lab, Dept. of Computer Science University of North Carolina Charlotte Outline Problem and Context Basic RAMP Framework

More information

Uncertainty-Based Localization Solution for Under-Ice Autonomous Underwater Vehicles

Uncertainty-Based Localization Solution for Under-Ice Autonomous Underwater Vehicles Uncertainty-Based Localization Solution for Under-Ice Autonomous Underwater Vehicles Presenter: Baozhi Chen Baozhi Chen and Dario Pompili Cyber-Physical Systems Lab ECE Department, Rutgers University baozhi_chen@cac.rutgers.edu

More information

Dr. Wenjie Dong. The University of Texas Rio Grande Valley Department of Electrical Engineering (956)

Dr. Wenjie Dong. The University of Texas Rio Grande Valley Department of Electrical Engineering (956) Dr. Wenjie Dong The University of Texas Rio Grande Valley Department of Electrical Engineering (956) 665-2200 Email: wenjie.dong@utrgv.edu EDUCATION PhD, University of California, Riverside, 2009 Major:

More information

Experimental Comparison of Synchronous-Clock Cooperative Acoustic Navigation Algorithms

Experimental Comparison of Synchronous-Clock Cooperative Acoustic Navigation Algorithms Experimental Comparison of Synchronous-Clock Cooperative Acoustic Navigation Algorithms Jeffrey M. Walls, Ryan M. Eustice Department of Mechanical Engineering Department of Naval Architecture and Marine

More information

AUV Self-Localization Using a Tetrahedral Array and Passive Acoustics

AUV Self-Localization Using a Tetrahedral Array and Passive Acoustics AUV Self-Localization Using a Tetrahedral Array and Passive Acoustics Nicholas R. Rypkema Erin M. Fischell Henrik Schmidt Background - Motivation Motivation: Accurate localization for miniature, low-cost

More information

Chapter 4 SPEECH ENHANCEMENT

Chapter 4 SPEECH ENHANCEMENT 44 Chapter 4 SPEECH ENHANCEMENT 4.1 INTRODUCTION: Enhancement is defined as improvement in the value or Quality of something. Speech enhancement is defined as the improvement in intelligibility and/or

More information

A Comparison of Particle Swarm Optimization and Gradient Descent in Training Wavelet Neural Network to Predict DGPS Corrections

A Comparison of Particle Swarm Optimization and Gradient Descent in Training Wavelet Neural Network to Predict DGPS Corrections Proceedings of the World Congress on Engineering and Computer Science 00 Vol I WCECS 00, October 0-, 00, San Francisco, USA A Comparison of Particle Swarm Optimization and Gradient Descent in Training

More information

Attractor dynamics generates robot formations: from theory to implementation

Attractor dynamics generates robot formations: from theory to implementation Attractor dynamics generates robot formations: from theory to implementation Sergio Monteiro, Miguel Vaz and Estela Bicho Dept of Industrial Electronics and Dept of Mathematics for Science and Technology

More information

Implementation of Nonlinear Reconfigurable Controllers for Autonomous Unmanned Vehicles

Implementation of Nonlinear Reconfigurable Controllers for Autonomous Unmanned Vehicles Implementation of Nonlinear Reconfigurable Controllers for Autonomous Unmanned Vehicles Dere Schmitz Vijayaumar Janardhan S. N. Balarishnan Department of Mechanical and Aerospace engineering and Engineering

More information

An Improved Path Planning Method Based on Artificial Potential Field for a Mobile Robot

An Improved Path Planning Method Based on Artificial Potential Field for a Mobile Robot BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 15, No Sofia 015 Print ISSN: 1311-970; Online ISSN: 1314-4081 DOI: 10.1515/cait-015-0037 An Improved Path Planning Method Based

More information

(i) Understanding the basic concepts of signal modeling, correlation, maximum likelihood estimation, least squares and iterative numerical methods

(i) Understanding the basic concepts of signal modeling, correlation, maximum likelihood estimation, least squares and iterative numerical methods Tools and Applications Chapter Intended Learning Outcomes: (i) Understanding the basic concepts of signal modeling, correlation, maximum likelihood estimation, least squares and iterative numerical methods

More information

A Course on Marine Robotic Systems: Theory to Practice. Full Programme

A Course on Marine Robotic Systems: Theory to Practice. Full Programme A Course on Marine Robotic Systems: Theory to Practice 27-31 January, 2015 National Institute of Oceanography, Dona Paula, Goa Opening address by the Director of NIO Full Programme 1. Introduction and

More information

Modeling and Evaluation of Bi-Static Tracking In Very Shallow Water

Modeling and Evaluation of Bi-Static Tracking In Very Shallow Water Modeling and Evaluation of Bi-Static Tracking In Very Shallow Water Stewart A.L. Glegg Dept. of Ocean Engineering Florida Atlantic University Boca Raton, FL 33431 Tel: (954) 924 7241 Fax: (954) 924-7270

More information

Artificial Beacons with RGB-D Environment Mapping for Indoor Mobile Robot Localization

Artificial Beacons with RGB-D Environment Mapping for Indoor Mobile Robot Localization Sensors and Materials, Vol. 28, No. 6 (2016) 695 705 MYU Tokyo 695 S & M 1227 Artificial Beacons with RGB-D Environment Mapping for Indoor Mobile Robot Localization Chun-Chi Lai and Kuo-Lan Su * Department

More information

Sensor Data Fusion Using Kalman Filter

Sensor Data Fusion Using Kalman Filter Sensor Data Fusion Using Kalman Filter J.Z. Sasiade and P. Hartana Department of Mechanical & Aerospace Engineering arleton University 115 olonel By Drive Ottawa, Ontario, K1S 5B6, anada e-mail: jsas@ccs.carleton.ca

More information

Mobile Target Tracking Using Radio Sensor Network

Mobile Target Tracking Using Radio Sensor Network Mobile Target Tracking Using Radio Sensor Network Nic Auth Grant Hovey Advisor: Dr. Suruz Miah Department of Electrical and Computer Engineering Bradley University 1501 W. Bradley Avenue Peoria, IL, 61625,

More information

Cooperative AUV Navigation using MOOS: MLBL Maurice Fallon and John Leonard

Cooperative AUV Navigation using MOOS: MLBL Maurice Fallon and John Leonard Cooperative AUV Navigation using MOOS: MLBL Maurice Fallon and John Leonard Cooperative ASV/AUV Navigation AUV Navigation is not error bounded: Even with a $300k RLG, error will accumulate GPS and Radio

More information

Mobile Target Tracking Using Radio Sensor Network

Mobile Target Tracking Using Radio Sensor Network Mobile Target Tracking Using Radio Sensor Network Nic Auth Grant Hovey Advisor: Dr. Suruz Miah Department of Electrical and Computer Engineering Bradley University 1501 W. Bradley Avenue Peoria, IL, 61625,

More information

Localization (Position Estimation) Problem in WSN

Localization (Position Estimation) Problem in WSN Localization (Position Estimation) Problem in WSN [1] Convex Position Estimation in Wireless Sensor Networks by L. Doherty, K.S.J. Pister, and L.E. Ghaoui [2] Semidefinite Programming for Ad Hoc Wireless

More information

Particle Swarm Optimization-Based Consensus Achievement of a Decentralized Sensor Network

Particle Swarm Optimization-Based Consensus Achievement of a Decentralized Sensor Network , pp.162-166 http://dx.doi.org/10.14257/astl.2013.42.38 Particle Swarm Optimization-Based Consensus Achievement of a Decentralized Sensor Network Hyunseok Kim 1, Jinsul Kim 2 and Seongju Chang 1*, 1 Department

More information

Resource Allocation Challenges in Future Wireless Networks

Resource Allocation Challenges in Future Wireless Networks Resource Allocation Challenges in Future Wireless Networks Mohamad Assaad Dept of Telecommunications, Supelec - France Mar. 2014 Outline 1 General Introduction 2 Fully Decentralized Allocation 3 Future

More information

A Shallow Water Acoustic Network for Mine Countermeasures Operations with Autonomous Underwater Vehicles

A Shallow Water Acoustic Network for Mine Countermeasures Operations with Autonomous Underwater Vehicles A Shallow Water Acoustic Network for Mine Countermeasures Operations with Autonomous Underwater Vehicles Lee Freitag, Matthew Grund, Chris von Alt, Roger Stokey and Thomas Austin Woods Hole Oceanographic

More information

Outlier-Robust Estimation of GPS Satellite Clock Offsets

Outlier-Robust Estimation of GPS Satellite Clock Offsets Outlier-Robust Estimation of GPS Satellite Clock Offsets Simo Martikainen, Robert Piche and Simo Ali-Löytty Tampere University of Technology. Tampere, Finland Email: simo.martikainen@tut.fi Abstract A

More information

MIMO Transceiver Systems on AUVs

MIMO Transceiver Systems on AUVs MIMO Transceiver Systems on AUVs Mohsen Badiey 107 Robinson Hall College of Marine and Earth Studies, phone: (302) 831-3687 fax: (302) 831-6521 email: badiey@udel.edu Aijun Song 114 Robinson Hall College

More information

Hedonic Coalition Formation for Distributed Task Allocation among Wireless Agents

Hedonic Coalition Formation for Distributed Task Allocation among Wireless Agents Hedonic Coalition Formation for Distributed Task Allocation among Wireless Agents Walid Saad, Zhu Han, Tamer Basar, Me rouane Debbah, and Are Hjørungnes. IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10,

More information

arxiv: v1 [cs.sd] 4 Dec 2018

arxiv: v1 [cs.sd] 4 Dec 2018 LOCALIZATION AND TRACKING OF AN ACOUSTIC SOURCE USING A DIAGONAL UNLOADING BEAMFORMING AND A KALMAN FILTER Daniele Salvati, Carlo Drioli, Gian Luca Foresti Department of Mathematics, Computer Science and

More information

Robust Haptic Teleoperation of a Mobile Manipulation Platform

Robust Haptic Teleoperation of a Mobile Manipulation Platform Robust Haptic Teleoperation of a Mobile Manipulation Platform Jaeheung Park and Oussama Khatib Stanford AI Laboratory Stanford University http://robotics.stanford.edu Abstract. This paper presents a new

More information

Robot Crowd Navigation using Predictive Position Fields in the Potential Function Framework

Robot Crowd Navigation using Predictive Position Fields in the Potential Function Framework Robot Crowd Navigation using Predictive Position Fields in the Potential Function Framework Ninad Pradhan, Timothy Burg, and Stan Birchfield Abstract A potential function based path planner for a mobile

More information

ECE 174 Computer Assignment #2 Due Thursday 12/6/2012 GLOBAL POSITIONING SYSTEM (GPS) ALGORITHM

ECE 174 Computer Assignment #2 Due Thursday 12/6/2012 GLOBAL POSITIONING SYSTEM (GPS) ALGORITHM ECE 174 Computer Assignment #2 Due Thursday 12/6/2012 GLOBAL POSITIONING SYSTEM (GPS) ALGORITHM Overview By utilizing measurements of the so-called pseudorange between an object and each of several earth

More information

Distributed Collaborative Path Planning in Sensor Networks with Multiple Mobile Sensor Nodes

Distributed Collaborative Path Planning in Sensor Networks with Multiple Mobile Sensor Nodes 7th Mediterranean Conference on Control & Automation Makedonia Palace, Thessaloniki, Greece June 4-6, 009 Distributed Collaborative Path Planning in Sensor Networks with Multiple Mobile Sensor Nodes Theofanis

More information

A Hybrid TDOA/RSSD Geolocation System using the Unscented Kalman Filter

A Hybrid TDOA/RSSD Geolocation System using the Unscented Kalman Filter A Hybrid TDOA/RSSD Geolocation System using the Unscented Kalman Filter Noha El Gemayel, Holger Jäkel and Friedrich K. Jondral Communications Engineering Lab, Karlsruhe Institute of Technology (KIT, Germany

More information

A Prototype Wire Position Monitoring System

A Prototype Wire Position Monitoring System LCLS-TN-05-27 A Prototype Wire Position Monitoring System Wei Wang and Zachary Wolf Metrology Department, SLAC 1. INTRODUCTION ¹ The Wire Position Monitoring System (WPM) will track changes in the transverse

More information

Avoid Impact of Jamming Using Multipath Routing Based on Wireless Mesh Networks

Avoid Impact of Jamming Using Multipath Routing Based on Wireless Mesh Networks Avoid Impact of Jamming Using Multipath Routing Based on Wireless Mesh Networks M. KIRAN KUMAR 1, M. KANCHANA 2, I. SAPTHAMI 3, B. KRISHNA MURTHY 4 1, 2, M. Tech Student, 3 Asst. Prof 1, 4, Siddharth Institute

More information

A Closed Form for False Location Injection under Time Difference of Arrival

A Closed Form for False Location Injection under Time Difference of Arrival A Closed Form for False Location Injection under Time Difference of Arrival Lauren M. Huie Mark L. Fowler lauren.huie@rl.af.mil mfowler@binghamton.edu Air Force Research Laboratory, Rome, N Department

More information

Antennas and Propagation. Chapter 6b: Path Models Rayleigh, Rician Fading, MIMO

Antennas and Propagation. Chapter 6b: Path Models Rayleigh, Rician Fading, MIMO Antennas and Propagation b: Path Models Rayleigh, Rician Fading, MIMO Introduction From last lecture How do we model H p? Discrete path model (physical, plane waves) Random matrix models (forget H p and

More information

16 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. 34, NO. 1, FEBRUARY 2004

16 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. 34, NO. 1, FEBRUARY 2004 16 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. 34, NO. 1, FEBRUARY 2004 Tracking a Maneuvering Target Using Neural Fuzzy Network Fun-Bin Duh and Chin-Teng Lin, Senior Member,

More information

KALMAN FILTER APPLICATIONS

KALMAN FILTER APPLICATIONS ECE555: Applied Kalman Filtering 1 1 KALMAN FILTER APPLICATIONS 1.1: Examples of Kalman filters To wrap up the course, we look at several of the applications introduced in notes chapter 1, but in more

More information

Doppler Effect in the Underwater Acoustic Ultra Low Frequency Band

Doppler Effect in the Underwater Acoustic Ultra Low Frequency Band Doppler Effect in the Underwater Acoustic Ultra Low Frequency Band Abdel-Mehsen Ahmad, Michel Barbeau, Joaquin Garcia-Alfaro 3, Jamil Kassem, Evangelos Kranakis, and Steven Porretta School of Engineering,

More information

SIGNAL PROCESSING ALGORITHMS FOR HIGH-PRECISION NAVIGATION AND GUIDANCE FOR UNDERWATER AUTONOMOUS SENSING SYSTEMS

SIGNAL PROCESSING ALGORITHMS FOR HIGH-PRECISION NAVIGATION AND GUIDANCE FOR UNDERWATER AUTONOMOUS SENSING SYSTEMS SIGNAL PROCESSING ALGORITHMS FOR HIGH-PRECISION NAVIGATION AND GUIDANCE FOR UNDERWATER AUTONOMOUS SENSING SYSTEMS Daniel Doonan, Chris Utley, and Hua Lee Imaging Systems Laboratory Department of Electrical

More information

Experimental Validation of the Moving Long Base-Line Navigation Concept

Experimental Validation of the Moving Long Base-Line Navigation Concept Experimental Validation of the Moving Long Base-Line Navigation Concept Jérôme Vaganay (1), John J. Leonard (2), Joseph A. Curcio (2), J. Scott Willcox (1) (1) Bluefin Robotics Corporation 237 Putnam Avenue

More information

Localization in Wireless Sensor Networks

Localization in Wireless Sensor Networks Localization in Wireless Sensor Networks Part 2: Localization techniques Department of Informatics University of Oslo Cyber Physical Systems, 11.10.2011 Localization problem in WSN In a localization problem

More information

Positioning Small AUVs for Deeper Water Surveys Using Inverted USBL

Positioning Small AUVs for Deeper Water Surveys Using Inverted USBL Positioning Small AUVs for Deeper Water Surveys Using Inverted USBL Presented at Hydro12, Rotterdam, November 2012 Dr. T.M. Hiller, thiller@teledyne.com Overview Introduction to Gavia AUV Gavia Acoustic

More information

OFFensive Swarm-Enabled Tactics (OFFSET)

OFFensive Swarm-Enabled Tactics (OFFSET) OFFensive Swarm-Enabled Tactics (OFFSET) Dr. Timothy H. Chung, Program Manager Tactical Technology Office Briefing Prepared for OFFSET Proposers Day 1 Why are Swarms Hard: Complexity of Swarms Number Agent

More information

FLCS V2.1. AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station

FLCS V2.1. AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station The platform provides a high performance basis for electromechanical system control. Originally designed for autonomous aerial vehicle

More information

Closing the loop around Sensor Networks

Closing the loop around Sensor Networks Closing the loop around Sensor Networks Bruno Sinopoli Shankar Sastry Dept of Electrical Engineering, UC Berkeley Chess Review May 11, 2005 Berkeley, CA Conceptual Issues Given a certain wireless sensor

More information

Safe and Efficient Autonomous Navigation in the Presence of Humans at Control Level

Safe and Efficient Autonomous Navigation in the Presence of Humans at Control Level Safe and Efficient Autonomous Navigation in the Presence of Humans at Control Level Klaus Buchegger 1, George Todoran 1, and Markus Bader 1 Vienna University of Technology, Karlsplatz 13, Vienna 1040,

More information

Summary of robot visual servo system

Summary of robot visual servo system Abstract Summary of robot visual servo system Xu Liu, Lingwen Tang School of Mechanical engineering, Southwest Petroleum University, Chengdu 610000, China In this paper, the survey of robot visual servoing

More information

Towards Reliable Underwater Acoustic Video Transmission for Human-Robot Dynamic Interaction

Towards Reliable Underwater Acoustic Video Transmission for Human-Robot Dynamic Interaction Towards Reliable Underwater Acoustic Video Transmission for Human-Robot Dynamic Interaction Dr. Dario Pompili Associate Professor Rutgers University, NJ, USA pompili@ece.rutgers.edu Semi-autonomous underwater

More information

Cooperative AUV Navigation using a Single Surface Craft

Cooperative AUV Navigation using a Single Surface Craft Cooperative AUV Navigation using a Single Surface Craft Maurice F. Fallon, Georgios Papadopoulos and John J. Leonard Abstract Maintaining accurate localization of an autonomous underwater vehicle (AUV)

More information

Localisation et navigation de robots

Localisation et navigation de robots Localisation et navigation de robots UPJV, Département EEA M2 EEAII, parcours ViRob Année Universitaire 2017/2018 Fabio MORBIDI Laboratoire MIS Équipe Perception ique E-mail: fabio.morbidi@u-picardie.fr

More information

Passive Emitter Geolocation using Agent-based Data Fusion of AOA, TDOA and FDOA Measurements

Passive Emitter Geolocation using Agent-based Data Fusion of AOA, TDOA and FDOA Measurements Passive Emitter Geolocation using Agent-based Data Fusion of AOA, TDOA and FDOA Measurements Alex Mikhalev and Richard Ormondroyd Department of Aerospace Power and Sensors Cranfield University The Defence

More information

Report 3. Kalman or Wiener Filters

Report 3. Kalman or Wiener Filters 1 Embedded Systems WS 2014/15 Report 3: Kalman or Wiener Filters Stefan Feilmeier Facultatea de Inginerie Hermann Oberth Master-Program Embedded Systems Advanced Digital Signal Processing Methods Winter

More information

Module 1: Introduction to Experimental Techniques Lecture 2: Sources of error. The Lecture Contains: Sources of Error in Measurement

Module 1: Introduction to Experimental Techniques Lecture 2: Sources of error. The Lecture Contains: Sources of Error in Measurement The Lecture Contains: Sources of Error in Measurement Signal-To-Noise Ratio Analog-to-Digital Conversion of Measurement Data A/D Conversion Digitalization Errors due to A/D Conversion file:///g /optical_measurement/lecture2/2_1.htm[5/7/2012

More information

IMPLEMENTING MULTIPLE ROBOT ARCHITECTURES USING MOBILE AGENTS

IMPLEMENTING MULTIPLE ROBOT ARCHITECTURES USING MOBILE AGENTS IMPLEMENTING MULTIPLE ROBOT ARCHITECTURES USING MOBILE AGENTS L. M. Cragg and H. Hu Department of Computer Science, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ E-mail: {lmcrag, hhu}@essex.ac.uk

More information

Level I Signal Modeling and Adaptive Spectral Analysis

Level I Signal Modeling and Adaptive Spectral Analysis Level I Signal Modeling and Adaptive Spectral Analysis 1 Learning Objectives Students will learn about autoregressive signal modeling as a means to represent a stochastic signal. This differs from using

More information

Analysis of South China Sea Shelf and Basin Acoustic Transmission Data

Analysis of South China Sea Shelf and Basin Acoustic Transmission Data DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. Analysis of South China Sea Shelf and Basin Acoustic Transmission Data Ching-Sang Chiu Department of Oceanography

More information

Communication-Aware Coverage Control for Robotic Sensor Networks

Communication-Aware Coverage Control for Robotic Sensor Networks 53rd IEEE Conference on Decision and Control December 15-17, 014. Los Angeles, California, USA Communication-Aware Coverage Control for Robotic Sensor Networks Yiannis Kantaros and Michael M. Zavlanos

More information

Team Autono-Mo. Jacobia. Department of Computer Science and Engineering The University of Texas at Arlington

Team Autono-Mo. Jacobia. Department of Computer Science and Engineering The University of Texas at Arlington Department of Computer Science and Engineering The University of Texas at Arlington Team Autono-Mo Jacobia Architecture Design Specification Team Members: Bill Butts Darius Salemizadeh Lance Storey Yunesh

More information

Smart and Networking Underwater Robots in Cooperation Meshes

Smart and Networking Underwater Robots in Cooperation Meshes Smart and Networking Underwater Robots in Cooperation Meshes SWARMs Newsletter #1 April 2016 Fostering offshore growth Many offshore industrial operations frequently involve divers in challenging and risky

More information

Decentralized Communication-Aware Motion Planning in Mobile Networks: An Information-Gain Approach

Decentralized Communication-Aware Motion Planning in Mobile Networks: An Information-Gain Approach DOI 10.1007/s10846-009-9335-9 Decentralized Communication-Aware Motion Planning in Mobile Networks: An Information-Gain Approach Yasamin Mostofi Received: 16 April 2008 / Accepted: 20 April 2009 Springer

More information

Dynamically Configured Waveform-Agile Sensor Systems

Dynamically Configured Waveform-Agile Sensor Systems Dynamically Configured Waveform-Agile Sensor Systems Antonia Papandreou-Suppappola in collaboration with D. Morrell, D. Cochran, S. Sira, A. Chhetri Arizona State University June 27, 2006 Supported by

More information

INTRODUCTION TO KALMAN FILTERS

INTRODUCTION TO KALMAN FILTERS ECE5550: Applied Kalman Filtering 1 1 INTRODUCTION TO KALMAN FILTERS 1.1: What does a Kalman filter do? AKalmanfilterisatool analgorithmusuallyimplementedasa computer program that uses sensor measurements

More information

Decentralised SLAM with Low-Bandwidth Communication for Teams of Vehicles

Decentralised SLAM with Low-Bandwidth Communication for Teams of Vehicles Decentralised SLAM with Low-Bandwidth Communication for Teams of Vehicles Eric Nettleton a, Sebastian Thrun b, Hugh Durrant-Whyte a and Salah Sukkarieh a a Australian Centre for Field Robotics, University

More information

Adaptive Antennas in Wireless Communication Networks

Adaptive Antennas in Wireless Communication Networks Bulgarian Academy of Sciences Adaptive Antennas in Wireless Communication Networks Blagovest Shishkov Institute of Mathematics and Informatics Bulgarian Academy of Sciences 1 introducing myself Blagovest

More information

A Weighted Least Squares Algorithm for Passive Localization in Multipath Scenarios

A Weighted Least Squares Algorithm for Passive Localization in Multipath Scenarios A Weighted Least Squares Algorithm for Passive Localization in Multipath Scenarios Noha El Gemayel, Holger Jäkel, Friedrich K. Jondral Karlsruhe Institute of Technology, Germany, {noha.gemayel,holger.jaekel,friedrich.jondral}@kit.edu

More information

Minnesat: GPS Attitude Determination Experiments Onboard a Nanosatellite

Minnesat: GPS Attitude Determination Experiments Onboard a Nanosatellite SSC06-VII-7 : GPS Attitude Determination Experiments Onboard a Nanosatellite Vibhor L., Demoz Gebre-Egziabher, William L. Garrard, Jason J. Mintz, Jason V. Andersen, Ella S. Field, Vincent Jusuf, Abdul

More information

Wireless Network Delay Estimation for Time-Sensitive Applications

Wireless Network Delay Estimation for Time-Sensitive Applications Wireless Network Delay Estimation for Time-Sensitive Applications Rafael Camilo Lozoya Gámez, Pau Martí, Manel Velasco and Josep M. Fuertes Automatic Control Department Technical University of Catalonia

More information

MATCHED FIELD PROCESSING: ENVIRONMENTAL FOCUSING AND SOURCE TRACKING WITH APPLICATION TO THE NORTH ELBA DATA SET

MATCHED FIELD PROCESSING: ENVIRONMENTAL FOCUSING AND SOURCE TRACKING WITH APPLICATION TO THE NORTH ELBA DATA SET MATCHED FIELD PROCESSING: ENVIRONMENTAL FOCUSING AND SOURCE TRACKING WITH APPLICATION TO THE NORTH ELBA DATA SET Cristiano Soares 1, Andreas Waldhorst 2 and S. M. Jesus 1 1 UCEH - Universidade do Algarve,

More information

4F3 - Predictive Control

4F3 - Predictive Control 4F3 Predictive Control - Lecture 1 p. 1/13 4F3 - Predictive Control Lecture 1 - Introduction to Predictive Control Jan Maciejowski jmm@eng.cam.ac.uk http://www-control.eng.cam.ac.uk/homepage/officialweb.php?id=1

More information

Bias Correction in Localization Problem. Yiming (Alex) Ji Research School of Information Sciences and Engineering The Australian National University

Bias Correction in Localization Problem. Yiming (Alex) Ji Research School of Information Sciences and Engineering The Australian National University Bias Correction in Localization Problem Yiming (Alex) Ji Research School of Information Sciences and Engineering The Australian National University 1 Collaborators Dr. Changbin (Brad) Yu Professor Brian

More information

Connectivity in a UAV Multi-static Radar Network

Connectivity in a UAV Multi-static Radar Network Connectivity in a UAV Multi-static Radar Network David W. Casbeer and A. Lee Swindlehurst and Randal Beard Department of Electrical and Computer Engineering Brigham Young University, Provo, UT This paper

More information

Multi-Platform Soccer Robot Development System

Multi-Platform Soccer Robot Development System Multi-Platform Soccer Robot Development System Hui Wang, Han Wang, Chunmiao Wang, William Y. C. Soh Division of Control & Instrumentation, School of EEE Nanyang Technological University Nanyang Avenue,

More information

Motion Control of a Three Active Wheeled Mobile Robot and Collision-Free Human Following Navigation in Outdoor Environment

Motion Control of a Three Active Wheeled Mobile Robot and Collision-Free Human Following Navigation in Outdoor Environment Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,, March 16-18, 2016, Hong Kong Motion Control of a Three Active Wheeled Mobile Robot and Collision-Free

More information

MINE SEARCH MISSION PLANNING FOR HIGH DEFINITION SONAR SYSTEM - SELECTION OF SPACE IMAGING EQUIPMENT FOR A SMALL AUV DOROTA ŁUKASZEWICZ, LECH ROWIŃSKI

MINE SEARCH MISSION PLANNING FOR HIGH DEFINITION SONAR SYSTEM - SELECTION OF SPACE IMAGING EQUIPMENT FOR A SMALL AUV DOROTA ŁUKASZEWICZ, LECH ROWIŃSKI MINE SEARCH MISSION PLANNING FOR HIGH DEFINITION SONAR SYSTEM - SELECTION OF SPACE IMAGING EQUIPMENT FOR A SMALL AUV DOROTA ŁUKASZEWICZ, LECH ROWIŃSKI Gdansk University of Technology Faculty of Ocean Engineering

More information

CONTROL IMPROVEMENT OF UNDER-DAMPED SYSTEMS AND STRUCTURES BY INPUT SHAPING

CONTROL IMPROVEMENT OF UNDER-DAMPED SYSTEMS AND STRUCTURES BY INPUT SHAPING CONTROL IMPROVEMENT OF UNDER-DAMPED SYSTEMS AND STRUCTURES BY INPUT SHAPING Igor Arolovich a, Grigory Agranovich b Ariel University of Samaria a igor.arolovich@outlook.com, b agr@ariel.ac.il Abstract -

More information

Dynamic Model-Based Filtering for Mobile Terminal Location Estimation

Dynamic Model-Based Filtering for Mobile Terminal Location Estimation 1012 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 52, NO. 4, JULY 2003 Dynamic Model-Based Filtering for Mobile Terminal Location Estimation Michael McGuire, Member, IEEE, and Konstantinos N. Plataniotis,

More information

Robotic Vehicle Design

Robotic Vehicle Design Robotic Vehicle Design Sensors, measurements and interfacing Jim Keller July 2008 1of 14 Sensor Design Types Topology in system Specifications/Considerations for Selection Placement Estimators Summary

More information

USBL positioning and communication systems. Applications

USBL positioning and communication systems. Applications USBL positioning and communication systems Offering a powerful USBL transceiver functionality with full benefits of an S2C technology communication link Applications Positioning of offshore equipment >

More information

Noise Reduction for L-3 Nautronix Receivers

Noise Reduction for L-3 Nautronix Receivers Noise Reduction for L-3 Nautronix Receivers Jessica Manea School of Electrical, Electronic and Computer Engineering, University of Western Australia Roberto Togneri School of Electrical, Electronic and

More information

Hybrid Positioning through Extended Kalman Filter with Inertial Data Fusion

Hybrid Positioning through Extended Kalman Filter with Inertial Data Fusion Hybrid Positioning through Extended Kalman Filter with Inertial Data Fusion Rafiullah Khan, Francesco Sottile, and Maurizio A. Spirito Abstract In wireless sensor networks (WSNs), hybrid algorithms are

More information

AGENT PLATFORM FOR ROBOT CONTROL IN REAL-TIME DYNAMIC ENVIRONMENTS. Nuno Sousa Eugénio Oliveira

AGENT PLATFORM FOR ROBOT CONTROL IN REAL-TIME DYNAMIC ENVIRONMENTS. Nuno Sousa Eugénio Oliveira AGENT PLATFORM FOR ROBOT CONTROL IN REAL-TIME DYNAMIC ENVIRONMENTS Nuno Sousa Eugénio Oliveira Faculdade de Egenharia da Universidade do Porto, Portugal Abstract: This paper describes a platform that enables

More information

USBL positioning and communication SyStEmS. product information GUidE

USBL positioning and communication SyStEmS. product information GUidE USBL positioning and communication SyStEmS product information GUidE evologics s2c R usbl - series underwater positioning and communication systems EvoLogics S2CR USBL is a series of combined positioning

More information

Traffic Control for a Swarm of Robots: Avoiding Group Conflicts

Traffic Control for a Swarm of Robots: Avoiding Group Conflicts Traffic Control for a Swarm of Robots: Avoiding Group Conflicts Leandro Soriano Marcolino and Luiz Chaimowicz Abstract A very common problem in the navigation of robotic swarms is when groups of robots

More information

Implementation and Performance Evaluation of a Fast Relocation Method in a GPS/SINS/CSAC Integrated Navigation System Hardware Prototype

Implementation and Performance Evaluation of a Fast Relocation Method in a GPS/SINS/CSAC Integrated Navigation System Hardware Prototype This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. Implementation and Performance Evaluation of a Fast Relocation Method in a GPS/SINS/CSAC

More information