This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

Size: px
Start display at page:

Download "This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and"

Transcription

1 This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier s archiving and manuscript policies are encouraged to visit:

2 Journal of the Mechanics and Physics of Solids 56 (2008) Contents lists available at ScienceDirect Journal of the Mechanics and Physics of Solids journal homepage: Surface stress effects on the resonant properties of metal nanowires: The importance of finite deformation kinematics and the impact of the residual surface stress Harold S. Park a,, Patrick A. Klein b a Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA b Franklin Templeton Investments, San Mateo, CA 94403, USA article info Article history: Received 5 January 2008 Received in revised form 6 August 2008 Accepted 3 August 2008 Keywords: Nanowires Resonant frequency Surface stress Surface Cauchy Born Finite elements abstract We utilize the recently developed surface Cauchy Born model, which extends the standard Cauchy Born theory to account for surface stresses due to undercoordinated surface atoms, to study the coupled influence of boundary conditions and surface stresses on the resonant properties of h 0 0i gold nanowires with f 0 0g surfaces. There are two major purposes to the present work. First, we quantify, for the first time, variations in the nanowire resonant frequencies due to surface stresses as compared to the corresponding bulk material which does not observe surface effects within a finite deformation framework depending on whether fixed/free or fixed/fixed boundary conditions are utilized. We find that while the resonant frequencies of fixed/fixed nanowires are elevated as compared to the corresponding bulk material, the resonant frequencies of fixed/free nanowires are reduced as a result of compressive strain caused by the surface stresses. Furthermore, we find that for a diverse range of nanowire geometries, the variation in resonant frequencies for both boundary conditions due to surface stresses is a geometric effect that is characterized by the nanowire aspect ratio. The present results are found to agree well with existing experimental data for both types of boundary conditions. The second major goal of this work is to quantify, for the first time, how both the residual (strain-independent) and surface elastic (strain-dependent) parts of the surface stress impact the resonant frequencies of metal nanowires within the framework of nonlinear, finite deformation kinematics. We find that if finite deformation kinematics are considered, the strain-independent surface stress substantially alters the resonant frequencies of the nanowires; however, we also find that the strain-dependent surface stress has a significant effect, one that can be comparable to or even larger than the effect of the strain-independent surface stress depending on the boundary condition, in shifting the resonant frequencies of the nanowires as compared to the bulk material. & 2008 Elsevier Ltd. All rights reserved.. Introduction Over the past decade, nanowires, both metallic and semiconducting, have drawn considerable interest from the scientific community (Xia et al., 2003; Lieber, 2003). The large interest in nanowires has largely been driven by their Corresponding author. Tel.: ; fax: address: harold.park@colorado.edu (H.S. Park) /$ - see front matter & 2008 Elsevier Ltd. All rights reserved. doi:0.06/j.jmps

3 H.S. Park, P.A. Klein / J. Mech. Phys. Solids 56 (2008) remarkable physical properties, most of which emerge due to their small size and thus large surface area to volume (SAV) ratio. These properties range across the scientific disciplines, including unusual or enhanced optical (Canham, 990; Barnes et al., 2003), electrical (Wiley et al., 2006; Rubio et al., 996; Ohnishi et al., 998), thermal (Li et al., 2003) and mechanical (Wong et al., 997; Cuenot et al., 2004; Wu et al., 2005; Jing et al., 2006) properties. Nanowires are also important as they will serve as the basic building blocks for future nanoelectromechanical systems (NEMS), which have been proposed for a multitude of cross-disciplinary applications, including chemical and biological sensing, force and pressure sensing, high frequency resonators, and many others (Cleland and Roukes, 996; Huang et al., 2003; Craighead, 2000; Lavrik et al., 2004; Ekinci and Roukes, 2005; Ekinci, 2005). Because many of the proposed applications for nanowire-based NEMS, such as resonant mass sensing and high frequency oscillators (Craighead, 2000; Lavrik et al., 2004; Ekinci and Roukes, 2005) rely on the ability to control and tailor the nanowire resonant frequencies with a high degree of precision, it is critical to be able to predict and control variations in the nanowire resonant frequencies. The potential of nanowires in future nanotechnologies has led to significant interest in experimental characterization of the size-dependent elastic properties of nanowires. The experimental techniques utilized have varied from time-resolved spectroscopy (Petrova et al., 2006) to AFM-induced bending (Wong et al., 997; Wu et al., 2005; Heidelberg et al., 2006; Cuenot et al., 2004; Jing et al., 2006; Hoffmann et al., 2006; Chen et al., 2006; Namazu et al., 2000; Sundararajan et al., 2002) or resonance measurements (Verbridge et al., 2006, 2007; Cleland and Roukes, 996; Husain et al., 2003; Nam et al., 2006; Dikin et al., 2003; Yang et al., 200; Houston et al., 2002; Evoy et al., 2000). In general, resonance measurements to obtain the nanoscale elastic properties are predominant in the literature due to their relative simplicity as compared to bending and tensile experiments at the nanoscale due to the reduced amount of nanowire manipulation involved in resonance-based testing. The experimental results show significant scatter, with some predictions of enhanced elastic stiffness (Husain et al., 2003; Cuenot et al., 2004; Jing et al., 2006), some predicting reduced elastic stiffness (Petrova et al., 2006) with decreasing nanostructure size, and some predicting no change with respect to the bulk elastic stiffness (Wu et al., 2005; Heidelberg et al., 2006). The difficulty in predicting the resonant properties of nanowires stems from the fact that they are characterized by a large SAV ratio; because of this, nanowires are subject to surface stresses (Cammarata, 994; Haiss, 200), which occur due to the fact that surface atoms have fewer bonding neighbors than do atoms that lie within the material bulk. Surface stresses have been predicted to cause many non-bulk phenomena in nanowires, including self-healing behavior and phase transformations (Diao et al., 2003; Park et al., 2005; Liang et al., 2005b), and non-bulk elastic properties (Zhou and Huang, 2004; Liang et al., 2005a; Dingreville et al., 2005; Cuenot et al., 2004; Jing et al., 2006; Shenoy, 2005). The knowledge that surface effects are critical to understanding the mechanical behavior and properties of nanomaterials has motivated the development of enhanced continuum models, as standard continuum mechanics is length scale independent. Various analytic models have been developed to study the effects of surface stress on the resonant properties of nanobeams (Lu et al., 2005; Gurtin et al., 976; Sader, 200; McFarland et al., 2005), or more generally to capture the non-bulk mechanical properties of nanostructures (Gurtin and Murdoch, 975; Miller and Shenoy, 2000; Shenoy, 2005; Sharma et al., 2003; Sun and Zhang, 2003; Dingreville et al., 2005; Wei et al., 2006; Wang et al., 2006; Tang et al., 2006; Lu et al., 2005; Gurtin et al., 976; Sader, 200; Huang et al., 2006; McFarland et al., 2005). Due to assumptions utilized to make the analyses tractable, the coupled effects of geometry, surface orientation and system size on the resonant properties of nanowires have not been quantified, nor have surface stress effects arising directly from atomistic principles been included in the analyses, which are generally in two-dimensions. The analyses also utilize overly simplistic pair-type atomic interactions to describe the surface physics, which tend to incorrectly predict a compressive surface stress for metals, whereas the surface stress for metals is almost always tensile. These errors indicate that quantitative analyses for real materials cannot be made using these approaches. There are two major goals to the present work. The first is to quantify, for the first time, how surface stresses may be expected to alter the resonant frequencies for gold nanowires with a h00i axial orientation and f00g transverse surfaces considering both fixed/fixed and fixed/free boundary conditions as compared to the corresponding bulk material that does not observe nanoscale surface stress effects. These boundary conditions are ubiquitous in the study of NEMS, as most NEMS employ nanomaterials such as nanowires and nanotubes as the active beam element. We obtain the resonant frequencies using the recently developed surface Cauchy Born (SCB) model (Park et al., 2006; Park and Klein, 2007, 2008; Park, 2008a, b). The uniqueness of the SCB approach as compared to other analytical and theoretical (Gurtin and Murdoch, 975; Miller and Shenoy, 2000; Shenoy, 2005; Sharma et al., 2003; Sun and Zhang, 2003; Dingreville et al., 2005; Wei et al., 2006; Wang et al., 2006; Tang et al., 2006; Lu et al., 2005; Gurtin et al., 976; Sader, 200; Huang et al., 2006; McFarland et al., 2005) surface elastic models is that it enables the solution of three-dimensional nanomechanical boundary value problems for displacements, stresses and strains in nanomaterials using standard nonlinear finite element (FE) techniques (Belytschko et al., 2002), with the nonlinear, finite deformation material constitutive response obtained directly from realistic interatomic potentials such as the embedded atom method (EAM) (Daw and Baskes, 984). Furthermore, the usage of a standard FE formulation enables the consideration of arbitrary geometries and various materials once the SCB model has been developed. Therefore, the resonant properties of the gold nanowires are determined by solving a standard FE eigenvalue problem for the resonant frequencies and associated mode shapes, with full accounting for surface stress effects through the FE stiffness matrix. The present analysis does not account for factors that are known to deleteriously impact the resonant properties of nanostructures, including clamping losses and thermoelastic damping (Ekinci et al., 2004; Cleland and

4 346 H.S. Park, P.A. Klein / J. Mech. Phys. Solids 56 (2008) Roukes, 2002; Evoy et al., 999; Ilic et al., 2004; Yasumura et al., 2000; Carr et al., 999; Yang et al., 2000). We quantify the effects of surface stress on the fundamental resonant frequency as well as the higher order resonant frequencies corresponding to the deformation modes of second bending, twist and stretch for both fixed/free and fixed/fixed boundary conditions as functions of geometry, size and SAV ratio. We further compare the results to those obtained using the standard bulk Cauchy Born (BCB) material, which does not account for surface stress effects, while making contact with existing experimental data on the resonant frequencies and elastic properties of metal nanowires. The second major goal of the present work is to, for the first time within the framework of nonlinear, finite deformation kinematics, determine the effects of both the residual (strain-independent) and surface elastic (strain-dependent) parts of the surface stress on the resonant frequencies of metal nanowires. Since the work of Gurtin et al. (976), researchers have consistently found that, within the confines of linear elastic continuum beam theory, the strain-independent surface stress has no effect on the resonant frequency of a cantilever beam. However, Huang and Sun (2007) have recently demonstrated that if nonlinear, finite deformation kinematics are considered, that the residual surface stress does in fact change the effective elastic properties of the nanostructure. We therefore quantify in this work the effects of the residual and surface elastic parts of the surface stress on the resonant properties of metal nanowires using a modified version of the SCB model in which the strain-dependent parts of the surface stress and surface stiffness are subtracted from the original, fully nonlinear SCB model. 2. SCB model 2.. Overview Details regarding the SCB model and its differences from the standard BCB model have been described in previous publications (Park et al., 2006; Park and Klein, 2007, 2008; Park, 2008a, b). Therefore, we briefly overview the main ideas of the SCB model here. The BCB model is a hierarchical multiscale assumption that enables the calculation of continuum stress and moduli from atomistic principles (Tadmor et al., 996). Because the BCB model does not consider surface effects, the SCB model was developed (Park et al., 2006; Park and Klein, 2007, 2008) such that the energy density of a material would include contributions not only from the bulk, but also the material surfaces thus leading to the incorporation of atomistic-based surface stress effects into standard continuum stress measures. Both the BCB and SCB models are finite deformation constitutive models that explicitly represent the stretching and rotation of bonds undergoing large deformation through continuum mechanics-based kinematic quantities such as the deformation gradient F, or the stretch tensor C ¼ F T F (Belytschko et al., 2002). Under deformations which can be represented as homogeneous over the unit cell scale, the approximation exactly reproduces the response of the corresponding, fully atomistic representation of the crystal. The necessity for the finite deformation kinematics gains credence through recent work that has indicated that surface stresses can cause nonlinearly elastic compressive strains on the order of % or more in the nanowires (Park and Klein, 2007; Liang et al., 2005a). The finite deformation formulation utilized for the SCB model also enables the calculation of resonant frequencies of highly deformed nanostructures, which may be useful due to the large elastic deformations that nanowires can undergo prior to yield and subsequent failure and due to the numerous sensing applications that are envisioned utilizing nanowires as the sensing component (Ekinci and Roukes, 2005; Park, 2008a). A schematic of the SCB decomposition of bulk/non-bulk atoms near a free surface is shown in Fig. ; note that all atomic interactions involving bulk and non-bulk atoms are governed entirely by the range of the interatomic potential chosen, as would be in an atomistic simulation. Mathematically, the relationship between the continuum strain energy density and the total potential energy of the corresponding, defect-free atomistic system can be written as natoms X i Z U i ðrþ ¼ O bulk 0 Z FðCÞ do þ G 0 Z g G ðcþ dg þ 0 G 2 0 Z g G 2ðCÞ dg þ 0 G 3 0 Z g G 3 ðcþ dg þ 0 G 4 0 g G 4ðCÞ dg, () 0 Fig.. Illustration of bulk and non-bulk layers of atoms in a h 0 0i=f 0 0g FCC crystal interacting by an EAM potential.

5 H.S. Park, P.A. Klein / J. Mech. Phys. Solids 56 (2008) where U i is the potential energy for atom i, r is the interatomic distance, FðCÞ is the bulk strain energy density, O bulk 0 ðcþ is the surface strain energy density of a represents the volume of the body in which all atoms are fully coordinated, g G a 0 representative atom in surface layer a and natoms is the total number of atoms in the system. The bulk strain energy density FðCÞ in this work is obtained using EAM potentials (Daw and Baskes, 984; Foiles et al., 986), and takes the form FðCÞ ¼ O 0 ðf i ð r i Þþf i Þ, (2) f i ¼ 2 Xnbrv i jai f ij ðr ij ðcþþ, (3) r i ¼ Xnbrv i r j ðr ij ðcþþ, (4) jai where nbrv i are the number of bonds in the representative unit volume O 0 for atom i, F i is the embedding function, r j is the contribution to the electron density at atom i from atom j, f ij is a pair interaction function and r ij is the distance between atoms i and j. Analogous to the bulk energy density, the surface energy densities gðcþ describe the energy per representative undeformed area of atoms at or near the surface of a homogeneously deforming crystal, and is also obtained using the same EAM potential as the bulk energy density. For FCC metals, choosing a surface unit cell that contains only one atom is sufficient to reproduce the structure of each surface layer. The surface unit cell possesses translational symmetry only in the plane of the surface, unlike the bulk unit cell which possesses translational symmetry in all directions. Thus, the surface energy density g G a ðcþ for a representative atom in a given surface layer Ga 0 0 in Fig. can be written as g G a 0 ðcþ ¼ G 0 ðf i ð r i Þþf i Þ, (5) f i ¼ 2 X nba jai f ij ðr ij ðcþþ, (6) r i ¼ Xnba r j ðr ij ðcþþ, (7) jai where nb a are the number of bonds for an atom in surface layer a, and G 0 is the representative unit area occupied by a non-bulk atom lying at or near the free surface. Once the bulk strain energy density is known, continuum stress measures such as the second Piola Kirchoff stress S can be defined as S ¼ 2 qfðcþ qc, (8) while the material tangent modulus C is defined to be C ¼ 2 qs qc. (9) Similarly, the surface stress on each surface layer G a 0 in Fig. can be defined as ~S ðaþ qg G ðcþ ¼2 a ðcþ 0, (0) qc while the surface tangent modulus C ~ can be written as ~C ¼ 2 q~ S qc. () The SCB model thus uses the surface unit cells based on the surface energies gðcþ to capture the undercoordination of atoms in the surface layers. Because the surface unit cells are undercoordinated, they are not at a minimum energy at the same atomistic spacing as bulk atoms, which results in the existence of surface stresses in Eq. (0) through differentiation of the surface energies gðcþ. It is critical to emphasize again that both the surface stress in Eq. (0) and the surface tangent modulus in Eq. () are quantities based upon finite deformation kinematics that are functions of strain through the stretch tensor C. We also discuss here differences between the current formulation for surface stress and surface energy, and the traditional thermodynamic definition of surface stress (see for example Cammarata, 994; Shenoy, 2005): t ¼ t 0 þ C 0 e, (2)

6 348 H.S. Park, P.A. Klein / J. Mech. Phys. Solids 56 (2008) where t is the surface stress, t 0 is the residual (strain-independent) portion of the surface stress, C 0 e is the surface-elastic (strain-dependent) part of the surface stress, and where C 0 is the (constant) surface elastic stiffness. We will return to this definition of surface stress later when investigating the effects of the strain-independent part of the surface stress on the nanowire resonant frequencies. The thermodynamic interpretation of both the surface stress t in Eq. (2) and that of the surface energy g G a ðcþ in Eq. (5) 0 is that of an excess quantity, i.e. a measure of the difference as compared to the equivalent bulk quantity. The surface energy g G a ðcþ in Eq. (5) differs from the conventional definition in that it does not represent the excess, or difference in 0 surface energy as compared to a typical bulk atom; instead, it represents the actual potential energy of an atom lying in surface layer a. Furthermore, the definition of surface stress utilized in the present work in Eq. (0) differs from Eq. (2) in that the surface energy is directly differentiated in the present work to obtain the surface stress in Eq. (0). This choice can be understood by analyzing the energy balance in Eq. (). Because Eq. () represents the total energy of the nanostructure as decomposed into bulk and surface contributions, minimization of the energy leads directly to a force balance (Park et al., 2006; Huang and Wang, 2006), which carries the clear physical meaning that at equilibrium, the bulk forces will balance the surface forces that originate from the surface stress. Furthermore, starting from the energy balance in Eq. () is extremely favorable for nonlinear FE implementation; the full details of the FE equations are found in Park et al. (2006).We note in closing that an extensive analysis of the SCB model in calculating the minimum energy configurations of gold nanowires as compared to benchmark atomistic calculations can be found in Park and Klein (2007) FE eigenvalue problem for nanowire resonant frequencies The equation describing the eigenvalue problem for continuum elastodynamics is written as ðk o 2 MÞu ¼ 0, (3) where M is the mass matrix and K is the stiffness matrix of the discretized FE equations; the solution of the eigenvalue problem described in Eq. (3) gives the resonant frequencies f, where f ¼ o=2p and the corresponding mode shapes u. We note that the stiffness matrix K contains the effects of both material and geometric nonlinearities through a consistent linearization about the finitely deformed configuration (Belytschko et al., 2002). As detailed in Park and Klein (2007), once the total energy is obtained by subtracting from Eq. () the work due to external loads, the FE equilibrium equations can be obtained by approximating the displacement field using standard FE interpolation functions (Belytschko et al., 2002) and taking the first variation of the total energy. We emphasize that the addition of the surface energy terms in Eq. () leads naturally to the incorporation of the surface stresses in the FE stiffness matrix K, which then leads to the dependence of the resonant frequencies f on the surface stresses. The eigenvalue problem was solved using the Sandia-developed package Trilinos, which was incorporated into the simulation code Tahoe. 3. Numerical examples All numerical examples were performed on three-dimensional, single crystal gold nanowires that have a cross-section of width a and length h as illustrated in Fig. 2. Three different parametric studies are conducted in this work, which consider nanowires with constant cross-sectional area (CSA), constant length and constant SAV; the geometries are summarized in Table. All wires had a h 0 0i longitudinal orientation with f 0 0g transverse surfaces, and had either fixed/free (cantilevered) boundary conditions, where the left ð xþ surface of the wire was fixed while the right ðþxþ surface of the wire was free, or fixed/fixed boundary conditions, where both the left ð xþ and right ðþxþ surfaces of the wire were fixed. All FE simulations were performed using the stated boundary conditions without external loading, and utilized regular meshes of 8-node hexahedral elements. The SCB bulk and surface energy densities in Eqs. (2) and (5) were calculated using EAM interatomic potentials, with gold being the material for all problems using the parameters of Foiles et al. (986). In the present work, the bulk FE stresses were calculated using Eq. (8) and the surface FE stresses were found using Eq. (0). We note also that the nanowire cross-sections considered in this work are sufficiently large such that the nanowire surfaces do not reconstruct or reorient to a lower energy orientation; it is well-established (Kondo et al., 999; Hasmy and Medina, 2002) that gold f00g surfaces will reorient to lower energy fg surfaces only if the thin film or nanowire Fig. 2. Nanowire geometry considered for numerical examples.

7 H.S. Park, P.A. Klein / J. Mech. Phys. Solids 56 (2008) Table Summary of geometries considered: constant surface area to volume ratio (SAV), constant length, and constant cross-sectional area (CSA) Constant SAV Constant length Constant CSA :7 9: :2 5:2 232 :6 : :9 4: :95 5: :7 4: :2 23: :5 4:5 All dimensions are in nm. thickness is less than about 2 nm. Thus, the f00g nanowire surfaces in this work undergo only nonlinear elastic deformations. Regardless of boundary condition, the nanowires are initially out of equilibrium due to the presence of the surface stresses. For fixed/free nanowires, the free end undergoes a compressive relaxation strain to find an energy minimizing configuration under the influence of surface stresses; previous work (Park and Klein, 2007) illustrated the accuracy of the SCB model in predicting energy minimizing configurations of the nanowires due to surface stresses. Fixed/fixed nanowires, on the other hand, are constrained such that the nanowire free surfaces are unable to contract due to the boundary conditions. Therefore, fixed/fixed nanowires exist in a state of tension, as they are unable to contract despite the presence of the surface stresses. For both boundary conditions, the minimum energy configuration was obtained while accounting for the surface stresses. The fixed/fixed boundary conditions utilized in this work represent nanowires that are fabricated through a top-down process of etching or lifting-off of a metal film on a semiconducting substrate (Davis and Boisen, 2005; Li et al., 2003, 2007) as is commonly done in experimental studies of NEMS-based nanowire resonance. Experimentally, the residual tension in the fixed/fixed nanowires would occur due to surface stress effects on the nanowires that are etched in a fixed configuration, and are therefore unable to contract axially to relieve the tensile surface stresses. At that point, the eigenvalue problem described in Eq. (3) is solved using the FE stiffness matrix from the equilibrated (deformed) nanowire configuration to find the resonant frequencies. Resonant frequencies were also found using the standard BCB model (without surface stresses) on the same geometries for comparison. For all resonant frequencies reported in this work, the fundamental, or lowest mode frequencies corresponded to a standard bending mode of deformation. For each nanowire geometry, we plot the resonant frequencies in two ways. First, we plot the normalized resonant frequency f scb =f bcb versus the aspect ratio h=a. Second, we plot the normalized resonant frequency f scb =f bcb versus the SAV ratio to quantify the resonant frequency variation that the surface stresses cause. Finally, we compare the results for the fixed/free nanowires to those of the fixed/fixed nanowires to ascertain the effects of boundary conditions and surface stresses on the predicted resonant frequencies. 3.. Constant CSA For the first set of simulations, nanowires with constant square cross-section of width a ¼ 6 nm and increasing length h were considered; the lengths h considered ranged between four and 24 times a, resulting in FE meshes that contained between 5000 and nodes. To validate the accuracy of the calculations for the bulk material, we compare in Tables 2 and 3 the BCB and SCB resonant frequencies to those obtained using the well-known analytic solution for the fundamental resonant frequency for both fixed/free (cantilevered) and fixed/fixed beams (Weaver et al., 990). For the fixed/free beam: sffiffiffiffiffiffi EI f 0 ¼ B2 0, (4) 2ph 2 ra where B 0 ¼ :875 for the fundamental resonant mode and E is the modulus in the h00i direction, which can be found to be 35 GPa (Foiles et al., 986). The BCB resonant frequencies compare quite well to those predicted by the analytic formula, with increasing accuracy for increasing aspect ratio h=a, as would be expected from beam theory. We note that the SCB resonant frequencies become smaller than the bulk resonant frequencies when the aspect ratio h=a48; reasons for this trend, which will be observed in all parametric studies, will be discussed later. For the fixed/fixed beam, the analytic solution is given as (Weaver et al., 990) sffiffiffiffiffiffi f 0 ¼ i2 p EI, (5) 2h 2 ra where i is a mode shape factor, which is about.5 for the fundamental bending mode of fixed/fixed beams with zero displacement and zero slope boundary conditions (Verbridge et al., 2006; Weaver et al., 990). Table 3 shows that the bulk

8 350 H.S. Park, P.A. Klein / J. Mech. Phys. Solids 56 (2008) Table 2 Summary of constant CSA nanowire fundamental resonant frequencies for fixed/free boundary conditions as computed from: () the analytic solution given by Eq. (4), (2) bulk Cauchy Born (BCB), and (3) surface Cauchy Born (SCB) Geometry Eq. (4) BCB SCB All frequencies are in MHz, the nanowire dimensions are in nm. Table 3 Summary of constant CSA nanowire fundamental resonant frequencies for fixed/fixed boundary conditions as computed from: () the analytic solution given by Eq. (5), (2) bulk Cauchy Born (BCB), and (3) surface Cauchy Born (SCB) Geometry Eq. (5) BCB SCB All frequencies are in MHz, the nanowire geometry is in nm..5.4 Constant CSA Nanowires, a = 6 nm Fixed/free Fixed/fixed Fig. 3. Variation in fundamental resonant frequency for fixed/free and fixed/fixed constant cross-sectional area nanowires as a function of nanowire aspect ratio h=a. CB and analytic frequencies agree nicely, while the SCB resonant frequencies are consistently higher; the reasons for this will be discussed in detail below. Fig. 3 shows the resonant frequencies for both the fixed/fixed and fixed/free cases plotted as a function of the aspect ratio h=a. As can be seen, the calculated resonant frequencies vary greatly depending on the boundary condition. For small aspect ratios, both boundary conditions give resonant frequencies close to the bulk value. However, as the aspect ratio h=a increases, the fixed/free resonant frequencies decrease relative to the bulk value, while the fixed/fixed resonant frequencies increase relative to the bulk value. For the fixed/free case calculated in this work, the resonant frequency is reduced to nearly 90% of the bulk value when the aspect ratio reaches h=a ¼ 24, while the resonant frequency for fixed/fixed nanowires increase to more than 40% of the bulk value when h=a ¼ 24. The results can also be analyzed with respect to the SAV ratio, as seen in Fig. 4. We note that in this case, increasing the length while keeping the CSA constant leads to a decrease in SAV ratio. Again, the boundary conditions impact the trends with SAV ratio; while the fixed/fixed nanowires show a decrease in resonant frequency with increasing SAV ratio, the opposite is observed for the fixed/free nanowires.

9 H.S. Park, P.A. Klein / J. Mech. Phys. Solids 56 (2008) Constant CSA Nanowires, a = 6 nm.4 Fixed/free Fixed/fixed Surface area to volume ratio (nm ) Fig. 4. Variation in fundamental resonant frequency for fixed/free and fixed/fixed constant cross-sectional area nanowires as a function of surface area to volume ratio Constant length Simulations were also performed keeping the length of the nanowire fixed at h ¼ 232 nm, while increasing the CSA. Aspect ratios of h=a ¼ 0 24 were studied to quantify the variation in resonant frequencies for the two boundary conditions; the resulting FE meshes ranged in size from about to nodes. The normalized resonant frequencies are plotted versus aspect ratio h=a in Fig. 5. Again, the fixed/fixed nanowires show a marked increase in resonant frequency with increasing h=a, while the fixed/free nanowires show a marked decrease in resonant frequency with h=a. For the smallest nanowires considered in this work, with a transverse dimension of 9.7 nm, the fixed/free resonant frequency is only 90% of the bulk value, while the fixed/fixed resonant frequency is more than 60% of the bulk value. In all cases, the fixed/free resonant frequencies are below the bulk value. An interesting result is obtained when the resonant frequencies for the constant length geometry are plotted against SAV ratio in Fig. 6. Unlike the constant CSA resonant frequencies shown in Fig. 4, the fixed/free resonant frequencies decrease with increasing SAV ratio, while the fixed/fixed resonant frequencies increase with increasing SAV ratio Constant SAV ratio To draw general conclusions about the impact of SAV ratio on the nanowire resonant frequencies, we calculate the resonant frequencies of nanowires that have the same SAV ratio ð0:28 nm Þ, but different square cross-sections of length a and longitudinal length h; a ranged from 4.5 to 6 nm, while h ranged from 64 to 290 nm, leading to FE mesh sizes ranging from about 5000 to nodes. The results for the constant SAV ratio nanowires are shown in Fig. 7; in this case, because the SAV ratio is constant, we plot the resonant frequencies for both boundary conditions only with respect to the aspect ratio h=a. Fig. 7 clearly shows that the resonant frequency does not remain constant if the SAV ratio remains constant, for either fixed/free or fixed/fixed boundary conditions. In fact, the results strongly mirror those presented earlier in Fig. 3 for the constant CSA nanowires, and thus indicate that the nanowire aspect ratio h=a is a much more reliable tool to controlling, predicting and tailoring the resonant frequencies of nanowires than is the SAV ratio. This fact will be discussed later in this work Higher order modes In addition to analyzing boundary condition and surface stress effects on the fundamental resonant frequencies of gold nanowires, we also now analyze their effects on the higher order resonant frequencies corresponding to the modes of second bending, twist and stretch. We first plot the higher order mode resonant frequencies normalized by the corresponding bulk values of each mode for the two boundary conditions and for the constant CSA nanowires. The fixed/fixed higher order modes are plotted in Fig. 8, while the fixed/free higher order modes are plotted in Fig. 9. In both cases, the largest variation occurs in the second

10 352 H.S. Park, P.A. Klein / J. Mech. Phys. Solids 56 (2008) Constant Length Nanowires, h = 232 nm Fixed/free Fixed/fixed Fig. 5. Variation in fundamental resonant frequency for fixed/free and fixed/fixed constant length nanowires as a function of nanowire aspect ratio h=a..8.7 Constant Length Nanowires, h = 232 nm Fixed/free Fixed/fixed Surface area to volume ratio (nm ) Fig. 6. Variation in fundamental resonant frequency for fixed/free and fixed/fixed constant length nanowires as a function of surface area to volume ratio. bending mode resonant frequency, which increases with h=a for the fixed/fixed case similar to the fundamental mode resonant frequency, and decreases with h=a for the fixed/free case, again similar to the fundamental mode resonant frequency. In contrast, the twist and stretch frequencies show little variation with increasing aspect ratio h=a. We also plot in Figs. 0 and the variation in the higher mode resonant frequencies by normalizing each mode resonant frequency for both the BCB and SCB calculations by the first (fundamental) bending mode resonant frequency ðf scb scb stretch =f bend ; f bulk bulk stretch =f bend ; etc.þ, to quantify how surface stresses cause the higher mode (second bending, stretch, twist) resonant frequencies to either increase or decrease relative to the fundamental bending resonant frequency. Figs. 0 and illustrate two points: first, how the higher mode (second bending, twist, stretch) resonant frequencies change with respect to the fundamental resonant frequency with increasing h=a, and second, how surface stresses alter the changes as compared to the BCB material. These figures again illustrate the effects of boundary conditions and surface stresses on the resonant frequencies. For example, in the fixed/fixed case in Fig. 0, all higher mode resonant frequencies decrease due to the surface stresses, with the effects being particularly dramatic for the stretch and twist modes; the f stretch =f bend ratio including surface stresses is only 7% of the equivalent bulk ratio when h=a ¼ 24, while the twist differential is nearly identical. Similarly, the f bend2 =f bend ratio including surface stresses is about 87% of the bulk ratio when h=a ¼ 24.

11 H.S. Park, P.A. Klein / J. Mech. Phys. Solids 56 (2008) Fixed/free Fixed/fixed Constant SAV Nanowires Fig. 7. Variation in fundamental resonant frequency for fixed/free and fixed/fixed constant surface area to volume ratio nanowires as a function of nanowire aspect ratio h=a (a) Fixed/Fixed Constant CSA Nanowires, a = 6 nm Second Bending Stretch Twist Fig. 8. Surface stress effects on higher mode resonant frequencies for fixed/fixed nanowires with constant cross-sectional area. The trends for the fixed/free nanowires are completely different, as shown in Fig.. There, all higher mode resonant frequencies increase due to the surface stresses relative to the fundamental resonant frequency. The f stretch =f bend ratio including surface stresses is 08% of the equivalent bulk ratio when h=a ¼ 24, while f twist =f bend is 6% of the equivalent bulk ratio. Similarly, the f bend2 =f bend ratio including surface stresses is about 09% of the bulk ratio when h=a ¼ Discussion, analysis and comparison to existing theoretical and experimental studies 4.. Fixed/fixed nanowires We now turn our attention to the fact that the resonant frequencies of fixed/fixed nanowires due to surface stresses as predicted using the SCB model are consistently larger than the resonant frequencies of the corresponding bulk material. Experimental measurements of the elastic properties of metal nanowires have generally focused upon using the atomic force microscope (AFM) to calculate the elastic properties through bending related techniques (Wu et al., 2005; Heidelberg

12 354 H.S. Park, P.A. Klein / J. Mech. Phys. Solids 56 (2008) (a) Fixed/Free Constant CSA Nanowires, a = 6 nm Second Bending Stretch Twist Fig. 9. Surface stress effects on higher mode resonant frequencies for fixed/free nanowires with constant cross-sectional area. Log 0 (f/f bend ) Fixed/Fixed Constant CSA Nanowires Bulk 2nd Bending SCB 2nd Bending Bulk Stretch SCB Stretch Bulk Twist SCB Twist Fig. 0. Surface stress effects on higher mode resonant frequencies relative to the fundamental bending frequency for fixed/free nanowires with constant cross-sectional area. et al., 2006; Jing et al., 2006). Alternatively, some researchers have utilized resonance-based measurements to extract the elastic properties. One such study was performed by Cuenot et al. (2004), who utilized electrostatic resonant-contact AFM to determine Young s modulus of silver and lead nanowires by first calculating the resonant frequencies. The nanowires analyzed in that work had fixed/fixed boundary conditions, while the diameters ranged from about 50 to 200 nm. The major finding of the Cuenot et al. work is that the nanowire Young s modulus (and therefore the resonant frequency) increases with respect to the bulk value with a reduction in CSA. Similar results were obtained by Jing et al. (2006), who utilized an AFM to perform three-point bend tests to extract the elastic properties of fixed/fixed silver nanowires. For nanowires with diameters ranging from 20 to 40 nm, similar results to those of Cuenot et al. were obtained, i.e. an increasing modulus with decreasing size. Due to the existence of an analytic solution that was derived by Cuenot et al. (2004) to model the observed increase in nanowire Young s modulus with decreasing size for the fixed/fixed boundary conditions, we compare results obtained in the present work with their analytic solution. From the work of Cuenot et al. (2004), the analytic solution is E scb ¼ E bulk þ 8 h2 ð nþg 5 D, (6) 3

13 H.S. Park, P.A. Klein / J. Mech. Phys. Solids 56 (2008) Fixed/Free Constant CSA Nanowires Log 0 (f/f bend ) Bulk 2nd Bending SCB 2nd Bending Bulk Stretch SCB Stretch Bulk Twist SCB Twist Fig.. Surface stress effects on higher mode resonant frequencies relative to the fundamental bending frequency for fixed/free nanowires with constant cross-sectional area Fixed/Fixed Constant CSA Nanowires, a=6 nm Cuenot et al. (2004), Equation (9) Resonance Formula Ratio E scb /E bulk Fig. 2. E scb =E bulk as a function of aspect ratio h=a due to surface stress effects for fixed/fixed constant CSA nanowires. where h is the nanowire length, E scb is the apparent Young s modulus taking surface effects into account, E bulk is the bulk Young s modulus, D is the nanowire diameter, g is the surface energy and n is Poisson s ratio. We note that Eq. (6) implies that the modulus of the nanowires will change both as functions of the length, cross-sectional diameter, and therefore the aspect ratio. Here, the relaxed f00g surface energy g ¼ 0:94 J=m 2 for the Foiles et al. (986) potential was utilized, while the bulk Poisson s ratio of 0.44 for gold was utilized. We also note that in the Cuenot et al. (2004) work, the analytic relation in Eq. (6) was not actually utilized to compare against the experimentally obtained results. Fig. 2 thus shows the E scb =E bulk ratio for the present work, which is obtained by substituting the numerically obtained resonant frequencies for both the SCB and BCB cases into Eq. (5) to solve for the SCB and BCB Young s moduli. We utilize the standard continuum beam theory equation in Eq. (5) to solve for the SCB Young s modulus due to the fact that the analytic solution given in Eq. (6) is also based upon continuum beam theory. As can be seen, the modulus ratio obtained through the present work agrees well with the analytic solution of Cuenot et al. (2004) for the aspect ratios considered in this work, and illustrates that the expected length dependence of the nanowire Young s modulus is captured in the present work. The present results are not expected to agree exactly with the analytic solution in Eq. (6) for multiple reasons; the major reasons include the fact that metal nanowires typically form

14 356 H.S. Park, P.A. Klein / J. Mech. Phys. Solids 56 (2008) oxide layers on the surface (Jing et al., 2006; Cuenot et al., 2004), and also because the SCB resonant frequencies were calculated using finite deformation kinematics, where the stiffness of the nanowire changes due to deformation induced by surface stresses. In contrast, the Cuenot et al. (2004) beam theory solution is based upon linear elasticity, and therefore constant material properties for both the bulk and surface components. Despite these uncertainties, the general trend in Fig. 2 of increasing nanowire Young s modulus with increasing aspect ratio for fixed/fixed boundary conditions is correctly predicted using the SCB model. More importantly, Cuenot et al. (2004) experimentally observed an increase in apparent Young s modulus with decreasing size for fixed/fixed silver nanowires; the same trend is predicted in the present work for gold, and is explained naturally by understanding that the fixed/fixed nanowires exist in a state of tensile stress due to the fixed/fixed boundary conditions, which prevent surface stresses from contracting the nanowires. We also compare our results with those obtained from Husain et al. (2003); we make this comparison due to the fact that they also studied the resonant properties of a fixed/fixed FCC nanowire, in this case platinum. To compare with their larger nanowires (cross-section of 43 nm, length of 300 nm), we created gold nanowires of the same dimensions, and calculated the resonant frequency using the SCB model. The Husain et al. (2003) work found a resonant frequency for their fixed/fixed platinum nanowire of about 05 MHz, which exceeds the predicted value of 69 MHz as calculated using Eq. (5), with the experimentally measured resonant frequency being.5 times larger than the predicted resonant frequency. For gold, the predicted resonant frequency using Eq. (5) should be about 35 MHz; the SCB calculations predicted a resonant frequency of 47.5 MHz, thus leading to the SCB results being about.4 times larger than that expected using Eq. (5). In the Husain et al. (2003) work, thermal effects due to mismatch between the nanowire and the substrate were cited as being a likely cause for placing their platinum nanowire under tension. The present results indicate that surface stress effects are likely to have played a role in elevating the experimentally observed resonant frequencies above those predicted using bulk continuum measures. We also discuss the experiments of Verbridge et al. (2006), who studied the effect of applied tensile stress on the resonant frequencies of fixed/fixed SiN nanowires. This study is of relevance as it is one of the few to study the effects of tensile stresses on the resonant frequencies of nanowires, and thus is analogous to our situation where surface stresses cause a tensile stress within the gold nanowires. A key finding of that work was the fact that the resonant frequency was found to vary linearly with the inverse of length; as shown in Verbridge et al. (2006), the resonant frequency of a beam under high tensile stress can be written as sffiffiffiffiffiffi f ¼ i S, (7) 2h ra where S is the force in the beam. Interestingly, as can be seen in Fig. 3, both the SCB and BCB resonant frequencies scale linearly with =h 2, instead of =h. The bulk dependence on =h 2 is not surprising considering the =h 2 dependence of the analytic solution given in Eq. (5). However, the same dependence of the SCB resonant frequencies is interesting, and implies that the surface stresses, and the nonlinear elastic deformation they cause in the nanowire, may be responsible for the variation from the behavior observed experimentally in the larger (00 nm) SiN nanowires. We also note that the different surface stresses of metallic (generally tensile Wan et al., 999) and semiconductor (sometimes compressive Balamane et al., 992) surfaces may also help to explain the observed differences. Finally, for the nanowires considered in that work, it is likely that the 00 nm cross-section is too large for surface stresses to have a significant effect on the mechanical properties, and thus the measured resonant frequencies Fixed/free nanowires The large disparity in the calculated resonant frequencies between the fixed/free and fixed/fixed cases indicates that the nanowire stiffness and state of stress is strongly dependent on the boundary conditions. As previously discussed, the fixed/fixed boundary conditions prevent the nanowires from relaxing axially, as would occur due to surface stresses if one of the ends were free (Diao et al., 2003; Park et al., 2005; Liang et al., 2005b). Thus, the fixed/fixed nanowires exist in a state of tension, which elevates their resonant frequencies as compared to the unstrained fixed/fixed bulk material. However, when fixed/free boundary conditions are utilized, the free end of the nanowire is able to contract axially in response to the tensile surface stresses, thereby reducing their transverse surface area and finding a minimum energy configuration. The prediction of the fixed/free resonant frequencies is therefore dependent on obtaining the correct stiffness of the nanowires after the surface-stress-driven relaxation has occurred; previous work (Park and Klein, 2007) indicated the ability of the SCB model to predict the correct relaxation strain due to surface stresses. Fig. 4 illustrates one of the key findings of this work. In Fig. 4, we plot the variation in the fixed/free nanowire resonant frequencies due to surface stresses for all three geometries considered in this work (constant CSA, constant length, constant SAV ratio) versus the nanowire aspect ratio h=a. As can be seen, for the diverse geometries we have considered, the variations in resonant frequency due to surface stresses are quite similar as a function of h=a, indicating that the resonant frequency variation is purely geometric in nature.

15 H.S. Park, P.A. Klein / J. Mech. Phys. Solids 56 (2008) Fixed/Fixed Constant CSA Nanowires, a = 6 nm Fundamental Bending Bulk Fundamental Bending SCB 0.25 f/f bend /h 2 (/nm 2 ) x 0 5 Fig. 3. Linear variation of both SCB and bulk CB resonant frequencies for constant CSA nanowires as a function of =h Constant SAV Constant Length Constant CSA Nanowire aspect ratio Fig. 4. Relationship between nanowire aspect ratio h=a and fundamental resonant frequency shift f scb =f bulk observed by fixed/free nanowires of constant cross-sectional area, length, and surface area to volume ratio. Recent atomistic simulations (Liang et al., 2005a; Diao et al., 2006) have indicated that the nanowire elastic properties are strongly dependent upon the amount of compressive surface-stress-driven relaxation strain that the nanowires undergo. We therefore plot in Fig. 5 the variation in nanowire resonant frequencies for the three different geometry types as a function of the percent compressive relaxation strain. As can be observed, while the nanowire resonant frequencies do decrease with increasing relaxation strain, the variation is not the same for the three geometries, which indicates that knowledge of the state of strain is not sufficient to predict the resonant frequencies, and therefore the elastic properties of the fixed/free nanowires. Furthermore, this indicates that the nanowire aspect ratio h=a is the critical geometric parameter for determining the resonant frequency variations due to surface stresses as compared to the corresponding bulk material. The reduction in resonant frequencies for the fixed/free h 0 0i nanowires considered in this work is due to the fact that bulk FCC metals tend to soften if compressed in the h00i direction (Liang et al., 2005a); in the present work, the compression arises due to the surface stresses, rather than any externally applied forces. Therefore, the resonant frequencies for other orientations, for example the h0i orientation in which FCC metals are known to stiffen under compression (Liang et al., 2005a), may increase rather than decrease for fixed/free boundary conditions as compared to the bulk material.

Surface stress effects on the bending properties of fcc metal nanowires

Surface stress effects on the bending properties of fcc metal nanowires PHYSICAL REVIEW B 79, 9542 29 Surface stress effects on the bending properties of fcc metal nanowires Geng Yun and Harold S. Park* Department of Mechanical Engineering, University of Colorado, Boulder,

More information

Module 2 WAVE PROPAGATION (Lectures 7 to 9)

Module 2 WAVE PROPAGATION (Lectures 7 to 9) Module 2 WAVE PROPAGATION (Lectures 7 to 9) Lecture 9 Topics 2.4 WAVES IN A LAYERED BODY 2.4.1 One-dimensional case: material boundary in an infinite rod 2.4.2 Three dimensional case: inclined waves 2.5

More information

AN INNOVATIVE FEA METHODOLOGY FOR MODELING FASTENERS

AN INNOVATIVE FEA METHODOLOGY FOR MODELING FASTENERS AN INNOVATIVE FEA METHODOLOGY FOR MODELING FASTENERS MacArthur L. Stewart 1 1 Assistant Professor, Mechanical Engineering Technology Department, Eastern Michigan University, MI, USA Abstract Abstract Researchers

More information

INFLUENCE OF PILES ON LOAD- SETTLEMENT BEHAVIOUR OF RAFT FOUNDATION

INFLUENCE OF PILES ON LOAD- SETTLEMENT BEHAVIOUR OF RAFT FOUNDATION INFLUENCE OF PILES ON LOAD- SETTLEMENT BEHAVIOUR OF RAFT FOUNDATION BALESHWAR SINGH Department of Civil Engineering Indian Institute of Technology Guwahati Guwahati 78139, India NINGOMBAM THOIBA SINGH

More information

Failure of Engineering Materials & Structures. Code 34. Bolted Joint s Relaxation Behavior: A FEA Study. Muhammad Abid and Saad Hussain

Failure of Engineering Materials & Structures. Code 34. Bolted Joint s Relaxation Behavior: A FEA Study. Muhammad Abid and Saad Hussain Failure of Engineering Materials & Structures Code 3 UET TAXILA MECHNICAL ENGINEERING DEPARTMENT Bolted Joint s Relaxation Behavior: A FEA Study Muhammad Abid and Saad Hussain Faculty of Mechanical Engineering,

More information

FLEXURE STRENGTH AND FAILURE PROBABILITY OF SILICON NANOWIRES

FLEXURE STRENGTH AND FAILURE PROBABILITY OF SILICON NANOWIRES The Pennsylvania State University The Graduate School College of Earth and Mineral Science FLEXURE STRENGTH AND FAILURE PROBABILITY OF SILICON NANOWIRES A Dissertation in Materials Science and Engineering

More information

Finite Element Analysis of Multi-Fastened Bolted Joint Connecting Composite Components in Aircraft Structures

Finite Element Analysis of Multi-Fastened Bolted Joint Connecting Composite Components in Aircraft Structures Finite Element Analysis of Multi-Fastened Bolted Joint Connecting Composite Components in Aircraft Structures Dr. M Satyanarayana Gupta Professor & HoD, Dept. of Aeronautical Engineering MLRIT, Hyderabad.

More information

Optimizing the Natural Frequencies of Beams via Notch Stamping

Optimizing the Natural Frequencies of Beams via Notch Stamping Research Journal of Applied Sciences, Engineering and Technology 4(14): 2030-2035, 2012 ISSN: 2040-7467 Maxwell Scientific Organization, 2012 Submitted: December 02, 2011 Accepted: December 26, 2011 Published:

More information

CHAPTER 6 CARBON NANOTUBE AND ITS RF APPLICATION

CHAPTER 6 CARBON NANOTUBE AND ITS RF APPLICATION CHAPTER 6 CARBON NANOTUBE AND ITS RF APPLICATION 6.1 Introduction In this chapter we have made a theoretical study about carbon nanotubes electrical properties and their utility in antenna applications.

More information

Figure 1 : Topologies of a capacitive switch The actuation voltage can be expressed as the following :

Figure 1 : Topologies of a capacitive switch The actuation voltage can be expressed as the following : ABSTRACT This paper outlines the issues related to RF MEMS packaging and low actuation voltage. An original approach is presented concerning the modeling of capacitive contacts using multiphysics simulation

More information

Enhancing the low frequency vibration reduction performance of plates with embedded Acoustic Black Holes

Enhancing the low frequency vibration reduction performance of plates with embedded Acoustic Black Holes Enhancing the low frequency vibration reduction performance of plates with embedded Acoustic Black Holes Stephen C. CONLON 1 ; John B. FAHNLINE 1 ; Fabio SEMPERLOTTI ; Philip A. FEURTADO 1 1 Applied Research

More information

3D Non-Linear FEA to Determine Burst and Collapse Capacity of Eccentrically Worn Casing

3D Non-Linear FEA to Determine Burst and Collapse Capacity of Eccentrically Worn Casing 3D Non-Linear FEA to Determine Burst and Collapse Capacity of Eccentrically Worn Casing Mark Haning Asst. Prof James Doherty Civil and Resource Engineering, University of Western Australia Andrew House

More information

Experimental investigation of crack in aluminum cantilever beam using vibration monitoring technique

Experimental investigation of crack in aluminum cantilever beam using vibration monitoring technique International Journal of Computational Engineering Research Vol, 04 Issue, 4 Experimental investigation of crack in aluminum cantilever beam using vibration monitoring technique 1, Akhilesh Kumar, & 2,

More information

EFFECT OF ADHEREND SHAPE ON STRESS CONCENTRATION REDUCTION OF ADHESIVELY BONDED SINGLE LAP JOINT

EFFECT OF ADHEREND SHAPE ON STRESS CONCENTRATION REDUCTION OF ADHESIVELY BONDED SINGLE LAP JOINT Engineering Review, Vol. 36, Issue 1, 29-34, 16. 29 EFFECT OF ADHEREND SHAPE ON STRESS CONCENTRATION REDUCTION OF ADHESIVELY BONDED SINGLE LAP JOINT A. Çalık 1* 1 Department of Mechanical Engineering,

More information

Optical Isolation Can Occur in Linear and Passive Silicon Photonic Structures

Optical Isolation Can Occur in Linear and Passive Silicon Photonic Structures Optical Isolation Can Occur in Linear and Passive Silicon Photonic Structures Chen Wang and Zhi-Yuan Li Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, P. O. Box 603,

More information

EXPERIMENTAL ANALYSIS OF BOLT LOOSENING DYNAMICS CHARACTERISTIC IN A BEAM BY IMPACT TESTING

EXPERIMENTAL ANALYSIS OF BOLT LOOSENING DYNAMICS CHARACTERISTIC IN A BEAM BY IMPACT TESTING EXPERIMENTAL ANALYSIS OF BOLT LOOSENING DYNAMICS CHARACTERISTIC IN A BEAM BY IMPACT TESTING Meifal Rusli, Candra Mardianto and Mulyadi Bur Department of Mechanical Engineering, Faculty of Engineering,

More information

ANALYSIS OF LATERAL STIFFNESS FOR INFILLED FRAME WITH OPENING

ANALYSIS OF LATERAL STIFFNESS FOR INFILLED FRAME WITH OPENING ANALYSIS OF LATERAL STIFFNESS FOR INFILLED FRAME WITH OPENING A.S. KASNALE 1 & SANJAY JAMKAR 2 Professor in Civil Engineering Department, M.S. Bidve Engineering College, Latur, India Professor in Civil

More information

Ultra-thin Die Characterization for Stack-die Packaging

Ultra-thin Die Characterization for Stack-die Packaging Ultra-thin Die Characterization for Stack-die Packaging Wei Sun, W.H. Zhu, F.X. Che, C.K. Wang, Anthony Y.S. Sun and H.B. Tan United Test & Assembly Center Ltd (UTAC) Packaging Analysis & Design Center

More information

Study on embedded length of piles for slope reinforced with one row of piles

Study on embedded length of piles for slope reinforced with one row of piles Journal of Rock Mechanics and Geotechnical Engineering. 11, 3 (2): 7 17 Study on embedded length of piles for slope reinforced with one row of piles Shikou Yang, Xuhua Ren, Jixun Zhang College of Water

More information

An Alternative Formulation for Determining Stiffness of Members with Bolted Connections

An Alternative Formulation for Determining Stiffness of Members with Bolted Connections An Alternative Formulation for Determining Stiffness of Members with Bolted Connections Mr. B. Routh Post Graduate Student Department of Civil Engineering National Institute of Technology Agartala Agartala,

More information

Analysis of a Nailed Soil Slope Using Limit Equilibrium and Finite Element Methods

Analysis of a Nailed Soil Slope Using Limit Equilibrium and Finite Element Methods Int. J. of Geosynth. and Ground Eng. (2016) 2:34 DOI 10.1007/s40891-016-0076-0 Analysis of a Nailed Soil Slope Using Limit Equilibrium and Finite Element Methods S. Rawat 1 A. K. Gupta 1 Received: 5 September

More information

Preliminary study of the vibration displacement measurement by using strain gauge

Preliminary study of the vibration displacement measurement by using strain gauge Songklanakarin J. Sci. Technol. 32 (5), 453-459, Sep. - Oct. 2010 Original Article Preliminary study of the vibration displacement measurement by using strain gauge Siripong Eamchaimongkol* Department

More information

NUMERICAL AND EXPERIMENTAL VALIDATION OF CHIP MORPHOLOGY

NUMERICAL AND EXPERIMENTAL VALIDATION OF CHIP MORPHOLOGY International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 10, Issue 2, March- April 2019, pp. 503-508, Article ID: IJARET_10_02_049 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=10&itype=02

More information

CHAPTER 4 COMPARISON OF DYNAMIC ELASTIC BEHAVIOUR OF COTTON AND COTTON / SPANDEX KNITTED FABRICS

CHAPTER 4 COMPARISON OF DYNAMIC ELASTIC BEHAVIOUR OF COTTON AND COTTON / SPANDEX KNITTED FABRICS 31 CHAPTER 4 COMPARISON OF DYNAMIC ELASTIC BEHAVIOUR OF COTTON AND COTTON / SPANDEX KNITTED FABRICS 4.1 INTRODUCTION Elastic garments for sports and outer wear play an important role in optimizing an athletic

More information

The effect of the diameters of the nanowires on the reflection spectrum

The effect of the diameters of the nanowires on the reflection spectrum The effect of the diameters of the nanowires on the reflection spectrum Bekmurat Dalelkhan Lund University Course: FFF042 Physics of low-dimensional structures and quantum devices 1. Introduction Vertical

More information

Dynamic Modeling of Air Cushion Vehicles

Dynamic Modeling of Air Cushion Vehicles Proceedings of IMECE 27 27 ASME International Mechanical Engineering Congress Seattle, Washington, November -5, 27 IMECE 27-4 Dynamic Modeling of Air Cushion Vehicles M Pollack / Applied Physical Sciences

More information

Modelling of electronic and transport properties in semiconductor nanowires

Modelling of electronic and transport properties in semiconductor nanowires Modelling of electronic and transport properties in semiconductor nanowires Martin P. Persson,1 Y. M. Niquet,1 S. Roche,1 A. Lherbier,1,2 D. Camacho,1 F. Triozon,3 M. Diarra,4 C. Delerue4 and G. Allan4

More information

A Review of MEMS Based Piezoelectric Energy Harvester for Low Frequency Applications

A Review of MEMS Based Piezoelectric Energy Harvester for Low Frequency Applications Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 9, September 2014,

More information

High-speed wavefront control using MEMS micromirrors T. G. Bifano and J. B. Stewart, Boston University [ ] Introduction

High-speed wavefront control using MEMS micromirrors T. G. Bifano and J. B. Stewart, Boston University [ ] Introduction High-speed wavefront control using MEMS micromirrors T. G. Bifano and J. B. Stewart, Boston University [5895-27] Introduction Various deformable mirrors for high-speed wavefront control have been demonstrated

More information

Supplementary information for Stretchable photonic crystal cavity with

Supplementary information for Stretchable photonic crystal cavity with Supplementary information for Stretchable photonic crystal cavity with wide frequency tunability Chun L. Yu, 1,, Hyunwoo Kim, 1, Nathalie de Leon, 1,2 Ian W. Frank, 3 Jacob T. Robinson, 1,! Murray McCutcheon,

More information

Conductance switching in Ag 2 S devices fabricated by sulphurization

Conductance switching in Ag 2 S devices fabricated by sulphurization 3 Conductance switching in Ag S devices fabricated by sulphurization The electrical characterization and switching properties of the α-ag S thin films fabricated by sulfurization are presented in this

More information

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 05, 2016 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 05, 2016 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 05, 2016 ISSN (online): 2321-0613 Static Analysis of VMC Spindle for Maximum Cutting Force Mahesh M. Ghadage 1 Prof. Anurag

More information

GEOMETRIC MODELING OF WIRE ROPE

GEOMETRIC MODELING OF WIRE ROPE International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES) Impact Factor: 5.22 (SJIF-217), e-issn: 2455-2585 Volume 4, Issue 8, August-218 GEOMETRIC MODELING OF WIRE ROPE Krishan

More information

Nonlinear behavior of Reinforced Concrete Infilled Frames using ATENA 2D

Nonlinear behavior of Reinforced Concrete Infilled Frames using ATENA 2D Available online at www.ijacskros.com Indian Journal of Advances in Chemical Science S1 (2016) 173-178 Nonlinear behavior of Reinforced Concrete Infilled Frames using ATENA 2D M. D. Raghavendra Prasad,

More information

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 30 Jun 1999

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 30 Jun 1999 Multishelled Gold Nanowires arxiv:cond-mat/9906442v1 [cond-mat.mtrl-sci] 30 Jun 1999 G. Bilalbegović Department of Physics, University of Rijeka, Omladinska 14, 51 000 Rijeka, Croatia (to be published

More information

Keywords: Bracing bracket connection, local deformation, selective pallet racks, shear stiffness, spine bracings.

Keywords: Bracing bracket connection, local deformation, selective pallet racks, shear stiffness, spine bracings. Send Orders for Reprints to reprints@benthamscience.ae The Open Construction and Building Technology Journal, 2015, 9, 1-6 1 Open Access Investigation of Shear Stiffness of Spine Bracing Systems in Selective

More information

3-D Finite Element Analysis of Bolted Joint Using Helical Thread Model

3-D Finite Element Analysis of Bolted Joint Using Helical Thread Model 3-D Finite Element Analysis of Bolted Joint Using Helical Thread Model Shaik Gousia Yasmin 1, P. Punna Rao 2, Kondaiah Bommisetty 3 1 M.Tech(CAD/CAM), Nimra College of Engineering & Technology, Vijayawada,

More information

Modal Analysis of Microcantilever using Vibration Speaker

Modal Analysis of Microcantilever using Vibration Speaker Modal Analysis of Microcantilever using Vibration Speaker M SATTHIYARAJU* 1, T RAMESH 2 1 Research Scholar, 2 Assistant Professor Department of Mechanical Engineering, National Institute of Technology,

More information

Revised zone method R-value calculation for precast concrete. sandwich panels containing metal wythe connectors. Byoung-Jun Lee and Stephen Pessiki

Revised zone method R-value calculation for precast concrete. sandwich panels containing metal wythe connectors. Byoung-Jun Lee and Stephen Pessiki Revised zone method R calculation for precast concrete sandwich panels containing metal wythe connectors Byoung-Jun Lee and Stephen Pessiki Editor s quick points n Metal wythe connectors are used in a

More information

Consideration of Tool Chamfer for Realistic Application of the Incremental Hole-Drilling Method

Consideration of Tool Chamfer for Realistic Application of the Incremental Hole-Drilling Method Consideration of Tool Chamfer for Realistic Application of the Incremental Hole-Drilling Method Nicola Simon 1, a *, Jens Gibmeier 1, b 1 Karlsruhe Institute of Technology (KIT), Institute for Applied

More information

Korean standards of visual grading and establishing allowable properties of softwood structural lumber

Korean standards of visual grading and establishing allowable properties of softwood structural lumber Korean standards of visual grading and establishing allowable properties of softwood structural lumber Park, Moon-Jae 1, Shim, Kug-Bo 1 ABSTRACT Korean standards related to wood products such as "Sizes

More information

Monopile as Part of Aeroelastic Wind Turbine Simulation Code

Monopile as Part of Aeroelastic Wind Turbine Simulation Code Monopile as Part of Aeroelastic Wind Turbine Simulation Code Rune Rubak and Jørgen Thirstrup Petersen Siemens Wind Power A/S Borupvej 16 DK-7330 Brande Denmark Abstract The influence on wind turbine design

More information

Generic noise criterion curves for sensitive equipment

Generic noise criterion curves for sensitive equipment Generic noise criterion curves for sensitive equipment M. L Gendreau Colin Gordon & Associates, P. O. Box 39, San Bruno, CA 966, USA michael.gendreau@colingordon.com Electron beam-based instruments are

More information

THE CHARACTERISATION OF FISSURES IN METALLURGICAL COKES

THE CHARACTERISATION OF FISSURES IN METALLURGICAL COKES THE CHARACTERISATION OF FISSURES IN METALLURGICAL COKES John W Patrick, Svenja Hanson, Ashiedu Oyemogum, Michael Cloke NOTTINGHAM FUEL AND ENERGY CENTRE, SChEME, UNIVERSITY OF NOTTINGHAM, NG7 2RD, UK Corresponding

More information

FINITE ELEMENT MODELLING FOR TENSILE BEHAVIOUR OF THERMALLY BONDED NONWOVEN FABRIC

FINITE ELEMENT MODELLING FOR TENSILE BEHAVIOUR OF THERMALLY BONDED NONWOVEN FABRIC FINITE ELEMENT MODELLING FOR TENSILE BEHAVIOUR OF THERMALLY BONDED NONWOVEN FABRIC Xiaoping Gao*, Liping Wang Inner Mongolia University of Technology, College of Light Industry and Textile, Hohhot, Inner

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Silver permittivity used in the simulations Silver permittivity values are obtained from Johnson & Christy s experimental data 31 and are fitted with a spline interpolation in order to estimate the permittivity

More information

An Improved Analytical Model for Efficiency Estimation in Design Optimization Studies of a Refrigerator Compressor

An Improved Analytical Model for Efficiency Estimation in Design Optimization Studies of a Refrigerator Compressor Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2014 An Improved Analytical Model for Efficiency Estimation in Design Optimization Studies

More information

Stress Analysis of Flanged Joint Using Finite Element Method

Stress Analysis of Flanged Joint Using Finite Element Method Stress Analysis of Flanged Joint Using Finite Element Method Shivaji G. Chavan Assistant Professor, Mechanical Engineering Department, Finolex Academy of Management and Technology, Ratnagiri, Maharashtra,

More information

FATIGUE CRACK CHARACTERIZATION IN CONDUCTING SHEETS BY NON

FATIGUE CRACK CHARACTERIZATION IN CONDUCTING SHEETS BY NON FATIGUE CRACK CHARACTERIZATION IN CONDUCTING SHEETS BY NON CONTACT STIMULATION OF RESONANT MODES Buzz Wincheski, J.P. Fulton, and R. Todhunter Analytical Services and Materials 107 Research Drive Hampton,

More information

Drawing of Hexagonal Shapes from Cylindrical Cups

Drawing of Hexagonal Shapes from Cylindrical Cups Dr. Waleed Khalid Jawed Metallurgy & Production Engineering Department, University of Technology /Baghdad Email: Drwaleed555@yahoo.com Sabih Salman Dawood Metallurgy & Production Engineering Department,

More information

MECHANICAL PROPERTY OF CARBON NANOTUBE YARN REINFORCED EPOXY

MECHANICAL PROPERTY OF CARBON NANOTUBE YARN REINFORCED EPOXY THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS MECHANICAL PROPERTY OF CARBON NANOTUBE YARN REINFORCED EPOXY Y. Shimamura 1*, K. Oshima 2, M. Ishihara 2, K. Tohgo 1, T. Fujii 1 and Y. Inoue 3

More information

THE INFLUENCE OF GEOMETRIC PARAMETERS AND MECHANICAL PROPERTIES OF ADHESIVE ON STRESS ANALYSIS IN ADHESIVELY BONDED ALUMINUM SINGLE LAP JOINT

THE INFLUENCE OF GEOMETRIC PARAMETERS AND MECHANICAL PROPERTIES OF ADHESIVE ON STRESS ANALYSIS IN ADHESIVELY BONDED ALUMINUM SINGLE LAP JOINT Mojtaba Samaei Mostafa Seifan Amir Afkar Amin Paykani ISSN 333-24 eissn 849-39 THE INFLUENCE OF GEOMETRIC PARAMETERS AND MECHANICAL PROPERTIES OF ADHESIVE ON STRESS ANALYSIS IN ADHESIVELY BONDED ALUMINUM

More information

Optimal Design of Layered Periodic Composites for Mitigation of Impact-Induced Elastic Waves

Optimal Design of Layered Periodic Composites for Mitigation of Impact-Induced Elastic Waves Optimal Design of Layered Periodic Composites for Mitigation of Impact-Induced Elastic Waves H. Sadeghi 1, S. Nemat-Nasser Center of Excellence for Advanced Materials, Department of Mechanical and Aerospace

More information

Reinforcement with Soil Nails

Reinforcement with Soil Nails Reinforcement with Soil Nails GEO-SLOPE International Ltd. www.geo-slope.com 1400, 633-6th Ave SW, Calgary, AB, Canada T2P 2Y5 Main: +1 403 269 2002 Fax: +1 403 266 4851 Introduction Soil nailing is a

More information

Revolutionizing Engineering Science through Simulation May 2006

Revolutionizing Engineering Science through Simulation May 2006 Revolutionizing Engineering Science through Simulation May 2006 Report of the National Science Foundation Blue Ribbon Panel on Simulation-Based Engineering Science EXECUTIVE SUMMARY Simulation refers to

More information

System Inputs, Physical Modeling, and Time & Frequency Domains

System Inputs, Physical Modeling, and Time & Frequency Domains System Inputs, Physical Modeling, and Time & Frequency Domains There are three topics that require more discussion at this point of our study. They are: Classification of System Inputs, Physical Modeling,

More information

Modeling Multi-Bolted Systems

Modeling Multi-Bolted Systems Modeling Multi-Bolted Systems Jerome Montgomery Siemens Power Generation Abstract Modeling a single bolt in a finite element analysis raises questions of how much complexity to include. But, modeling a

More information

FINITE ELEMENT SIMULATIONS OF THE EFFECT OF FRICTION COEFFICIENT IN FRETTING WEAR

FINITE ELEMENT SIMULATIONS OF THE EFFECT OF FRICTION COEFFICIENT IN FRETTING WEAR Proceedings of the 5 th International Conference on Fracture Fatigue and Wear, pp. 58-63, 216 FINITE ELEMENT SIMULATIONS OF THE EFFECT OF FRICTION COEFFICIENT IN FRETTING WEAR T. Yue and M. Abdel Wahab

More information

Fastener Modeling for Joining Parts Modeled by Shell and Solid Elements

Fastener Modeling for Joining Parts Modeled by Shell and Solid Elements 2007-08 Fastener Modeling for Joining Parts Modeled by Shell and Solid Elements Aleander Rutman, Chris Boshers Spirit AeroSystems Larry Pearce, John Parady MSC.Software Corporation 2007 Americas Virtual

More information

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 16 Angle Modulation (Contd.) We will continue our discussion on Angle

More information

Quantitative Crack Depth Study in Homogeneous Plates Using Simulated Lamb Waves.

Quantitative Crack Depth Study in Homogeneous Plates Using Simulated Lamb Waves. More Info at Open Access Database www.ndt.net/?id=18675 Quantitative Crack Depth Study in Homogeneous Plates Using Simulated Lamb Waves. Mohammad. (. SOORGEE, Aghil. YOUSEF)-KOMA Nondestructive Testing

More information

EWGAE 2010 Vienna, 8th to 10th September

EWGAE 2010 Vienna, 8th to 10th September EWGAE 2010 Vienna, 8th to 10th September Frequencies and Amplitudes of AE Signals in a Plate as a Function of Source Rise Time M. A. HAMSTAD University of Denver, Department of Mechanical and Materials

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/7/e1629/dc1 Supplementary Materials for Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films Xuewen Wang, Xuexia He, Hongfei Zhu,

More information

EFFECTS OF GEOMETRY ON MECHANICAL BEHAVIOR OF DOVETAIL CONNECTION

EFFECTS OF GEOMETRY ON MECHANICAL BEHAVIOR OF DOVETAIL CONNECTION EFFECTS OF GEOMETRY ON MECHANICAL BEHAVIOR OF DOVETAIL CONNECTION Gi Young Jeong 1, Moon-Jae Park 2, KweonHwan Hwang 3, Joo-Saeng Park 2 ABSTRACT: The goal of this study is to analyze the effects of geometric

More information

Resonant Frequency Analysis of the Diaphragm in an Automotive Electric Horn

Resonant Frequency Analysis of the Diaphragm in an Automotive Electric Horn Resonant Frequency Analysis of the Diaphragm in an Automotive Electric Horn R K Pradeep, S Sriram, S Premnath Department of Mechanical Engineering, PSG College of Technology, Coimbatore, India 641004 Abstract

More information

MAGNETO-DIELECTRIC COMPOSITES WITH FREQUENCY SELECTIVE SURFACE LAYERS

MAGNETO-DIELECTRIC COMPOSITES WITH FREQUENCY SELECTIVE SURFACE LAYERS MAGNETO-DIELECTRIC COMPOSITES WITH FREQUENCY SELECTIVE SURFACE LAYERS M. Hawley 1, S. Farhat 1, B. Shanker 2, L. Kempel 2 1 Dept. of Chemical Engineering and Materials Science, Michigan State University;

More information

Vertex Detector Mechanics

Vertex Detector Mechanics Vertex Detector Mechanics Bill Cooper Fermilab (Layer 5) (Layer 1) VXD Introduction The overall approach to mechanical support and cooling has been developed in conjunction with SiD. The support structures

More information

Finite element simulation of photoacoustic fiber optic sensors for surface rust detection on a steel rod

Finite element simulation of photoacoustic fiber optic sensors for surface rust detection on a steel rod Finite element simulation of photoacoustic fiber optic sensors for surface rust detection on a steel rod Qixiang Tang a, Jones Owusu Twumasi a, Jie Hu a, Xingwei Wang b and Tzuyang Yu a a Department of

More information

DESIGN EQUATION FOR MULTIPLE- FASTENER WOOD CONNECTIONS

DESIGN EQUATION FOR MULTIPLE- FASTENER WOOD CONNECTIONS DESIGN EQUATION FOR MULTIPLE- FASTENER WOOD CONNECTIONS By John J. Zahn, 1 Member, ASCE ABSTRACT: A compared design equation is presented for the design of multiple fastener connections of wood members.

More information

Strain Gauge Measurement A Tutorial

Strain Gauge Measurement A Tutorial Application Note 078 Strain Gauge Measurement A Tutorial What is Strain? Strain is the amount of deformation of a body due to an applied force. More specifically, strain (ε) is defined as the fractional

More information

CHAPTER 7. Waveguide writing in optimal conditions. 7.1 Introduction

CHAPTER 7. Waveguide writing in optimal conditions. 7.1 Introduction CHAPTER 7 7.1 Introduction In this chapter, we want to emphasize the technological interest of controlled laser-processing in dielectric materials. Since the first report of femtosecond laser induced refractive

More information

Supporting information: Visualizing the motion of. graphene nanodrums

Supporting information: Visualizing the motion of. graphene nanodrums Supporting information: Visualizing the motion of graphene nanodrums Dejan Davidovikj,, Jesse J Slim, Santiago J Cartamil-Bueno, Herre S J van der Zant, Peter G Steeneken, and Warner J Venstra,, Kavli

More information

The Effects of Asymmetry on the Dynamics of Nanowires

The Effects of Asymmetry on the Dynamics of Nanowires NSF Grant # 0826276 NSF PROGRAM NAME: Dynamical Systems The Effects of Asymmetry on the Dynamics of Nanowires Molly R. Nelis, Lin Yu, Saeed Mohammadi Co-PI, Arvind Raman Co-PI, Jeffrey F. Rhoads PI Birck

More information

Introduction. Fig. 1. Structure of warp (a) and weft (b) knitted fabrics (picture from [4]) (Received 10 April 2012; accepted 14 May 2012)

Introduction. Fig. 1. Structure of warp (a) and weft (b) knitted fabrics (picture from [4]) (Received 10 April 2012; accepted 14 May 2012) 794. Characterization of mechanical properties by inverse technique for composite reinforced by knitted fabric. Part 1. Material modeling and direct experimental evaluation of mechanical properties O.

More information

Differential Amplifiers/Demo

Differential Amplifiers/Demo Differential Amplifiers/Demo Motivation and Introduction The differential amplifier is among the most important circuit inventions, dating back to the vacuum tube era. Offering many useful properties,

More information

The analysis of microstrip antennas using the FDTD method

The analysis of microstrip antennas using the FDTD method Computational Methods and Experimental Measurements XII 611 The analysis of microstrip antennas using the FDTD method M. Wnuk, G. Różański & M. Bugaj Faculty of Electronics, Military University of Technology,

More information

Raman Spectroscopy and Transmission Electron Microscopy of Si x Ge 1-x -Ge-Si Core-Double-Shell Nanowires

Raman Spectroscopy and Transmission Electron Microscopy of Si x Ge 1-x -Ge-Si Core-Double-Shell Nanowires Raman Spectroscopy and Transmission Electron Microscopy of Si x Ge 1-x -Ge-Si Core-Double-Shell Nanowires Paola Perez Mentor: Feng Wen PI: Emanuel Tutuc Background One-dimensional semiconducting nanowires

More information

CHAPTER 2 ELECTROMAGNETIC FORCE AND DEFORMATION

CHAPTER 2 ELECTROMAGNETIC FORCE AND DEFORMATION 18 CHAPTER 2 ELECTROMAGNETIC FORCE AND DEFORMATION 2.1 INTRODUCTION Transformers are subjected to a variety of electrical, mechanical and thermal stresses during normal life time and they fail when these

More information

The diffraction of light

The diffraction of light 7 The diffraction of light 7.1 Introduction As introduced in Chapter 6, the reciprocal lattice is the basis upon which the geometry of X-ray and electron diffraction patterns can be most easily understood

More information

Should We Upgrade to Phase 2 6.0?

Should We Upgrade to Phase 2 6.0? Should We Upgrade to Phase 2 6.0? Rocscience has released version 6.0 of Phase 2, the popular two-dimensional finite element program for analyzing and designing surface and underground excavations in rock

More information

Investigating Mechanical Properties of Metallic Nanowires using Molecular Dynamics

Investigating Mechanical Properties of Metallic Nanowires using Molecular Dynamics Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2014 Investigating Mechanical Properties of Metallic Nanowires using Molecular Dynamics Alex Khammang Virginia

More information

Introduction to Phase Noise

Introduction to Phase Noise hapter Introduction to Phase Noise brief introduction into the subject of phase noise is given here. We first describe the conversion of the phase fluctuations into the noise sideband of the carrier. We

More information

The influence of gouge defects on failure pressure of steel pipes

The influence of gouge defects on failure pressure of steel pipes IOP Conference Series: Materials Science and Engineering OPEN ACCESS The influence of gouge defects on failure pressure of steel pipes To cite this article: N A Alang et al 2013 IOP Conf. Ser.: Mater.

More information

CHAPTER 9 CURRENT VOLTAGE CHARACTERISTICS

CHAPTER 9 CURRENT VOLTAGE CHARACTERISTICS CHAPTER 9 CURRENT VOLTAGE CHARACTERISTICS 9.1 INTRODUCTION The phthalocyanines are a class of organic materials which are generally thermally stable and may be deposited as thin films by vacuum evaporation

More information

An Investigation of Optimal Pitch Selection to Reduce Self-Loosening of Threaded Fastener under Transverse Loading

An Investigation of Optimal Pitch Selection to Reduce Self-Loosening of Threaded Fastener under Transverse Loading IJSTE - International Journal of Science Technology & Engineering Volume 3 Issue 01 July 2016 ISSN (online): 2349-784X An Investigation of Optimal Pitch Selection to Reduce Self-Loosening of Threaded Fastener

More information

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK June 2018 Authorized for Distribution by the New York State Education Department This test design and framework document is designed

More information

Modeling of Tensile Properties of Woven Fabrics and Auxetic Braided Structures by Multi-Scale Finite Element Method. Yang Shen

Modeling of Tensile Properties of Woven Fabrics and Auxetic Braided Structures by Multi-Scale Finite Element Method. Yang Shen Modeling of Tensile Properties of Woven Fabrics and Auxetic Braided Structures by Multi-Scale Finite Element Method by Yang Shen A thesis submitted to the Graduate Faculty of Auburn University in partial

More information

Design of Vibration Sensor Based on Fiber Bragg Grating

Design of Vibration Sensor Based on Fiber Bragg Grating PHOTONIC SENSORS / Vol. 7, No. 4, 2017: 345 349 Design of Vibration Sensor Based on Fiber Bragg Grating Zhengyi ZHANG * and Chuntong LIU Department Two, Rocket Force University of Engineering, Xi an, 710025,

More information

STUDY AND ANALYSIS OF ANGULAR TORQUING OF ENGINE CYLINDER-HEAD BOLTS USING TORQUE-TO-YIELD BOLTS: A CASE STUDY

STUDY AND ANALYSIS OF ANGULAR TORQUING OF ENGINE CYLINDER-HEAD BOLTS USING TORQUE-TO-YIELD BOLTS: A CASE STUDY International Journal of Mechanical and Production Engineering Research and Development (IJMPERD) ISSN 2249-6890 Vol. 3, Issue 4, Oct 2013, 1-10 TJPRC Pvt. Ltd. STUDY AND ANALYSIS OF ANGULAR TORQUING OF

More information

Thermal Cycling and Fatigue

Thermal Cycling and Fatigue Thermal Cycling and Fatigue Gil Sharon Introduction The majority of electronic failures are thermo-mechanically related by thermally induced stresses and strains. The excessive difference in coefficients

More information

Void Reduction in Reflow Soldering Processes by Sweep Stimulation of PCB Substrate

Void Reduction in Reflow Soldering Processes by Sweep Stimulation of PCB Substrate Void Reduction in Reflow Soldering Processes by Sweep Stimulation of PCB Substrate Viktoria Rawinski Ersa GmbH Wertheim, Germany Abstract Due to the ongoing trend towards miniaturization of power components,

More information

Experimental and numerical investigation of tube sinking of rectangular tubes from round section

Experimental and numerical investigation of tube sinking of rectangular tubes from round section International Journal of Engineering and Technology sciences (IJETS) ISSN 2289-4152 Academic Research Online Publisher Research Article Experimental and numerical investigation of tube sinking of rectangular

More information

Piezoelectric Sensors and Actuators

Piezoelectric Sensors and Actuators Piezoelectric Sensors and Actuators Outline Piezoelectricity Origin Polarization and depolarization Mathematical expression of piezoelectricity Piezoelectric coefficient matrix Cantilever piezoelectric

More information

MODEL MODIFICATION OF WIRA CENTER MEMBER BAR

MODEL MODIFICATION OF WIRA CENTER MEMBER BAR MODEL MODIFICATION OF WIRA CENTER MEMBER BAR F.R.M. Romlay & M.S.M. Sani Faculty of Mechanical Engineering Kolej Universiti Kejuruteraan & Teknologi Malaysia (KUKTEM), Karung Berkunci 12 25000 Kuantan

More information

A thin foil optical strain gage based on silicon-on-insulator microresonators

A thin foil optical strain gage based on silicon-on-insulator microresonators A thin foil optical strain gage based on silicon-on-insulator microresonators D. Taillaert* a, W. Van Paepegem b, J. Vlekken c, R. Baets a a Photonics research group, Ghent University - INTEC, St-Pietersnieuwstraat

More information

Available online at ScienceDirect. Procedia Engineering 125 (2015 )

Available online at  ScienceDirect. Procedia Engineering 125 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 125 (2015 ) 1129 1134 The 5th International Conference of Euro Asia Civil Engineering Forum (EACEF-5) Finite element analysis

More information

Vibrations on a String and Resonance

Vibrations on a String and Resonance Vibrations on a String and Resonance Umer Hassan and Muhammad Sabieh Anwar LUMS School of Science and Engineering September 7, 2010 How does our radio tune into different channels? Can a music maestro

More information

Finishing first how automated systems improve the productivity and repeatability of wafer lapping and polishing

Finishing first how automated systems improve the productivity and repeatability of wafer lapping and polishing Finishing first how automated systems improve the productivity and repeatability of wafer lapping and polishing Author: Mark Kennedy www.logitech.uk.com Overview The lapping and polishing of wafers for

More information

Laboratory 1: Uncertainty Analysis

Laboratory 1: Uncertainty Analysis University of Alabama Department of Physics and Astronomy PH101 / LeClair May 26, 2014 Laboratory 1: Uncertainty Analysis Hypothesis: A statistical analysis including both mean and standard deviation can

More information

Model Correlation of Dynamic Non-linear Bearing Behavior in a Generator

Model Correlation of Dynamic Non-linear Bearing Behavior in a Generator Model Correlation of Dynamic Non-linear Bearing Behavior in a Generator Dean Ford, Greg Holbrook, Steve Shields and Kevin Whitacre Delphi Automotive Systems, Energy & Chassis Systems Abstract Efforts to

More information