SRF Surface Preparation Technique

Size: px
Start display at page:

Download "SRF Surface Preparation Technique"

Transcription

1 SRF Surface Preparation Technique for High Gradient Superconducting Cavities A.Matheisen Deutsches Elektronen Synchrotron DESY Hamburg Germany For TTF/TESLA/XFEl community

2 Experiences for this preparation techniques gained on TTF / Tesla cavities Cavity data Standing wave structure No of cells 9 fo=1,3 Ghz Active length m HOM Couples 2 Power coupler 1 R/Q= 1036 ohm E p /E acc = 2.0 B peak /E acc =4.26 (mt/mv/m) Accelerator mode TM 010 Pi mode Power transfer KW pulsed (10 Hz) KW@35 MV/m

3 Toolboxes for cavity preparation Inputs coming form TTF collaborations CEA-Saclay/ CERN/ INFN / KEK Cleanroom Degreasing and Rinsing Clean water supply Chemistry Assembly / Personal Procedures High pressure rinsing

4 TTF Cleanroom Ground space assembly area Class m2 Class m2 Class m2 View on chemistry area View on cl 10 assembly area No 1 View on cl 100 area (storage of cavities )

5 Clean water supply Closed loop 23l/min at 4bar Liquid particle counter Ro 1400l/h L 0,5-1 µs Reservoir 4000l Polisher 25l/min L>=18 Mohm cm 0,4 µm filter UV light bacteria Point of use L>=18 Mohm cm µm filter 20l/min

6 Degreasing and Rinsing Removal of Grease, particulates, residues from former treatments UPW feed line Ultra Clean water (>= 18 Mohm cm ) +detergent ( Ticopur ) concentration 3%@Temperature 45 C 200l basin Circulation pump Filter unit Specifics: Ultrasound power: 10W/liter Circulation: system with 2 µm inline filter Volume: 200l Circulation: 40 l/min US cycle 5 Min circulation and warm up of item 5 Min US sound + circulation 5 Min US sound NO circulation 5 Min circulation

7 rinsing Clean room air CO gas solved in UPW => R limited Volume: 200l Drain line Resistivity meter Primer water:18.2 Mohm cm Filtration level: 0,02 µm Quantity: 20 l /min renewed Process steering: resistance measured at the basin exit Sequence Rinse manually by 4 bar water jet Automatic rinse up to 12,4 / 18 Mohm cm 20l/min Filter 0,02 µm UPW fed line

8

9 Test on cleaning procedure Nb sample polluted with grease and oil Not efficient cleaning After U Sound cleaning procedure

10 Chemistry BCP ( buffered chemical polishing ) Mixture by volume 1/1/2 HF/HNO3/H3PO4 2 Nb + 5 NO Nb O + 5 NO + 5 e Nb 2 O HF H 2 NbOF 5 ( lösl.) + NbO 2 F 0. 5 H 2 O ( unlösl.) H 2 O NbO 2 F 0. 5 H 2 O + 4 HF H 2 NbOF H 2 O EP (electro chemical polishing) Mixture by volume 1/9 HF/H2SO4 2 Nb SO H 2O Nb 2O H + 5 SO 4 + e Nb 2O5 + 6 HF H 2 NbOF 5 ( lösl.) + NbO 2F 0.5H 2O( unlösl.) H 2O NbO 2F 0.5H 2O + 4HF H 2NbOF H 2O

11 BCP facility 2 independent circuits Nb clean and fresh Acid for final treatment Ti used acid for Ti removal /pre cleaning Inline filter 0,2 µm T <=15 C in average during process Start T 5 C

12 EP facility First experiences gained 1 circuits Inline filter??µm 8 first experiences bad filter blocked T C in average during process Start T 30 C Current 18 V (9cell ) First experiences since commissioning June 2003

13 High pressure rinsing System Parameters Pressure :4,2-200 bar Quantity: bar Particle bar line: 0,02 µm Ultra pure water: R spec 18.2 Mohm cm Special: N2 gas overlay Standard setting: 100 bar Process duration: >2h Volume: 2000 l total per rinse Spray head 2*4 jets (8 nozzles ) Nozzle : sapphire 0,4 mm ID

14

15 Procedures d e live ry acceptance in s p e c tio n an n e alin g and titanis atio n degreasing and rins ing tita nium BCP in s id e 8 0 µm outside 20µm in s e rtio n to oven C annealing in s e rtio n to oven C tita nis a tion tita nium BCP in s id e 8 0 µm outside 40µm tuning of field profile niobium BCP in s id e 2 0 µm 1st high pres s ure rins e assembly of flanges +leak te s t 2nd and 3rd high pressure rins e RF acceptance tes t for tank welding tan k w e ld in g cleaning +degreasing ventilation of c a vity w ith innert gas electron beam w elding of titanium rings frequency control and adjustment TIG w e ld in g o f Nb to Ti connection frequency control and field profile w elding of h e liu m v e s s e l leak test of ta nk s ys te m com ponent te s t adjustment of HOM a n te n na s cleaning +degreasing BCP niobium circuit inside 20µm 1st high pres s ure rins e assembly of flanges +leak te s t 2nd and 3rd high pressure rins e in s e rtio n o f pow er-coupler assembly of tune r acceptance tes t for module assembly module as s e m bly cleaning +degreasing alignment of cavity n for module ventilation of cavity assembly of connecting bellow assembly of cavity n+1 a lig n me n t o f coupler port distance general leack check alignment and frequency control assembly of me ch.tune rs, in s u la tio n, ma g n e tic s h ie ld in g assembly of vacuum vessel assembly of pow er-coupler warm part module te s t / mod u le in s ta lla tio n

16 EDMS Processing cycles Total 46 work packages

17 Processes

18 Assembly / Personal Personal: Defined procedures for handling /assembly

19 Test of procedures by air particle counters Top flange cavity probe Tube connecting to the first air counter Connecting to the second air counter disassemble two screws first disassemble first four screws ,3 0, ,3 0, : : :50 10 :57 11:0 5 11:12 15:2 5 15:3 2 15:4 0 15:4 7 15:55 16 :0 2 time time

20 Vertical measurements - Undressed resonator - Vertical bath cryostat - Power coupler variable high Q antenna 3*10 9 => 2* HOM feed not installed - Rf measurements Test mode CW operation - Eacc calculated from power measurement power from calibrated pick up signal - Qo calculated from decay signal RF off Some results Horizontal measurements - Undressed resonator - Horizontal cavity vessel= bath cryostat - Power coupler - variable antenna 3*10 6 => 8* HOM feed and antenna installed - Rf measurements Test mode pulsed 1-10 Hz operation - Eacc calculated from power measurement power from calibrated pick up signal - Qo calculated He losses

21 horizontal test s Multipacting Results of vertical test s

22

23 Results of vertical test s

24

25 Cavity Performance versus time and events / reproducibility E (MV/m) Nov. 98 Mrz. 99 Aug. 99 Verteilung aller 9 Zeller HF Messungen Distribution of vertical Rf test results 1 Jan. 00 Jun. 00 Nov Apr. 01 Sep. 01 Fe onset Eacc max E (MV/m) Nov. 98 Distribution of vertical test results AC series Verteilung aller Messungen an AC Cavities Mrz. 99 Jan. 00 Jun. 00 Nov. 00 Apr. 01 Aug. 99 Sep. 01 Fe onset Eacc max

26 35 Correlation of Verteilung test results aller and 9 Zeller man power 1 HF Messungen 2 E (MV/m) Fe onset Eacc max 0 Nov. 98 Mrz. 99 Aug. 99 Jan. 00 Jun. 00 Nov. 00 Apr. 01 Sep. 01 Peronalsituation für den Betrieb des Reinraumes 98 99=<1 99=>2 99=>3 00=>1 00=>2 00=>3 01=>1 01=>2 01=>3 02=>1 02 =>2 1 Reinraum z z z z z D D D D D D D 3 Reinraum z z z z z z z z z z z z 2 Reinraum z z z z z Z (1-3 Jahre) z z 4 Reinraum z z z z z z z Z (1-3 Jahre) z z 5 Reinraum z z z z z z z Z (1-3 Jahre) z z 6 Reinraum D D D D D D z z 7 Chemie D D D D D D D D D D D D Eingearbeites Personal Einarbeitungszeit nicht besetzte Stelle Z= Zeitvertrag D= Dauervertrag

27 Results of vertical test on AC cavity series Start up of DESY EP

28 Some comments on reproducible high gradients / low field emission levels on srf cavities Material and fabrication High quality Nb available Improved and high standard cavity fabrication available Tools are available BCP for Eacc~ 30 MV/m Epeak 60 MV/m Electropolishing for Eacc MV/m Epeak MV/m Gives improvement on surface /cleaning quality High pressure rinsing to fight field emission BUT! Facility has to be under control /intensive QC necessary Sequences and personal structure Preparation sequences are tested Test set up for assembly build up and applied Well trained personal!!!

29 Experiences on other than Nb surfaces CU => Gun cavity for TTF / Power coupler / connecting bellows In first order bad results CU surface oxidized strongly during treatments Chemical treatments more complicated Different results on different CU qualities Most critical: Impact on UP water / CO from air start strong oxidations on Cu Changes : Chemistry => citric acid in use for final chemistry Drying => Ultra pure alcohol for fast drying Oxidation=> N2 inert gas overlay on UP water rinsing basin HPR => strong N2 gas overlay on tank and rinsing cane But we still do not have lots of experiences and need more investigations Results on Gun cavity : Improvement compared to standard treatment low dark current was seen

Cavity development for TESLA

Cavity development for TESLA Cavity development for TESLA Lutz.Lilje@desy.de DESY -FDET- Cavity basics History: Limitations and solutions»material inclusions»weld defects»field emission»increased surface resistance at high field Performance

More information

Preparation of RF Power Couplers For the Tesla Test Facility

Preparation of RF Power Couplers For the Tesla Test Facility Preparation of RF Power Couplers For the Tesla Test Facility Axel Matheisen 1 **Feng Zhu 2 *** for the TESLA collaboration* 1 ) Deutsches Elektronen-Synchrotron DESY Notkestraße 85, D 22607 Hamburg, Germany

More information

Superconducting 1.3 GHz Cavities for European XFEL

Superconducting 1.3 GHz Cavities for European XFEL Superconducting 1.3 GHz Cavities for European XFEL W. Singer, J. Iversen, A. Matheisen, X. Singer (DESY, Germany) P. Michelato (INFN, Italy) Presented by Waldemar Singer Main issues: preparation phase

More information

Processing and Testing of PKU 3-1/2 Cell Cavity at JLab

Processing and Testing of PKU 3-1/2 Cell Cavity at JLab Processing and Testing of PKU 3-1/2 Cell Cavity at JLab Rongli Geng, Byron Golden August 7, 2009 Introduction The SRF group at Peking University has successfully built a 3-1/2 cell superconducting niobium

More information

CHALLENGES IN ILC SCRF TECHNOLOGY *

CHALLENGES IN ILC SCRF TECHNOLOGY * CHALLENGES IN ILC SCRF TECHNOLOGY * Detlef Reschke #, DESY, D-22603 Hamburg, Germany Abstract With a baseline operating gradient of 31,5 MV/m at a Q-value of 10 10 the superconducting nine-cell cavities

More information

SRF in Storage Rings. Michael Pekeler ACCEL Instruments GmbH Bergisch Gladbach Germany

SRF in Storage Rings. Michael Pekeler ACCEL Instruments GmbH Bergisch Gladbach Germany SRF in Storage Rings Michael Pekeler ACCEL Instruments GmbH 51429 Bergisch Gladbach Germany SRF in Storage Rings Michael Pekeler ACCEL Instruments GmbH 51429 Bergisch Gladbach Germany TESLA type cavity:

More information

Recent Results of High Gradient Superconducting Cavities at Cornell

Recent Results of High Gradient Superconducting Cavities at Cornell Recent Results of High Gradient Superconducting Cavities at Cornell Rong-Li Geng Seminar Brown October Bag Accelerator 8, 2004 Physics Cornell Seminar, University October 8, 2004 1 Contents Background

More information

COMPARISON OF BUFFERED CHEMICAL POLISHED AND ELECTROPOLISHED 3.9 GHz CAVITIES*

COMPARISON OF BUFFERED CHEMICAL POLISHED AND ELECTROPOLISHED 3.9 GHz CAVITIES* COMPARISON OF BUFFERED CHEMICAL POLISHED AND ELECTROPOLISHED 3.9 GHz CAVITIES* H. Edwards #, C.A. Cooper, M. Ge, I.V. Gonin, E.R. Harms, T. N. Khabiboulline, N. Solyak Fermilab, Batavia IL, USA Abstract

More information

Performance of Superconducting Cavities for the European XFEL. Detlef Reschke DESY for the EU-XFEL Accelerator Consortium

Performance of Superconducting Cavities for the European XFEL. Detlef Reschke DESY for the EU-XFEL Accelerator Consortium Performance of Superconducting Cavities for the European XFEL Detlef Reschke DESY for the EU-XFEL Accelerator Consortium Outline 2 European XFEL Linear Accelerator Cavity Production Vertical Acceptance

More information

HIGH POWER COUPLER FOR THE TESLA TEST FACILITY

HIGH POWER COUPLER FOR THE TESLA TEST FACILITY Abstract HIGH POWER COUPLER FOR THE TESLA TEST FACILITY W.-D. Moeller * for the TESLA Collaboration, Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg, Germany The TeV Energy Superconducting Linear

More information

DEVELOPMENT OF A BETA 0.12, 88 MHZ, QUARTER WAVE RESONATOR AND ITS CRYOMODULE FOR THE SPIRAL2 PROJECT

DEVELOPMENT OF A BETA 0.12, 88 MHZ, QUARTER WAVE RESONATOR AND ITS CRYOMODULE FOR THE SPIRAL2 PROJECT DEVELOPMENT OF A BETA 0.12, 88 MHZ, QUARTER WAVE RESONATOR AND ITS CRYOMODULE FOR THE SPIRAL2 PROJECT G. Olry, J-L. Biarrotte, S. Blivet, S. Bousson, C. Commeaux, C. Joly, T. Junquera, J. Lesrel, E. Roy,

More information

3.9 GHz work at Fermilab

3.9 GHz work at Fermilab 3.9 GHz work at Fermilab + CKM 13-cell cavity Engineering and designing W.-D. Moeller Desy, MHF-sl Protocol of the meeting about 3 rd harmonic cavities during the TESLA collaboration meeting at DESY on

More information

TESLA RF POWER COUPLERS DEVELOPMENT AT DESY.

TESLA RF POWER COUPLERS DEVELOPMENT AT DESY. TESLA RF POWER COUPLERS DEVELOPMENT AT DESY. Dwersteg B., Kostin D., Lalayan M., Martens C., Möller W.-D., DESY, D-22603 Hamburg, Germany. Abstract Different RF power couplers for the TESLA Test Facility

More information

Progresses on China ADS Superconducting Cavities

Progresses on China ADS Superconducting Cavities Progresses on China ADS Superconducting Cavities Peng Sha IHEP, CAS 2013/06/12 1 Outline 1. Introduction 2. Spoke012 cavity 3. Spoke021 cavity 4. Spoke040 cavity 5. 650MHz β=0.82 5-cell cavity 6. High

More information

Report of working group 5

Report of working group 5 Report of working group 5 Materials Cavity design Cavity Fabrication Preparatioin & Testing Power coupler HOM coupler Beam line absorber Tuner Fundamental R&D items Most important R&D items 500 GeV parameters

More information

The TESLA Linear Collider. Winfried Decking (DESY) for the TESLA Collaboration

The TESLA Linear Collider. Winfried Decking (DESY) for the TESLA Collaboration The TESLA Linear Collider Winfried Decking (DESY) for the TESLA Collaboration Outline Project Overview Highlights 2000/2001 Publication of the TDR Cavity R&D TTF Operation A0 and PITZ TESLA Beam Dynamics

More information

RF STATUS OF SUPERCONDUCTING MODULE DEVELOPMENT SUITABLE FOR CW OPERATION: ELBE CRYOSTATS

RF STATUS OF SUPERCONDUCTING MODULE DEVELOPMENT SUITABLE FOR CW OPERATION: ELBE CRYOSTATS RF STATUS OF SUPERCONDUCTING MODULE DEVELOPMENT SUITABLE FOR CW OPERATION: ELBE CRYOSTATS J. Teichert, A. Büchner, H. Büttig, F. Gabriel, P. Michel, K. Möller, U. Lehnert, Ch. Schneider, J. Stephan, A.

More information

Status and Plans for the 805 MHz Box Cavity MuCool RF Workshop III 07/07/09 Al Moretti

Status and Plans for the 805 MHz Box Cavity MuCool RF Workshop III 07/07/09 Al Moretti Status and Plans for the 805 MHz Box Cavity MuCool RF Workshop III 07/07/09 Al Moretti 7/6/2009 1 Outline : Description of the Box cavity Concept. Box Cavity Summary Plans. HFSS Models of orthogonal and

More information

Current Industrial SRF Capabilities and Future Plans

Current Industrial SRF Capabilities and Future Plans and Future Plans Capabilities in view of Design Engineering Manufacturing Preparation Testing Assembly Taking into operation Future Plans Participate in and contribute to development issues, provide prototypes

More information

Project X Cavity RF and mechanical design. T. Khabiboulline, FNAL/TD/SRF

Project X Cavity RF and mechanical design. T. Khabiboulline, FNAL/TD/SRF Project X Cavity RF and mechanical design T. Khabiboulline, FNAL/TD/SRF TTC meeting on CW-SRF, 2013 Project X Cavity RF and mechanical design T 1 High ß Low ß 0.5 HWR SSR1 SSR2 0 1 10 100 1 10 3 1 10 4

More information

Review of New Shapes for Higher Gradients

Review of New Shapes for Higher Gradients Review of New Shapes for Higher Gradients Rong-Li Geng LEPP, Cornell University Rong-Li Geng SRF2005, July 10-15, 2005 1 1 TeV 800GeV 500GeV ILC(TESLA type) energy reach Rapid advances in single-cell cavities

More information

Advance on High Power Couplers for SC Accelerators

Advance on High Power Couplers for SC Accelerators Advance on High Power Couplers for SC Accelerators Eiji Kako (KEK, Japan) IAS conference at Hong Kong for High Energy Physics, 2017, January 23th Eiji KAKO (KEK, Japan) IAS at Hong Kong, 2017 Jan. 23 1

More information

SUPERCONDUCTING PROTOTYPE CAVITIES FOR THE SPALLATION NEUTRON SOURCE (SNS) PROJECT *

SUPERCONDUCTING PROTOTYPE CAVITIES FOR THE SPALLATION NEUTRON SOURCE (SNS) PROJECT * SUPERCONDUCTING PROTOTYPE CAVITIES FOR THE SPALLATION NEUTRON SOURCE (SNS) PROJECT * G. Ciovati, P. Kneisel, J. Brawley, R. Bundy, I. Campisi, K. Davis, K. Macha, D. Machie, J. Mammosser, S. Morgan, R.

More information

CAVITY DIAGNOSTIC SYSTEM FOR THE VERTICAL TEST OF THE BASELINE SC CAVITY IN KEK-STF

CAVITY DIAGNOSTIC SYSTEM FOR THE VERTICAL TEST OF THE BASELINE SC CAVITY IN KEK-STF CAVITY DIAGNOSTIC SYSTEM FOR THE VERTICAL TEST OF THE BASELINE SC CAVITY IN KEK-STF Y. Yamamoto #, H. Hayano, E. Kako, S. Noguchi, T. Shishido, K. Umemori, K. Watanabe, KEK, Tsukuba, 305-0801, Japan, H.

More information

Completion of the first SSR1 cavity for PXIE

Completion of the first SSR1 cavity for PXIE 2013 North American Particle Accelerator Conference Pasadena, CA Completion of the first SSR1 cavity for PXIE Design, Manufacturing and Qualification Leonardo Ristori on behalf of the Fermilab SRF Development

More information

LARGE SCALE TESTING OF SRF CAVITIES AND MODULES

LARGE SCALE TESTING OF SRF CAVITIES AND MODULES LARGE SCALE TESTING OF SRF CAVITIES AND MODULES Jacek Swierblewski IFJ PAN Krakow IKC for the XFEL Introduction IFJ PAN 2 Institute of Nuclear Physics (IFJ) located in Kraków, Poland was founded in 1955

More information

THE CRYOGENIC SYSTEM OF TESLA

THE CRYOGENIC SYSTEM OF TESLA THE CRYOGENIC SYSTEM OF TESLA S. Wolff, DESY, Notkestr. 85, 22607 Hamburg, Germany for the TESLA collaboration Abstract TESLA, a 33 km long 500 GeV centre-of-mass energy superconducting linear collider

More information

PROGRESS IN IFMIF HALF WAVE RESONATORS MANUFACTURING AND TEST PREPARATION

PROGRESS IN IFMIF HALF WAVE RESONATORS MANUFACTURING AND TEST PREPARATION PROGRESS IN IFMIF HALF WAVE RESONATORS MANUFACTURING AND TEST PREPARATION G. Devanz, N. Bazin, G. Disset, H. Dzitko, P. Hardy, H. Jenhani, J. Neyret, O. Piquet, J. Plouin, N. Selami, CEA-Saclay, France

More information

5.5 SNS Superconducting Linac

5.5 SNS Superconducting Linac JP0150514 ICANS - XV 15 th Meeting of the International Collaboration on Advanced Neutron Sources November 6-9, 2000 Tsukuba, Japan Ronald M. Sundelin Jefferson Lab* 5.5 SNS Superconducting Linac 12000

More information

High Gradient Study in Superconducting RF Cavities

High Gradient Study in Superconducting RF Cavities High Gradient Study in Superconducting RF Cavities Kenji Saito KEK Accelerator Lab Outline 1. Fabrication and Surface Defects 2. Particle Contamination Control 3. Importance of Smooth Surface 4. Fundamental

More information

Third Harmonic Superconducting passive cavities in ELETTRA and SLS

Third Harmonic Superconducting passive cavities in ELETTRA and SLS RF superconductivity application to synchrotron radiation light sources Third Harmonic Superconducting passive cavities in ELETTRA and SLS 2 cryomodules (one per machine) with 2 Nb/Cu cavities at 1.5 GHz

More information

INFN- LASA MEDIUM BETA CAVITY PROTOTYPES FOR ESS LINAC

INFN- LASA MEDIUM BETA CAVITY PROTOTYPES FOR ESS LINAC Content from this work may be used under the terms of the CC BY 3. licence ( 217). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI. 18th

More information

1.3 GHz CAVITY TEST PROGRAM FOR ARIEL

1.3 GHz CAVITY TEST PROGRAM FOR ARIEL 1.3 GHz CAVITY TEST PROGRAM FOR ARIEL P. Kolb 1,P.Harmer 1,J.Keir 1,D.Kishi 1,D.Lang 1,R.E.Laxdal 1,H.Liu 1,Y.Ma 1, B.S. Waraich 1,Z. Yao 1, V. Zvyagintsev 1, E. Bourassa 2,R.S.Orr 2,D.Trischuk 2,T.Shishido

More information

HIGH POWER INPUT COUPLERS FOR THE STF BASELINE CAVITY SYSTEM AT KEK

HIGH POWER INPUT COUPLERS FOR THE STF BASELINE CAVITY SYSTEM AT KEK HIGH POWER INPUT COUPLERS FOR THE STF BASELINE CAVITY SYSTEM AT KEK E. Kako #, H. Hayano, S. Noguchi, T. Shishido, K. Watanabe and Y. Yamamoto KEK, Tsukuba, Ibaraki, 305-0801, Japan Abstract An input coupler,

More information

Nb 3 Sn Present Status and Potential as an Alternative SRF Material. S. Posen and M. Liepe, Cornell University

Nb 3 Sn Present Status and Potential as an Alternative SRF Material. S. Posen and M. Liepe, Cornell University Nb 3 Sn Present Status and Potential as an Alternative SRF Material S. Posen and M. Liepe, Cornell University LINAC 2014 Geneva, Switzerland September 2, 2014 Limits of Modern SRF Technology Low DF, high

More information

Frequency Tuning and RF Systems for the ATLAS Energy Upgrade. Gary P. Zinkann

Frequency Tuning and RF Systems for the ATLAS Energy Upgrade. Gary P. Zinkann Frequency Tuning and RF Systems for the ATLAS Energy Upgrade Outline Overview of the ATLAS Energy Upgrade Description of cavity Tuning method used during cavity construction Description and test results

More information

TESLA Progress on R1 & R2 issues

TESLA Progress on R1 & R2 issues TESLA Progress on R1 & R2 issues Carlo Pagani Milano & DESY carlo.pagani@desy.de The TESLA Challenge for LC Physical limit at 50 MV/m > 25 MV/m could be obtained Common R&D effort for TESLA Higher conversion

More information

STATUS OF THE RF SUPERCONDUCTIVITY ACTIVITIES AT DESY

STATUS OF THE RF SUPERCONDUCTIVITY ACTIVITIES AT DESY STATUS OF THE RF SUPERCONDUCTIVITY ACTIVITIES AT DESY Axel Matheisen** Deutsches Elektronen-Synchrotron DESY Notkestraße 85, D 22607 Hamburg, Germany for the TESLA collaboration* Abstract At DESY one major

More information

Mechanical study of the «Saclay piezo tuner» PTS (Piezo Tuning System) P. Bosland, Bo Wu DAPNIA - CEA Saclay. Abstract

Mechanical study of the «Saclay piezo tuner» PTS (Piezo Tuning System) P. Bosland, Bo Wu DAPNIA - CEA Saclay. Abstract SRF Mechanical study of the «Saclay piezo tuner» PTS (Piezo Tuning System) P. Bosland, Bo Wu DAPNIA - CEA Saclay Abstract This report presents the piezo tuner developed at Saclay in the framework of CARE/SRF.

More information

R.L. Geng, C. Crawford, H. Padamsee, A. Seaman LEPP, Cornell University, Ithaca, NY14853, USA

R.L. Geng, C. Crawford, H. Padamsee, A. Seaman LEPP, Cornell University, Ithaca, NY14853, USA Presented at the 12th International Workshop on RF Superconductivity, July 10-15, 2005, Ithaca, NY, USA. SRF060419-02 VERTICAL ELECTROPOLISHING NIOBIUM CAVITIES R.L. Geng, C. Crawford, H. Padamsee, A.

More information

HIGH POWER PULSED TESTS OF A BETA=0.5 5-CELL 704 MHZ SUPERCONDUCTING CAVITY

HIGH POWER PULSED TESTS OF A BETA=0.5 5-CELL 704 MHZ SUPERCONDUCTING CAVITY HIGH POWER PULSED TESTS OF A BETA=0.5 5-CELL 704 MHZ SUPERCONDUCTING CAVITY G. Devanz, D. Braud, M. Desmons, Y. Gasser, E. Jacques, O. Piquet, J. Plouin, J.- P. Poupeau, D. Roudier, P. Sahuquet, CEA-Saclay,

More information

High Power Couplers for TTF - FEL

High Power Couplers for TTF - FEL High Power Couplers for TTF - FEL 1. Requirements for High Power Couplers on superconducting Cavities 2. Characteristics of pulsed couplers 3. Standing wave pattern in the coaxial coupler line 4. Advantages

More information

XFEL Cryo System. Project X Collaboration Meeting, FNAL September 8-9, 2010 Bernd Petersen DESY MKS (XFEL WP10 & WP13) 1 st stage. Possible extension

XFEL Cryo System. Project X Collaboration Meeting, FNAL September 8-9, 2010 Bernd Petersen DESY MKS (XFEL WP10 & WP13) 1 st stage. Possible extension XFEL Cryo System Possible extension 1 st stage Project X Collaboration Meeting, FNAL September 8-9, 2010 (XFEL WP10 & WP13) Outline 2 XFEL accelerator structure TESLA technology Basic cryogenic parameters

More information

RECENT DEVELOPMENTS IN ELECTROPOLISHING AND TUMBLING R&D AT FERMILAB

RECENT DEVELOPMENTS IN ELECTROPOLISHING AND TUMBLING R&D AT FERMILAB FERMILAB-CONF-09-539-AD-TD RECENT DEVELOPMENTS IN ELECTROPOLISHING AND TUMBLING R&D AT FERMILAB C. Cooper #, J. Brandt, L. Cooley, M. Ge, E. Harms, T. Khabiboulline, J. Ozelis, Fermilab, Batavia, IL.,

More information

ASSEMBLY PREPARATIONS FOR THE INTERNATIONAL ERL CRYOMODULE AT DARESBURY LABORATORY

ASSEMBLY PREPARATIONS FOR THE INTERNATIONAL ERL CRYOMODULE AT DARESBURY LABORATORY ASSEMBLY PREPARATIONS FOR THE INTERNATIONAL ERL CRYOMODULE AT DARESBURY LABORATORY P. A. McIntosh #, R. Bate, C. D. Beard, M. A. Cordwell, D. M. Dykes, S. M. Pattalwar and J. Strachan, STFC Daresbury Laboratory,

More information

Commissioning of the ALICE SRF Systems at Daresbury Laboratory Alan Wheelhouse, ASTeC, STFC Daresbury Laboratory ESLS RF 1 st 2 nd October 2008

Commissioning of the ALICE SRF Systems at Daresbury Laboratory Alan Wheelhouse, ASTeC, STFC Daresbury Laboratory ESLS RF 1 st 2 nd October 2008 Commissioning of the ALICE SRF Systems at Daresbury Laboratory Alan Wheelhouse, ASTeC, STFC Daresbury Laboratory ESLS RF 1 st 2 nd October 2008 Overview ALICE (Accelerators and Lasers In Combined Experiments)

More information

Summary on the Parallel session LTECSC. Lutz Lilje DESY

Summary on the Parallel session LTECSC. Lutz Lilje DESY Summary on the Parallel session LTECSC Lutz Lilje DESY 6.5.2004 Superconducting Linac Technology Session Tuesday, May 4 14:30 Introduction to LTECSC (Schedule, Deliverables) - L.Lilje JRA SRF Presentation

More information

Design of the 352MHz, beta 0.50, Double- Spoke Cavity for ESS

Design of the 352MHz, beta 0.50, Double- Spoke Cavity for ESS Design of the 352MHz, beta 0.50, Double- Spoke Cavity for ESS Patricia DUCHESNE, Guillaume OLRY Sylvain BRAULT, Sébastien BOUSSON, Patxi DUTHIL, Denis REYNET Institut de Physique Nucléaire d Orsay SRF

More information

Experience with 3.9 GHz cavity HOM couplers

Experience with 3.9 GHz cavity HOM couplers Cornell University, October 11-13, 2010 Experience with 3.9 GHz cavity HOM couplers T. Khabiboulline, N. Solyak, FNAL. 3.9 GHz cavity general parameters Third harmonic cavity (3.9GHz) was proposed to compensate

More information

OVERVIEW OF REGIONAL INFRASTRUCTURES FOR SCRF DEVELOPMENT

OVERVIEW OF REGIONAL INFRASTRUCTURES FOR SCRF DEVELOPMENT OVERVIEW OF REGIONAL INFRASTRUCTURES FOR SCRF DEVELOPMENT Carlo Pagani, University of Milano and INFN Milano - LASA, Italy Abstract The perspective of building the International Linear Collider, ILC, as

More information

Tuning systems for superconducting cavities at Saclay

Tuning systems for superconducting cavities at Saclay Tuning systems for superconducting cavities at Saclay 1 MACSE: 1990: tuner in LHe bath at 1.8K TTF: 1995 tuner at 1.8K in the insulating vacuum SOLEIL: 1999 tuner at 4 K in the insulating vacuum Super-3HC:

More information

Superconducting RF cavities activities for the MAX project

Superconducting RF cavities activities for the MAX project 1 Superconducting RF cavities activities for the MAX project OECD-NEA TCADS-2 Workshop Nantes, 22 May 2013 Marouan El Yakoubi, CNRS / IPNO 2 Contents 352 MHz spoke Cryomodule design 700 MHz test area 700

More information

LOW BETA CAVITY DEVELOPMENT FOR AN ATLAS INTENSITY UPGRADE

LOW BETA CAVITY DEVELOPMENT FOR AN ATLAS INTENSITY UPGRADE LOW BETA CAVITY DEVELOPMENT FOR AN ATLAS INTENSITY UPGRADE M. P. Kelly, Z. A. Conway, S. M. Gerbick, M. Kedzie, T. C. Reid, R. C. Murphy, B. Mustapha, S.H. Kim, P. N. Ostroumov, Argonne National Laboratory,

More information

2 Results of Superconducting Accelerator Development

2 Results of Superconducting Accelerator Development II-19 2 Results of Superconducting Accelerator Development 2.1 Superconducting Cavities 2.1.1 Introduction Historically, the main drawback of superconducting (sc) accelerating structures has been the low

More information

JRA1 SRF partner meeting Zeuthen Jan. 22, Michelato, INFN Milano LASA

JRA1 SRF partner meeting Zeuthen Jan. 22, Michelato, INFN Milano LASA JRA1 SRF partner meeting Zeuthen Jan. 22, 2004 Paolo P. Michelato, INFN LASA INFN Milano LASA WP2 task and objectives WP2 (Improved Standard Cavity Fabrication, ISCF) aims at improving the present cavity

More information

4 XFEL accelerator. 4.1 Overview. XFEL accelerator Introduction Overall layout and choice of parameters

4 XFEL accelerator. 4.1 Overview. XFEL accelerator Introduction Overall layout and choice of parameters 4 XFEL accelerator 4.1 Overview 4.1.1 Introduction The heart of the accelerator complex is the L-band (1.3 GHz) electron linear accelerator (linac) with a nominal design energy of 20 GeV, operating at

More information

TESLA TeV Collider Project Overview

TESLA TeV Collider Project Overview Hamburg-Zeuthen Linear Collider Meeting TESLA TeV Collider Project Overview Carlo Pagani Milano & DESY carlo.pagani@desy.de The TESLA Challenge Physical limit is 50 MV/m > 25 MV/m could be obtained Common

More information

DEVELOPMENTS OF HORIZONTAL HIGH PRESSURE RINSING FOR SUPERKEKB SRF CAVITIES

DEVELOPMENTS OF HORIZONTAL HIGH PRESSURE RINSING FOR SUPERKEKB SRF CAVITIES DEVELOPMENTS OF HORIZONTAL HIGH PRESSURE RINSING FOR SUPERKEKB SRF CAVITIES Y. Morita #, K. Akai, T. Furuya, A. Kabe, S. Mitsunobu, and M. Nishiwaki Accelerator Laboratory, KEK, Tsukuba, Ibaraki 305-0801,

More information

UPDATE ON THE R&D OF VERTICAL BUFFERED ELECTROPOLISHING ON NIOBIUM SAMPLES AND SRF SINGLE CELL CAVITIES*

UPDATE ON THE R&D OF VERTICAL BUFFERED ELECTROPOLISHING ON NIOBIUM SAMPLES AND SRF SINGLE CELL CAVITIES* UPDATE ON THE R&D OF VERTICAL BUFFERED ELECTROPOLISHING ON NIOBIUM SAMPLES AND SRF SINGLE CELL CAVITIES* A.T. Wu 1, S. Jin 1,2, X.Y Lu 2, R.A. Rimmer 1, K. Zhao 2, L. Lin 2, and J. Mammosser 1 1 Institute

More information

REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES. S. Belomestnykh

REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES. S. Belomestnykh REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES S. Belomestnykh HPC workshop JLAB, 30 October 2002 Introduction Many aspects of the high-power coupler design, fabrication, preparation, conditioning, integration

More information

To produce more powerful and high-efficiency particle accelerator, efforts have

To produce more powerful and high-efficiency particle accelerator, efforts have Measuring Unloaded Quality Factor of Superconducting RF Cryomodule Jian Cong Zeng Department of Physics and Astronomy, State University of New York at Geneseo, Geneseo, NY 14454 Elvin Harms, Jr. Accelerator

More information

Superconducting RF System. Heung-Sik Kang

Superconducting RF System. Heung-Sik Kang Design of PLS-II Superconducting RF System Heung-Sik Kang On behalf of PLS-II RF group Pohang Accelerator Laboratory Content 1. Introduction 2. Physics design 3. Cryomodules 4. Cryogenic system 5. High

More information

Present Status of R&D for the Superconducting Linac

Present Status of R&D for the Superconducting Linac International Conference on Linear Colliders Colloque international sur les collisionneurs linéaires LCWS 04 : 19-23 April 2004 - "Le Carré des Sciences", Paris, France Present Status of R&D for the Superconducting

More information

S. Ghosh On behalf of Linac, IFR, Cryogenics, RF and beam transport group members. Inter University Accelerator Centre New Delhi India

S. Ghosh On behalf of Linac, IFR, Cryogenics, RF and beam transport group members. Inter University Accelerator Centre New Delhi India S. Ghosh On behalf of Linac, IFR, Cryogenics, RF and beam transport group members Inter University Accelerator Centre New Delhi 110067 India Highlights of presentation 1. Introduction to Linear accelerator

More information

Cavity fabrication and characterization

Cavity fabrication and characterization 5 Cavity fabrication and characterization This chapter describes fabrication steps for cavity design. A cumulative experience of SCRF community is applied to develop technique that describes the manufacturing

More information

Third Harmonic Cavity Status

Third Harmonic Cavity Status Third Harmonic Cavity Status General parameters Cavity design Main coupler calculation HOM analysis and HOM coupler design Lorentz Forces and Stress analysis Summary General parameters Third harmonic cavity

More information

Using Higher Order Modes in the Superconducting TESLA Cavities for Diagnostics at DESY

Using Higher Order Modes in the Superconducting TESLA Cavities for Diagnostics at DESY Using Higher Order Modes in the Superconducting TESLA Cavities for Diagnostics at FLASH @ DESY N. Baboi, DESY, Hamburg for the HOM team : S. Molloy 1, N. Baboi 2, N. Eddy 3, J. Frisch 1, L. Hendrickson

More information

REVIEW OF NEW SHAPES FOR HIGHER GRADIENTS

REVIEW OF NEW SHAPES FOR HIGHER GRADIENTS Invited talk at the 12th International Workshop on RF Superconductivity, July 10-15, 2005, Ithaca, NY, USA. Accepted for publication in Physica C. SRF060209-01 REVIEW OF NEW SHAPES FOR HIGHER GRADIENTS

More information

CURRENT INDUSTRIAL SRF CAPABILITIES AND FUTURE PLANS

CURRENT INDUSTRIAL SRF CAPABILITIES AND FUTURE PLANS CURRENT INDUSTRIAL SRF CAPABILITIES AND FUTURE PLANS Hanspeter Vogel ACCEL Instruments GmbH Friedrich Ebert Strasse 1, 51429 Bergisch Gladbach, Germany Corresponding author: Hanspeter Vogel ACCEL Instruments

More information

KEK ERL CRYOMODULE DEVELOPMENT

KEK ERL CRYOMODULE DEVELOPMENT KEK ERL CRYOMODULE DEVELOPMENT H. Sakai*, T. Furuya, E. Kako, S. Noguchi, M. Sato, S. Sakanaka, T. Shishido, T. Takahashi, K. Umemori, K. Watanabe and Y. Yamamoto KEK, 1-1, Oho, Tsukuba, Ibaraki, 305-0801,

More information

Status of the European XFEL Accelerator Construction Project. Reinhard Brinkmann, DESY

Status of the European XFEL Accelerator Construction Project. Reinhard Brinkmann, DESY Status of the European XFEL Accelerator Construction Project Reinhard Brinkmann, DESY European XFEL Introduction Some specifications Photon energy 0.3-24 kev Pulse duration ~ 10-100 fs Pulse energy few

More information

Liquid Helium Heat Load Within the Cornell Mark II Cryostat

Liquid Helium Heat Load Within the Cornell Mark II Cryostat SRF 990615-07 Liquid Helium Heat Load Within the Cornell Mark II Cryostat E. Chojnacki, S. Belomestnykh, and J. Sears Floyd R. Newman Laboratory of Nuclear Studies Cornell University, Ithaca, New York

More information

High Field Q-Slope in Superconducting RF Cavities

High Field Q-Slope in Superconducting RF Cavities High Field Q-Slope in Superconducting RF Cavities Jordan Webster Advisor: Matthias Liepe August 7, 2008 High Field Q-Slope in Superconducting RF Cavities A Tragic Experimental Tale Jordan Webster Advisor:

More information

DC FIELD EMISSION SCANNING MEASUREMENTS ON ELECTROPOLISHED NIOBIUM SAMPLES

DC FIELD EMISSION SCANNING MEASUREMENTS ON ELECTROPOLISHED NIOBIUM SAMPLES DC FIELD EMISSION SCANNING MEASUREMENTS ON ELECTROPOLISHED NIOBIUM SAMPLES Arti Dangwal 1,2,#, Detlef Reschke 2, Günter Müller 1 1 FB C Physik, Berg. Universität Wuppertal, Gaußstraße 20, D-42097 Wuppertal,

More information

SUPERCONDUCTING RESONATORS DEVELOPMENT FOR THE FRIB AND ReA LINACS AT MSU: RECENT ACHIEVEMENTS AND FUTURE GOALS

SUPERCONDUCTING RESONATORS DEVELOPMENT FOR THE FRIB AND ReA LINACS AT MSU: RECENT ACHIEVEMENTS AND FUTURE GOALS SUPERCONDUCTING RESONATORS DEVELOPMENT FOR THE FRIB AND ReA LINACS AT MSU: RECENT ACHIEVEMENTS AND FUTURE GOALS A. Facco #+, E. Bernard, J. Binkowski, J. Crisp, C. Compton, L. Dubbs, K. Elliott, L. Harle,

More information

Summary of the cryogenic rf tests of a seamless Nb-Cu 2-cell cavity

Summary of the cryogenic rf tests of a seamless Nb-Cu 2-cell cavity Summary of the cryogenic rf tests of a seamless Nb-Cu 2-cell cavity G. Ciovati, P. Kneisel TJNAF, Newort News VA 23606 USA W. Singer, J. Sekutowicz DESY, Hamburg, 22603 Hamburg, Germany 1. Introduction

More information

DEVELOPMENT, PRODUCTION AND TESTS OF PROTOTYPE SUPERCONDUCTING CAVITIES FOR THE HIGH BETA SECTION OF THE ISAC-II HEAVY ION ACCELERATOR AT TRIUMF

DEVELOPMENT, PRODUCTION AND TESTS OF PROTOTYPE SUPERCONDUCTING CAVITIES FOR THE HIGH BETA SECTION OF THE ISAC-II HEAVY ION ACCELERATOR AT TRIUMF DEVELOPMENT, PRODUCTION AND TESTS OF PROTOTYPE SUPERCONDUCTING CAVITIES FOR THE HIGH BETA SECTION OF THE ISAC-II HEAVY ION ACCELERATOR AT V. Zvyagintsev, R.E. Laxdal, R. Dawson, K. Fong, A. Grasselino,

More information

Motivation: ERL based e linac for LHeC

Motivation: ERL based e linac for LHeC Erk Jensen, for the LHeC team and the RF group ERL 2013, BINP, Novosibirsk, 09 Sep 2013 09 Sep 2013 1 Motivation: ERL based e linac for LHeC ( O. Brünings presentation) NB.: This is a 09 Sep 2013 2 Some

More information

CRAB CAVITY DEVELOPMENT

CRAB CAVITY DEVELOPMENT CRA CAVITY DVLOPMNT K. Hosoyama #, K. Hara, A. Kabe, Y. Kojima, Y. Morita, H. Nakai, A. Honma, K. Akai, Y. Yamamoto, T. Furuya, S. Mizunobu, M. Masuzawa, KK, Tsukuba, Japan K. Nakanishi, GUAS(KK), Tsukuba,

More information

ALICE SRF SYSTEM COMMISSIONING EXPERIENCE A. Wheelhouse ASTeC, STFC Daresbury Laboratory

ALICE SRF SYSTEM COMMISSIONING EXPERIENCE A. Wheelhouse ASTeC, STFC Daresbury Laboratory ALICE SRF SYSTEM COMMISSIONING EXPERIENCE A. Wheelhouse ASTeC, STFC Daresbury Laboratory ERL 09 8 th 12 th June 2009 ALICE Accelerators and Lasers In Combined Experiments Brief Description ALICE Superconducting

More information

FLASH Operation at DESY From a Test Accelerator to a User Facility

FLASH Operation at DESY From a Test Accelerator to a User Facility FLASH Operation at DESY From a Test Accelerator to a User Facility Michael Bieler FLASH Operation at DESY WAO2012, SLAC, Aug. 8, 2012 Vocabulary DESY: Deutsches Elektronen-Synchrotron, Hamburg, Germany

More information

Status of superconducting module development suitable for cw operation: ELBE cryostats

Status of superconducting module development suitable for cw operation: ELBE cryostats Status of superconducting module development suitable for cw operation: ELBE cryostats, A. Büchner, H. Büttig, F. Gabriel, P. Michel, K. Möller, U. Lehnert, Ch. Schneider, J. Stephan, A. Winter Forschungszentrum

More information

LC Technology Hans Weise / DESY

LC Technology Hans Weise / DESY LC Technology Hans Weise / DESY All you need is... Luminosity! L σ 2 N e x σ y σ y σ x L n b f rep Re-writing reflects the LC choices... L P E b c. m. N e σ σ x y... beam power... bunch population... Ac-to-beam

More information

Tests of the Spoke Cavity RF Source and Cryomodules in Uppsala

Tests of the Spoke Cavity RF Source and Cryomodules in Uppsala FREIA Report 2012/03 October 2012 DEPARTMENT OF PHYSICS AND ASTRONOMY UPPSALA UNIVERSITY Tests of the Spoke Cavity RF Source and Cryomodules in Uppsala ESS TDR Contribution R. Ruber, T. Ekelöf, R.A. Yogi.

More information

Status of the superconducting cavity development at RISP. Gunn Tae Park Accelerator division, RISP May 9th. 2014

Status of the superconducting cavity development at RISP. Gunn Tae Park Accelerator division, RISP May 9th. 2014 Status of the superconducting cavity development at RISP. Gunn Tae Park Accelerator division, RISP May 9th. 2014 Contents 1. Introduction 2. Design 3. Fabrication 1. Introduction What is the accelerator?

More information

Behavior of the TTF2 RF Gun with long pulses and high repetition rates

Behavior of the TTF2 RF Gun with long pulses and high repetition rates Behavior of the TTF2 RF Gun with long pulses and high repetition rates J. Baehr 1, I. Bohnet 1, J.-P. Carneiro 2, K. Floettmann 2, J. H. Han 1, M. v. Hartrott 3, M. Krasilnikov 1, O. Krebs 2, D. Lipka

More information

Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser. P. Castro for the TTF-FEL team

Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser. P. Castro for the TTF-FEL team Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser P. Castro for the TTF-FEL team 100 nm 1 Å FEL radiation TESLA Test Facility at DESY

More information

2 Theory of electromagnetic waves in waveguides and of waveguide components

2 Theory of electromagnetic waves in waveguides and of waveguide components RF transport Stefan Choroba DESY, Hamburg, Germany Abstract This paper deals with the techniques of transport of high-power radiofrequency (RF) power from a RF power source to the cavities of an accelerator.

More information

H. Weise, Deutsches Elektronen-Synchrotron, Hamburg, Germany for the XFEL Group

H. Weise, Deutsches Elektronen-Synchrotron, Hamburg, Germany for the XFEL Group 7+(7(6/$;)(/352-(&7 H. Weise, Deutsches Elektronen-Synchrotron, Hamburg, Germany for the XFEL Group $EVWUDFW The overall layout of the X-Ray FEL to be built in international collaboration at DESY will

More information

SINAP surface preparation processing for superconducting cavities

SINAP surface preparation processing for superconducting cavities SINAP surface preparation processing for superconducting cavities MA Zhen-Yu( 马震宇 ) 1,3 LIU Jian-Fei( 刘建飞 ) 1,3,1) HOU Hong-Tao( 侯洪涛 ) 1,3 WANG Yan( 王岩 ) 1,3 SHI Jing( 是晶 ) 1,3 LUO Chen( 罗琛 ) 1,3 FENG

More information

Structures for RIA and FNAL Proton Driver

Structures for RIA and FNAL Proton Driver Structures for RIA and FNAL Proton Driver Speaker: Mike Kelly 12 th International Workshop on RF Superconductivity July 11-15, 2005 Argonne National Laboratory A Laboratory Operated by The University of

More information

Nb 3 Sn Fabrication and Sample Characterization at Cornell

Nb 3 Sn Fabrication and Sample Characterization at Cornell Nb 3 Sn Fabrication and Sample Characterization at Cornell Sam Posen, Matthias Liepe, Yi Xie, N. Valles Cornell University Thin Films Workshop Presented October 5 th 2010 By Sam Posen In Padua, Italy Outline

More information

DEVELOPMENTS AND PROGRESS WITH ESS ELLIPTICAL CRYOMODULES AT CEA-SACLAY AND IPN-ORSAY -

DEVELOPMENTS AND PROGRESS WITH ESS ELLIPTICAL CRYOMODULES AT CEA-SACLAY AND IPN-ORSAY - DEVELOPMENTS AND PROGRESS WITH ESS ELLIPTICAL CRYOMODULES AT CEA-SACLAY AND IPN-ORSAY - F. Peauger, C. Arcambal, F. Ardellier, S. Berry, P. Bosland, A. Bouygues, E. Cenni, JP. Charrier, G. Devanz, F. Eozénou,

More information

RENASCENCE * PERFORMANCE AND PROBLEMS ON FIRST TEST Feedthrough leaks sub 70 K. End group quenching

RENASCENCE * PERFORMANCE AND PROBLEMS ON FIRST TEST Feedthrough leaks sub 70 K. End group quenching Proceedings of SRF27, Peking Univ., Beijing, China PERFORMANCE OF THE CEBAF PROTOTYPE CRYOMODULE RENASCENCE * C. E. Reece, E. F. Daly, G. K. Davis, M. Drury, W. R. Hicks, J. Preble, H. Wang # Jefferson

More information

Snowmass WG5: Superconducting Cavities and Couplers (Draft August 12, 2005 Rong-Li Geng) Topic 1: Cavity Shape

Snowmass WG5: Superconducting Cavities and Couplers (Draft August 12, 2005 Rong-Li Geng) Topic 1: Cavity Shape Snowmass WG5: Superconducting Cavities and Couplers (Draft August 12, 2005 Rong-Li Geng) Topic 1: Cavity Shape Overview The cavity shape determines the fundamental mode as well as the higher order modes

More information

THE HIGH LUMINOSITY PERFORMANCE OF CESR WITH THE NEW GENERATION SUPERCONDUCTING CAVITY

THE HIGH LUMINOSITY PERFORMANCE OF CESR WITH THE NEW GENERATION SUPERCONDUCTING CAVITY Presented at the 1999 Particle Accelerator Conference, New York City, NY, USA, March 29 April 2 CLNS 99/1614 / SRF 990407-03 THE HIGH LUMINOSITY PERFORMANCE OF CESR WITH THE NEW GENERATION SUPERCONDUCTING

More information

Superstructures; First Cold Test and Future Applications

Superstructures; First Cold Test and Future Applications Superstructures; First Cold Test and Future Applications DESY: C. Albrecht, V. Ayvazyan, R. Bandelmann, T. Büttner, P. Castro, S. Choroba, J. Eschke, B. Faatz, A. Gössel, K. Honkavaara, B. Horst, J. Iversen,

More information

MULTIPACTING IN THE CRAB CAVITY

MULTIPACTING IN THE CRAB CAVITY MULTIPACTING IN TH CRAB CAVITY Y. Morita, K. Hara, K. Hosoyama, A. Kabe, Y. Kojima, H. Nakai, KK, 1-1, Oho, Tsukuba, Ibaraki 3-81, JAPAN Md. M. Rahman, K. Nakanishi, Graduate University for Advanced Studies,

More information

Current Status of cerl Injector Cryomodule

Current Status of cerl Injector Cryomodule Current Status of cerl Injector Cryomodule E. Kako, Y. Kondo, S. Noguchi, T. Shishido, K. Watanabe, Y. Yamamoto (KEK, Japan) 1 Outline Overview of Injector Cryomodule 2-cell Cavities HOM RF Feedthroughs

More information