GMR based NDT System for Defects in Magnetic Materials

Size: px
Start display at page:

Download "GMR based NDT System for Defects in Magnetic Materials"

Transcription

1 11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6-10, 2014, Prague, Czech Republic GMR based NDT System for Defects in Magnetic Materials More Info at Open Access Database Matthias BUERKLE, Dr. Hubert GRIMM, Dr. Johannes PAUL Sensitec GmbH, Mainz, Germany Phone: , Fax: ; sensitec.com, Abstract A NDT measurement system for crack detection based on a magnetic tooth length sensor is presented. The system has compact dimensions and can also be used with complex geometries. The function is similar to a magnetic flux leakage system. Instead of measuring stray fields, the deviation of a strong applied magnetic field due to the presence of magnetic material or defects is detected. GMR multilayer sensors have been selected, because they are sensitive at high fields for measure in high magnetic field environments. Two applications are reported. We have developed a test system for magnetographic print head chips in a mass production environment. Thereby soft-magnetic pole heads are analyzed for defects caused during an electroplating process with Nickel-Iron. The second application is the detection of surface cracks in magnetic materials. The measurement results show that it is possible to detect cracks down to 10 µm deep and 81 µm wide. Because of the high sensitivity the grain size of the material is detected and might be the limitation for crack detection. Keywords: Giant magnetoresistive sensor (GMR), Magnetic flux leakage (MFL), Magnetic stray field, Crack detection, non-destructive testing (NDT) 1. Introduction Magnetic multilayers are well suited as magnetic field sensors to a wide range of magnetic applications. The antiferromagnetic coupling strength of the magnetic layers is dominated by the thickness of the nonmagnetic interface. This effect was discovered in 1988 and is called the giant magnetoresistance (GMR) [1-3]. GMR multilayer sensors are typically used at high magnetic field applications, e.g. for position measurements. Here the sensor system consists of a permanent magnet, which magnetizes e.g. toothed wheels or bars, and a GMR multilayer sensor, sensitive at fields of up to 400 ka/m. Because of the robust build-up of the sensors, consisting only of metal layers, of silicon oxide and nitride or alumina for passivation and protection, the GMR sensors can be used in harsh environments. Even high dynamic position measurements of the valve lift can be measured even in a firing engine. The use of GMR multilayers for NDT applications is a new approach. So far, GMR spin valve sensors have been used for eddy current measurement and magnetic flux leakage measurements because of their high sensitivity at low magnetic fields. 2. System Overview 2.1 Measurement System Magnetic flux leakage (MFL) systems measure the stray field which is present at an inhomogeneity near the surface of a test specimen [4]. The test specimen needs to be premagnetized by a strong applied magnetic field or with a high current flowing through it. In this work we present a measurement system which is based on a tooth length sensor system from Sensitec [5]. The system contains a permanent magnet and a GMR sensor chip which measures in a gradiometer configuration. The permanent magnet magnetizes the soft magnetic material under test (e.g. the tooth of a gear-wheel) but penetrates the GMR sensor chip, too. By means of robust GMR multilayers the GMR layers are not saturated in this field but remain sensitive. In length measurement application the GMR sensor chip measures the field 1

2 differences caused by a soft magnetic tooth bar. The field differences change when the tooth bar is moved. In a standard position measurement application, the sensor produces cosine and sine signals. Consequently the system is able to obtain position information. The GMR length sensor is designed for a tooth pitch of 634 µm (gear wheel module of m = 0.2) and is sensitive in the vertical plane of the specimen surface. The GMR sensor consists in a pattern of GMR sensing elements, each of these sensing elements have a length of only 90 µm. The sensor is placed at the bottom edge of the magnet and is exposed to a biasing field. In Figure 1 is the principle of a tooth length sensor system and its use for NDT shown. Figure 1: Left: Principle of a tooth length sensor system with permanent magnet and sensor (placed at the left side of the permanent magnet). Right: Sensor system placed above a test specimen for crack detection in NDT. As can be seen in figure 1, the GMR gradiometer is biased by the flux from the permanent magnet which enters the surface of the test specimen. At this spatial closeness to the permanent magnet the sensor must have a high working range of the magnetic field as well as a high sensitivity. These requirements can be achieved with GMR multilayer sensors. Field saturation of the GMR multilayer sensor is in the range of 500 mt. These high saturation values allow the usage of strong magnets which fully saturate the surface of the magnetic material under test. As long as there is no inhomogeneity in the surface of the specimen the signal of the sensor is constant and does not change. At any defect positions the magnetic flux lines are distorted because of the significant permeability change in this region. 2.2 Magnetography Print Heads Magnetography is a digital non-impact printing technology. The printing systems are developed and manufactured by the French company Nipson SAS. The systems are capable of high speed (up to 150 m/min) and high volume (more than 500,000 pages/month) black and white printing. An integral part of a magnetography printing system is a high-density array of microelectromagnets ( 1100 devices/cm²). Each print head chip consists of up to 616 fully functional micro-coils, magnetic poles and buried return boxes. It is fabricated on a silicon wafer by Sensitec GmbH with magnetic MEMS processes [6-7]. In a printing system are 18 chips placed as an array to get a wide printing format. Every magnetic pole generates a single dot at the printed paper. The malfunction of a single microcoil or defect in a magnetic pole results in failure of the printed image. The fully array has to be exchanged in this case, resulting in high maintenance and production downtimes of the printer. The soft-magnetic parts on the print head chips are electroplated from a Nickel Iron (NiFe) cell. The magnetic circuit consists of the soft-magnetic pole (with an area of 32 x 57 µm and about 50 µm height) above a return box and on the other side on the imaging cylinder of the hard-magnetic surface. A short electric impulse at the micro coil induces a magnetic flux 2

3 which is concentrated at the magnetic pole. The print image is transferred from the softmagnetic poles to the imaging cylinder. The imaging cylinder has a hard-magnetic surface made of CoNiP. The toner particle consists of iron oxide powder ligated in a polymer which gets adhered to a magnetized pixel at the imaging cylinder. To control each of the 616 poles, diode-chips are mounted in a flip-chip process on top of the print-head chip. An array of magnetic poles is shown in figure 2. The electroplating of the 50 µm high poles is a technical challenge because of the high aspect ratio and the ratio of the plating area to the overall wafer area is very small. In addition to reach good magnetic characteristics a constant Ni-Fe composition of 50% must be reached. During that process enclosures and imperfections inside the electroplated poles can occur. A photograph of a chip is shown in figure 3. Figure 2: Array of electroplated Cu-coils and NiFe poles. A defect of one pole corresponds to the defect of the full array. Figure 3: Print head chip with resine layer, diode chips at the left side, coils and magnetic poles in the right area. During the batch fabrication of the print head chips it was not possible to test the magnetic properties of the poles. The first time the magnetic poles on the chip can be tested is after the installation in the printer. If a pole does not work correctly the resulting dot is weak or missing completely. The measured electrical parameters of the coils and the diodes gave no indication of the pole function. To save cost it is required to test the functionality as early as possible and before the electronic packaging is done. A print head can only be delivered when every of the 616 poles are faultless. So it was necessary to develop a measurement system to test the magnetic functionality of every pole. 3. Measurement Results In this section we present the measurement results with the introduced measurement system for both magnetic print head chips and a reference test specimen with artificial cracks. 3

4 3.1 Testing of Magnetic Micro Poles for Magnetography Printers The sensor system of magnet and multilayer sensor is well capable to test arrays of magnetic circuits which are used in magnetographic printing systems as shown in the figure 5. The magnetic poles are characterized by the same principle like in position measurements: The magnetic poles are saturated by a permanent magnet, small defects in the magnetic circuits are detected by a GMR gradiometer sensor comparing each pole to his neighbors. The sensor system set-up allows very fast movements without distortion of the signals caused by induced eddy currents in the pole heads. This is a requirement to test the print head chips in a mass production environment with short testing times of about 12 seconds. Figure 5: Test setting for magnetography print head chips with GMR tooth sensor system. For a print head chip with 600 dpi resolution, 616 poles are arranged in a 7 x 88 array (480 dpi: 6 x 80 array). The sensor system moves along the 88 poles for every row. The resulting signal is a periodic function similar to the signal from a tooth bar. The signal follows not fully a sine and cosine shape because of geometric restrictions. The spacing of the tooth sensor elements is not adapted to those of the poles. In this case the GMR gradiometer sensor elements are above two pole heads with a misalignment. Because of the misalignment, each pole can be seen in the data scan. This allows the exact assignment of the location of each pole and consequently of the location of each defect. Assuming a magnetic pole head is missing the signal displays a significant maximum. Figure 6 shows a line scan for one row. Each pole is visible by one peak. A defect in one pole can be detected by the higher and deformed amplitude. By analysing the amplitudes for every pole we can create a mapping for a whole chip and make a prediction about the functionality. We have established the measurement technique for the fabrication of the print head chips in our wafer fab in Mainz. 4

5 Sensor Signal in V Figure 6: Sensor signal of a whole row with 88 pole heads from a 600 dpi chip ( , row 7). In the last third is a defect measured, see the cutout at the right side. The first and the last poles generate an explicit higher amplitude caused by the gradiometer sensor design and missing of the neighbour pole. 3.2 Reference Test Specimen Measurement Point The measurements with the tooth sensor system are undertaken on a reference test specimen from Federal Institute for Materials Research and Testing (BAM). It is made of conventional construction steel ST37 (100 mm long, 50 mm width and 10 mm height). The defects are artificial cracks made by electrical discharge machining. The depth of the cracks varies between 10 and 2240 µm and is shown in figure Width in µm Figure 7: Cross section of reference test specimen with surface crack depths [9]. The sensor has been moved over the center of the cracks with a constant velocity without position measurement as reference. The measured signals are amplified to get higher amplitudes for the analysis of the data and a correlation of the crack sizes. In figure 8 the signals from the sensor system are shown with 50 µm liftoff. All defects can be detected even the double crack in the middle of the test specimen was separated. Between the cracks the background signal is not constant but displays variations. This is not noise of the measurement system. Repeating the measurement always results in an identical background signal. Therefore it is clear the system detects material noise [9], e.g. magnetic grains. 5

6 a) Sensor Signal in V Sensor Signal in V x Measurement Point 2 x b) Measurement Point Figure 8 a): Measurement of the gradiometric field along the complete mock-up with liftoff 50 µm. b): Cutout of the four smallest cracks. It is no problem to differentiate the double crack and also the smallest crack has a clear signal shape. Figure 9 shows a comparison of the amplitudes with different liftoff heights. At smooth surfaces of the test specimen it is possible to measure in direct contact. Some amplitudes at the largest cracks are so high that the amplifier is in saturation (> 4.7 Volts). With increasing liftoff the amplitudes decreases with a 1/r²-attenuation as expected from Maxwell s equations. Defect Depth in µm Figure 9: Comparison of resulting sensor amplitudes with increasing liftoff of the sensor system. Above 4.7 Volts the amplifier is in saturation so that the signal is cut off. The amplitudes size shows the expected 1/r²-attenuation with increasing liftoff. 6

7 The signal shape measured at a crack is comparable to that of the MFL method also when the sensor is placed at the magnetization unit [10]. The signal amplitudes correlates well with crack size. With mathematical analysing methods and wavelets it is possible to extract cracks, inhomogeneity or corrosion from a signal. Ii is also possible to generate a graphical plot of a specimen and make an evaluation about the size as well as the course of cracks at the surface. Furthermore the measurement shows that the material noise is significant higher than in other presented results with MFL systems [9]. This can be explained that a magnetic field measured near the position where it enters the specimen and magnetizes it is more influenced by the grain size and grain boundaries then a stray field measured at any other point of magnetized specimen. 4. Conclusions and Outlook In this paper we introduced the use of a tooth sensor system with GMR multilayers for crack detection and failure detection in periodic structures like the pole array. It is also suitable to find imperfections in a near surface area of soft magnetic materials. The sensor system is based on a modified magnetic flux leakage method. In contrast to MFL not the stray field is detected but the distortion of a static applied field due to defects and inhomogeneities in the test specimen. The results demonstrate that defects in magnetographic print head chips in a mass production environment can be detected. Surface cracks in ST37 as small as 10 µm deep and 81 µm wide were easily detected at a test specimen with artificial cracks. It is obvious to use the system for surface scans and analyse the data with algorithms and wavelets to reconstruct defect structures. The measurement system has small dimensions so that it can be adapted to fit in shapes or holes which are difficult to access. Furthermore it is possible to adapt the GMR gradiometer sensor design to arbitrary defect structures, corrosion or inclusions. GMR sensors are able to work over a large frequency range thus we can reach high scanning rates with the system. Acknowledgement The reference test specimen was provided from Federal Institute for Materials Research and Testing (BAM) and the results can be published with the acknowledgment of Matthias Pelkner and Dr. Marc Kreutzbruck. References 1. Fert, Albert; et al.; "Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices", Physical Review Letters 61 (21): pp , November Grünberg, P.; et al.; (1989). "Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange". Physical Review B 39 (7): 4828, March P.A. Grünberg; 'Exchange anisotropy, interlayer exchange coupling and GMR in research and application', Sensors and Actuators A, Vol. 91, No 1, pp , June Wang, Z.D., Gu, Y.; Wang, Y.S.; A review of three magnetic NDT technologies ; Journal of Magnetism and Magnetic Materials, Vol. 324, pp , GMR Sensor-Modul zur Abtastung von Zahnstrukturen, company brochure Sensitec GmbH, März

8 6. Eltgen, J.-J. P.; Magnenet, J. G.; Magnetic printer using perpendicular recording, IEEE Trans. on Magn. 16(5), September Doms, M.; Braun, F.J.; Krämer, K.; Magnetic print head chips comprising 3D- redistribution layers, MEMS coils and magnetic circuits in a Multi-Chip-Module for serial production ; 2. GMM Workshop - Technologien und Werkstoffe der Mikrosystem- und Nanotechnik in Darmstadt; Mai visited at , 16: Pelkner, M.; Reimund V.; Kreutzbruck, M.; et.al.; 3D-GMR-Messung an Referenzbauteilen und Rekonstruktion der Rissparameter ; DGZfP-Jahrestagung, Mo.3.A.4; Pelkner, M.; Neubauer, A.; Kreutzbruck, M.; et.al.; Routes for GMR-Sensor Design in Non-Destructive Testing ; Sensors, Vol. 12, pp , September

Microsystem Technology for Eddy Current Testing Johannes PAUL, Roland HOLZFÖRSTER

Microsystem Technology for Eddy Current Testing Johannes PAUL, Roland HOLZFÖRSTER 11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6-10, 2014, Prague, Czech Republic More Info at Open Access Database www.ndt.net/?id=16638 Microsystem Technology for Eddy Current

More information

Usage of Magnetic Field Sensors for Low Frequency Eddy Current Testing

Usage of Magnetic Field Sensors for Low Frequency Eddy Current Testing Usage of Magnetic Field Sensors for Low Frequency Eddy Current Testing O. Hesse 1, S. Pankratyev 2 1 IMG ggmbh, Nordhausen, Germany 2 Institute of Magnetism, National Academy of Sciences, Ukraine Keywords:

More information

Tooth Sensor Modules and Kits. GMR sensor modules for toothed structures.

Tooth Sensor Modules and Kits. GMR sensor modules for toothed structures. Tooth Sensor Modules and Kits. GMR sensor modules for toothed structures. GLM700 Family. GMR Tooth Sensor Modules for Length and Position Measurement. Module GLM tooth sensor modules offer new possibilities

More information

DEVELOPMENT OF EDDY CURRENT PROBES BASED ON MAGNETORESISTIVE ARRAY SENSORS

DEVELOPMENT OF EDDY CURRENT PROBES BASED ON MAGNETORESISTIVE ARRAY SENSORS DEVELOPMENT OF EDDY CURRENT PROBES BASED ON MAGNETORESISTIVE ARRAY SENSORS N. Sergeeva-Chollet, C.Fermon, J.-M. Decitre, M. Pelkner, V.Reimund, M. Kreutzbruck QNDE, July, 25, 2013 CEA 10 AVRIL 2012 OUTLINE

More information

Tooth Sensor Modules and Kits. GMR sensor modules for toothed structures.

Tooth Sensor Modules and Kits. GMR sensor modules for toothed structures. Tooth Sensor Modules and Kits. GMR sensor modules for toothed structures. » Ideally suited for highly dynamic applications!» Machine tools Renewable energy Testing equipment Textile machines Product Family.

More information

FEM SIMULATION FOR DESIGN AND EVALUATION OF AN EDDY CURRENT MICROSENSOR

FEM SIMULATION FOR DESIGN AND EVALUATION OF AN EDDY CURRENT MICROSENSOR FEM SIMULATION FOR DESIGN AND EVALUATION OF AN EDDY CURRENT MICROSENSOR Heri Iswahjudi and Hans H. Gatzen Institute for Microtechnology Hanover University Callinstrasse 30A, 30167 Hanover Germany E-mail:

More information

Research Article Flexible GMR Sensor Array for Magnetic Flux Leakage Testing of Steel Track Ropes

Research Article Flexible GMR Sensor Array for Magnetic Flux Leakage Testing of Steel Track Ropes Sensors Volume 212, Article ID 12974, 6 pages doi:1.1155/212/12974 Research Article Flexible GMR Sensor Array for Magnetic Flux Leakage Testing of Steel Track Ropes W.SharatchandraSingh,B.P.C.Rao,S.Thirunavukkarasu,andT.Jayakumar

More information

Magnetic Flux Leakage Measurement System to Detect Flaws in Small Diameter Metallic Wire Ropes

Magnetic Flux Leakage Measurement System to Detect Flaws in Small Diameter Metallic Wire Ropes th European Conference on Non-Destructive Testing (ECNDT 24), October 6-, 24, Prague, Czech Republic More Info at Open Access Database www.ndt.net/?id=67 Magnetic Flux Leakage Measurement System to Detect

More information

ECNDT We.2.6.4

ECNDT We.2.6.4 ECNDT 006 - We..6.4 Towards Material Characterization and Thickness Measurements using Pulsed Eddy Currents implemented with an Improved Giant Magneto Resistance Magnetometer V. O. DE HAAN, BonPhysics

More information

Spatial detection of ferromagnetic wires using GMR sensor and. based on shape induced anisotropy

Spatial detection of ferromagnetic wires using GMR sensor and. based on shape induced anisotropy Spatial detection of ferromagnetic wires using GMR sensor and based on shape induced anisotropy Behrooz REZAEEALAM Electrical Engineering Department, Lorestan University, P. O. Box: 465, Khorramabad, Lorestan,

More information

Magnetic Eddy Current (MEC) Inspection Technique

Magnetic Eddy Current (MEC) Inspection Technique Introduction Eddy Current Testing (ECT) is a well established technology for the inspection of metallic components for surface breaking flaws. It is used for component testing in the aviation and automotive

More information

Novel Demagnetization Method after Magnetic Particle Testing

Novel Demagnetization Method after Magnetic Particle Testing Novel Demagnetization Method after Magnetic Particle Testing Takuhiko Ito, Arihito Kasahara and Michitaka Hori More info about this article: http://www.ndt.net/?id=22254 Nihon Denji Sokki Co., LTD, 8-59-2

More information

EDDY CURRENT INSPECTION FOR DEEP CRACK DETECTION AROUND FASTENER HOLES IN AIRPLANE MULTI-LAYERED STRUCTURES

EDDY CURRENT INSPECTION FOR DEEP CRACK DETECTION AROUND FASTENER HOLES IN AIRPLANE MULTI-LAYERED STRUCTURES EDDY CURRENT INSPECTION FOR DEEP CRACK DETECTION AROUND FASTENER HOLES IN AIRPLANE MULTI-LAYERED STRUCTURES Teodor Dogaru Albany Instruments Inc., Charlotte, NC tdogaru@hotmail.com Stuart T. Smith Center

More information

Application Information

Application Information Application Information Allegro ICs Based on Giant Magnetoresistance (GMR) By Bryan Cadugan, Abstract is a world leader in developing, manufacturing, and marketing high-performance integrated circuits

More information

High Resolution Eddy Current Testing of Superconducting Wires using GMR-Sensors

High Resolution Eddy Current Testing of Superconducting Wires using GMR-Sensors 17th World Conference on Nondestructive Testing, 25-28 Oct 8, Shanghai, China High Resolution Eddy Current Testing of Superconducting Wires using GMR-Sensors Marc Kreutzbruck Federal Institute for Materials

More information

THE MFL TECHNIQUE FOR SURFACE FLAWS USING RESIDUAL MAGNETIZATION METHOD WITH THE MI (MAGNETO-IMPEDANCE) SENSOR

THE MFL TECHNIQUE FOR SURFACE FLAWS USING RESIDUAL MAGNETIZATION METHOD WITH THE MI (MAGNETO-IMPEDANCE) SENSOR THE MFL TECHNIQUE FOR SURFACE FLAWS USING RESIDUAL MAGNETIZATION METHOD WITH THE MI (MAGNETO-IMPEDANCE) SENSOR N. Kasai 1, T. Mizoguchi 2 and K. Sekine 1 1 Faculty of engineering, Graduate school of engineering,

More information

VD3-71 universal eddy current flaw detector application for field inspection of aeronautical engineering

VD3-71 universal eddy current flaw detector application for field inspection of aeronautical engineering VD3-71 universal eddy current flaw detector application for field inspection of aeronautical engineering Introduction. The Document reviewed by http://engineermind.com/ By ahmed@engineermind.com The need

More information

Full Polarimetric THz Imaging System in Comparison with Infrared Thermography

Full Polarimetric THz Imaging System in Comparison with Infrared Thermography 11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6-10, 2014, Prague, Czech Republic More Info at Open Access Database www.ndt.net/?id=16556 Full Polarimetric THz Imaging System

More information

DEEP FLAW DETECTION WITH GIANT MAGNETORESISTIVE (GMR) BASED SELF-NULLING PROBE

DEEP FLAW DETECTION WITH GIANT MAGNETORESISTIVE (GMR) BASED SELF-NULLING PROBE DEEP FLAW DETECTION WITH GIANT MAGNETORESISTIVE (GMR) BASED SELF-NULLING PROBE Buzz Wincheski and Min Namkung NASA Langley Research Center Hampton, VA 23681 INTRODUCTION The use of giant magnetoresistive

More information

Detection of micrometric surface defects in titanium using magnetic tunnel junction sensors

Detection of micrometric surface defects in titanium using magnetic tunnel junction sensors 11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6-10, 2014, Prague, Czech Republic More Info at Open Access Database www.ndt.net/?id=16560 Detection of micrometric surface defects

More information

Magnetic and Electromagnetic Microsystems. 4. Example: magnetic read/write head

Magnetic and Electromagnetic Microsystems. 4. Example: magnetic read/write head Magnetic and Electromagnetic Microsystems 1. Magnetic Sensors 2. Magnetic Actuators 3. Electromagnetic Sensors 4. Example: magnetic read/write head (C) Andrei Sazonov 2005, 2006 1 Magnetic microsystems

More information

A Portable Magnetic Flux Leakage Testing System for Industrial Pipelines Based on Circumferential Magnetization

A Portable Magnetic Flux Leakage Testing System for Industrial Pipelines Based on Circumferential Magnetization 19 th World Conference on Non-Destructive Testing 2016 A Portable Magnetic Flux Leakage Testing System for Industrial Pipelines Based on Circumferential Magnetization Kunming ZHAO 1, Xinjun WU 1, Gongtian

More information

Giant Magnetoresistance Based Eddy-Current Sensor for High-Speed PCB Defect Detection

Giant Magnetoresistance Based Eddy-Current Sensor for High-Speed PCB Defect Detection 170 Giant Magnetoresistance Based Eddy-Current Sensor for High-Speed PCB Defect Detection Ravindra Koggalage, K. Chomsuwan, S. Yamada, M. Iwahara, and Udantha R. Abeyratne* Institute of Nature and Environmental

More information

Detection and Imaging of Internal Cracks by Tangential Magnetic Field Component Analysis using Low-Frequency Eddy Current Testing

Detection and Imaging of Internal Cracks by Tangential Magnetic Field Component Analysis using Low-Frequency Eddy Current Testing 19 th World Conference on Non-Destructive Testing 21 Detection and Imaging of Internal Cracks b Tangential Magnetic Field Component Analsis using Low-Frequenc Edd Current Testing Takua YASUGI, Yatsuse

More information

MAGNATEST D. Magneto-Inductive Component Testing for Magnetic and Electrical Properties

MAGNATEST D. Magneto-Inductive Component Testing for Magnetic and Electrical Properties MAGNATEST D Magneto-Inductive Component Testing for Magnetic and Electrical Properties COMPONENT TESTING (CT) The Company FOERSTER is a global technology leader for non-destructive testing of metallic

More information

Array Eddy Current for Fatigue Crack Detection of Aircraft Skin Structures

Array Eddy Current for Fatigue Crack Detection of Aircraft Skin Structures Array Eddy Current for Fatigue Crack Detection of Aircraft Skin Structures Eric Pelletier, Marc Grenier, Ahmad Chahbaz and Tommy Bourgelas Olympus NDT Canada, NDT Technology Development, 505, boul. du

More information

SPEED-UP NDT BASED ON GMR ARRAY UNIFORM EDDY CURRENT PROBE

SPEED-UP NDT BASED ON GMR ARRAY UNIFORM EDDY CURRENT PROBE XX IMEKO World Congress Metrology for Green Growth September 9 14, 2012, Busan, Republic of Korea SPEED-UP NDT BASED ON GMR ARRAY UNIFORM EDDY CURRENT PROBE O. Postolache 1,2, A. Lopes Ribeiro 1,3, H.

More information

China; * Corresponding authors:

China; * Corresponding authors: Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is The Royal Society of Chemistry 2014 Supporting Information Highly flexible and compact magnetoresistive analytic devices Gungun

More information

Scalable linear magneto resistive sensor arrays

Scalable linear magneto resistive sensor arrays Summary Scalable linear magneto resistive sensor arrays Andreas Voss, Axel Bartos TE Sensor Solutions, MEAS Deutschland GmbH, 447 Dortmund, Germany Andreas.Voss@te.com 031-9740 560 The advancing digitalization

More information

GF708 MagnetoResistive Magnetic Field Sensor

GF708 MagnetoResistive Magnetic Field Sensor The GF708 is a magnetic field sensor based on the Giant MagnetoResistive (GMR) effect. Its functional magnetic layer is pinned within a synthetic spin-valve connected as a Wheatstone bridge. With its on-chip

More information

2.5D Finite Element Simulation Eddy Current Heat Exchanger Tube Inspection using FEMM

2.5D Finite Element Simulation Eddy Current Heat Exchanger Tube Inspection using FEMM Vol.20 No.7 (July 2015) - The e-journal of Nondestructive Testing - ISSN 1435-4934 www.ndt.net/?id=18011 2.5D Finite Element Simulation Eddy Current Heat Exchanger Tube Inspection using FEMM Ashley L.

More information

Fabrication and application of a wireless inductance-capacitance coupling microsensor with electroplated high permeability material NiFe

Fabrication and application of a wireless inductance-capacitance coupling microsensor with electroplated high permeability material NiFe Journal of Physics: Conference Series Fabrication and application of a wireless inductance-capacitance coupling microsensor with electroplated high permeability material NiFe To cite this article: Y H

More information

GF705 MagnetoResistive Magnetic Field Sensor

GF705 MagnetoResistive Magnetic Field Sensor The is a magnetic field sensor based on the multilayer Giant MagnetoResistive (GMR) effect. The Sensor contains a Wheatstone bridge with on-chip flux concentrators to improve the sensitivity. The sensor

More information

Hybrid of Eddy Current Probe Based on Permanent Magnet and GMR Sensor

Hybrid of Eddy Current Probe Based on Permanent Magnet and GMR Sensor Hybrid of Eddy Current Probe Based on Permanent Magnet and GMR Sensor Moneer A Faraj 1, Fahmi Samsuri 1, Ahmed N AbdAlla 2 1 Faculty of Electrical and Electronics, University Malaysia Pahang, Malaysia

More information

Development of Concave and Convex Roll Defect Inspection Technology for Steel Sheets by Magnetic Flux Leakage Testing Method

Development of Concave and Convex Roll Defect Inspection Technology for Steel Sheets by Magnetic Flux Leakage Testing Method 19 th World Conference on Non-Destructive Testing 16 Development of Concave and Convex Roll Inspection Technology for Steel Sheets by Magnetic Flux Leakage Testing Method Yasuhiro MATSUFUJI 1, Takahiro

More information

Introduction to NVE GMR Sensors

Introduction to NVE GMR Sensors to NVE GMR Sensors Introduction In 1988, scientists discovered the Giant Magneto Resistive effect a large change in electrical resistance that occurs when thin stacked layers of ferromagnetic and nonmagnetic

More information

Acoustic Resonance Analysis Using FEM and Laser Scanning For Defect Characterization in In-Process NDT

Acoustic Resonance Analysis Using FEM and Laser Scanning For Defect Characterization in In-Process NDT ECNDT 2006 - We.4.8.1 Acoustic Resonance Analysis Using FEM and Laser Scanning For Defect Characterization in In-Process NDT Ingolf HERTLIN, RTE Akustik + Prüftechnik, Pfinztal, Germany Abstract. This

More information

Phased-Array ROWA-SPA: High-performance testing machine for combined, 100-percent automated testing of square and round bars

Phased-Array ROWA-SPA: High-performance testing machine for combined, 100-percent automated testing of square and round bars 11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6-10, 2014, Prague, Czech Republic More Info at Open Access Database www.ndt.net/?id=16428 Phased-Array ROWA-SPA: High-performance

More information

Eddy Current Nondestructive Evaluation Based on Fluxgate Magnetometry Umberto Principio Sponsored by: INFM

Eddy Current Nondestructive Evaluation Based on Fluxgate Magnetometry Umberto Principio Sponsored by: INFM 67 Eddy Current Nondestructive Evaluation Based on Fluxgate Magnetometry Umberto Principio Sponsored by: INFM Introduction Eddy current (EC) nondestructive evaluation (NDE) consists in the use of electromagnetic

More information

Improved Eddy Current Sensor for Hot Wire Inspection

Improved Eddy Current Sensor for Hot Wire Inspection ECNDT 2006 - Tu.4.7.2 Improved Eddy Current Sensor for Hot Wire Inspection Knut HARTMANN, Werner RICKEN, Wolf-Jürgen BECKER, University of Kassel, Kassel, Germany; Carmen PÉREZ, Leandro GONZALO, Tecnatom

More information

The Battle of Carbon Steel

The Battle of Carbon Steel More info ab The Battle of Carbon Steel Advantages of Eddy Current Array over Magnetic Particle and Penetrant Testing for Inspecting the Surface of Carbon Steel Welds Terence Burke Product Application

More information

Micro-inductors integrated on silicon for power supply on chip

Micro-inductors integrated on silicon for power supply on chip Journal of Magnetism and Magnetic Materials 316 (27) e233 e237 www.elsevier.com/locate/jmmm Micro-inductors integrated on silicon for power supply on chip Ningning Wang, Terence O Donnell, Saibal Roy,

More information

Effect of fatigue crack orientation on the sensitivity of eddy current inspection in martensitic stainless steels

Effect of fatigue crack orientation on the sensitivity of eddy current inspection in martensitic stainless steels Effect of fatigue crack orientation on the sensitivity of eddy current inspection in martensitic stainless steels Hamid Habibzadeh Boukani, Ehsan Mohseni, Martin Viens Département de Génie Mécanique, École

More information

Testing Critical Medical Tubing Using High Frequency Eddy Current Coils

Testing Critical Medical Tubing Using High Frequency Eddy Current Coils Testing Critical Medical Tubing Using High Frequency Eddy Current Coils Troy M Libby Magnetic Analysis Corporation, Mt. Vernon, NY, USA Phone: (914) 699-9450, Fax: (914) 699-9837; e-mail: info@mac-ndt.com

More information

Extending Acoustic Microscopy for Comprehensive Failure Analysis Applications

Extending Acoustic Microscopy for Comprehensive Failure Analysis Applications Extending Acoustic Microscopy for Comprehensive Failure Analysis Applications Sebastian Brand, Matthias Petzold Fraunhofer Institute for Mechanics of Materials Halle, Germany Peter Czurratis, Peter Hoffrogge

More information

Microwave Based Non-Destructive Testing using Modified Eddy Current Systems

Microwave Based Non-Destructive Testing using Modified Eddy Current Systems ECNDT 2006 - Tu.1.8.4 Microwave Based Non-Destructive Testing using Modified Eddy Current Systems Dirk BEILKEN, Hochschule Magdeburg-Stendal (FH) University of Applied Sciences, Magdeburg, Germany Johann

More information

MAGNETIC FIELD MEASURING

MAGNETIC FIELD MEASURING LIST- MAGNETIK MAGNETIC FIELD MEASURING www.list-magnetik.de INFORMATION Magnetic Field Measuring Magnetic fields are invisible. The magnetism of a workpiece can only be recognized by the effect on other

More information

FDTD SPICE Analysis of High-Speed Cells in Silicon Integrated Circuits

FDTD SPICE Analysis of High-Speed Cells in Silicon Integrated Circuits FDTD Analysis of High-Speed Cells in Silicon Integrated Circuits Neven Orhanovic and Norio Matsui Applied Simulation Technology Gateway Place, Suite 8 San Jose, CA 9 {neven, matsui}@apsimtech.com Abstract

More information

Advances in Carbon Steel Weld Inspection using Tangential Eddy Current Array

Advances in Carbon Steel Weld Inspection using Tangential Eddy Current Array 19 th World Conference on Non-Destructive Testing 2016 Advances in Carbon Steel Weld Inspection using Tangential Eddy Current Array Angelique RAUDE 1, Michael SIROIS 2, Hugo LEMIEUX 2, Joël CREPEAU 2 1

More information

improved by AC excitation: flipping for AMR and AC biasing for GMR. AC excitation lowers

improved by AC excitation: flipping for AMR and AC biasing for GMR. AC excitation lowers AC - driven AMR and GMR magnetoresistors P. Ripka 1, M. Tondra, J. Stokes and R. Beech. 2 1 Czech Technical University, Faculty of Electrical Engineering, Dept. of Measurement, 166 27 Praha 6, Czech Republic.

More information

Influence of Scanning Velocity and Gap Distance on Magnetic Flux Leakage Measurement

Influence of Scanning Velocity and Gap Distance on Magnetic Flux Leakage Measurement 118 ECTI TRANSACTIONS ON ELECTRICAL ENG., ELECTRONICS, AND COMMUNICATIONS VOL.5, NO.1 February 2007 Influence of Scanning Velocity and Gap Distance on Magnetic Flux Leakage Measurement Noppadon Sumyong

More information

INVESTIGATION OF IMPACT DAMAGE OF CARBON FIBER- RAINFORCED PLASTIC (CFRP) BY EDDY CURRENT NON- DESTRUCTIVE TESTING

INVESTIGATION OF IMPACT DAMAGE OF CARBON FIBER- RAINFORCED PLASTIC (CFRP) BY EDDY CURRENT NON- DESTRUCTIVE TESTING International Workshop SMART MATERIALS, STRUCTURES & NDT in AEROSPACE Conference NDT in Canada 2011 2-4 November 2011, Montreal, Quebec, Canada INVESTIGATION OF IMPACT DAMAGE OF CARBON FIBER- RAINFORCED

More information

Corrosion Steel Inspection under Steel Plate Using Pulsed Eddy Current Testing

Corrosion Steel Inspection under Steel Plate Using Pulsed Eddy Current Testing 4th International Symposium on NDT in Aerospace 2012 - Poster 4 Corrosion Steel Inspection under Steel Plate Using Pulsed Eddy Current Testing D.M. SUH *, K.S. JANG **, J.E. JANG **, D.H. LEE ** * Raynar

More information

AFRL-RX-WP-TP

AFRL-RX-WP-TP AFRL-RX-WP-TP-2008-4046 DEEP DEFECT DETECTION WITHIN THICK MULTILAYER AIRCRAFT STRUCTURES CONTAINING STEEL FASTENERS USING A GIANT-MAGNETO RESISTIVE (GMR) SENSOR (PREPRINT) Ray T. Ko and Gary J. Steffes

More information

GF708 MagnetoResistive Magnetic Field Sensor

GF708 MagnetoResistive Magnetic Field Sensor The is a magnetic fi eld sensor based on the GiantMagnetoResistive (GMR) effect. Its functional magnetic layer is pinned within a synthetic spin-valve connected as a Wheatstone bridge. With its on-chip

More information

Quantitative Crack Depth Study in Homogeneous Plates Using Simulated Lamb Waves.

Quantitative Crack Depth Study in Homogeneous Plates Using Simulated Lamb Waves. More Info at Open Access Database www.ndt.net/?id=18675 Quantitative Crack Depth Study in Homogeneous Plates Using Simulated Lamb Waves. Mohammad. (. SOORGEE, Aghil. YOUSEF)-KOMA Nondestructive Testing

More information

Analysis of metallic ropes magnetisation during magneto-inductive testing

Analysis of metallic ropes magnetisation during magneto-inductive testing 11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6-10, 2014, Prague, Czech Republic Analysis of metallic ropes magnetisation during magneto-inductive testing More Info at Open

More information

Magnetic Spin Devices: 7 Years From Lab To Product. Jim Daughton, NVE Corporation. Symposium X, MRS 2004 Fall Meeting

Magnetic Spin Devices: 7 Years From Lab To Product. Jim Daughton, NVE Corporation. Symposium X, MRS 2004 Fall Meeting Magnetic Spin Devices: 7 Years From Lab To Product Jim Daughton, NVE Corporation Symposium X, MRS 2004 Fall Meeting Boston, MA December 1, 2004 Outline of Presentation Early Discoveries - 1988 to 1995

More information

NOVEL ACOUSTIC EMISSION SOURCE LOCATION

NOVEL ACOUSTIC EMISSION SOURCE LOCATION NOVEL ACOUSTIC EMISSION SOURCE LOCATION RHYS PULLIN, MATTHEW BAXTER, MARK EATON, KAREN HOLFORD and SAM EVANS Cardiff School of Engineering, The Parade, Newport Road, Cardiff, CF24 3AA, UK Abstract Source

More information

Proceq SA, Ringstrasse 2, 8603 Schwerzenbach, Switzerland.

Proceq SA, Ringstrasse 2, 8603 Schwerzenbach, Switzerland. Advancements of ultrasonic contact impedance (UCI) hardness testing based on continuous load monitoring during the indentation process, and practical benefits C. Frehner, R. Mennicke, F. Gattiker and D.

More information

A Novel Self Calibrating Pulsed Eddy Current Probe for Defect Detection in Pipework

A Novel Self Calibrating Pulsed Eddy Current Probe for Defect Detection in Pipework Malaysia NDT Conference November 2015 A Novel Self Calibrating Pulsed Eddy Current Probe for Defect Detection in Pipework S.Majidnia,J.Rudlin, R.Nilavalan PEC Applications Corrosion under Insulation for

More information

DEVELOPMENT OF VERY LOW FREQUENCY SELF-NULLING PROBE FOR INSPECTION OF THICK LAYERED ALUMINUM STRUCTURES

DEVELOPMENT OF VERY LOW FREQUENCY SELF-NULLING PROBE FOR INSPECTION OF THICK LAYERED ALUMINUM STRUCTURES DEVELOPMENT OF VERY LOW FREQUENCY SELF-NULLING PROBE FOR INSPECTION OF THICK LAYERED ALUMINUM STRUCTURES Buzz Wincheski and Min Namkung NASA Langley Research Center Hampton, VA 23681 INTRODUCTION Nondestructive

More information

Microfabrication technologies for highly-laminated thick metallic cores and 3-D integrated windings

Microfabrication technologies for highly-laminated thick metallic cores and 3-D integrated windings Microfabrication technologies for highly-laminated thick metallic cores and 3-D integrated windings Florian Herrault Georgia Institute of Technology Atlanta, GA florian@gatech.edu http://mems.gatech.edu/msma

More information

NOTICE. The above identified patent application is available for licensing. Requests for information should be addressed to:

NOTICE. The above identified patent application is available for licensing. Requests for information should be addressed to: Serial Number 09/548.387 Filing Date 11 April 2000 Inventor Theodore R. Anderson Edward R. Javor NOTICE The above identified patent application is available for licensing. Requests for information should

More information

Bringing Answers to the Surface

Bringing Answers to the Surface 3D Bringing Answers to the Surface 1 Expanding the Boundaries of Laser Microscopy Measurements and images you can count on. Every time. LEXT OLS4100 Widely used in quality control, research, and development

More information

Fastener Hole Crack Detection Using Adjustable Slide Probes

Fastener Hole Crack Detection Using Adjustable Slide Probes Fastener Hole Crack Detection Using Adjustable Slide Probes General The guidelines for the adjustable sliding probes are similar to the fixed types, therefore much of the information that is given here

More information

MAGNETOSCOP Measurement of magnetic field strengths in the range 0.1 nanotesla to 1 millitesla

MAGNETOSCOP Measurement of magnetic field strengths in the range 0.1 nanotesla to 1 millitesla MAGNETOSCOP Measurement of magnetic field strengths in the range 0.1 nanotesla to 1 millitesla Extremely high sensitivity of 0.1 nanotesla with field and gradient probe Measurement of material permeabilities

More information

Film Replacement in Radiographic Weld Inspection The New ISO Standard

Film Replacement in Radiographic Weld Inspection The New ISO Standard BAM Berlin Film Replacement in Radiographic Weld Inspection The New ISO Standard 17636-2 Uwe Ewert, Uwe Zscherpel, Mirko Jechow Requests and information to: uwez@bam.de 1 Outline - The 3 essential parameters

More information

Application of SLOFEC and Laser Technology for Testing of Buried Pipes

Application of SLOFEC and Laser Technology for Testing of Buried Pipes 19 th World Conference on Non-Destructive Testing 2016 Application of SLOFEC and Laser Technology for Testing of Buried Pipes Gerhard SCHEER 1 1 TMT - Test Maschinen Technik GmbH, Schwarmstedt, Germany

More information

Maximizing the Fatigue Crack Response in Surface Eddy Current Inspections of Aircraft Structures

Maximizing the Fatigue Crack Response in Surface Eddy Current Inspections of Aircraft Structures Maximizing the Fatigue Crack Response in Surface Eddy Current Inspections of Aircraft Structures Catalin Mandache *1, Theodoros Theodoulidis 2 1 Structures, Materials and Manufacturing Laboratory, National

More information

MODELLING OF A MAGNETIC ADHESION ROBOT FOR NDT INSPECTION OF LARGE METAL STRUCTURES

MODELLING OF A MAGNETIC ADHESION ROBOT FOR NDT INSPECTION OF LARGE METAL STRUCTURES MODELLING OF A MAGNETIC ADHESION ROBOT FOR NDT INSPECTION OF LARGE METAL STRUCTURES G. SHIRKOOHI and Z. ZHAO School of Engineering, London South Bank University, 103 Borough Road, London SE1 0AA United

More information

Manufacturing Development of a New Electroplated Magnetic Alloy Enabling Commercialization of PwrSoC Products

Manufacturing Development of a New Electroplated Magnetic Alloy Enabling Commercialization of PwrSoC Products Manufacturing Development of a New Electroplated Magnetic Alloy Enabling Commercialization of PwrSoC Products Trifon Liakopoulos, Amrit Panda, Matt Wilkowski and Ashraf Lotfi PowerSoC 2012 CONTENTS Definitions

More information

Fabrication and Usage of a Multi-turn µ-coil and a PR Channel Combined with a Dual-type GMR-SV Device

Fabrication and Usage of a Multi-turn µ-coil and a PR Channel Combined with a Dual-type GMR-SV Device Journal of Magnetics 22(4), 649-653 (2017) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 https://doi.org/10.4283/jmag.2017.22.4.649 Fabrication and Usage of a Multi-turn µ-coil and a PR Channel Combined

More information

Dual Core Differential Pulsed Eddy Current Probe to Detect the Wall Thickness Variation in an Insulated Stainless Steel Pipe

Dual Core Differential Pulsed Eddy Current Probe to Detect the Wall Thickness Variation in an Insulated Stainless Steel Pipe Journal of Magnetics 15(4), 204-208 (2010) DOI: 10.4283/JMAG.2010.15.4.204 Dual Core Differential Pulsed Eddy Current Probe to Detect the Wall Thickness Variation in an Insulated Stainless Steel Pipe C.

More information

Detecting Stress Corrosion Cracking with Eddy Current Array Technology Cracking

Detecting Stress Corrosion Cracking with Eddy Current Array Technology Cracking Detecting Stress Corrosion Cracking with Eddy Current Array Technology Cracking Emilie Peloquin, : emilie.peloquin@olympus ossa.com Advanced Technical Support Team Lead Americas Olympus Scientific Solutions

More information

Enhanced Detection of Defects Using GMR Sensor Based Remote Field Eddy Current Technique

Enhanced Detection of Defects Using GMR Sensor Based Remote Field Eddy Current Technique Journal of Magnetics 22(4), 531-538 (2017) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 https://doi.org/10.4283/jmag.2017.22.4.531 Enhanced Detection of Defects Using GMR Sensor Based Remote Field Eddy

More information

EXTREME LOW FREQUENCY MAGNETIC IMAGING METHOD FOR DETECTION OF. Katsumi INOUE 2)

EXTREME LOW FREQUENCY MAGNETIC IMAGING METHOD FOR DETECTION OF. Katsumi INOUE 2) EXTREME LOW FREQUENCY MAGNETIC IMAGING METHOD FOR DETECTION OF DEFECT INSIDE WELDING PARTS OF IRON PLATE Keiji TSUKADA 1), Teruki HASEGAWA 1), Mituteru YOSHIOKA 1), Toshihiko KIWA 1), Katsumi INOUE 2)

More information

INTERNAL CONCRETE INSPECTION AND EVALUATION METHODS FOR STEEL PLATE-BONDED SLABS BY USING ELASTIC WAVES VIA ANCHOR BOLTS

INTERNAL CONCRETE INSPECTION AND EVALUATION METHODS FOR STEEL PLATE-BONDED SLABS BY USING ELASTIC WAVES VIA ANCHOR BOLTS More info about this article: h Czech Society for Nondestructive Testing 32 nd European Conference on Acoustic Emission Testing Prague, Czech Republic, September 7-9, 216 INTERNAL CONCRETE INSPECTION AND

More information

Amplitudes Variation of GPR Rebar Reflection Due to the Influence of Concrete Aggregate Scattering

Amplitudes Variation of GPR Rebar Reflection Due to the Influence of Concrete Aggregate Scattering More Info at Open Access Database www.ndt.net/?id=18402 Amplitudes Variation of GPR Rebar Reflection Due to the Influence of Concrete Aggregate Scattering Thomas KIND Federal Institute for Materials Research

More information

Detection of Surface and Sub-surface Defects in Aluminium Plate Using Pulsed Eddy Current Technique

Detection of Surface and Sub-surface Defects in Aluminium Plate Using Pulsed Eddy Current Technique More info about this article: http://www.ndt.net/?id=21196 Detection of Surface and Sub-surface Defects in Aluminium Plate Using Pulsed Eddy Current Technique H. M. Bapat, Gurpartap Singh, B. P. Singh

More information

MRI SYSTEM COMPONENTS Module One

MRI SYSTEM COMPONENTS Module One MRI SYSTEM COMPONENTS Module One 1 MAIN COMPONENTS Magnet Gradient Coils RF Coils Host Computer / Electronic Support System Operator Console and Display Systems 2 3 4 5 Magnet Components 6 The magnet The

More information

Equivalent current models and the analysis of directional ECT signals

Equivalent current models and the analysis of directional ECT signals E-Journal of Advanced Maintenance Vol.7-2 (2015) 179-188 Japan Society of Maintenology Equivalent current models and Weiying CHENG 1,* 1 NDE Center, Japan Power Engineering and Inspection Corporation,

More information

Table 1 The wheel-set security system of China high-speed railway

Table 1 The wheel-set security system of China high-speed railway 11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6-10, 2014, Prague, Czech Republic More Info at Open Access Database www.ndt.net/?id=16352 Dynamic ultrasonic inspection technology

More information

Modelling III ABSTRACT

Modelling III ABSTRACT Modelling III Hybrid FE-VIM Model of Eddy Current Inspection of Steam Generator Tubes in the Vicinity of Tube Support Plates S. Paillard, A. Skarlatos, G. Pichenot, CEA LIST, France G. Cattiaux, T. Sollier,

More information

Angle Encoder Modules

Angle Encoder Modules Angle Encoder Modules May 2015 Angle encoder modules Angle encoder modules from HEIDENHAIN are combinations of angle encoders and high-precision bearings that are optimally adjusted to each other. They

More information

NONDISTRUCTIVE TESTING INSTRUMENT OF DISHED Nb SHEETS FOR SRF CAVITIES BASED ON SQUID TECHNOLOGY

NONDISTRUCTIVE TESTING INSTRUMENT OF DISHED Nb SHEETS FOR SRF CAVITIES BASED ON SQUID TECHNOLOGY NONDISTRUCTIVE TESTING INSTRUMENT OF DISHED Nb SHEETS FOR SRF CAVITIES BASED ON SQUID TECHNOLOGY Q.-S. Shu, J. Susta, G. F. Cheng, I. Phipps, AMAC International Inc., Newport News, VA 23606 R. Selim, J.

More information

A COMPARATIVE STUDY ON THE PERFORMANCE OF DIGITAL DETECTOR SYSTEMS FOR HIGH ENERGY APPLICATIONS

A COMPARATIVE STUDY ON THE PERFORMANCE OF DIGITAL DETECTOR SYSTEMS FOR HIGH ENERGY APPLICATIONS 11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6-10, 2014, Prague, Czech Republic More Info at Open Access Database www.ndt.net/?id=16394 A COMPARATIVE STUDY ON THE PERFORMANCE

More information

EBK7000. Evaluation Kit for Angle and Length Measurement with MagnetoResistive Sensor Technology EBK7000_PIE_01. Product Information.

EBK7000. Evaluation Kit for Angle and Length Measurement with MagnetoResistive Sensor Technology EBK7000_PIE_01. Product Information. for Angle and Length Measurement with MagnetoResistive Sensor Technology Page 1 of 16 Content 1. Safety Indication... 3 2. Content of the... 3 3. Measurement Configurations... 4 4. Composition... 5 4.1

More information

Research Article Design of Tunnel Magnetoresistive-Based Circular MFL Sensor Array for the Detection of Flaws in Steel Wire Rope

Research Article Design of Tunnel Magnetoresistive-Based Circular MFL Sensor Array for the Detection of Flaws in Steel Wire Rope Sensors Volume 216, Article ID 619865, 8 pages http://dx.doi.org/1.1155/216/619865 Research Article Design of Tunnel Magnetoresistive-Based Circular MFL Sensor Array for the Detection of Flaws in Steel

More information

A New Lamb-Wave Based NDT System for Detection and Identification of Defects in Composites

A New Lamb-Wave Based NDT System for Detection and Identification of Defects in Composites SINCE2013 Singapore International NDT Conference & Exhibition 2013, 19-20 July 2013 A New Lamb-Wave Based NDT System for Detection and Identification of Defects in Composites Wei LIN, Lay Siong GOH, B.

More information

Digital Photographic Imaging Using MOEMS

Digital Photographic Imaging Using MOEMS Digital Photographic Imaging Using MOEMS Vasileios T. Nasis a, R. Andrew Hicks b and Timothy P. Kurzweg a a Department of Electrical and Computer Engineering, Drexel University, Philadelphia, USA b Department

More information

Detecting 1 st and 2 nd Layer Simulated Cracks in Aircraft Wing Spanwise Splice Standards Using Remote-Field Eddy Current Technique

Detecting 1 st and 2 nd Layer Simulated Cracks in Aircraft Wing Spanwise Splice Standards Using Remote-Field Eddy Current Technique Detecting 1 st and Layer imulated Cracks in Aircraft Wing panwise plice tandards Using Remote-Field Eddy Current Technique Yushi un, Tianhe Ouyang Innovative Materials Testing Technologies, Inc. 251 N.

More information

A Numerical Study of Depth of Penetration of Eddy Currents

A Numerical Study of Depth of Penetration of Eddy Currents A Numerical Study of Depth of Penetration of Eddy Currents S.Majidnia* a,b, R.Nilavalan b, J. Rudlin a a. TWI Ltd, Cambridge,United Kingdom b Brunel University, London,United Kingdom shiva.majidnia@twi.co.uk

More information

Sematech 3D Interconnect Metrology. 3D Magnetic Field Imaging Applied to a 2-Die Through-Silicon-Via Device

Sematech 3D Interconnect Metrology. 3D Magnetic Field Imaging Applied to a 2-Die Through-Silicon-Via Device Sematech 3D Interconnect Metrology 3D Magnetic Field Imaging Applied to a 2-Die Through-Silicon-Via Device Antonio Orozco R&D Manager/Scientist Neocera, LLC Fred Wellstood Professor Center for Nanophysics

More information

New portable eddy current flaw detector and application examples

New portable eddy current flaw detector and application examples 11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6-10, 2014, Prague, Czech Republic New portable eddy current flaw detector and application examples More Info at Open Access Database

More information

Pulsed Eddy Currents: Overcoming Adverse Effects of Galvanized Steel Weather Jacket

Pulsed Eddy Currents: Overcoming Adverse Effects of Galvanized Steel Weather Jacket JOURNEES COFREND 2017 TITRE : Pulsed Eddy Currents: Overcoming Adverse Effects of Galvanized Steel Weather Jacket Conférencier Colombe Dalpé - Eddyfi NDT Thématiques : Alternatives aux méthodes historiques,

More information

Characterization of LF and LMA signal of Wire Rope Tester

Characterization of LF and LMA signal of Wire Rope Tester Volume 8, No. 5, May June 2017 International Journal of Advanced Research in Computer Science RESEARCH PAPER Available Online at www.ijarcs.info ISSN No. 0976-5697 Characterization of LF and LMA signal

More information

Magnetic sensor signal analysis by means of the image processing technique

Magnetic sensor signal analysis by means of the image processing technique International Journal of Applied Electromagnetics and Mechanics 5 (/2) 343 347 343 IOS Press Magnetic sensor signal analysis by means of the image processing technique Isamu Senoo, Yoshifuru Saito and

More information

EDDY CURRENT TESTING

EDDY CURRENT TESTING NEW SOUTH WALES TECHNICAL AND FURTHER EDUCATION COMMISSION EDDY CURRENT TESTING NSW Module Number: Implementation Date: 6161C 01-Jan-1998 National Module Code: EA605 MANUFACTURING AND ENGINEERING MECHANICAL

More information

COMMERCIAL APPLICATIONS OF SPINTRONICS TECHNOLOGY

COMMERCIAL APPLICATIONS OF SPINTRONICS TECHNOLOGY Presented at Nanomaterials 2004, Stamford, CT, October 25, 2004 COMMERCIAL APPLICATIONS OF SPINTRONICS TECHNOLOGY Carl H. Smith Senior Physicist, Advanced Technology Group NVE Corporation 11409 Valley

More information