Oscillator Impact on PDV and Design of Packet Equipment Clocks. ITSF 2010 Peter Meyer

Size: px
Start display at page:

Download "Oscillator Impact on PDV and Design of Packet Equipment Clocks. ITSF 2010 Peter Meyer"

Transcription

1 Oscillator Impact on PDV and Design of Packet Equipment Clocks ITSF 2010 Peter Meyer

2 Protocol Layer Synchronization When deployed and inter-connected within the packet network the packet equipment clocks will allow frequency, phase and time to be transferred over the packet network Different types of packet equipment clocks (PEC) PEC-M the input is physical timing and the output is packet timing signal PEC-B the input is a packet timing signal and the output is a packet timing signal PEC-S the input is a packet timing signal and the output is a physical timing signal PRS/PRC PRTC PEC-B PEC-B PEC-B PEC-B PEC-M PEC-B PEC-B PEC-B PEC-S [Page 2]

3 Frequency & Time Transfer over PSN Two approaches A PSN may be inserted between the server and client, that is not aware of protocol layer synchronization packets (e.g. IEEE ) The PSN has on-path support where each switch / router is aware of protocol layer synchronization packets (e.g. IEEE ) [Page 3]

4 PEC Model & Generic Requirements

5 Protocol Layer EC Functional Model ITU-T G.8263 (draft) Annex includes a functional model of a PEC-S packet-based clock Local reference PEC-S PEC differs from traditional EC with introduction of a packet selection block has been included Packet Timing Signal Packet Selection Time Scale Comparator Low Pass filter Local Time scale Oscillator Output Clock The PLL filters the network wander with a low pass filter This means the PLL acts as a high pass filter for the local XO [Page 5]

6 PEC-S Functional Model: Packet Selection & Low Pass Filter Goal of the packet selection block is to select from all the input packets to the packet equipment clock a certain subset that are the least affected by the packet switched network These packets would thus best reflect the timing signal at the transmitter Both the packet selection block and the low pass filter function to remove noise from the packet timing signal to faithfully re-create the timing source The cleaned timing signal can then be used to discipline the local oscillator Eliminate Noise from Packet Timing Signal [Page 6]

7 Equipment Clock Specifications Definition of EC Jitter & Wander Generation Jitter & Wander Transfer Jitter & Wander Tolerance Holdover Transients Freerun Oscillator dominant factor in meeting parts of the specification Wander Generation (both MTIE & TDEV) Holdover Stability (both constant & variable temperature) Freerun Accuracy Packet EC Model [Page 7]

8 Oscillator-Dependent EC Characteristics Wander Generation The amount of wander generated by the EC when locked to an ideal reference Oscillator noise measured in the time domain using MTIE & TDEV metrics Holdover Stability The stability of an EC when after losing lock to its input reference Oscillator drift due to ageing, temperature, voltage and other effects measured in the frequency domain Freerun Accuracy The accuracy of an EC without using an input reference Oscillator error due to all error sources in the frequency domain [Page 8]

9 Example: Oscillator Requirements for Stratum 3E Looking at Stratum 3E EC, with a focus on the oscillator, yields the following requirements to be met by the oscillator specification Other ECs (Stratum 3, SMC, etc.) would have similar requirements Requirements Free-run Frequency Accuracy ±4.6 ppm Wander Generation MTIE & TDEV masks specified in ITU-T G.812 Type III & Telcordia GR CORE Stratum 3E, using 1 mhz clock bandwidth Holdover Stability ± 1 ppb/day at constant temperature (1.16x10^-5 ns/s^2) 10 ppb over temperature range [Page 9]

10 Design Considerations of Packet Equipment Clock

11 PEC Design Considerations Trade-off between PDV noise (LPF) and XO noise (HPF) Effects of XO on packet selection Possible PEC characteristics & XO requirements Before Filtering t After Filtering t [Page 11]

12 Trade-off Between PDV and XO PDV and XO noise can be shown on a frequency spectrum plot Network PDV has wide frequency spectrum Ramp test case has 12 uhz fundamental frequency On/Off test case has 139 uhz fundamental frequency XO has increasing magnitude at low frequency XO TCXO Network PDV 0 OCXO Low Pass Filter Value XO f Where to place the loop filter? May be governed by wander generation of XO No specification defined for PEC Common specification may not apply for mobile backhaul 0 PDV < TCXO LPF OCXO TCXO > HPF Network PDV f [Page 12]

13 Ramp (TC13) and Square (TC14) Fundamental Frequency 2158 tau: 139 uhz Square TC s tau: 12 uhz Ramp TC mhz 10 mhz 1 mhz 0.1 mhz 1.00E E-06 TDEV (s) 1.00E E E E E E E E E E E E+06 Observation time (s) [Page 13] E1, TDEV, G.823, SEC E1, TDEV, G.8261, EEC Option 1 T1, TDEV, T1.101, OC-N Sync Ref T1, TDEV, G.824, Sync Reference T1, TDEV, T1.101, DS1 Sync Ref E1, TDEV, G.823, Sync PDH T1, TDEV, G.824, Option 2 SEC T1, TDEV, G.8261, EEC Option 2 T1, TDEV, T , SONET Ref

14 Ramp (TC13) TDEV 2158 tau: 139 uhz Square TC s tau: 12 uhz Ramp TC mhz 10 mhz 1 mhz 0.1 mhz 1.00E E E-07 TDEV (s) 1.00E E E E E E E E E E E E E+06 Observation time (s) [Page 14] E1, TDEV, G.823, SEC E1, TDEV, G.8261, EEC Option 1 E1, TDEV, G.823, C O Sync N F I PDH D E N T I 1 A mhz: L TC13, Square, TM2 0.1 mhz: TC13, Square, TM2

15 Ramp (TC13) MTIE 1.00E E E-06 MTIE (s) 1.00E E E E E E E E E E E E+05 Observation time (s) E1, MTIE, G.823, SEC E1, MTIE, G.8261, EEC Option 1 E1, MTIE, G.823, Sync PDH 0.1 mhz: TC13, Square, TM2 1 mhz: TC13, Square, TM2 [Page 15]

16 Relationship between PDV, XO and Clock Bandwidth

17 Wander Generation vs. Clock Bandwidth With a 10 mhz loop filter this oscillator has a low TIE and TDEV noise mhz Loop Filter Computed TDEV G.824 Envelop (T7/F5) G.824 Envelop (T6/F4) G.823 Envelop (T11/F9) G.823 Envelop (T13/F11) TDEV for 10 mhz Loop Filter TIE (ns) 0 TDEV (ns) Seconds x Observation interval (seconds) With a 1 mhz loop filter there is significantly MORE noise contributed by the oscillator A lower the loop filter will filter LESS oscillator noise Cannot keep lowering the loop filter to be more robust against PDV without increasing the cost of the equipment! TIE (ns) mhz Loop Filter TDEV (ns) Computed TDEV G.824 Envelop (T7/F5) G.824 Envelop (T6/F4) G.823 Envelop (T11/F9) G.823 Envelop (T13/F11) TDEV for 1 mhz Loop Filter [Page 17] Seconds x Observation interval (seconds)

18 Wander Generation vs. Clock Bandwidth Wander Generation MTIE 3 mhz, 1 mhz, 0.3 mhz & 0.1 mhz clock bandwidths 1 mhz 0.1 mhz results in 10x more 8000 s [Page 18]

19 Wander Generation vs. Clock Bandwidth Wander Generation TDEV 3 mhz, 1 mhz, 0.3 mhz & 0.1 mhz clock bandwidths 1 mhz 0.1 mhz results in >4x more 1000 s [Page 19]

20 Oscillator Selection Impact on Packet Selection

21 Packet Selection vs. Oscillator Cleaned packet timing signal used to discipline local oscillator Will the oscillator movement impact on the packet selection to reduce estimated performance If there was originally a stable floor delay, how does it appear to move based on a non-ideal local oscillator? What is inter-packet gap between selected packets and how should this be adjusted to match the non-ideal local oscillator? + = [Page 21] Packet Delay (Zoom) Oscillator Observed Packet Delay (Zoom)

22 Packet Selection vs. Oscillator: Histogram Two Oscillators Same Clock Bandwidth, Packet Selection, PDV Observation: FWPR is reduced [Page 22]

23 Packet Selection vs. Oscillator: MAFE Two Oscillators Same Clock Bandwidth, Packet Selection, PDV Observation: Frequency accuracy not greatly impacted for typical mobile backhaul application 3 ppb 1000 seconds 4 ppb 1000 seconds [Page 23]

24 Packet Selection vs. Oscillator: Packet Timing Signal MTIE Two Oscillators Same Clock Bandwidth, Packet Selection, PDV Observation: MTIE substantially impacted relative to synchronization performance requirements [Page 24]

25 Packet Selection vs. Oscillator & Clock Bandwidth Summary XO directly impacts wander generation conformance, a parameter defined in the time domain Absence of time domain characterization in XO makes component selection difficult Time domain is significantly impacted by oscillator selection vs. packet selection & clock bandwidth Lack of standard for PEC results in freedom to optimize clock bandwidth based on custom design choices Frequency domain performance is less impacted by oscillator selection vs. packet selection & clock bandwidth Specifically the mobile backhaul application (< 50 ppb accuracy) Target application is very forgiving of XO selection Lowest hanging fruit PEC for applications requiring only frequency accuracy, such as mobile basestation, are easier to design based on traditional XO characterization information [Page 25]

26 Thank-you for Your Time & Attention ITSF 2010

Raltron Electronics IEEE-1588 Products Overview

Raltron Electronics IEEE-1588 Products Overview Raltron Electronics IEEE-1588 Products Overview 2013 Raltron Electronics Founded in 1983. Headquartered in Miami, Florida. Designs, manufactures and distributes frequency management products including:

More information

Measuring Time Error. Tommy Cook, CEO.

Measuring Time Error. Tommy Cook, CEO. Measuring Time Error Tommy Cook, CEO www.calnexsol.com Presentation overview What is Time Error? Network devices. PRTC & Grand Master Clock Evaluation. Transparent Clock Evaluation. Boundary Clock Evaluation.

More information

Stratum 3 Simplified Control Timing Modules (MSTM-S3-T2-FD)

Stratum 3 Simplified Control Timing Modules (MSTM-S3-T2-FD) DESCRIPTION The Connor-Winfield Stratum 3 Miniature Simplified Control Timing Module acts as a complete system clock module for general Stratum 3 timing applications. The MSTM is designed for external

More information

Stratum 3 Simplified Control Timing Modules (MSTM-S3-T2NC)

Stratum 3 Simplified Control Timing Modules (MSTM-S3-T2NC) DESCRIPTION The Connor-Winfield Stratum 3 Miniature Simplified Control Timing Module acts as a complete system clock module for general Stratum 3 timing applications. The MSTM is designed for external

More information

Stratum 3E Timing Module (STM-S3E, 3.3V)

Stratum 3E Timing Module (STM-S3E, 3.3V) Stratum 3E Timing Module (STM-S3E, 3.3V) 2111 Comprehensive Drive Aurora, Illinois 60505 Phone: 630-851-4722 Fax: 630-851- 5040 www.conwin.com Bulletin TM038 Page 1 of 16 Revision P01 Date 11 June 03 Issued

More information

Synchronization System Performance Benefits of Precision MEMS TCXOs under Environmental Stress Conditions

Synchronization System Performance Benefits of Precision MEMS TCXOs under Environmental Stress Conditions Synchronization System Performance Benefits of Precision The need for synchronization, one of the key mechanisms required by telecommunication systems, emerged with the introduction of digital communication

More information

When paired with a compliant TCXO or OCXO, the Si5328 fully meets the requirements set forth in G.8262/Y ( SyncE ), as shown in Table 1.

When paired with a compliant TCXO or OCXO, the Si5328 fully meets the requirements set forth in G.8262/Y ( SyncE ), as shown in Table 1. Si5328: SYNCHRONOUS ETHERNET* COMPLIANCE TEST REPORT 1. Introduction Synchronous Ethernet (SyncE) is a key solution used to distribute Stratum 1 traceable frequency synchronization over packet networks,

More information

Power Matters. Time Interfaces. Adam Wertheimer Applications Engineer. 03 November Microsemi Corporation.

Power Matters. Time Interfaces. Adam Wertheimer Applications Engineer. 03 November Microsemi Corporation. Power Matters Time Interfaces Adam Wertheimer Applications Engineer 03 November 2011 2011 Microsemi Corporation. Why do we need time? What time is it? It is 11:53 AM on the third of November 2011. High

More information

TDEV Then and Now. ITSF 2015 Edinburgh, Nov Marc Weiss. Kishan Shenoi. Jose. PAGE 1

TDEV Then and Now. ITSF 2015 Edinburgh, Nov Marc Weiss. Kishan Shenoi. Jose.  PAGE 1 Jose TDEV Then and Now ITSF 2015 Edinburgh, Nov. 2015 Marc Weiss mweiss@nist.gov Kishan Shenoi kshenoi@qulsar.com PAGE 1 Presentation Outline TDEV Then computed on time error measurements Origins of ADEV,

More information

MSTM-SEC1 Simplified Control Timing Module

MSTM-SEC1 Simplified Control Timing Module MSTM-SEC1 Simplified Control Timing Module 2111 Comprehensive Drive Aurora, Illinois 60505 Phone: 630-851-4722 Fax: 630-851- 5040 www.conwin.com US Headquarters: 630-851-4722 European Headquarters: +353-62-472221

More information

Stratum 3 Timing Module STL-S3

Stratum 3 Timing Module STL-S3 Stratum 3 Timing Module STL-S3 2111 Comprehensive Drive Aurora, Illinois 60505 Phone: 630-851-4722 Fax: 630-851- 5040 www.conwin.com Application The Connor-Winfield Stratum 3 Simplified Control Timing

More information

Product Brief 82V3391

Product Brief 82V3391 FEATURES SYNCHRONOUS ETHERNET WAN PLL and Clock Generation for IEEE-1588 HIGHLIGHTS Single chip PLL: Features 0.5 mhz to 560 Hz bandwidth Provides node clock for ITU-T G.8261/G.8262 Synchronous Ethernet

More information

SCG4000 V3.0 Series Synchronous Clock Generators

SCG4000 V3.0 Series Synchronous Clock Generators SCG4000 V3.0 Series Synchronous Clock Generators PLL 2111 Comprehensive Drive Aurora, Illinois 60505 Phone: 630-851-4722 Fax: 630-851- 5040 www.conwin.com Bulletin SG031 Page 1 of 12 Revision 01 Date 30

More information

Technical Introduction Crystal Oscillators. Oscillator. Figure 1 Block diagram crystal oscillator

Technical Introduction Crystal Oscillators. Oscillator. Figure 1 Block diagram crystal oscillator Technical Introduction Crystal s Crystals and Crystal s are the most important components for frequency applications like telecommunication and data transmission. The reasons are high frequency stability,

More information

INTERNATIONAL TELECOMMUNICATION UNION. Timing requirements of slave clocks suitable for use as node clocks in synchronization networks

INTERNATIONAL TELECOMMUNICATION UNION. Timing requirements of slave clocks suitable for use as node clocks in synchronization networks INTERNATIONAL TELECOMMUNICATION UNION ITU-T G.812 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (06/2004) SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS Digital networks Design

More information

MSTM-S3-T2 Stratum 3 Timing Module

MSTM-S3-T2 Stratum 3 Timing Module MSTM-S3-T2 Stratum 3 Timing Module 2111 Comprehensive Drive Aurora, Illinois 60505 Phone: 630-851-4722 Fax: 630-851-5040 www.conwin.com Application The Connor-Winfield MSTM-S3-T2 Simplified Control Timing

More information

SCG2000 Series Synchronous Clock Generators

SCG2000 Series Synchronous Clock Generators SCG2000 Series Synchronous Clock Generators PLL 2111 Comprehensive Drive Aurora, Illinois 60505 Phone: 630-851-4722 Fax: 630-851- 5040 www.conwin.com Bulletin SG035 Page 1 of 20 Revision 00 Date 23 AUG

More information

INTERNATIONAL TELECOMMUNICATION UNION. SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS Design objectives for digital networks

INTERNATIONAL TELECOMMUNICATION UNION. SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS Design objectives for digital networks INTERNATIONAL TELECOMMUNICATION UNION CCITT G.812 THE INTERNATIONAL TELEGRAPH AND TELEPHONE CONSULTATIVE COMMITTEE (11/1988) SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS Design

More information

Table MHz TCXO Sources. AVX/Kyocera KT7050B KW33T

Table MHz TCXO Sources. AVX/Kyocera KT7050B KW33T U SING THE Si5328 IN ITU G.8262-COMPLIANT SYNCHRONOUS E THERNET APPLICATIONS 1. Introduction The Si5328 and G.8262 The Si5328 is a Synchronous Ethernet (SyncE) PLL providing any-frequency translation and

More information

Enhanced PRTC G GNSS and Atomic Clocks Combined

Enhanced PRTC G GNSS and Atomic Clocks Combined Power Matters. Enhanced PRTC G.8272.1 GNSS and Atomic Clocks Combined Lee Cosart lee.cosart@microsemi.com ITSF 2017 Outline Background and history What/Why eprtc History: PRC to PRTC to eprtc eprtc G.8271.2

More information

Model 149 Stratum 3E, 9x14 mm OCXO

Model 149 Stratum 3E, 9x14 mm OCXO Features 10 to 50 MHz Frequency Range Compliant to Stratum 3E of GR1244CORE Surface Mount 3.3V or 5.0V operation Low Jitter/Phase Noise Tape and Reel Packaging Applications Telecom Switching Wireless Communication

More information

Parameter Conditions & Remarks Min Typical Max Unit. Warm up Steady 25 C Load Output to Ground pf

Parameter Conditions & Remarks Min Typical Max Unit. Warm up Steady 25 C Load Output to Ground pf Model 1380100XXX Features Industry standard 20 x 12.7 mm SMT package Stratum 3E per GR1244CORE 3.3V operation Low Phase Noise Tape and Reel packaging Applications Telecom Switching Wireless Communication

More information

SERIES O: SPECIFICATIONS OF MEASURING EQUIPMENT Equipment for the measurement of digital and analogue/digital parameters

SERIES O: SPECIFICATIONS OF MEASURING EQUIPMENT Equipment for the measurement of digital and analogue/digital parameters International Telecommunication Union ITU-T O.172 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (04/2005) SERIES O: SPECIFICATIONS OF MEASURING EQUIPMENT Equipment for the measurement of digital and

More information

WSTS-2015 Tutorial Session

WSTS-2015 Tutorial Session Presenters: PAGE 1 Jose WSTS-2015 Tutorial Session Workshop on Synchronization in Telecommunications Systems San Jose, California, March 9, 2015 Presenters: Chris Farrow (Chronos) Chris Roberts (Chronos)

More information

T1/E1/OC3 WAN PLL WITH DUAL

T1/E1/OC3 WAN PLL WITH DUAL T1/E1/OC3 WAN PLL WITH DUAL REFERENCE INPUTS IDT82V3012 FEATURES Supports AT&T TR62411 and Telcordia GR-1244-CORE Stratum 3, Stratum 4 Enhanced and Stratum 4 timing for DS1 interfaces Supports ITU-T G.813

More information

Assisted Partial Timing Support Metrics

Assisted Partial Timing Support Metrics Assisted Partial Timing Support Metrics ITSF 2014, Budapest Time in Distribution, Performance & Measurement Kishan Shenoi (kshenoi@qulsar.com) Qulsar, Inc., San Jose, California Outline Principal concept

More information

ITU-T G /Y

ITU-T G /Y I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n ITU-T TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU G.8273.2/Y.1368.2 (01/2017) SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL

More information

ZL30100 T1/E1 System Synchronizer

ZL30100 T1/E1 System Synchronizer T1/E1 System Synchronizer Features Supports Telcordia GR-1244-CORE Stratum 4 and Stratum 4E Supports ITU-T G.823 and G.824 for 2048 kbit/s and 1544 kbit/s interfaces Supports ANSI T1.403 and ETSI ETS 300

More information

time sync in ITU-T Q13/15: G.8271 and G

time sync in ITU-T Q13/15: G.8271 and G time sync in ITU-T Q13/15: G.8271 and G.8271.1 ITSF - 2012, Nice Stefano Ruffini, Ericsson Time Synchronization: Scope and Plans The work recently started in ITU-T Q13/15 The following main aspects need

More information

Tutorial: Quartz Crystal Oscillators & Phase- Locked Loops

Tutorial: Quartz Crystal Oscillators & Phase- Locked Loops Tutorial: Quartz Crystal Oscillators & Phase- Locked Loops Greg Armstrong (IDT) Dominik Schneuwly (Oscilloquartz) June 13th, 2016 1 Content 1. Quartz Crystal Oscillator (XO) Technology Quartz Crystal Overview

More information

Tests using Paragon-X, courtesy of

Tests using Paragon-X, courtesy of Tests using Paragon-X, courtesy of Maciej Lipinski / CERN 2015-02-27 1 1. Introduction The goal of the exercise was to compare syntonization performance of White Rabbit (WR) switch with the syntonization

More information

125 Series FTS125-CTV MHz GPS Disciplined Oscillators

125 Series FTS125-CTV MHz GPS Disciplined Oscillators Available at Digi-Key www.digikey.com 125 Series FTS125-CTV-010.0 MHz GPS Disciplined Oscillators 2111 Comprehensive Drive Aurora, Illinois 60505 Phone: 630-851- 4722 Fax: 630-851- 5040 www.conwin.com

More information

ENHANCED T1/E1/OC3 WAN PLL WITH DUAL REFERENCE INPUTS

ENHANCED T1/E1/OC3 WAN PLL WITH DUAL REFERENCE INPUTS ENHANCED T1/E1/OC3 WAN PLL WITH DUAL REFERENCE INPUTS 82V3155 FEATURES Supports AT&T TR62411 and Telcordia GR-1244-CORE Stratum 3, Stratum 4 Enhanced and Stratum 4 clock, OC-3 port and 155.52 Mbit/s application

More information

Testing Sync-E Wander to ITU-T G.8262

Testing Sync-E Wander to ITU-T G.8262 Testing Sync-E Wander to ITU-T G.8262 This document outlines the test process for testing Wander of FE and 1GbE SyncE network elements to G.8262 using the Calnex Paragon Sync. Covered in this document

More information

Parameter Conditions & Remarks Min Typical Max Unit C 3.3V V Warm up 2.5 Steady 25 C 1.

Parameter Conditions & Remarks Min Typical Max Unit C 3.3V V Warm up 2.5 Steady 25 C 1. Model 1190100XXX Features Industry standard 25.4 x 22 mm SMT package Stratum 3E per GR1244Core and CR253Core 3.3V or 5.0V operation Low Phase Noise Tape and Reel packaging Applications Telecom Switching

More information

AN1057: Hitless Switching using Si534x/8x Devices

AN1057: Hitless Switching using Si534x/8x Devices AN1057: Hitless Switching using Si534x/8x Devices Hitless switching is a requirement found in many communications systems using phase and frequency synchronization. Hitless switching allows the input clocks

More information

SM3E ULTRA MINIATURE STRATUM 3E MODULE

SM3E ULTRA MINIATURE STRATUM 3E MODULE SM3E ULTRA MINIATURE STRATUM 3E MODULE 2111 Comprehensive Drive Aurora, Illinois 60505 Phone: 630-851- 4722 Fax: 630-851- 5040 www.conwin.com Application The SM3E Timing Module is a complete system clock

More information

TIMING SOLUTIONS. System Synchronizing ICs with Analog PLL and Low Jitter Outputs. Global Timing Solutions for Over 50 Years

TIMING SOLUTIONS. System Synchronizing ICs with Analog PLL and Low Jitter Outputs. Global Timing Solutions for Over 50 Years TIMING SOLUTIONS P R O D U C T G U I D E THE CONNOR-WINFIELD CORPORATION System Synchronizing ICs with Analog PLL and Low Jitter Outputs Global Timing Solutions for Over 50 Years T I M I N G P R O D U

More information

ABRIDGED DATA SHEET. DS Input, 14-Output, Single DPLL Timing IC with Sub-ps Output Jitter

ABRIDGED DATA SHEET. DS Input, 14-Output, Single DPLL Timing IC with Sub-ps Output Jitter 19-5711; Rev 0; 12/10 2-Input, 14-Output, Single DPLL Timing IC with Sub-ps Output Jitter General Description The is a flexible, high-performance timing IC for diverse frequency conversion and frequency

More information

DS Input, 8-Output, Dual DPLL Timing IC with Sub-ps Output Jitter

DS Input, 8-Output, Dual DPLL Timing IC with Sub-ps Output Jitter April 2012 4-Input, 8-Output, Dual DPLL Timing IC with Sub-ps Output Jitter General Description The is a flexible, high-performance timing IC for diverse frequency conversion and frequency synthesis applications.

More information

Assisted Partial Timing Support The Principles

Assisted Partial Timing Support The Principles Assisted Partial Timing Support The Principles ITSF 2014, Budapest Time to Apply Kishan Shenoi (kshenoi@qulsar.com) Qulsar, Inc., San Jose, California Outline Background Wireless base-station timing (frequency

More information

AN905 EXTERNAL REFERENCES: OPTIMIZING PERFORMANCE. 1. Introduction. Figure 1. Si5342 Block Diagram. Devices include: Si534x Si5380 Si539x

AN905 EXTERNAL REFERENCES: OPTIMIZING PERFORMANCE. 1. Introduction. Figure 1. Si5342 Block Diagram. Devices include: Si534x Si5380 Si539x EXTERNAL REFERENCES: OPTIMIZING PERFORMANCE 1. Introduction Devices include: Si534x Si5380 Si539x The Si5341/2/4/5/6/7 and Si5380 each have XA/XB inputs, which are used to generate low-phase-noise references

More information

Timing over packet networks

Timing over packet networks Timing over packet networks real solutions to real problems February 2010 Presented by: Yaakov Stein Chief Scientist What is this talk about? About 30 minutes but how do we know how much time 30 minutes

More information

MT9046 T1/E1 System Synchronizer with Holdover

MT9046 T1/E1 System Synchronizer with Holdover T1/E1 System Synchronizer with Holdover Features Supports AT&T TR62411 and Bellcore GR-1244- CORE, Stratum 4 Enhanced and Stratum 4 timing for DS1 interfaces Supports ETSI ETS 300 011, TBR 4, TBR 12 and

More information

ZL30410 Multi-service Line Card PLL

ZL30410 Multi-service Line Card PLL Multi-service Line Card PLL Features Generates clocks for OC-3, STM-1, DS3, E3, DS2, DS1, E1, 19.44 MHz and ST-BUS Meets jitter generation requirements for STM-1, OC-3, DS3, E3, J2 (DS2), E1 and DS1 interfaces

More information

TX-801 Temperature Compensated Crystal Oscillator

TX-801 Temperature Compensated Crystal Oscillator TX-801 Temperature Compensated Crystal Oscillator TX-801 Features Applications The TX-801 TCXO provides fully compliant Stratum 3 levels of stability in a 5x3.2mm package. It is ideal for timing over IP

More information

Can Constant Time Error (cte) be Measured? A Practical Approach to Understanding TE = cte + dte

Can Constant Time Error (cte) be Measured? A Practical Approach to Understanding TE = cte + dte SYNC SERIES Can Constant Time Error (cte) be Measured? A Practical Approach to Understanding TE = cte + dte By Ildefonso M. Polo Dir. Product Marketing Transport & Synchronization December 2016 Rev. A00

More information

TCXO Application vs. OCXO Application Dave Kenny

TCXO Application vs. OCXO Application Dave Kenny Advances in IC technology have led to enhancements in both OCXO s and TCXO s that have blurred their historical differences. As technology has improved, the functionality of both types of oscillators has

More information

CONTRIBUTION TO T1 STANDARDS PROJECT ************************************************************************************************

CONTRIBUTION TO T1 STANDARDS PROJECT ************************************************************************************************ TX.3/97-009 CONTRIBUTION TO T STANDARDS PROJECT ************************************************************************************************ STANDARDS PROJECT: Digital Optical Hierarchy ************************************************************************************************

More information

125 Series FTS375 Disciplined Reference and Synchronous Clock Generator

125 Series FTS375 Disciplined Reference and Synchronous Clock Generator Available at Digi-Key www.digikey.com 125 Series FTS375 Disciplined Reference and Synchronous Clock Generator 2111 Comprehensive Drive Aurora, Illinois 60505 Phone: 630-851- 4722 Fax: 630-851- 5040 www.conwin.com

More information

IDT82V3010 FEATURES FUNCTIONAL BLOCK DIAGRAM T1/E1/OC3 TELECOM CLOCK GENERATOR WITH DUAL REFERENCE INPUTS

IDT82V3010 FEATURES FUNCTIONAL BLOCK DIAGRAM T1/E1/OC3 TELECOM CLOCK GENERATOR WITH DUAL REFERENCE INPUTS T1/E1/OC3 TELECOM CLOCK GENERATOR WITH DUAL REFERENCE INPUTS IDT82V3010 FEATURES Supports AT&T TR62411 Supports ETSI ETS 300 011, TBR 4, TBR 12 and TBR 13 timing for E1 interface Selectable reference inputs:

More information

ZLAN-35 Applications of the ZL30406 and MT9046 SONET/SDH Linecard Solutions

ZLAN-35 Applications of the ZL30406 and MT9046 SONET/SDH Linecard Solutions Applications of the ZL30406 and MT9046 SONET/SDH Linecard Solutions Contents 1.0 Summary 2.0 SONET/SDH Linecard Solutions 2.1 SONET/SDH Linecard Requirements 2.2 MT9046 + ZL30406 Solution 2.2.1 Introduction

More information

PRODUCT SELECTION GUIDE Timing Modules Precision Crystal Oscillators Hi-Rel / COTS Oscillators

PRODUCT SELECTION GUIDE Timing Modules Precision Crystal Oscillators Hi-Rel / COTS Oscillators PRODUCT SELECTION GUIDE Timing Modules Precision Crystal Oscillators Hi-Rel / COTS Oscillators ABOUT VALPEY FISHER Valpey Fisher Corporation (AMEX:VPF) is a world-leading technology company specializing

More information

Optical Time Transfer (OTT): PoC Results and Next Steps

Optical Time Transfer (OTT): PoC Results and Next Steps AGH University of Science and Technology Department of Electronics, Krakow, Poland Physikalisch-Technische Bundesanstalt (PTB) Braunschweig, Germany Deutsche Telekom Technik GmbH Bremen, Germany Deutsche

More information

The all-in-one field sync tester

The all-in-one field sync tester Calnex Sentinel The all-in-one field sync tester for 3G/4G/5G Mobile Backhaul, Financial Networks and Power Comms Platform Highlights PTP, NTP, SyncE and TDM in one box Allows you to test all legacy and

More information

dpll1_hs_en DPLL2 ref ref DPLL1 sync fb_clk fb_fp Controller & State Machine dpll1_mod_sel1:0 slave_en Figure 1 - Block Diagram

dpll1_hs_en DPLL2 ref ref DPLL1 sync fb_clk fb_fp Controller & State Machine dpll1_mod_sel1:0 slave_en Figure 1 - Block Diagram SONET/SDH OC-48/OC-192 System Synchronizer Features Supports the requirements of Telcordia R-253 and R-1244 for Stratum 3, 4E, 4 and SMC clocks, and the requirements of ITU-T.781 SETS,.813 SEC,.823,.824

More information

Time and Frequency Measurements for Oscillator Manufacturers

Time and Frequency Measurements for Oscillator Manufacturers Time and Frequency Measurements for Oscillator Manufacturers Using the FCA3000 and FCA3100 Series Timer/Counter/Analyzers Application Note Application Note Introduction Designing and manufacturing oscillators

More information

Si5383/84 Rev D Data Sheet

Si5383/84 Rev D Data Sheet Network Synchronizer Clocks Supporting 1 PPS to 7 MHz Inputs The Si5383/84 combines the industry s smallest footprint and lowest power network synchronizer clock with unmatched frequency synthesis flexibility

More information

Frequency Translator / Jitter Attenuator

Frequency Translator / Jitter Attenuator Moisture Sensitivity Level (MSL) This product is not Moisture Sensitive MSL = N/A: Not Applicable FEATURES: APPLICATIONS: Frequency translation, clock smoothing and jitter attenuation of the input 5x7x2

More information

SYNCHRONOUS ETHERNET WAN PLL IDT82V3358

SYNCHRONOUS ETHERNET WAN PLL IDT82V3358 SYNCHRONOUS ETHERNET WAN PLL IDT82V3358 Version 4 May 19, 2009 6024 Silver Creek Valley Road, San Jose, CA 95138 Telephone: (800) 345-7015 TWX: 910-338-2070 FAX: (408) 284-2775 Printed in U.S.A. 2009 Integrated

More information

ITU-T G.8272/Y.1367 (01/2015) Timing characteristics of primary reference time clocks

ITU-T G.8272/Y.1367 (01/2015) Timing characteristics of primary reference time clocks I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n ITU-T TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU G.8272/Y.1367 (01/2015) SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS

More information

Ensuring Robust Precision Time: Hardened GNSS, Multiband, and Atomic Clocks. Lee Cosart WSTS 2018

Ensuring Robust Precision Time: Hardened GNSS, Multiband, and Atomic Clocks. Lee Cosart WSTS 2018 Power Matters. Ensuring Robust Precision Time: Hardened GNSS, Multiband, and Atomic Clocks Lee Cosart lee.cosart@microsemi.com WSTS 2018 Outline Introduction The Challenge Time requirements increasingly

More information

82P33714 Datasheet. Highlights. Features. Applications. Synchronous Equipment Timing Source for Synchronous Ethernet

82P33714 Datasheet. Highlights. Features. Applications. Synchronous Equipment Timing Source for Synchronous Ethernet Synchronous Equipment Timing Source for Synchronous Ethernet 82P33714 Datasheet Highlights Synchronous Equipment Timing Source (SETS) for Synchronous Ethernet (SyncE) per ITU-T G.8264 DPLL1 generates ITU-T

More information

ETSI EN V1.1.1 ( )

ETSI EN V1.1.1 ( ) EN 302 084 V.. (2000-02) European Standard (Telecommunications series) Transmission and Multiplexing (TM); The control of jitter and wander in transport networks 2 EN 302 084 V.. (2000-02) Reference DEN/TM-0067

More information

ROBUST GPS-BASED SYNCHRONIZATION OF CDMA MOBILE NETWORKS

ROBUST GPS-BASED SYNCHRONIZATION OF CDMA MOBILE NETWORKS 33rdAnnual Precise Time and Time Interval ( P n Z ) Meeting ROBUST GPS-BASED SYNCHRONIZATION OF CDMA MOBILE NETWORKS Dominik Schneuwly Oscilloquartz SA BrCvards 16, CH-2002 NeuchQtel,Switzerland Tel: +4132

More information

Silicon Laboratories Enters the Frequency Control Market

Silicon Laboratories Enters the Frequency Control Market Silicon Laboratories Enters the Frequency Control Market Silicon Laboratories Product Portfolio Aero Transceiver Power Amplifier Broadcast Radio Tuners RF Synthesizer FM Tuners Silicon DAA ISOmodem ProSLIC

More information

Delay Variation Simulation Results for Transport of Time-Sensitive Traffic over Conventional Ethernet

Delay Variation Simulation Results for Transport of Time-Sensitive Traffic over Conventional Ethernet Delay Variation Simulation Results for Transport of Time-Sensitive Traffic over Conventional Ethernet Geoffrey M. Garner gmgarner@comcast.net Felix Feng Feng.fei@samsung.com SAMSUNG Electronics IEEE 2.3

More information

dpll_lock DPLL sync Controller & State Machine dpll_mod_sel Figure 1 - Block Diagram

dpll_lock DPLL sync Controller & State Machine dpll_mod_sel Figure 1 - Block Diagram SONET/SDH Low Jitter Line Card Synchronizer Features Ordering Information May 2006 Synchronizes with standard telecom system references and synthesizes a wide variety of protected telecom line interface

More information

GSM Transmitter Modulation Quality Measurement Option

GSM Transmitter Modulation Quality Measurement Option Performs all required measurements for GSM transmitters Outputs multiple time mask parameters for process control analysis Obtains frequency error, rms phase error, and peak phase error with one command

More information

SCG4540 Synchronous Clock Generators

SCG4540 Synchronous Clock Generators SCG4540 Synchronous Clock Generators PLL 2111 Comprehensive Drive Aurora, Illinois 60505 Phone: 630-851-4722 Fax: 630-851-5040 www.conwin.com Features Phase Locked Output Frequency Control Intrinsically

More information

Clocks, Oscillators, and PLLs An introduction to synchronization and timing in telecommunications

Clocks, Oscillators, and PLLs An introduction to synchronization and timing in telecommunications Clocks, Oscillators, and PLLs An introduction to synchronization and timing in telecommunications Kishan Shenoi CTO, Qulsar, LLC WSTS 2013, San Jose, April 16-18, 2013 Outline of Presentation Fundamental

More information

DS3106. Line Card Timing IC. General Description. Features. Applications. Simplified Functional Diagram. Ordering Information. Data Sheet April 2012

DS3106. Line Card Timing IC. General Description. Features. Applications. Simplified Functional Diagram. Ordering Information. Data Sheet April 2012 Data Sheet April 2012 General Description The DS3106 is a low-cost timing IC for telecom line cards. The device accepts two reference clocks from dual redundant system timing cards, continually monitors

More information

Advancements in Quartz Based Oscillator Technologies Advanced Timing for High Speed Connectivity

Advancements in Quartz Based Oscillator Technologies Advanced Timing for High Speed Connectivity Advancements in Quartz Based Oscillator Technologies Advanced Timing for High Speed Connectivity 2015 2017 Rakon Limited 0 CONFIDENTIAL INFORMATION Topics Background Resonator Improvements Profile, Power

More information

Model 7000 Series Phase Noise Test System

Model 7000 Series Phase Noise Test System Established 1981 Advanced Test Equipment Rentals www.atecorp.com 800-404-ATEC (2832) Model 7000 Series Phase Noise Test System Fully Integrated System Cross-Correlation Signal Analysis to 26.5 GHz Additive

More information

SYNCHRONOUS ETHERNET IDT WAN PLL IDT82V3380A

SYNCHRONOUS ETHERNET IDT WAN PLL IDT82V3380A SYNCHRONOUS ETHERNET IDT WAN PLL IDT82V3380A Version 4 May 16, 2011 6024 Silver Creek Valley Road, San Jose, CA 95138 Telephone: (800) 345-7015 TWX: 910-338-2070 FAX: (408) 284-2775 Printed in U.S.A. 2011

More information

SYNCHRONOUS ETHERNET WAN PLL IDT82V3385

SYNCHRONOUS ETHERNET WAN PLL IDT82V3385 SYNCHRONOUS ETHERNET WAN PLL IDT82V3385 Version 6 May 14, 2010 6024 Silver Creek Valley Road, San Jose, CA 95138 Telephone: (800) 345-7015 TWX: 910-338-2070 FAX: (408) 284-2775 Printed in U.S.A. 2010 Integrated

More information

Clock Tree 101. by Linda Lua

Clock Tree 101. by Linda Lua Tree 101 by Linda Lua Table of Contents I. What is a Tree? II. III. Tree Components I. Crystals and Crystal Oscillators II. Generators III. Buffers IV. Attenuators versus Crystal IV. Free-running versus

More information

ZL30416 SONET/SDH Clock Multiplier PLL

ZL30416 SONET/SDH Clock Multiplier PLL SONET/SDH Clock Multiplier PLL Features Low jitter clock outputs suitable for OC-192, OC- 48, OC-12, OC-3 and OC-1 SONET applications as defined in Telcordia GR-253-CORE Low jitter clock outputs suitable

More information

NMI's Role and Expertise in Synchronization Applications

NMI's Role and Expertise in Synchronization Applications NMI's Role and Expertise in Synchronization Applications Wen-Hung Tseng National Time and Frequency standard Lab, Telecommunication Laboratories, Chunghwa Telecom Co., Ltd., Taiwan APMP 2014 Time-transfer

More information

Characterize Phase-Locked Loop Systems Using Real Time Oscilloscopes

Characterize Phase-Locked Loop Systems Using Real Time Oscilloscopes Characterize Phase-Locked Loop Systems Using Real Time Oscilloscopes Introduction Phase-locked loops (PLL) are frequently used in communication applications. For example, they recover the clock from digital

More information

Jitter analysis with the R&S RTO oscilloscope

Jitter analysis with the R&S RTO oscilloscope Jitter analysis with the R&S RTO oscilloscope Jitter can significantly impair digital systems and must therefore be analyzed and characterized in detail. The R&S RTO oscilloscope in combination with the

More information

PRELIMINARY. Logic: C = CMOS S = Sine Wave

PRELIMINARY. Logic: C = CMOS S = Sine Wave Description Q-Tech s microcomputer compensated crystal oscillator, MCXO, uses a high stability overtone SC-cut crystal with microprocessor controlled compensation. The self-temperature sensing resonator,

More information

MT9040 T1/E1 Synchronizer

MT9040 T1/E1 Synchronizer T1/E1 Synchronizer Features Supports AT&T TR62411 and Bellcore GR-1244- CORE and Stratum 4 timing for DS1 interfaces Supports ETSI ETS 300 011, TBR 4, TBR 12 and TBR 13 timing for E1 interfaces Selectable

More information

ICS1885. High-Performance Communications PHYceiver TM. Integrated Circuit Systems, Inc. General Description. Pin Configuration.

ICS1885. High-Performance Communications PHYceiver TM. Integrated Circuit Systems, Inc. General Description. Pin Configuration. Integrated Circuit Systems, Inc. ICS1885 High-Performance Communications PHYceiver TM General Description The ICS1885 is designed to provide high performance clock recovery and generation for either 25.92

More information

Jitter Measurements using Phase Noise Techniques

Jitter Measurements using Phase Noise Techniques Jitter Measurements using Phase Noise Techniques Agenda Jitter Review Time-Domain and Frequency-Domain Jitter Measurements Phase Noise Concept and Measurement Techniques Deriving Random and Deterministic

More information

Correct Measurement of Timing and Synchronisation Signals - A Comprehensive Guide

Correct Measurement of Timing and Synchronisation Signals - A Comprehensive Guide Correct Measurement of Timing and Synchronisation Signals - A Comprehensive Guide Introduction This document introduces the fundamental aspects of making valid timing and synchronisation measurements and

More information

PHYTER 100 Base-TX Reference Clock Jitter Tolerance

PHYTER 100 Base-TX Reference Clock Jitter Tolerance PHYTER 100 Base-TX Reference Clock Jitter Tolerance 1.0 Introduction The use of a reference clock that is less stable than those directly driven from an oscillator may be required for some applications.

More information

APPH6040B / APPH20G-B Specification V2.0

APPH6040B / APPH20G-B Specification V2.0 APPH6040B / APPH20G-B Specification V2.0 (July 2014, Serial XXX-XX33XXXXX-XXXX or higher) A fully integrated high-performance cross-correlation signal source analyzer for to 7 or 26 GHz 1 Introduction

More information

Product Data Sheet. PIN ASSIGNMENT (9 x 9 mm SMT) Loop Filter. M Divider. Mfin Div (1, 4, 8, 32) or ( 1, 4, 8, 16)

Product Data Sheet. PIN ASSIGNMENT (9 x 9 mm SMT) Loop Filter. M Divider. Mfin Div (1, 4, 8, 32) or ( 1, 4, 8, 16) GENERAL DESCRIPTION The is a VCSO (Voltage Controlled SAW Oscillator) based clock jitter attenuator PLL designed for clock jitter attenuation and frequency translation. The device is ideal for generating

More information

SHF Communication Technologies AG. Wilhelm-von-Siemens-Str. 23D Berlin Germany. Phone Fax

SHF Communication Technologies AG. Wilhelm-von-Siemens-Str. 23D Berlin Germany. Phone Fax SHF Communication Technologies AG Wilhelm-von-Siemens-Str. 23D 12277 Berlin Germany Phone +49 30 772051-0 Fax ++49 30 7531078 E-Mail: sales@shf.de Web: http://www.shf.de Application Note Jitter Injection

More information

ZL30131 OC-192/STM-64 SONET/SDH/10GbE Network Interface Synchronizer

ZL30131 OC-192/STM-64 SONET/SDH/10GbE Network Interface Synchronizer OC-192/STM-64 SONET/SDH/10bE Network Interface Synchronizer Features Synchronizes to standard telecom or Ethernet backplane clocks and provides jitter filtered output clocks for SONET/SDH, DH and Ethernet

More information

The all-in-one field sync tester

The all-in-one field sync tester Calnex Sentinel The all-in-one field sync tester for 4G and 3G Mobile Backhaul, Financial Networks and Power Comms Platform Highlights PTP, NTP, SyncE and TDM in one box Allows you to test all legacy and

More information

Crystals Oscillators Real-Time-Clocks Filters Precision Timing Magnetics Engineered Solutions

Crystals Oscillators Real-Time-Clocks Filters Precision Timing Magnetics Engineered Solutions Real-Time-Clocks Magnetics Engineered Solutions WWW.ABRACON.COM Introduction Purpose: Objectives: Content: Learning Time: Introduce the ABLNO series of Ultra Low Phase Noise, Fixed Frequency & VCXO s and

More information

ZL30414 SONET/SDH Clock Multiplier PLL

ZL30414 SONET/SDH Clock Multiplier PLL SONET/SDH Clock Multiplier PLL Features Meets jitter requirements of Telcordia GR-253- CORE for OC-192, OC-48, OC-12, and OC-3 rates Meets jitter requirements of ITU-T G.813 for STM- 64, STM-16, STM-4

More information

Jurianto Joe. IDA UWB Seminar Feb. 25, 2003

Jurianto Joe. IDA UWB Seminar Feb. 25, 2003 Cellonics UWB Signal Generation and Recovery Jurianto Joe IDA UWB Seminar Feb. 25, 2003 Outline Cellonics UWB method wo schools of thought in using 3.1-10.6 GHz band for UWB Cellonics and other UWB methods

More information

Computing TIE Crest Factors for Telecom Applications

Computing TIE Crest Factors for Telecom Applications TECHNICAL NOTE Computing TIE Crest Factors for Telecom Applications A discussion on computing crest factors to estimate the contribution of random jitter to total jitter in a specified time interval. by

More information

Chapter 6. Temperature Effects

Chapter 6. Temperature Effects Chapter 6. Temperature Effects 6.1 Introduction This chapter documents the investigation into temperature drifts that can cause a receiver clock bias even when a stable reference is used. The first step

More information

1 Introduction: frequency stability and accuracy

1 Introduction: frequency stability and accuracy Content 1 Introduction: frequency stability and accuracy... Measurement methods... 4 Beat Frequency method... 4 Advantages... 4 Restrictions... 4 Spectrum analyzer method... 5 Advantages... 5 Restrictions...

More information

OPEN BASE STATION ARCHITECTURE INITIATIVE

OPEN BASE STATION ARCHITECTURE INITIATIVE OPEN BASE STATION ARCHITECTURE INITIATIVE Conformance Test Cases Appendix D Clock and Control Module (CCM) Version.00 Issue.00 (7) FOREWORD OBSAI description and specification documents are developed within

More information

ZL30415 SONET/SDH Clock Multiplier PLL

ZL30415 SONET/SDH Clock Multiplier PLL SONET/SDH Clock Multiplier PLL Features Meets jitter requirements of Telcordia GR-253- CORE for OC-12, OC-3, and OC-1 rates Meets jitter requirements of ITU-T G.813 for STM- 4, and STM-1 rates Provides

More information