Modeling and Mitigation of Interference in Multi-Antenna Receivers

Size: px
Start display at page:

Download "Modeling and Mitigation of Interference in Multi-Antenna Receivers"

Transcription

1 Modeling and Mitigation of Interference in Multi-Antenna Receivers Aditya Chopra September 16,

2 about me Member of the Wireless Networking and Communications Group at The University of Texas at Austin since Completed projects ADSL testbed (Oil & Gas) Spur modeling/mitigation (NI) 2 x 2 wired multicarrier communications testbed using PXI hardware, x86 processor, real-time operating system and LabVIEW Detect and classify spurious signals; fixed and floating-point algorithms to mitigate spurs Currently active projects Interference modeling and mitigation (Intel) Impulsive noise mitigation in OFDM (NI) Powerline communications (TI, Freescale, SRC) Statistical models of interference; receiver algorithms to mitigate interference; MATLAB toolbox Non-parametric interference mitigiation for wireless OFDM receivers using PXI hardware, FPGAs, and LabVIEW Modeling and mitigating impulsive noise; building multichannel multicarrier communications testbed using PXI hardware, x86 processor, real-time operating system, LabVIEW 2

3 Interference in wireless communication systems is caused by communicating and non-communicating source emissions Non-communicating devices Microwave ovens Powerlines Wireless systems Nearby wireless users Coexisting protocols Computational Platform Clocks, amplifiers, co-located transceivers Introduction Modeling (CoLo) Modeling (Dist) Outage Performance Receiver Design 3

4 Interference may severely impair communication performance of wireless systems g Channel g Channel 7 J. Shi, A. Bettner, G. Chinn, K. Slattery, and X. Dong, A study of platform EMI from LCD panels - impact on wireless, root causes and mitigation methods, Proc. IEEE Int. Symp. on EM Compatibility, Aug Introduction Modeling (CoLo) Modeling (Dist) Outage Performance Receiver Design 4

5 Interference mitigation has been an active area of research over the past decade INTERFERENCE MITIGATION STRATEGY Hardware design - Receiver shielding Network planning - Resource allocation - Basestation coordination - Partial frequency re-use Receiver algorithms - Interference cancellation - Interference alignment - Statistical interference mitigation LIMITATIONS Does not mitigate interference from devices using same spectrum Requires user coordination Slow updates Require user coordination and channel state information Statistical methods require accurate interference models Introduction Modeling (CoLo) Modeling (Dist) Outage Performance Receiver Design 5

6 I employ a statistical approach to the interference modeling and mitigation problem Proposed solution 1. Develop a statistical-physical model of interference generation 2. Model statistics of interference in multi-antenna receivers 3. Analyze performance of conventional multi-antenna receivers 4. Develop multi-antenna receiver algorithms using statistical models of interference Introduction Modeling (CoLo) Modeling (Dist) Outage Performance Receiver Design 6

7 A statistical-physical model of interference generation and propagation is proposed Key Features Co-located receiver antennae ( ) Interferers are common to all antennae ( ) or exclusive to n th antenna ( n ) Interferers are stochastically distributed in space as a 2D Poisson point process with intensity λ 0 ( ), or λ n ( ) Interferer free guard-zone ( ) of radius δ Power law propagation and fast fading n System model with a 3-antenna receiver in a Poisson field of interferers δ Introduction Modeling (CoLo) Modeling (Dist) Outage Performance Receiver Design 7

8 I derive joint statistics of interference observed by multi-antenna receivers 1. Wireless networks with guard zones 2. Wireless networks without guard zones Introduction Modeling (CoLo) Modeling (Dist) Outage Performance Receiver Design 8

9 Using the system model, I express the sum interference at the n th antenna Y n = A i0 e jφ i0 Hi0,ne jθ i0,n r i0 γ 2 i 0 S 0 + A in e jφin Hin e jθin,n r in i n S n γ 2 FADING CHANNEL PATHLOSS INTERFERER EMISSION COMMON INTERFERERS EXCLUSIVE INTERFERERS Next, I derive the statistics of Y for different network models Introduction Modeling (CoLo) Modeling (Dist) Outage Performance Receiver Design 9

10 I derive interference statistics in networks with guard zones as a mix of isotropic and i.i.d. Class A noise Joint characteristic function Φ w = e A 0e w 2 2 Ω0 N e A ne w n=1 A n λ n δ 2, Ω n A n δ γ 2 2 Ωn Amplitude distribution of interference From common interferers: Isotropic Middleton Class A From exclusive interferers: Independent Middleton Class A Introduction Modeling (CoLo) Modeling (Dist) Outage Performance Receiver Design 10

11 Interference statistics in networks without guard zones are a mix of isotropic and i.i.d. alpha stable noise Joint characteristic function Φ w = e σ 0 w α e σ n ω n α N n=1 α = 4 γ, σ n λ n Amplitude distribution of interference From common interferers: Isotropic symmetric alpha stable From exclusive interferers: Independent symmetric alpha stable Introduction Modeling (CoLo) Modeling (Dist) Outage Performance Receiver Design 11

12 Simulation results indicate a close match between proposed statistical models and simulated interference Tail probability of simulated interference in networks with guard zones Tail probability of simulated interference in networks without guard zones PARAMETER VALUES γ 4 λ 0 = 10 3, λ n = 0 δ 1.2 (w/ GZ), 0 (w/out GZ) λ 0 = , λ n = Introduction Modeling (CoLo) Modeling (Dist) Outage Performance Receiver Design 12

13 My framework for multi-antenna interference across co-located antennae results in joint statistics that are 1. Spatially isotropic (common interferers) 2. Spatially independent (exclusive interferers) 3. In a continuum between isotropic and independent (mixture) for two impulsive distributions 1. Middleton Class A (networks with guard zones) 2. Symmetric alpha stable (networks without guard zones) Introduction Modeling (CoLo) Modeling (Dist) Outage Performance Receiver Design 13

14 In networks without guard zones, I incorporate antenna separation into the system model Applications Cooperative MIMO Distributed antenna systems Two-hop communication Temporal modeling of interference in mobile receivers Decentralized network (δ = 0) with 2 receive antennae ( ) in a Poisson field of interferers ( ) d Introduction Modeling (CoLo) Modeling (Dist) Outage Performance Receiver Design 14

15 Interference statistics are derived via the joint characteristic function (Φ) for three scenarios Co-located antennae (d = 0) : Φ ω 1, ω 2 = e σ ω 1 2 +ω 2 2 α 2 Infinitely distant antennae (d ) : Φ ω 1, ω 2 = e σ ω 1 α +ω 2 α Distributed antennae (0 < d < ) : Φ ω 1, ω 2 e ν d σ ω 1 2 +ω 2 2 α ν d σ ω 1 α +ω 2 α I use curve fitting to approximate v d e adα Introduction Modeling (CoLo) Modeling (Dist) Outage Performance Receiver Design 15

16 I use the proposed framework to evaluate outage performance of conventional multi-antenna receivers 1. Pre-detection diversity combiners 2. Post-detection diversity combiners Introduction Modeling (CoLo) Modeling (Dist) Outage Performance Receiver Design 16

17 SELECT BEST Multi-antenna receivers combine antenna outputs either before, or after the decoding block w 1 Pre-detection Combining Post-detection combining X w N + X y = hx + n wy Equal Gain Combiner Selection Combiner Maximum Ratio Combiner w = 1 N w n = I hn =max{h} w = h Introduction Modeling (CoLo) Modeling (Dist) Outage Performance Receiver Design 17

18 I derive theoretical outage probability expressions for pre- and post-detection diversity combiners RECEIVER ALGORITHM Equal Gain Combining Maximum Ratio Combining OUTAGE PROBABILITY P SIR < θ C 0 θ α 2 λ 0 + λ e N 1 α 2 C 0 θ α 2E h α α h 2 α + Selection Combining C 0 θ α N 2 1 n+1 N n=1 1 h 2 2α NC n n! Post Detection Combining C 0 1 m+1 m /γ! nc m m 1! sin 2π θ α π C 0 m=1 γ sin 2π γ γ N θ Nα 2 Introduction Modeling (CoLo) Modeling (Dist) Outage Performance Receiver Design 18

19 Sim Expr match simulated outage Only common interferers 5% exclusive interferers Only exclusive interferers Next, I design robust receivers using interference statistics Introduction Modeling (CoLo) Modeling (Dist) Outage Performance Receiver Design 19

20 Using my knowledge of interference statistics, I design algorithms which outperform conventional receivers 1. Improved pre-detection diversity combiners 2. Improved antenna selection in cooperative reception Introduction Modeling (CoLo) Modeling (Dist) Outage Performance Receiver Design 20

21 Antenna Weight (w) I propose two diversity combining algorithms that are robust to impulsive interference Deviation in an antenna output y n is defined as Δ n = y n median{ y } Proposed diversity combiners 1. Hard-limiting combiner w n = 1 Δn <Th n 2. Soft-limiting combiner w n = e AΔ nh n Deviation ( Hard Limiting (T=1) Soft Limiting (A=1) Introduction Modeling (CoLo) Modeling (Dist) Outage Performance Receiver Design 21

22 My proposed diversity combiners exhibit better outage performance compared to conventional combiners PARAMETER VALUES Pathloss coeff. (γ) 4 Guard- zone radius (δ ) 0 Common interferer density(λ 0 ) Excl. intfr. density(λ n ) HL combiner parameter (T) 1 SL combiner parameter (A) 2 Introduction Modeling (CoLo) Modeling (Dist) Outage Performance Receiver Design 22

23 In conclusion, the contributions of my dissertation are 1. A framework for modeling multi-antenna interference Interference statistics are mix of isotropic and independent 2. Statistical modeling of multi-antenna interference Co-located antennae in networks without guard zones Two geographically separate antennae in networks with guard zones 3. Outage performance analysis of conventional receivers in networks without guard zones 4. Design of receiver algorithms with improved performance in impulsive interference 23

24 thank you 24

25 Interference statistics are derived via the joint characteristic function (Φ) for three scenarios of antenna separation log {Φ ω 1, ω 2 } = λ 1 R a ω 1 2 r γ + a ω 2 2 r d γ dr d = 0: Φ ω 1, ω 2 = e σ ω 1 2 +ω 2 2 d : Φ ω 1, ω 2 = e σ ω 1 α +ω α 2 0 < d < : Φ ω 1, ω 2 = e ν d σ ω 1 2 +ω 2 2 α 2 α ν d σ ω 1 α +ω 2 α Introduction Modeling (CoLo) Modeling (Dist) Outage Performance Receiver Design 25

26 Intuitively, interference statistics lie in a continuum between isotropic and independent d = 0 d = 0 < d < 26

27 A framework of common/exclusive interferers unifies interference models in co-located/distributed antennae Common Interferers Exclusive Interferers Next, I use this framework to analyze communication performance of multiantenna receivers 27

Modeling and Mitigation of Interference in Wireless Receivers with Multiple Antennae

Modeling and Mitigation of Interference in Wireless Receivers with Multiple Antennae Modeling and Mitigation of Interference in Wireless Receivers with Multiple Antennae Aditya Chopra PhD Committee: Prof. Jeffrey Andrews Prof. Brian L. Evans (Supervisor) Prof. Robert W. Heath, Jr. Prof.

More information

IMPULSIVE NOISE MITIGATION IN OFDM SYSTEMS USING SPARSE BAYESIAN LEARNING

IMPULSIVE NOISE MITIGATION IN OFDM SYSTEMS USING SPARSE BAYESIAN LEARNING IMPULSIVE NOISE MITIGATION IN OFDM SYSTEMS USING SPARSE BAYESIAN LEARNING Jing Lin, Marcel Nassar and Brian L. Evans Department of Electrical and Computer Engineering The University of Texas at Austin

More information

Outage Probability for Diversity Combining. in Interference-Limited Channels

Outage Probability for Diversity Combining. in Interference-Limited Channels SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 1 Outage Probability for Diversity Combining in Interference-Limited Channels Aditya Chopra, Student Member, IEEE, and Brian L. Evans, Fellow,

More information

MIMO Receiver Design in Impulsive Noise

MIMO Receiver Design in Impulsive Noise COPYRIGHT c 007. ALL RIGHTS RESERVED. 1 MIMO Receiver Design in Impulsive Noise Aditya Chopra and Kapil Gulati Final Project Report Advanced Space Time Communications Prof. Robert Heath December 7 th,

More information

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Basic Transmission Schemes 1 September 8, Presentation Outline

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Basic Transmission Schemes 1 September 8, Presentation Outline Multiple Antennas Capacity and Basic Transmission Schemes Mats Bengtsson, Björn Ottersten Basic Transmission Schemes 1 September 8, 2005 Presentation Outline Channel capacity Some fine details and misconceptions

More information

Narrow- and wideband channels

Narrow- and wideband channels RADIO SYSTEMS ETIN15 Lecture no: 3 Narrow- and wideband channels Ove Edfors, Department of Electrical and Information technology Ove.Edfors@eit.lth.se 2012-03-19 Ove Edfors - ETIN15 1 Contents Short review

More information

Cognitive Radio Techniques

Cognitive Radio Techniques Cognitive Radio Techniques Spectrum Sensing, Interference Mitigation, and Localization Kandeepan Sithamparanathan Andrea Giorgetti ARTECH HOUSE BOSTON LONDON artechhouse.com Contents Preface xxi 1 Introduction

More information

MATLAB COMMUNICATION TITLES

MATLAB COMMUNICATION TITLES MATLAB COMMUNICATION TITLES -2018 ORTHOGONAL FREQUENCY-DIVISION MULTIPLEXING(OFDM) 1 ITCM01 New PTS Schemes For PAPR Reduction Of OFDM Signals Without Side Information 2 ITCM02 Design Space-Time Trellis

More information

Revision of Lecture One

Revision of Lecture One Revision of Lecture One System blocks and basic concepts Multiple access, MIMO, space-time Transceiver Wireless Channel Signal/System: Bandpass (Passband) Baseband Baseband complex envelope Linear system:

More information

Written Exam Channel Modeling for Wireless Communications - ETIN10

Written Exam Channel Modeling for Wireless Communications - ETIN10 Written Exam Channel Modeling for Wireless Communications - ETIN10 Department of Electrical and Information Technology Lund University 2017-03-13 2.00 PM - 7.00 PM A minimum of 30 out of 60 points are

More information

Opportunistic cooperation in wireless ad hoc networks with interference correlation

Opportunistic cooperation in wireless ad hoc networks with interference correlation Noname manuscript No. (will be inserted by the editor) Opportunistic cooperation in wireless ad hoc networks with interference correlation Yong Zhou Weihua Zhuang Received: date / Accepted: date Abstract

More information

Effects of Fading Channels on OFDM

Effects of Fading Channels on OFDM IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719, Volume 2, Issue 9 (September 2012), PP 116-121 Effects of Fading Channels on OFDM Ahmed Alshammari, Saleh Albdran, and Dr. Mohammad

More information

ECE5984 Orthogonal Frequency Division Multiplexing and Related Technologies Fall Mohamed Essam Khedr. Fading Channels

ECE5984 Orthogonal Frequency Division Multiplexing and Related Technologies Fall Mohamed Essam Khedr. Fading Channels ECE5984 Orthogonal Frequency Division Multiplexing and Related Technologies Fall 2007 Mohamed Essam Khedr Fading Channels Major Learning Objectives Upon successful completion of the course the student

More information

Spring 2017 MIMO Communication Systems Solution of Homework Assignment #5

Spring 2017 MIMO Communication Systems Solution of Homework Assignment #5 Spring 217 MIMO Communication Systems Solution of Homework Assignment #5 Problem 1 (2 points Consider a channel with impulse response h(t α δ(t + α 1 δ(t T 1 + α 3 δ(t T 2. Assume that T 1 1 µsecs and

More information

Elham Torabi Supervisor: Dr. Robert Schober

Elham Torabi Supervisor: Dr. Robert Schober Low-Rate Ultra-Wideband Low-Power for Wireless Personal Communication Area Networks Channel Models and Signaling Schemes Department of Electrical & Computer Engineering The University of British Columbia

More information

KURSOR Menuju Solusi Teknologi Informasi Vol. 9, No. 1, Juli 2017

KURSOR Menuju Solusi Teknologi Informasi Vol. 9, No. 1, Juli 2017 Jurnal Ilmiah KURSOR Menuju Solusi Teknologi Informasi Vol. 9, No. 1, Juli 2017 ISSN 0216 0544 e-issn 2301 6914 OPTIMAL RELAY DESIGN OF ZERO FORCING EQUALIZATION FOR MIMO MULTI WIRELESS RELAYING NETWORKS

More information

Revision of Lecture One

Revision of Lecture One Revision of Lecture One System block Transceiver Wireless Channel Signal / System: Bandpass (Passband) Baseband Baseband complex envelope Linear system: complex (baseband) channel impulse response Channel:

More information

Non-Parametric Impulsive Noise Mitigation in OFDM Systems Using Sparse Bayesian Learning

Non-Parametric Impulsive Noise Mitigation in OFDM Systems Using Sparse Bayesian Learning on-parametric oise Mitigation in OFDM Systems Using Sparse Bayesian Learning Jing Lin, Marcel assar and Brian L. Evans The University of Texas at Austin, Austin, Texas 78712 USA Email: {linj, nassar.marcel}@mail.utexas.edu,

More information

Overview of MIMO Radio Channels

Overview of MIMO Radio Channels Helsinki University of Tecnology S.72.333 Postgraduate Course in Radio Communications Overview of MIMO Radio Cannels 18, May 2004 Suiyan Geng gsuiyan@cc.ut.fi Outline I. Introduction II. III. IV. Caracteristics

More information

Antennas and Propagation. Chapter 6b: Path Models Rayleigh, Rician Fading, MIMO

Antennas and Propagation. Chapter 6b: Path Models Rayleigh, Rician Fading, MIMO Antennas and Propagation b: Path Models Rayleigh, Rician Fading, MIMO Introduction From last lecture How do we model H p? Discrete path model (physical, plane waves) Random matrix models (forget H p and

More information

Performance of ALOHA and CSMA in Spatially Distributed Wireless Networks

Performance of ALOHA and CSMA in Spatially Distributed Wireless Networks Performance of ALOHA and CSMA in Spatially Distributed Wireless Networks Mariam Kaynia and Nihar Jindal Dept. of Electrical and Computer Engineering, University of Minnesota Dept. of Electronics and Telecommunications,

More information

Estimating the Transmission Probability in Wireless Networks with Configuration Models

Estimating the Transmission Probability in Wireless Networks with Configuration Models Estimating the Transmission Probability in Wireless Networks with Configuration Models Paola Bermolen niversidad de la República - ruguay Joint work with: Matthieu Jonckheere (BA), Federico Larroca (delar)

More information

Resource Allocation Challenges in Future Wireless Networks

Resource Allocation Challenges in Future Wireless Networks Resource Allocation Challenges in Future Wireless Networks Mohamad Assaad Dept of Telecommunications, Supelec - France Mar. 2014 Outline 1 General Introduction 2 Fully Decentralized Allocation 3 Future

More information

SourceSync. Exploiting Sender Diversity

SourceSync. Exploiting Sender Diversity SourceSync Exploiting Sender Diversity Why Develop SourceSync? Wireless diversity is intrinsic to wireless networks Many distributed protocols exploit receiver diversity Sender diversity is a largely unexplored

More information

Randomized Channel Access Reduces Network Local Delay

Randomized Channel Access Reduces Network Local Delay Randomized Channel Access Reduces Network Local Delay Wenyi Zhang USTC Joint work with Yi Zhong (Ph.D. student) and Martin Haenggi (Notre Dame) 2013 Joint HK/TW Workshop on ITC CUHK, January 19, 2013 Acknowledgement

More information

Problem Set. I- Review of Some Basics. and let X = 10 X db/10 be the corresponding log-normal RV..

Problem Set. I- Review of Some Basics. and let X = 10 X db/10 be the corresponding log-normal RV.. Department of Telecomunications Norwegian University of Science and Technology NTNU Communication & Coding Theory for Wireless Channels, October 2002 Problem Set Instructor: Dr. Mohamed-Slim Alouini E-mail:

More information

Channel Modelling for Beamforming in Cellular Systems

Channel Modelling for Beamforming in Cellular Systems Channel Modelling for Beamforming in Cellular Systems Salman Durrani Department of Engineering, The Australian National University, Canberra. Email: salman.durrani@anu.edu.au DERF June 26 Outline Introduction

More information

UWB Channel Modeling

UWB Channel Modeling Channel Modeling ETIN10 Lecture no: 9 UWB Channel Modeling Fredrik Tufvesson & Johan Kåredal, Department of Electrical and Information Technology fredrik.tufvesson@eit.lth.se 2011-02-21 Fredrik Tufvesson

More information

Channel Modeling ETI 085

Channel Modeling ETI 085 Channel Modeling ETI 085 Overview Lecture no: 9 What is Ultra-Wideband (UWB)? Why do we need UWB channel models? UWB Channel Modeling UWB channel modeling Standardized UWB channel models Fredrik Tufvesson

More information

Narrow- and wideband channels

Narrow- and wideband channels RADIO SYSTEMS ETIN15 Lecture no: 3 Narrow- and wideband channels Ove Edfors, Department of Electrical and Information technology Ove.Edfors@eit.lth.se 27 March 2017 1 Contents Short review NARROW-BAND

More information

Adaptive Modulation and Coding Technique under Multipath Fading and Impulsive Noise in Broadband Power-line Communication

Adaptive Modulation and Coding Technique under Multipath Fading and Impulsive Noise in Broadband Power-line Communication Adaptive Modulation and Coding Technique under Multipath Fading and Impulsive Noise in Broadband Power-line Communication Güray Karaarslan 1, and Özgür Ertuğ 2 1 MSc Student, Ankara, Turkey, guray.karaarslan@gmail.com

More information

5G 무선통신시스템설계 : WLAN/LTE/5G

5G 무선통신시스템설계 : WLAN/LTE/5G 1 5G 무선통신시스템설계 : WLAN/LTE/5G 김종남 Application Engineer 2017 The MathWorks, Inc. 2 Agenda Innovations in Mobile Communications Waveform Generation and End-to-end Simulation WLAN, LTE, 5G (FBMC, UFMC) RF

More information

REAL WORLD FEASIBILITY OF INTERFERENCE ALIGNMENT USING MIMO-OFDM CHANNEL MEASUREMENTS

REAL WORLD FEASIBILITY OF INTERFERENCE ALIGNMENT USING MIMO-OFDM CHANNEL MEASUREMENTS REAL WORLD FEASIBILITY OF INTERFERENCE ALIGNMENT USING MIMO-OFDM CHANNEL MEASUREMENTS Omar El Ayach, Steven W. Peters, and Robert W. Heath Jr. Wireless Networking and Communications Group The University

More information

Massive MIMO: Signal Structure, Efficient Processing, and Open Problems I

Massive MIMO: Signal Structure, Efficient Processing, and Open Problems I Massive MIMO: Signal Structure, Efficient Processing, and Open Problems I Saeid Haghighatshoar Communications and Information Theory Group (CommIT) Technische Universität Berlin CoSIP Winter Retreat Berlin,

More information

On the Value of Coherent and Coordinated Multi-point Transmission

On the Value of Coherent and Coordinated Multi-point Transmission On the Value of Coherent and Coordinated Multi-point Transmission Antti Tölli, Harri Pennanen and Petri Komulainen atolli@ee.oulu.fi Centre for Wireless Communications University of Oulu December 4, 2008

More information

Prototyping Next-Generation Communication Systems with Software-Defined Radio

Prototyping Next-Generation Communication Systems with Software-Defined Radio Prototyping Next-Generation Communication Systems with Software-Defined Radio Dr. Brian Wee RF & Communications Systems Engineer 1 Agenda 5G System Challenges Why Do We Need SDR? Software Defined Radio

More information

UNEQUAL POWER ALLOCATION FOR JPEG TRANSMISSION OVER MIMO SYSTEMS. Muhammad F. Sabir, Robert W. Heath Jr. and Alan C. Bovik

UNEQUAL POWER ALLOCATION FOR JPEG TRANSMISSION OVER MIMO SYSTEMS. Muhammad F. Sabir, Robert W. Heath Jr. and Alan C. Bovik UNEQUAL POWER ALLOCATION FOR JPEG TRANSMISSION OVER MIMO SYSTEMS Muhammad F. Sabir, Robert W. Heath Jr. and Alan C. Bovik Department of Electrical and Computer Engineering, The University of Texas at Austin,

More information

Modeling and Analysis of User-Centric and Disjoint Cooperation in Network MIMO Systems. Caiyi Zhu

Modeling and Analysis of User-Centric and Disjoint Cooperation in Network MIMO Systems. Caiyi Zhu Modeling and Analysis of User-Centric and Disjoint Cooperation in Network MIMO Systems by Caiyi Zhu A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate

More information

Channel. Muhammad Ali Jinnah University, Islamabad Campus, Pakistan. Multi-Path Fading. Dr. Noor M Khan EE, MAJU

Channel. Muhammad Ali Jinnah University, Islamabad Campus, Pakistan. Multi-Path Fading. Dr. Noor M Khan EE, MAJU Instructor: Prof. Dr. Noor M. Khan Department of Electronic Engineering, Muhammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN Ph: +9 (51) 111-878787, Ext. 19 (Office), 186 (Lab) Fax: +9

More information

Channel Estimation by 2D-Enhanced DFT Interpolation Supporting High-speed Movement

Channel Estimation by 2D-Enhanced DFT Interpolation Supporting High-speed Movement Channel Estimation by 2D-Enhanced DFT Interpolation Supporting High-speed Movement Channel Estimation DFT Interpolation Special Articles on Multi-dimensional MIMO Transmission Technology The Challenge

More information

Joint Optimization of Relay Strategies and Resource Allocations in Cooperative Cellular Networks

Joint Optimization of Relay Strategies and Resource Allocations in Cooperative Cellular Networks Joint Optimization of Relay Strategies and Resource Allocations in Cooperative Cellular Networks Truman Ng, Wei Yu Electrical and Computer Engineering Department University of Toronto Jianzhong (Charlie)

More information

On Using Channel Prediction in Adaptive Beamforming Systems

On Using Channel Prediction in Adaptive Beamforming Systems On Using Channel rediction in Adaptive Beamforming Systems T. R. Ramya and Srikrishna Bhashyam Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai - 600 036, India. Email:

More information

Mobile & Wireless Networking. Lecture 2: Wireless Transmission (2/2)

Mobile & Wireless Networking. Lecture 2: Wireless Transmission (2/2) 192620010 Mobile & Wireless Networking Lecture 2: Wireless Transmission (2/2) [Schiller, Section 2.6 & 2.7] [Reader Part 1: OFDM: An architecture for the fourth generation] Geert Heijenk Outline of Lecture

More information

Effects of Beamforming on the Connectivity of Ad Hoc Networks

Effects of Beamforming on the Connectivity of Ad Hoc Networks Effects of Beamforming on the Connectivity of Ad Hoc Networks Xiangyun Zhou, Haley M. Jones, Salman Durrani and Adele Scott Department of Engineering, CECS The Australian National University Canberra ACT,

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON ELEC6014W1 SEMESTER II EXAMINATIONS 2007/08 RADIO COMMUNICATION NETWORKS AND SYSTEMS Duration: 120 mins Answer THREE questions out of FIVE. University approved calculators may

More information

Exam 3 is two weeks from today. Today s is the final lecture that will be included on the exam.

Exam 3 is two weeks from today. Today s is the final lecture that will be included on the exam. ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2010 Lecture 19 Today: (1) Diversity Exam 3 is two weeks from today. Today s is the final lecture that will be included on the exam.

More information

Wireless Communications Over Rapidly Time-Varying Channels

Wireless Communications Over Rapidly Time-Varying Channels Wireless Communications Over Rapidly Time-Varying Channels Edited by Franz Hlawatsch Gerald Matz ELSEVIER AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY

More information

Noncoherent Communications with Large Antenna Arrays

Noncoherent Communications with Large Antenna Arrays Noncoherent Communications with Large Antenna Arrays Mainak Chowdhury Joint work with: Alexandros Manolakos, Andrea Goldsmith, Felipe Gomez-Cuba and Elza Erkip Stanford University September 29, 2016 Wireless

More information

Study of Factors which affect the Calculation of Co- Channel Interference in a Radio Link

Study of Factors which affect the Calculation of Co- Channel Interference in a Radio Link International Journal of Electronic and Electrical Engineering. ISSN 0974-2174 Volume 8, Number 2 (2015), pp. 103-111 International Research Publication House http://www.irphouse.com Study of Factors which

More information

Gaussian Random Field Approximation for Exclusion Zones in Cognitive Radio Networks

Gaussian Random Field Approximation for Exclusion Zones in Cognitive Radio Networks Gaussian Random Field Approximation for Exclusion Zones in Cognitive Radio Networks Zheng Wang and Brian L. Mark Dept. of Electrical and Computer Engineering George Mason University, MS 1G5 4400 University

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P82.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [Merging two-path and S-V models for LOS desktop channel environments] Date Submitted: [July, 26] Source:

More information

Channelized Digital Receivers for Impulse Radio

Channelized Digital Receivers for Impulse Radio Channelized Digital Receivers for Impulse Radio Won Namgoong Department of Electrical Engineering University of Southern California Los Angeles CA 989-56 USA ABSTRACT Critical to the design of a digital

More information

Project = An Adventure : Wireless Networks. Lecture 4: More Physical Layer. What is an Antenna? Outline. Page 1

Project = An Adventure : Wireless Networks. Lecture 4: More Physical Layer. What is an Antenna? Outline. Page 1 Project = An Adventure 18-759: Wireless Networks Checkpoint 2 Checkpoint 1 Lecture 4: More Physical Layer You are here Done! Peter Steenkiste Departments of Computer Science and Electrical and Computer

More information

MIMO II: Physical Channel Modeling, Spatial Multiplexing. COS 463: Wireless Networks Lecture 17 Kyle Jamieson

MIMO II: Physical Channel Modeling, Spatial Multiplexing. COS 463: Wireless Networks Lecture 17 Kyle Jamieson MIMO II: Physical Channel Modeling, Spatial Multiplexing COS 463: Wireless Networks Lecture 17 Kyle Jamieson Today 1. Graphical intuition in the I-Q plane 2. Physical modeling of the SIMO channel 3. Physical

More information

Spread ALOHA Based Random Access Scheme for Macro Cell CDMA Systems

Spread ALOHA Based Random Access Scheme for Macro Cell CDMA Systems Spread ALOHA Based Random Access Scheme for Macro Cell CDMA Systems Zhenyu Xiao, Wentao Chen, Depeng Jin, Lieguang Zeng State Key Laboratory on Microwave and Digital Communications Tsinghua National Laboratory

More information

Distributed Power Control in Cellular and Wireless Networks - A Comparative Study

Distributed Power Control in Cellular and Wireless Networks - A Comparative Study Distributed Power Control in Cellular and Wireless Networks - A Comparative Study Vijay Raman, ECE, UIUC 1 Why power control? Interference in communication systems restrains system capacity In cellular

More information

Differential Space-Frequency Modulation for MIMO-OFDM Systems via a. Smooth Logical Channel

Differential Space-Frequency Modulation for MIMO-OFDM Systems via a. Smooth Logical Channel Differential Space-Frequency Modulation for MIMO-OFDM Systems via a Smooth Logical Channel Weifeng Su and K. J. Ray Liu Department of Electrical and Computer Engineering, and Institute for Systems Research

More information

Applications of Monte Carlo Methods in Charged Particles Optics

Applications of Monte Carlo Methods in Charged Particles Optics Sydney 13-17 February 2012 p. 1/3 Applications of Monte Carlo Methods in Charged Particles Optics Alla Shymanska alla.shymanska@aut.ac.nz School of Computing and Mathematical Sciences Auckland University

More information

Analysis of massive MIMO networks using stochastic geometry

Analysis of massive MIMO networks using stochastic geometry Analysis of massive MIMO networks using stochastic geometry Tianyang Bai and Robert W. Heath Jr. Wireless Networking and Communications Group Department of Electrical and Computer Engineering The University

More information

An OFDM Transmitter and Receiver using NI USRP with LabVIEW

An OFDM Transmitter and Receiver using NI USRP with LabVIEW An OFDM Transmitter and Receiver using NI USRP with LabVIEW Saba Firdose, Shilpa B, Sushma S Department of Electronics & Communication Engineering GSSS Institute of Engineering & Technology For Women Abstract-

More information

Lecture 7/8: UWB Channel. Kommunikations

Lecture 7/8: UWB Channel. Kommunikations Lecture 7/8: UWB Channel Kommunikations Technik UWB Propagation Channel Radio Propagation Channel Model is important for Link level simulation (bit error ratios, block error ratios) Coverage evaluation

More information

MIMO Wireless Communications

MIMO Wireless Communications MIMO Wireless Communications Speaker: Sau-Hsuan Wu Date: 2008 / 07 / 15 Department of Communication Engineering, NCTU Outline 2 2 MIMO wireless channels MIMO transceiver MIMO precoder Outline 3 3 MIMO

More information

CHAPTER 10 CONCLUSIONS AND FUTURE WORK 10.1 Conclusions

CHAPTER 10 CONCLUSIONS AND FUTURE WORK 10.1 Conclusions CHAPTER 10 CONCLUSIONS AND FUTURE WORK 10.1 Conclusions This dissertation reported results of an investigation into the performance of antenna arrays that can be mounted on handheld radios. Handheld arrays

More information

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman Antennas & Propagation CSG 250 Fall 2007 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception

More information

Beamforming and Binary Power Based Resource Allocation Strategies for Cognitive Radio Networks

Beamforming and Binary Power Based Resource Allocation Strategies for Cognitive Radio Networks 1 Beamforming and Binary Power Based Resource Allocation Strategies for Cognitive Radio Networks UWB Walter project Workshop, ETSI October 6th 2009, Sophia Antipolis A. Hayar EURÉCOM Institute, Mobile

More information

SPECTRUM SHARING IN CRN USING ARP PROTOCOL- ANALYSIS OF HIGH DATA RATE

SPECTRUM SHARING IN CRN USING ARP PROTOCOL- ANALYSIS OF HIGH DATA RATE Int. J. Chem. Sci.: 14(S3), 2016, 794-800 ISSN 0972-768X www.sadgurupublications.com SPECTRUM SHARING IN CRN USING ARP PROTOCOL- ANALYSIS OF HIGH DATA RATE ADITYA SAI *, ARSHEYA AFRAN and PRIYANKA Information

More information

EE 5407 Part II: Spatial Based Wireless Communications

EE 5407 Part II: Spatial Based Wireless Communications EE 5407 Part II: Spatial Based Wireless Communications Instructor: Prof. Rui Zhang E-mail: rzhang@i2r.a-star.edu.sg Website: http://www.ece.nus.edu.sg/stfpage/elezhang/ Lecture I: Introduction March 4,

More information

Chapter 2 Overview - 1 -

Chapter 2 Overview - 1 - Chapter 2 Overview Part 1 (last week) Digital Transmission System Frequencies, Spectrum Allocation Radio Propagation and Radio Channels Part 2 (today) Modulation, Coding, Error Correction Part 3 (next

More information

Multihop Routing in Ad Hoc Networks

Multihop Routing in Ad Hoc Networks Multihop Routing in Ad Hoc Networks Dr. D. Torrieri 1, S. Talarico 2 and Dr. M. C. Valenti 2 1 U.S Army Research Laboratory, Adelphi, MD 2 West Virginia University, Morgantown, WV Nov. 18 th, 20131 Outline

More information

Transmit Power Allocation for BER Performance Improvement in Multicarrier Systems

Transmit Power Allocation for BER Performance Improvement in Multicarrier Systems Transmit Power Allocation for Performance Improvement in Systems Chang Soon Par O and wang Bo (Ed) Lee School of Electrical Engineering and Computer Science, Seoul National University parcs@mobile.snu.ac.r,

More information

Outline. Noise and Distortion. Noise basics Component and system noise Distortion INF4420. Jørgen Andreas Michaelsen Spring / 45 2 / 45

Outline. Noise and Distortion. Noise basics Component and system noise Distortion INF4420. Jørgen Andreas Michaelsen Spring / 45 2 / 45 INF440 Noise and Distortion Jørgen Andreas Michaelsen Spring 013 1 / 45 Outline Noise basics Component and system noise Distortion Spring 013 Noise and distortion / 45 Introduction We have already considered

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P82.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [UWB Channel Model for Indoor Residential Environment] Date Submitted: [2 September, 24] Source: [Chia-Chin

More information

Wireless Physical Layer Concepts: Part II

Wireless Physical Layer Concepts: Part II Wireless Physical Layer Concepts: Part II Raj Jain Professor of CSE Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at:

More information

ELEC E7210: Communication Theory. Lecture 11: MIMO Systems and Space-time Communications

ELEC E7210: Communication Theory. Lecture 11: MIMO Systems and Space-time Communications ELEC E7210: Communication Theory Lecture 11: MIMO Systems and Space-time Communications Overview of the last lecture MIMO systems -parallel decomposition; - beamforming; - MIMO channel capacity MIMO Key

More information

Mobile Radio Propagation Channel Models

Mobile Radio Propagation Channel Models Wireless Information Transmission System Lab. Mobile Radio Propagation Channel Models Institute of Communications Engineering National Sun Yat-sen University Table of Contents Introduction Propagation

More information

Notes 15: Concatenated Codes, Turbo Codes and Iterative Processing

Notes 15: Concatenated Codes, Turbo Codes and Iterative Processing 16.548 Notes 15: Concatenated Codes, Turbo Codes and Iterative Processing Outline! Introduction " Pushing the Bounds on Channel Capacity " Theory of Iterative Decoding " Recursive Convolutional Coding

More information

Antennas and Propagation. Chapter 6d: Diversity Techniques and Spatial Multiplexing

Antennas and Propagation. Chapter 6d: Diversity Techniques and Spatial Multiplexing Antennas and Propagation d: Diversity Techniques and Spatial Multiplexing Introduction: Diversity Diversity Use (or introduce) redundancy in the communications system Improve (short time) link reliability

More information

Capacity Gain from Two-Transmitter and Two-Receiver Cooperation

Capacity Gain from Two-Transmitter and Two-Receiver Cooperation Capacity Gain from Two-Transmitter and Two-Receiver Cooperation Chris T. K. Ng, Student Member, IEEE, Nihar Jindal, Member, IEEE, Andrea J. Goldsmith, Fellow, IEEE and Urbashi Mitra, Fellow, IEEE arxiv:0704.3644v1

More information

Performance Study of A Non-Blind Algorithm for Smart Antenna System

Performance Study of A Non-Blind Algorithm for Smart Antenna System International Journal of Electronics and Communication Engineering. ISSN 0974-2166 Volume 5, Number 4 (2012), pp. 447-455 International Research Publication House http://www.irphouse.com Performance Study

More information

Transmitter Power Control For Fixed and Mobile Cognitive Radio Adhoc Networks

Transmitter Power Control For Fixed and Mobile Cognitive Radio Adhoc Networks IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 12, Issue 4, Ver. I (Jul.-Aug. 2017), PP 14-20 www.iosrjournals.org Transmitter Power Control

More information

Localization in Wireless Sensor Networks

Localization in Wireless Sensor Networks Localization in Wireless Sensor Networks Part 2: Localization techniques Department of Informatics University of Oslo Cyber Physical Systems, 11.10.2011 Localization problem in WSN In a localization problem

More information

Implementation and Comparative analysis of Orthogonal Frequency Division Multiplexing (OFDM) Signaling Rashmi Choudhary

Implementation and Comparative analysis of Orthogonal Frequency Division Multiplexing (OFDM) Signaling Rashmi Choudhary Implementation and Comparative analysis of Orthogonal Frequency Division Multiplexing (OFDM) Signaling Rashmi Choudhary M.Tech Scholar, ECE Department,SKIT, Jaipur, Abstract Orthogonal Frequency Division

More information

A Cognitive Subcarriers Sharing Scheme for OFDM based Decode and Forward Relaying System

A Cognitive Subcarriers Sharing Scheme for OFDM based Decode and Forward Relaying System A Cognitive Subcarriers Sharing Scheme for OFM based ecode and Forward Relaying System aveen Gupta and Vivek Ashok Bohara WiroComm Research Lab Indraprastha Institute of Information Technology IIIT-elhi

More information

Wireless Transmission & Media Access

Wireless Transmission & Media Access Wireless Transmission & Media Access Signals and Signal Propagation Multiplexing Modulation Media Access 1 Significant parts of slides are based on original material by Prof. Dr.-Ing. Jochen Schiller,

More information

PERFORMANCE OF TWO-PATH SUCCESSIVE RELAYING IN THE PRESENCE OF INTER-RELAY INTERFERENCE

PERFORMANCE OF TWO-PATH SUCCESSIVE RELAYING IN THE PRESENCE OF INTER-RELAY INTERFERENCE PERFORMANCE OF TWO-PATH SUCCESSIVE RELAYING IN THE PRESENCE OF INTER-RELAY INTERFERENCE 1 QIAN YU LIAU, 2 CHEE YEN LEOW Wireless Communication Centre, Faculty of Electrical Engineering, Universiti Teknologi

More information

ABSTRACT. Ahmed Salah Ibrahim, Doctor of Philosophy, 2009

ABSTRACT. Ahmed Salah Ibrahim, Doctor of Philosophy, 2009 ABSTRACT Title of Dissertation: RELAY DEPLOYMENT AND SELECTION IN COOPERATIVE WIRELESS NETWORKS Ahmed Salah Ibrahim, Doctor of Philosophy, 2009 Dissertation directed by: Professor K. J. Ray Liu Department

More information

Transmission Capacity of Wireless Ad Hoc Networks with Multiple Antennas

Transmission Capacity of Wireless Ad Hoc Networks with Multiple Antennas of Wireless Ad Hoc Networks with Multiple Antennas Marios Kountouris Wireless Networking & Communications Group Dept. of Electrical & Computer Engineering The University of Texas at Austin Talk at EURECOM

More information

Mobile Broadband Multimedia Networks

Mobile Broadband Multimedia Networks Mobile Broadband Multimedia Networks Techniques, Models and Tools for 4G Edited by Luis M. Correia v c» -''Vi JP^^fte«jfc-iaSfllto ELSEVIER AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN

More information

ATSC 3.0 Boosting the Signal Strength - MISO

ATSC 3.0 Boosting the Signal Strength - MISO ATSC 3.0 Boosting the Signal Strength - MISO John L. Schadler VP Engineering Dielectric LLC Raymond, ME. Abstract - The new ATSC 3.0 broadcast standard will provide new transmission capabilities. Broadcasters

More information

TECHNOLOGY : MATLAB DOMAIN : COMMUNICATION

TECHNOLOGY : MATLAB DOMAIN : COMMUNICATION TECHNOLOGY : MATLAB DOMAIN : COMMUNICATION S.NO CODE PROJECT TITLES APPLICATION YEAR 1. 2. 3. 4. 5. 6. ITCM01 ITCM02 ITCM03 ITCM04 ITCM05 ITCM06 ON THE SUM-RATE OF THE GAUSSIAN MIMO Z CHANNEL AND THE GAUSSIAN

More information

Verification of Secret Key Generation from UWB Channel Observations

Verification of Secret Key Generation from UWB Channel Observations Verification of Secret Key Generation from UWB Channel Observations Masoud Ghoreishi Madiseh, Shuai He, Michael L. McGuire, Stephen W. Neville, Xiaodai Dong Department of Electrical and Computer Engineering

More information

Power Controlled Random Access

Power Controlled Random Access 1 Power Controlled Random Access Aditya Dua Department of Electrical Engineering Stanford University Stanford, CA 94305 dua@stanford.edu Abstract The lack of an established infrastructure, and the vagaries

More information

Waveform Generation and Testing with Software-Defined Radios (SDR) and RF instruments

Waveform Generation and Testing with Software-Defined Radios (SDR) and RF instruments Waveform Generation and Testing with Software-Defined Radios (SDR) and RF instruments Houman Zarrinkoub, PhD. Product Manager Signal Processing & Communications houmanz@mathworks.com 2015 The MathWorks,

More information

Contents at a Glance

Contents at a Glance Contents at a Glance Preface Acknowledgments V VII Chapter 1 MIMO systems: Multiple Antenna Techniques Yiqing Zhou, Zhengang Pan, Kai-Kit Wong 1 Chapter 2 Modeling of MIMO Mobile-to-Mobile Channels Matthias

More information

Spectrum Management and Cognitive Radios Alessandro Guidotti, XXIV ciclo

Spectrum Management and Cognitive Radios Alessandro Guidotti, XXIV ciclo Bologna, 24-25/01/2012 Spectrum Management and Cognitive Radios Alessandro Guidotti, XXIV ciclo DEIS Fondazione Ugo Bordoni Is spectrum lacking? Command & Control spectrum allocation model Static spectrum

More information

Narrow Band Interference (NBI) Mitigation Technique for TH-PPM UWB Systems in IEEE a Channel Using Wavelet Packet Transform

Narrow Band Interference (NBI) Mitigation Technique for TH-PPM UWB Systems in IEEE a Channel Using Wavelet Packet Transform Narrow Band Interference (NBI) Mitigation Technique for TH-PPM UWB Systems in IEEE 82.15.3a Channel Using Wavelet Pacet Transform Brijesh Kumbhani, K. Sanara Sastry, T. Sujit Reddy and Rahesh Singh Kshetrimayum

More information

Robust Frequency-Hopping System for Channels with Interference and Frequency-Selective Fading

Robust Frequency-Hopping System for Channels with Interference and Frequency-Selective Fading Robust Frequency-Hopping System for Channels with Interference and Frequency-Selective Fading Don Torrieri 1, Shi Cheng 2, and Matthew C. Valenti 2 1 US Army Research Lab 2 Lane Department of Computer

More information

IMPROVED QR AIDED DETECTION UNDER CHANNEL ESTIMATION ERROR CONDITION

IMPROVED QR AIDED DETECTION UNDER CHANNEL ESTIMATION ERROR CONDITION IMPROVED QR AIDED DETECTION UNDER CHANNEL ESTIMATION ERROR CONDITION Jigyasha Shrivastava, Sanjay Khadagade, and Sumit Gupta Department of Electronics and Communications Engineering, Oriental College of

More information

PERFORMANCE ANALYSIS OF CELLULAR CDMA IN PRESENCE OF BEAMFORMING AND SOFT HANDOFF

PERFORMANCE ANALYSIS OF CELLULAR CDMA IN PRESENCE OF BEAMFORMING AND SOFT HANDOFF Progress In Electromagnetics Research, PIER 88, 73 89, 2008 PERFORMANCE ANALYSIS OF CELLULAR CDMA IN PRESENCE OF BEAMFORMING AND SOFT HANDOFF S. D. Roy and S. Kundu Department of Electronics & Communication

More information

Redline Communications Inc. Combining Fixed and Mobile WiMAX Networks Supporting the Advanced Communication Services of Tomorrow.

Redline Communications Inc. Combining Fixed and Mobile WiMAX Networks Supporting the Advanced Communication Services of Tomorrow. Redline Communications Inc. Combining Fixed and Mobile WiMAX Networks Supporting the Advanced Communication Services of Tomorrow WiMAX Whitepaper Author: Frank Rayal, Redline Communications Inc. Redline

More information