KURSOR Menuju Solusi Teknologi Informasi Vol. 9, No. 1, Juli 2017

Size: px
Start display at page:

Download "KURSOR Menuju Solusi Teknologi Informasi Vol. 9, No. 1, Juli 2017"

Transcription

1 Jurnal Ilmiah KURSOR Menuju Solusi Teknologi Informasi Vol. 9, No. 1, Juli 2017 ISSN e-issn OPTIMAL RELAY DESIGN OF ZERO FORCING EQUALIZATION FOR MIMO MULTI WIRELESS RELAYING NETWORKS Apriana Toding Dept. Electrical Engineering Universitas Kristen Indonesia Paulus Makassar, Indonesia Abstract In this paper, we develop the optimal relay design for multiple-input multiple-output (MIMO) multi wireless relaying networks, when we consider the problem of zero-forcing processing is studied for multi-input multi- output multi-relay communication system in which MIMO source-destination pairs communicate simultaneously. It is assumed that due to severe shadowing effects which communication links can be established only with the aid of relay node. The aim is to design the relay amplification matrix to maximize the achievable communication sum- rate through the relay, which in general amplifyingand- forward relaying mechanisms are considered. The zero forcing (ZF) algorithm has studied for a MIMO multi relay network by comparing its performance in terms of bit- error-rate (BER) at destination algorithm. In particular, we investigate its performance with and without using the ZF at the relay. Our results demonstrate that the system performance can be significantly improved by using the ZF algorithm at relay (optimal relay ZF algorithm). Keywords: multiple-input multiple-output (MIMO), multi-relay networks, zero-forcing (ZF),bit-error-rate. 33

2 34 Jurnal Ilmiah KURSOR Vol. 9, No. 1, Juli 2017, hal INTRODUCTION In order to provide a reliable wireless transmission, one needs to compensate for the effects of signal fading due to multi-path propagation and strong shadowing. One way to address these issues is to transmit the signal through one relay [1] [10] or more relays [11], [12], which can be accomplished via a wireless network consisting of geographically separated nodes. And then the basic motivation behind the use of cooperative communications lies in the exploitation of spatial diversity provided by the network nodes [5], [8], [11], [12], as well as the efficient use of power resources [5] [11] which can be achieved by a scheme that simply receives and forwards a given information, yet designed under certain optimality criterion. Relay schemes can be broadly categorized into three general groups: decode-and-forward (DF), compress-and-forward (CF), and amplify-and-forward (AF). In the DF scheme, the relay nodes first decode the received signals and then forward the re-encoded signals toward the destination node [1]. In the CF scheme, the relay nodes compress the received signals by exploiting the statistical dependencies between the signals at the nodes [3]. In the AF scheme, the relay nodes amplify the received signal and rebroadcast the amplified signals toward the destination node [4]. In this paper we consider the AF strategy which is easier to implement compared with the other two approaches. When there is one relay node between source- destination multiple-input multipleoutput (MIMO), we call such system MIMO relay communication system [1] [10]. Also when there are more relay node between source destination MIMO, we call such system MIMO multi-relay communication system [11], [12]. Recently, MIMO relay and multi-relay communication systems have attracted much research interest and provided significant improvement in terms of both spatial efficiency and link reliability. In this paper, we investigated the performance of optimal relay zero-forcing (ZF) algorithm in a MIMO multirelay communication system in terms of biterror-rate (BER) that are not included in [11], [12]. Note that the ZF algorithm has already been studied with MIMO relay communication system [2] and [4]. In this paper, we study the optimal relay ZF algorithm in MIMO multirelay communication system. Our results show that algorithms in MIMO multi-relay communication system have significant performance improvement. The rest of the paper is organized as follows: the system model is described in Section System Model for MIMO Multy-Relay; in Section Optimal Relay ZF, we study the optimal relay ZF in a MIMO multi-relay communication system; Section Result and Discussion shows the simulation results with ZF, MMSE and optimal relay ZF algorithms under various system scenarios and the conclusion is given in Conclusion Section. SYSTEM MODEL FOR MIMO MULTY-RELAY Figure 1 illustrates a two-hop MIMO relay communication system consisting of one source node, K parallel relay nodes, and one destination node. We assume that the source and destination nodes have N s and N d antennas, respectively, and each relay node has N r antennas. The generalization to the system with different number of antennas at each relay node is straightforward. To efficiently exploit the system hardware, each relay node uses the same antennas to transmit and receive signals. Due to its merit of simplicity, we consider the amplify- and-forward relaying scheme at each relay. The communication process between the source and destination nodes is completed in two time slots. Figure 1: System model for MIMO Multi- Relay Channel

3 Toding A., Optimal Relay Design of Zero Forcing Equalization 35 In the first time slot, the N b 1 modulated symbol vectors is linearly precoded as (1) Where, B is an N s N b source precoding matrix. We assume that E[ss H ] = I N, where (.) H denotes matrix (vector) Hermitian transpose, E[.] stands for statistical expectation, and In is an n n identity matrix. The precoded vector x is transmitted to the relay nodes and the received signal at the ith relay node can be written as (2) where H sr,i is the N r N s MIMO channel matrix between the source and the i th relay node, y r,i and v r,i are the received signal and the additive Gaussian noise vectors at the i th relay node, respectively. In the second time slot, the source node is silent, while each relay node transmits the amplified signal vector to the destination node as (3) where Fi is the Nr Nr amplifying matrix at the ith relay node. Thus the received signal vector at the destination node can be written as (4) where H rd,i is the N d N r MIMO channel matrix between the ith relay and the destination node, y d and v d are the total received signal and the additive Gaussian noise vectors at the destination node, respectively. Here (.) T denotes the matrix (vector) transpose, bd(.) stands for a block-diagonal matrix, H sr is a K N r N s channel matrix between the source node and all relay nodes, H rd is an N d K N r channel matrix between all relay nodes and the destination node, v r is obtained by stacking the noise vectors at all the relays and F is the equivalent K Nr K Nr block diagonal relay matrix. The diagram of the equivalent MIMO relay system described by (5) is shown in Figure 2. By introducing (6) the received signal vector at the destination can be equivalently written as where we define as the effective MIMO channel matrix of the source-relaydestination link, and v as the equivalent noise with. In this paper, we try to improve the system BER performance by using ZF equalizer. A simple approach to design the relay is to treat it as an all-pass AF unit, which we construct as F=αI Nr, where α is the amplifying factor of the relay and I Nr is an identity are the transmit power available at the source and the matrix of dimension N r. We can find α from. Here Ps > 0 and Pr > 0 relay nodes respectively, (.) H denotes matrix Hermitian and tr{.} indicates trace of a matrix.. Substituting (1)-(3) into (4), we obtain where we define (5) Figure 2 : Equivalent MIMO Relay Channel. OPTIMAL RELAY ZF IN MIMO MULTI-RELAY SYSTEM We study the following detection algorithms for MIMO multi-relay systems such as the ZF equalizer. If we consider the received signal vector at the destination in (5) then our proposed MIMO multi-relay channel (Figure 1) reduces to a MIMO relay channel (Figure 2)

4 36 Jurnal Ilmiah KURSOR Vol. 9, No. 1, Juli 2017, hal into MIMO channel with the equivalent channel matrix of where, the signals vector of s and the equivalent noise vector of. Now we can analyze the signal detection at the relay receiver with the zero-forcing equivalent MIMO channel. The first decoding technique to be described in this paper is the performance zero-forcing (ZF) technique at relay (ZFR). The relay uses the channel estimate and ZF technique to combine the received signals from all source antennas as (2) at the relay (7) (8) The ZF technique meeting the constraint W H H=I Ns is given by (9) Wr is also known as the pseudo-inverse for a general N r N s matrix and (.) 1 indicates simple matrix inversion. In order for a pseudo-inverse to exist, N r must be greater than or equal to N s. Then, we derived the performance zero-forcing (ZF) technique at destination (ZFD). The estimated signal at destination (5) is given by (10) (11) W d is also known as the pseudo-inverse for a general N d N s matrix and ( ) 1 indicates simple matrix inversion. In order for a pseudoinverse to exist, N d must be greater than or equal to N s. Using the zeroforcing technique approach described above at the relay and destination. and for H sr and H rd, respectively. We transmitted 10 3 randomly generated bits in each channel realization and the BER results are averaged through 200 channel realizations. We plot BER curves versus SNR. In the first example, we simulate the system BER performance of ZF and MMSE at destination algorithms with optimal relay ZF at relay and destination algorithm (proposed algorithm) in MIMO multi relay channel with varying SNR in the source-to-relay link (SN R s ) keeping the relay-to-destination SNR (SN R r ) at 25 db. Figure 3 show the BER performance with N s =N r =N d =3 with the effect of the number of relays (K=2). It can been seen that at BER=10 2, we achieve 10 db gain from ZF to optimal relay ZF algortihm. In the second example, we study the effect of the number of relays to the system BER performance using the proposed algorithm. Figure 4 shows the BER performance with K=2, 4, and 6. It can be seen that at BER = 10 3, we achieve a 5 db gain by increasing from K=2 to K=5. In the third example, we simulate the system BER performance of ZF and MMSE at destination algorithms with optimal relay ZF at relay and destination algorithm (proposed algorithm) in MIMO multi relay channel with varying SNR in the relay-to-destination SNR (SN R r ) keeping the source-to-relay link (SN R s ) at 25 db. Figure 5 show the BER performance with N s =N r =N d =3. RESULT AND DISCUSSION In the simulations, the transmission signaling is in spatial multiplexing mode (i.e., the source transmits independent data streams from different antennas) with total transmit power uniformly distributed among the transmit antennas. We study the performance of the proposed zero-forcing technique algorithm for MIMO multi-relay systems. All simulations are conducted in a flat Rayleigh fading environment using the BPSK constellation, and the noises are i.i.d. Gaussian random variables with zero mean and unit variance. The channel matrices have zero-mean entries with variances Figure 3: Example 1. BER versus SN R s N s = N r = N d = 3 and SN R r = 25 db for MIMO Multi-Relay channel.

5 Toding A., Optimal Relay Design of Zero Forcing Equalization 37 Our results demonstrate that optimal relay ZF algorithm has lower BER compared to the ZF and MMSE relay algorithms. Figure 4: Example 2. BER versus SN R s N s = N r = N d = 3 and SN R r = 25 db for MIMO Multi-Relay channel. CONCLUSION In conclusion, we have demonstrated the advantage of using ZF equalizer algorithm at relay in MIMO multi relay network by. We designed relays as all-pass amplify-andforward (AF) units which are simpler to implement. Our results demonstrate that optimal relay ZF algorithm at relay and destination outperform the ZF and MMSE algorithms at destination. Future works may include analysis the MMSE equalizer for MIMO multi-relay networks and optimizing the source and the relay matrices to allocate power efficiently in a cooperative MIMO relay network. ACKNOWLEDGMENT This work was supported under Ministry of Research, Technology, and Higher Education of Republic of Indonesia (Ristekdikti) and Universitas Kristen Indonesia Paulus Makassar (UKIP) Figure 5: Example 3. BER versus SN R s N s = N r = N d = 3 and SN R r = 25 db for MIMO Multi-Relay channel. REFERENCES [1] A. Kalantari and M. Neinavaie, A diversity achieving power profile in MIMO decode and forward relay networks, in Information Technology, Electronics and Mobile Communication Conference (IEMCON), th IEEE Annual, 2017, pp [2] L. Gerdes, L. Weiland, and W. Utschick, A zero-forcing partial decode-andforward scheme for the Gaussian MIMO relay channel, in Communications (ICC), 2013 IEEE International Conference on, 2013, pp [3] S. Simoens, O. Muñoz-Medina, J. Vidal, and A. Del Coso, Compress-and-forward cooperative MIMO relaying with full channel state information, IEEE Trans. Signal Process., vol. 58, no. 2, pp , [4] A. Toding and Y. Rong, Investigating successive interference cancellation in MIMO relay network, in TENCON IEEE Region 10 Conference, 2011, pp [5] W. Guan and H. Luo, Joint MMSE transceiver design in non-regenerative MIMO relay systems, IEEE Commun. Lett., vol. 12, no. 7, 2008.

6 38 Jurnal Ilmiah KURSOR Vol. 9, No. 1, Juli 2017, hal [6] A. Toding and R. Arungla bi, Investigating Performance Zero-Forcing of Source Weighting Matrix in MIMO Relay Communication, in Prosiding International conference on Information Technology and Business (ICITB), 2015, pp [7] A. S. Behbahani, R. Merched, and A. M. Eltawil, Optimizations of a MIMO relay network, IEEE Trans. Signal Process., vol. 56, no. 10, pp , [8] Y. Rong, X. Tang, and Y. Hua, A unified framework for optimizing linear nonregenerative multicarrier MIMO relay communication systems, IEEE Trans. Signal Process., vol. 57, no. 12, pp , IEEE Trans. Wirel. Commun., vol. 6, no. 4, [10] B. Wang, J. Zhang, and A. Host-Madsen, On the capacity of MIMO relay channels, IEEE Trans. Inf. Theory, vol. 51, no. 1, pp , [11] A. Toding, M. R. Khandaker, and Y. Rong, Joint source and relay design for MIMO multi-relay systems using projected gradient approach, EURASIP J. Wirel. Commun. Netw., vol. 2014, no. 1, p. 151, [12] Apriana Toding and Syafruddin Syarif, Performance Analysis of MIMO Multi- Relay Networks With Zero-Forcing Equalizer, Proceeding Int. Conf. Ind. Technol. Sustain. Dev. 2017, Oct [9] X. Tang and Y. Hua, Optimal design of non-regenerative MIMO wireless relays,

Relay Selection in Adaptive Buffer-Aided Space-Time Coding with TAS for Cooperative Wireless Networks

Relay Selection in Adaptive Buffer-Aided Space-Time Coding with TAS for Cooperative Wireless Networks Asian Journal of Engineering and Applied Technology ISSN: 2249-068X Vol. 6 No. 1, 2017, pp.29-33 The Research Publication, www.trp.org.in Relay Selection in Adaptive Buffer-Aided Space-Time Coding with

More information

IMPROVED QR AIDED DETECTION UNDER CHANNEL ESTIMATION ERROR CONDITION

IMPROVED QR AIDED DETECTION UNDER CHANNEL ESTIMATION ERROR CONDITION IMPROVED QR AIDED DETECTION UNDER CHANNEL ESTIMATION ERROR CONDITION Jigyasha Shrivastava, Sanjay Khadagade, and Sumit Gupta Department of Electronics and Communications Engineering, Oriental College of

More information

VOL. 3, NO.11 Nov, 2012 ISSN Journal of Emerging Trends in Computing and Information Sciences CIS Journal. All rights reserved.

VOL. 3, NO.11 Nov, 2012 ISSN Journal of Emerging Trends in Computing and Information Sciences CIS Journal. All rights reserved. Effect of Fading Correlation on the Performance of Spatial Multiplexed MIMO systems with circular antennas M. A. Mangoud Department of Electrical and Electronics Engineering, University of Bahrain P. O.

More information

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 12, DECEMBER

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 12, DECEMBER IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 12, DECEMBER 2009 4837 A Unified Framework for Optimizing Linear Nonregenerative Multicarrier MIMO Relay Communication Systems Yue Rong, Member, IEEE,

More information

MATLAB Simulation for Fixed Gain Amplify and Forward MIMO Relaying System using OSTBC under Flat Fading Rayleigh Channel

MATLAB Simulation for Fixed Gain Amplify and Forward MIMO Relaying System using OSTBC under Flat Fading Rayleigh Channel MATLAB Simulation for Fixed Gain Amplify and Forward MIMO Relaying System using OSTBC under Flat Fading Rayleigh Channel Anas A. Abu Tabaneh 1, Abdulmonem H.Shaheen, Luai Z.Qasrawe 3, Mohammad H.Zghair

More information

Performance Evaluation of V-BLAST MIMO System Using Rayleigh & Rician Channels

Performance Evaluation of V-BLAST MIMO System Using Rayleigh & Rician Channels International Journal of Information & Computation Technology. ISSN 0974-2239 Volume 4, Number 15 (2014), pp. 1549-1558 International Research Publications House http://www. irphouse.com Performance Evaluation

More information

UNEQUAL POWER ALLOCATION FOR JPEG TRANSMISSION OVER MIMO SYSTEMS. Muhammad F. Sabir, Robert W. Heath Jr. and Alan C. Bovik

UNEQUAL POWER ALLOCATION FOR JPEG TRANSMISSION OVER MIMO SYSTEMS. Muhammad F. Sabir, Robert W. Heath Jr. and Alan C. Bovik UNEQUAL POWER ALLOCATION FOR JPEG TRANSMISSION OVER MIMO SYSTEMS Muhammad F. Sabir, Robert W. Heath Jr. and Alan C. Bovik Department of Electrical and Computer Engineering, The University of Texas at Austin,

More information

Hybrid ARQ Scheme with Antenna Permutation for MIMO Systems in Slow Fading Channels

Hybrid ARQ Scheme with Antenna Permutation for MIMO Systems in Slow Fading Channels Hybrid ARQ Scheme with Antenna Permutation for MIMO Systems in Slow Fading Channels Jianfeng Wang, Meizhen Tu, Kan Zheng, and Wenbo Wang School of Telecommunication Engineering, Beijing University of Posts

More information

Zero-Forcing Transceiver Design in the Multi-User MIMO Cognitive Relay Networks

Zero-Forcing Transceiver Design in the Multi-User MIMO Cognitive Relay Networks 213 8th International Conference on Communications and Networking in China (CHINACOM) Zero-Forcing Transceiver Design in the Multi-User MIMO Cognitive Relay Networks Guangchi Zhang and Guangping Li School

More information

Antennas and Propagation. Chapter 6d: Diversity Techniques and Spatial Multiplexing

Antennas and Propagation. Chapter 6d: Diversity Techniques and Spatial Multiplexing Antennas and Propagation d: Diversity Techniques and Spatial Multiplexing Introduction: Diversity Diversity Use (or introduce) redundancy in the communications system Improve (short time) link reliability

More information

Detection of SINR Interference in MIMO Transmission using Power Allocation

Detection of SINR Interference in MIMO Transmission using Power Allocation International Journal of Electronics and Communication Engineering. ISSN 0974-2166 Volume 5, Number 1 (2012), pp. 49-58 International Research Publication House http://www.irphouse.com Detection of SINR

More information

MMSE Algorithm Based MIMO Transmission Scheme

MMSE Algorithm Based MIMO Transmission Scheme MMSE Algorithm Based MIMO Transmission Scheme Rashmi Tiwari 1, Agya Mishra 2 12 Department of Electronics and Tele-Communication Engineering, Jabalpur Engineering College, Jabalpur, Madhya Pradesh, India

More information

MULTIPATH fading could severely degrade the performance

MULTIPATH fading could severely degrade the performance 1986 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 53, NO. 12, DECEMBER 2005 Rate-One Space Time Block Codes With Full Diversity Liang Xian and Huaping Liu, Member, IEEE Abstract Orthogonal space time block

More information

Block Processing Linear Equalizer for MIMO CDMA Downlinks in STTD Mode

Block Processing Linear Equalizer for MIMO CDMA Downlinks in STTD Mode Block Processing Linear Equalizer for MIMO CDMA Downlinks in STTD Mode Yan Li Yingxue Li Abstract In this study, an enhanced chip-level linear equalizer is proposed for multiple-input multiple-out (MIMO)

More information

ELEC E7210: Communication Theory. Lecture 11: MIMO Systems and Space-time Communications

ELEC E7210: Communication Theory. Lecture 11: MIMO Systems and Space-time Communications ELEC E7210: Communication Theory Lecture 11: MIMO Systems and Space-time Communications Overview of the last lecture MIMO systems -parallel decomposition; - beamforming; - MIMO channel capacity MIMO Key

More information

Fig.1channel model of multiuser ss OSTBC system

Fig.1channel model of multiuser ss OSTBC system IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 1, Ver. V (Feb. 2014), PP 48-52 Cooperative Spectrum Sensing In Cognitive Radio

More information

Generalized Signal Alignment For MIMO Two-Way X Relay Channels

Generalized Signal Alignment For MIMO Two-Way X Relay Channels Generalized Signal Alignment For IO Two-Way X Relay Channels Kangqi Liu, eixia Tao, Zhengzheng Xiang and Xin Long Dept. of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China Emails:

More information

Optimum Power Allocation in Cooperative Networks

Optimum Power Allocation in Cooperative Networks Optimum Power Allocation in Cooperative Networks Jaime Adeane, Miguel R.D. Rodrigues, and Ian J. Wassell Laboratory for Communication Engineering Department of Engineering University of Cambridge 5 JJ

More information

IN RECENT years, wireless multiple-input multiple-output

IN RECENT years, wireless multiple-input multiple-output 1936 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 3, NO. 6, NOVEMBER 2004 On Strategies of Multiuser MIMO Transmit Signal Processing Ruly Lai-U Choi, Michel T. Ivrlač, Ross D. Murch, and Wolfgang

More information

Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques

Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques 1 Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques Bin Song and Martin Haardt Outline 2 Multi-user user MIMO System (main topic in phase I and phase II) critical problem Downlink

More information

Efficient Relay Beamforming Design With SIC Detection for Dual-Hop MIMO Relay Networks

Efficient Relay Beamforming Design With SIC Detection for Dual-Hop MIMO Relay Networks 4192 IEEE TRANSACTIONS ON VEICULAR TECNOLOGY, VOL. 59, NO. 8, OCTOBER 2010 Efficient Relay Beamforming Design With SIC Detection for Dual-op MIMO Relay Networks Yu Zhang, anwen Luo, and Wen Chen, Member,

More information

Enhancement of Transmission Reliability in Multi Input Multi Output(MIMO) Antenna System for Improved Performance

Enhancement of Transmission Reliability in Multi Input Multi Output(MIMO) Antenna System for Improved Performance Advances in Wireless and Mobile Communications. ISSN 0973-6972 Volume 10, Number 4 (2017), pp. 593-601 Research India Publications http://www.ripublication.com Enhancement of Transmission Reliability in

More information

Performance Evaluation of STBC-OFDM System for Wireless Communication

Performance Evaluation of STBC-OFDM System for Wireless Communication Performance Evaluation of STBC-OFDM System for Wireless Communication Apeksha Deshmukh, Prof. Dr. M. D. Kokate Department of E&TC, K.K.W.I.E.R. College, Nasik, apeksha19may@gmail.com Abstract In this paper

More information

Source Transmit Antenna Selection for MIMO Decode-and-Forward Relay Networks

Source Transmit Antenna Selection for MIMO Decode-and-Forward Relay Networks IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 7, APRIL 1, 2013 1657 Source Transmit Antenna Selection for MIMO Decode--Forward Relay Networks Xianglan Jin, Jong-Seon No, Dong-Joon Shin Abstract

More information

Joint Optimization of Relay Strategies and Resource Allocations in Cooperative Cellular Networks

Joint Optimization of Relay Strategies and Resource Allocations in Cooperative Cellular Networks Joint Optimization of Relay Strategies and Resource Allocations in Cooperative Cellular Networks Truman Ng, Wei Yu Electrical and Computer Engineering Department University of Toronto Jianzhong (Charlie)

More information

THE emergence of multiuser transmission techniques for

THE emergence of multiuser transmission techniques for IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 54, NO. 10, OCTOBER 2006 1747 Degrees of Freedom in Wireless Multiuser Spatial Multiplex Systems With Multiple Antennas Wei Yu, Member, IEEE, and Wonjong Rhee,

More information

/11/$ IEEE

/11/$ IEEE This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE Globecom 0 proceedings. Two-way Amplify-and-Forward MIMO Relay

More information

PERFORMANCE OF TWO-PATH SUCCESSIVE RELAYING IN THE PRESENCE OF INTER-RELAY INTERFERENCE

PERFORMANCE OF TWO-PATH SUCCESSIVE RELAYING IN THE PRESENCE OF INTER-RELAY INTERFERENCE PERFORMANCE OF TWO-PATH SUCCESSIVE RELAYING IN THE PRESENCE OF INTER-RELAY INTERFERENCE 1 QIAN YU LIAU, 2 CHEE YEN LEOW Wireless Communication Centre, Faculty of Electrical Engineering, Universiti Teknologi

More information

Cooperative Orthogonal Space-Time-Frequency Block Codes over a MIMO-OFDM Frequency Selective Channel

Cooperative Orthogonal Space-Time-Frequency Block Codes over a MIMO-OFDM Frequency Selective Channel Cooperative Orthogonal Space-Time-Frequency Block Codes over a MIMO-OFDM Frequency Selective Channel M. Rezaei* and A. Falahati* (C.A.) Abstract: In this paper, a cooperative algorithm to improve the orthogonal

More information

Low Complexity Power Allocation in Multiple-antenna Relay Networks

Low Complexity Power Allocation in Multiple-antenna Relay Networks Low Complexity Power Allocation in Multiple-antenna Relay Networks Yi Zheng and Steven D. Blostein Dept. of Electrical and Computer Engineering Queen s University, Kingston, Ontario, K7L3N6, Canada Email:

More information

Performance Analysis of Cooperative Communication System with a SISO system in Flat Fading Rayleigh channel

Performance Analysis of Cooperative Communication System with a SISO system in Flat Fading Rayleigh channel Performance Analysis of Cooperative Communication System with a SISO system in Flat Fading Rayleigh channel Sara Viqar 1, Shoab Ahmed 2, Zaka ul Mustafa 3 and Waleed Ejaz 4 1, 2, 3 National University

More information

Practical Cooperative Coding for Half-Duplex Relay Channels

Practical Cooperative Coding for Half-Duplex Relay Channels Practical Cooperative Coding for Half-Duplex Relay Channels Noah Jacobsen Alcatel-Lucent 600 Mountain Avenue Murray Hill, NJ 07974 jacobsen@alcatel-lucent.com Abstract Simple variations on rate-compatible

More information

Cooperative communication with regenerative relays for cognitive radio networks

Cooperative communication with regenerative relays for cognitive radio networks 1 Cooperative communication with regenerative relays for cognitive radio networks Tuan Do and Brian L. Mark Dept. of Electrical and Computer Engineering George Mason University, MS 1G5 4400 University

More information

Energy Harvested and Achievable Rate of Massive MIMO under Channel Reciprocity Error

Energy Harvested and Achievable Rate of Massive MIMO under Channel Reciprocity Error Energy Harvested and Achievable Rate of Massive MIMO under Channel Reciprocity Error Abhishek Thakur 1 1Student, Dept. of Electronics & Communication Engineering, IIIT Manipur ---------------------------------------------------------------------***---------------------------------------------------------------------

More information

Joint Relaying and Network Coding in Wireless Networks

Joint Relaying and Network Coding in Wireless Networks Joint Relaying and Network Coding in Wireless Networks Sachin Katti Ivana Marić Andrea Goldsmith Dina Katabi Muriel Médard MIT Stanford Stanford MIT MIT Abstract Relaying is a fundamental building block

More information

Minimum number of antennas and degrees of freedom of multiple-input multiple-output multi-user two-way relay X channels

Minimum number of antennas and degrees of freedom of multiple-input multiple-output multi-user two-way relay X channels IET Communications Research Article Minimum number of antennas and degrees of freedom of multiple-input multiple-output multi-user two-way relay X channels ISSN 1751-8628 Received on 28th July 2014 Accepted

More information

A Limited Feedback Joint Precoding for Amplify-and-Forward Relaying

A Limited Feedback Joint Precoding for Amplify-and-Forward Relaying IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 3, MARCH 2010 1347 A Limited Feedback Joint Precoding for Amplify--Forward Relaying Yongming Huang, Luxi Yang, Member, IEEE, Mats Bengtsson, Senior

More information

On Differential Modulation in Downlink Multiuser MIMO Systems

On Differential Modulation in Downlink Multiuser MIMO Systems On Differential Modulation in Downlin Multiuser MIMO Systems Fahad Alsifiany, Aissa Ihlef, and Jonathon Chambers ComS IP Group, School of Electrical and Electronic Engineering, Newcastle University, NE

More information

BER PERFORMANCE IMPROVEMENT USING MIMO TECHNIQUE OVER RAYLEIGH WIRELESS CHANNEL with DIFFERENT EQUALIZERS

BER PERFORMANCE IMPROVEMENT USING MIMO TECHNIQUE OVER RAYLEIGH WIRELESS CHANNEL with DIFFERENT EQUALIZERS BER PERFORMANCE IMPROVEMENT USING MIMO TECHNIQUE OVER RAYLEIGH WIRELESS CHANNEL with DIFFERENT EQUALIZERS Amit Kumar Sahu *, Sudhansu Sekhar Singh # * Kalam Institute of Technology, Berhampur, Odisha,

More information

COMBINING GALOIS WITH COMPLEX FIELD CODING FOR HIGH-RATE SPACE-TIME COMMUNICATIONS. Renqiu Wang, Zhengdao Wang, and Georgios B.

COMBINING GALOIS WITH COMPLEX FIELD CODING FOR HIGH-RATE SPACE-TIME COMMUNICATIONS. Renqiu Wang, Zhengdao Wang, and Georgios B. COMBINING GALOIS WITH COMPLEX FIELD CODING FOR HIGH-RATE SPACE-TIME COMMUNICATIONS Renqiu Wang, Zhengdao Wang, and Georgios B. Giannakis Dept. of ECE, Univ. of Minnesota, Minneapolis, MN 55455, USA e-mail:

More information

An Analytical Design: Performance Comparison of MMSE and ZF Detector

An Analytical Design: Performance Comparison of MMSE and ZF Detector An Analytical Design: Performance Comparison of MMSE and ZF Detector Pargat Singh Sidhu 1, Gurpreet Singh 2, Amit Grover 3* 1. Department of Electronics and Communication Engineering, Shaheed Bhagat Singh

More information

A New Approach to Layered Space-Time Code Design

A New Approach to Layered Space-Time Code Design A New Approach to Layered Space-Time Code Design Monika Agrawal Assistant Professor CARE, IIT Delhi maggarwal@care.iitd.ernet.in Tarun Pangti Software Engineer Samsung, Bangalore tarunpangti@yahoo.com

More information

An Alamouti-based Hybrid-ARQ Scheme for MIMO Systems

An Alamouti-based Hybrid-ARQ Scheme for MIMO Systems An Alamouti-based Hybrid-ARQ Scheme MIMO Systems Kodzovi Acolatse Center Communication and Signal Processing Research Department, New Jersey Institute of Technology University Heights, Newark, NJ 07102

More information

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE) Volume 3, Issue 11, November 2014

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE) Volume 3, Issue 11, November 2014 An Overview of Spatial Modulated Space Time Block Codes Sarita Boolchandani Kapil Sahu Brijesh Kumar Asst. Prof. Assoc. Prof Asst. Prof. Vivekananda Institute Of Technology-East, Jaipur Abstract: The major

More information

An Efficient Linear Precoding Scheme Based on Block Diagonalization for Multiuser MIMO Downlink System

An Efficient Linear Precoding Scheme Based on Block Diagonalization for Multiuser MIMO Downlink System An Efficient Linear Precoding Scheme Based on Block Diagonalization for Multiuser MIMO Downlink System Abhishek Gupta #, Garima Saini * Dr.SBL Sachan $ # ME Student, Department of ECE, NITTTR, Chandigarh

More information

Random Beamforming with Multi-beam Selection for MIMO Broadcast Channels

Random Beamforming with Multi-beam Selection for MIMO Broadcast Channels Random Beamforming with Multi-beam Selection for MIMO Broadcast Channels Kai Zhang and Zhisheng Niu Dept. of Electronic Engineering, Tsinghua University Beijing 84, China zhangkai98@mails.tsinghua.e.cn,

More information

Lecture 8 Multi- User MIMO

Lecture 8 Multi- User MIMO Lecture 8 Multi- User MIMO I-Hsiang Wang ihwang@ntu.edu.tw 5/7, 014 Multi- User MIMO System So far we discussed how multiple antennas increase the capacity and reliability in point-to-point channels Question:

More information

Optimization of Coded MIMO-Transmission with Antenna Selection

Optimization of Coded MIMO-Transmission with Antenna Selection Optimization of Coded MIMO-Transmission with Antenna Selection Biljana Badic, Paul Fuxjäger, Hans Weinrichter Institute of Communications and Radio Frequency Engineering Vienna University of Technology

More information

Amplify-and-Forward Space-Time Coded Cooperation via Incremental Relaying Behrouz Maham and Are Hjørungnes

Amplify-and-Forward Space-Time Coded Cooperation via Incremental Relaying Behrouz Maham and Are Hjørungnes Amplify-and-Forward Space-Time Coded Cooperation via Incremental elaying Behrouz Maham and Are Hjørungnes UniK University Graduate Center, University of Oslo Instituttveien-5, N-7, Kjeller, Norway behrouz@unik.no,

More information

Robust MMSE Tomlinson-Harashima Precoder for Multiuser MISO Downlink with Imperfect CSI

Robust MMSE Tomlinson-Harashima Precoder for Multiuser MISO Downlink with Imperfect CSI Robust MMSE Tomlinson-Harashima Precoder for Multiuser MISO Downlink with Imperfect CSI P. Ubaidulla and A. Chockalingam Department of ECE, Indian Institute of Science, Bangalore 560012, INDIA Abstract

More information

Study and Analysis of 2x2 MIMO Systems for Different Modulation Techniques using MATLAB

Study and Analysis of 2x2 MIMO Systems for Different Modulation Techniques using MATLAB Study and Analysis of 2x2 MIMO Systems for Different Modulation Techniques using MATLAB Ramanagoud Biradar 1, Dr.G.Sadashivappa 2 Student, Telecommunication, RV college of Engineering, Bangalore, India

More information

Performance Evaluation of V-Blast Mimo System in Fading Diversity Using Matched Filter

Performance Evaluation of V-Blast Mimo System in Fading Diversity Using Matched Filter Performance Evaluation of V-Blast Mimo System in Fading Diversity Using Matched Filter Priya Sharma 1, Prof. Vijay Prakash Singh 2 1 Deptt. of EC, B.E.R.I, BHOPAL 2 HOD, Deptt. of EC, B.E.R.I, BHOPAL Abstract--

More information

Iterative Detection and Decoding with PIC Algorithm for MIMO-OFDM Systems

Iterative Detection and Decoding with PIC Algorithm for MIMO-OFDM Systems , 2009, 5, 351-356 doi:10.4236/ijcns.2009.25038 Published Online August 2009 (http://www.scirp.org/journal/ijcns/). Iterative Detection and Decoding with PIC Algorithm for MIMO-OFDM Systems Zhongpeng WANG

More information

CHAPTER 8 MIMO. Xijun Wang

CHAPTER 8 MIMO. Xijun Wang CHAPTER 8 MIMO Xijun Wang WEEKLY READING 1. Goldsmith, Wireless Communications, Chapters 10 2. Tse, Fundamentals of Wireless Communication, Chapter 7-10 2 MIMO 3 BENEFITS OF MIMO n Array gain The increase

More information

Efficient Decoding for Extended Alamouti Space-Time Block code

Efficient Decoding for Extended Alamouti Space-Time Block code Efficient Decoding for Extended Alamouti Space-Time Block code Zafar Q. Taha Dept. of Electrical Engineering College of Engineering Imam Muhammad Ibn Saud Islamic University Riyadh, Saudi Arabia Email:

More information

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Basic Transmission Schemes 1 September 8, Presentation Outline

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Basic Transmission Schemes 1 September 8, Presentation Outline Multiple Antennas Capacity and Basic Transmission Schemes Mats Bengtsson, Björn Ottersten Basic Transmission Schemes 1 September 8, 2005 Presentation Outline Channel capacity Some fine details and misconceptions

More information

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications COMM 907: Spread Spectrum Communications Lecture 10 - LTE (4G) -Technologies used in 4G and 5G The Need for LTE Long Term Evolution (LTE) With the growth of mobile data and mobile users, it becomes essential

More information

ISSN Vol.03,Issue.17 August-2014, Pages:

ISSN Vol.03,Issue.17 August-2014, Pages: www.semargroup.org, www.ijsetr.com ISSN 2319-8885 Vol.03,Issue.17 August-2014, Pages:3542-3548 Implementation of MIMO Multi-Cell Broadcast Channels Based on Interference Alignment Techniques B.SANTHOSHA

More information

Subcarrier-Pair Based Resource Allocation for Cooperative AF Multi-Relay OFDM Systems

Subcarrier-Pair Based Resource Allocation for Cooperative AF Multi-Relay OFDM Systems Subcarrier-Pair Based Resource Allocation for Cooperative AF Multi-Relay OFDM Systems Wenbing Dang, Meixia Tao, Hua Mu and Jianwei Huang Dept. of Electronic Engineering, Shanghai Jiao Tong University,

More information

Optimal user pairing for multiuser MIMO

Optimal user pairing for multiuser MIMO Optimal user pairing for multiuser MIMO Emanuele Viterbo D.E.I.S. Università della Calabria Arcavacata di Rende, Italy Email: viterbo@deis.unical.it Ari Hottinen Nokia Research Center Helsinki, Finland

More information

Diversity Techniques

Diversity Techniques Diversity Techniques Vasileios Papoutsis Wireless Telecommunication Laboratory Department of Electrical and Computer Engineering University of Patras Patras, Greece No.1 Outline Introduction Diversity

More information

BER Performance of Adaptive Spatial Modulation

BER Performance of Adaptive Spatial Modulation IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 13, Issue 2, Ver. I (Mar. - Apr. 2018), PP 35-39 www.iosrjournals.org BER Performance of

More information

Power allocation for Block Diagonalization Multi-user MIMO downlink with fair user scheduling and unequal average SNR users

Power allocation for Block Diagonalization Multi-user MIMO downlink with fair user scheduling and unequal average SNR users Power allocation for Block Diagonalization Multi-user MIMO downlink with fair user scheduling and unequal average SNR users Therdkiat A. (Kiak) Araki-Sakaguchi Laboratory MCRG group seminar 12 July 2012

More information

Relay Scheduling and Interference Cancellation for Quantize-Map-and-Forward Cooperative Relaying

Relay Scheduling and Interference Cancellation for Quantize-Map-and-Forward Cooperative Relaying 013 IEEE International Symposium on Information Theory Relay Scheduling and Interference Cancellation for Quantize-Map-and-Forward Cooperative Relaying M. Jorgovanovic, M. Weiner, D. Tse and B. Nikolić

More information

LATTICE REDUCTION AIDED DETECTION TECHNIQUES FOR MIMO SYSTEMS

LATTICE REDUCTION AIDED DETECTION TECHNIQUES FOR MIMO SYSTEMS LATTICE REDUCTION AIDED DETECTION TECHNIQUES FOR MIMO SYSTEMS Susmita Prasad 1, Samarendra Nath Sur 2 Dept. of Electronics and Communication Engineering, Sikkim Manipal Institute of Technology, Majhitar,

More information

Communication over MIMO X Channel: Signalling and Performance Analysis

Communication over MIMO X Channel: Signalling and Performance Analysis Communication over MIMO X Channel: Signalling and Performance Analysis Mohammad Ali Maddah-Ali, Abolfazl S. Motahari, and Amir K. Khandani Coding & Signal Transmission Laboratory Department of Electrical

More information

On limits of Wireless Communications in a Fading Environment: a General Parameterization Quantifying Performance in Fading Channel

On limits of Wireless Communications in a Fading Environment: a General Parameterization Quantifying Performance in Fading Channel Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol. 2, No. 3, September 2014, pp. 125~131 ISSN: 2089-3272 125 On limits of Wireless Communications in a Fading Environment: a General

More information

On the Achievable Diversity-vs-Multiplexing Tradeoff in Cooperative Channels

On the Achievable Diversity-vs-Multiplexing Tradeoff in Cooperative Channels On the Achievable Diversity-vs-Multiplexing Tradeoff in Cooperative Channels Kambiz Azarian, Hesham El Gamal, and Philip Schniter Dept of Electrical Engineering, The Ohio State University Columbus, OH

More information

5232 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 20, OCTOBER 15, 2016

5232 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 20, OCTOBER 15, 2016 5232 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 20, OCTOBER 15, 2016 New Results on Transceiver Design for Two-op Amplify-and-Forward MIMO Relay Systems With Direct Link Zhiqiang e, Member, IEEE,

More information

Optimum Threshold for SNR-based Selective Digital Relaying Schemes in Cooperative Wireless Networks

Optimum Threshold for SNR-based Selective Digital Relaying Schemes in Cooperative Wireless Networks Optimum Threshold for SNR-based Selective Digital Relaying Schemes in Cooperative Wireless Networks Furuzan Atay Onat, Abdulkareem Adinoyi, Yijia Fan, Halim Yanikomeroglu, and John S. Thompson Broadband

More information

New Approach for Network Modulation in Cooperative Communication

New Approach for Network Modulation in Cooperative Communication IJECT Vo l 7, Is s u e 2, Ap r i l - Ju n e 2016 ISSN : 2230-7109 (Online) ISSN : 2230-9543 (Print) New Approach for Network Modulation in Cooperative Communication 1 Praveen Kumar Singh, 2 Santosh Sharma,

More information

Performance Evaluation of Full-Duplex Energy Harvesting Relaying Networks Using PDC Self- Interference Cancellation

Performance Evaluation of Full-Duplex Energy Harvesting Relaying Networks Using PDC Self- Interference Cancellation Performance Evaluation of Full-Duplex Energy Harvesting Relaying Networks Using PDC Self- Interference Cancellation Jiaman Li School of Electrical, Computer and Telecommunication Engineering University

More information

Performance Comparison of Cooperative OFDM and SC-FDE Relay Networks in A Frequency-Selective Fading Channel

Performance Comparison of Cooperative OFDM and SC-FDE Relay Networks in A Frequency-Selective Fading Channel Performance Comparison of Cooperative and -FDE Relay Networks in A Frequency-Selective Fading Alina Alexandra Florea, Dept. of Telecommunications, Services and Usages INSA Lyon, France alina.florea@it-sudparis.eu

More information

Amplitude and Phase Distortions in MIMO and Diversity Systems

Amplitude and Phase Distortions in MIMO and Diversity Systems Amplitude and Phase Distortions in MIMO and Diversity Systems Christiane Kuhnert, Gerd Saala, Christian Waldschmidt, Werner Wiesbeck Institut für Höchstfrequenztechnik und Elektronik (IHE) Universität

More information

Analysis of maximal-ratio transmit and combining spatial diversity

Analysis of maximal-ratio transmit and combining spatial diversity This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. Analysis of maximal-ratio transmit and combining spatial diversity Fumiyuki Adachi a),

More information

SPECTRUM SHARING IN CRN USING ARP PROTOCOL- ANALYSIS OF HIGH DATA RATE

SPECTRUM SHARING IN CRN USING ARP PROTOCOL- ANALYSIS OF HIGH DATA RATE Int. J. Chem. Sci.: 14(S3), 2016, 794-800 ISSN 0972-768X www.sadgurupublications.com SPECTRUM SHARING IN CRN USING ARP PROTOCOL- ANALYSIS OF HIGH DATA RATE ADITYA SAI *, ARSHEYA AFRAN and PRIYANKA Information

More information

Physical Layer Network Coding with Multiple Antennas

Physical Layer Network Coding with Multiple Antennas This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 00 proceedings Physical Layer Network Coding with Multiple Antennas

More information

VARIOUS relay communication techniques have been

VARIOUS relay communication techniques have been IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 3, MARCH 2010 1833 Multiuser Two-Way Amplify-and-Forward Relay Processing and Power Control Methods for Beamforming Systems Jingon Joung, Member, IEEE,

More information

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY [Dubey, 2(3): March, 2013] ISSN: 2277-9655 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Performance Analysis of Space Time Block Coded Spatial Modulation (STBC_SM) Under Dual

More information

Relay Selection for Low-Complexity Coded Cooperation

Relay Selection for Low-Complexity Coded Cooperation Relay Selection for Low-Complexity Coded Cooperation Josephine P. K. Chu,RavirajS.Adve and Andrew W. Eckford Dept. of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada

More information

Transmit Antenna Selection in Linear Receivers: a Geometrical Approach

Transmit Antenna Selection in Linear Receivers: a Geometrical Approach Transmit Antenna Selection in Linear Receivers: a Geometrical Approach I. Berenguer, X. Wang and I.J. Wassell Abstract: We consider transmit antenna subset selection in spatial multiplexing systems. In

More information

MIMO Channel Capacity in Co-Channel Interference

MIMO Channel Capacity in Co-Channel Interference MIMO Channel Capacity in Co-Channel Interference Yi Song and Steven D. Blostein Department of Electrical and Computer Engineering Queen s University Kingston, Ontario, Canada, K7L 3N6 E-mail: {songy, sdb}@ee.queensu.ca

More information

Performance Analysis of Multiuser MIMO Systems with Scheduling and Antenna Selection

Performance Analysis of Multiuser MIMO Systems with Scheduling and Antenna Selection Performance Analysis of Multiuser MIMO Systems with Scheduling and Antenna Selection Mohammad Torabi Wessam Ajib David Haccoun Dept. of Electrical Engineering Dept. of Computer Science Dept. of Electrical

More information

WIRELESS relays are known to be useful to increase the

WIRELESS relays are known to be useful to increase the IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 5, MAY 2010 2823 Power Allocation for a MIMO Relay System With Multiple-Antenna Users Yuan Yu and Yingbo Hua, Fellow, IEEE Abstract A power allocation

More information

PAIR-AWARE TRANSCEIVE BEAMFORMING FOR NON-REGENERATIVE MULTI-USER TWO-WAY RELAYING. Aditya Umbu Tana Amah, Anja Klein

PAIR-AWARE TRANSCEIVE BEAMFORMING FOR NON-REGENERATIVE MULTI-USER TWO-WAY RELAYING. Aditya Umbu Tana Amah, Anja Klein A. U. T. Amah and A. Klein, Pair-Aware Transceive Beamforming for Non-Regenerative Multi-User Two-Way Relaying, in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, Dallas,

More information

IN AN MIMO communication system, multiple transmission

IN AN MIMO communication system, multiple transmission 3390 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL 55, NO 7, JULY 2007 Precoded FIR and Redundant V-BLAST Systems for Frequency-Selective MIMO Channels Chun-yang Chen, Student Member, IEEE, and P P Vaidyanathan,

More information

ASYNCHRONOUS BI-DIRECTIONAL RELAY-ASSISTED COMMUNICATION NETWORKS

ASYNCHRONOUS BI-DIRECTIONAL RELAY-ASSISTED COMMUNICATION NETWORKS ASYNCHRONOUS BI-DIRECTIONAL RELAY-ASSISTED COMMUNICATION NETWORKS By Reza Vahidnia A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE FACULTY OF

More information

Cognitive Radio Transmission Based on Chip-level Space Time Block Coded MC-DS-CDMA over Fast-Fading Channel

Cognitive Radio Transmission Based on Chip-level Space Time Block Coded MC-DS-CDMA over Fast-Fading Channel Journal of Scientific & Industrial Research Vol. 73, July 2014, pp. 443-447 Cognitive Radio Transmission Based on Chip-level Space Time Block Coded MC-DS-CDMA over Fast-Fading Channel S. Mohandass * and

More information

Channel Capacity Estimation in MIMO Systems Based on Water-Filling Algorithm

Channel Capacity Estimation in MIMO Systems Based on Water-Filling Algorithm Channel Capacity Estimation in MIMO Systems Based on Water-Filling Algorithm 1 Ch.Srikanth, 2 B.Rajanna 1 PG SCHOLAR, 2 Assistant Professor Vaagdevi college of engineering. (warangal) ABSTRACT power than

More information

IN a large wireless mesh network of many multiple-input

IN a large wireless mesh network of many multiple-input 686 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL 56, NO 2, FEBRUARY 2008 Space Time Power Schedule for Distributed MIMO Links Without Instantaneous Channel State Information at the Transmitting Nodes Yue

More information

CHAPTER 5 DIVERSITY. Xijun Wang

CHAPTER 5 DIVERSITY. Xijun Wang CHAPTER 5 DIVERSITY Xijun Wang WEEKLY READING 1. Goldsmith, Wireless Communications, Chapters 7 2. Tse, Fundamentals of Wireless Communication, Chapter 3 2 FADING HURTS THE RELIABILITY n The detection

More information

Power Allocation based Hybrid Multihop Relaying Protocol for Sensor Networks

Power Allocation based Hybrid Multihop Relaying Protocol for Sensor Networks , pp.70-74 http://dx.doi.org/10.14257/astl.2014.46.16 Power Allocation based Hybrid Multihop Relaying Protocol for Sensor Networks Saransh Malik 1,Sangmi Moon 1, Bora Kim 1, Hun Choi 1, Jinsul Kim 1, Cheolhong

More information

Cooperative Spectrum Sensing and Spectrum Sharing in Cognitive Radio: A Review

Cooperative Spectrum Sensing and Spectrum Sharing in Cognitive Radio: A Review International Journal of Computer Applications in Engineering Sciences [VOL I, ISSUE III, SEPTEMBER 2011] [ISSN: 2231-4946] Cooperative Spectrum Sensing and Spectrum Sharing in Cognitive Radio: A Review

More information

Interference Mitigation in MIMO Interference Channel via Successive Single-User Soft Decoding

Interference Mitigation in MIMO Interference Channel via Successive Single-User Soft Decoding Interference Mitigation in MIMO Interference Channel via Successive Single-User Soft Decoding Jungwon Lee, Hyukjoon Kwon, Inyup Kang Mobile Solutions Lab, Samsung US R&D Center 491 Directors Pl, San Diego,

More information

Degrees of Freedom in Multiuser MIMO

Degrees of Freedom in Multiuser MIMO Degrees of Freedom in Multiuser MIMO Syed A Jafar Electrical Engineering and Computer Science University of California Irvine, California, 92697-2625 Email: syed@eceuciedu Maralle J Fakhereddin Department

More information

Improvement of the Throughput-SNR Tradeoff using a 4G Adaptive MCM system

Improvement of the Throughput-SNR Tradeoff using a 4G Adaptive MCM system , June 30 - July 2, 2010, London, U.K. Improvement of the Throughput-SNR Tradeoff using a 4G Adaptive MCM system Insik Cho, Changwoo Seo, Gilsang Yoon, Jeonghwan Lee, Sherlie Portugal, Intae wang Abstract

More information

Chapter 10. User Cooperative Communications

Chapter 10. User Cooperative Communications Chapter 10 User Cooperative Communications 1 Outline Introduction Relay Channels User-Cooperation in Wireless Networks Multi-Hop Relay Channel Summary 2 Introduction User cooperative communication is a

More information

INTERSYMBOL interference (ISI) is a significant obstacle

INTERSYMBOL interference (ISI) is a significant obstacle IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 53, NO. 1, JANUARY 2005 5 Tomlinson Harashima Precoding With Partial Channel Knowledge Athanasios P. Liavas, Member, IEEE Abstract We consider minimum mean-square

More information

MIMO Systems and Applications

MIMO Systems and Applications MIMO Systems and Applications Mário Marques da Silva marques.silva@ieee.org 1 Outline Introduction System Characterization for MIMO types Space-Time Block Coding (open loop) Selective Transmit Diversity

More information

Performance analysis of MISO-OFDM & MIMO-OFDM Systems

Performance analysis of MISO-OFDM & MIMO-OFDM Systems Performance analysis of MISO-OFDM & MIMO-OFDM Systems Kavitha K V N #1, Abhishek Jaiswal *2, Sibaram Khara #3 1-2 School of Electronics Engineering, VIT University Vellore, Tamil Nadu, India 3 Galgotias

More information