Design and Evaluation of a Piezoelectric Energy Harvester Produced with a Finite Element Method

Size: px
Start display at page:

Download "Design and Evaluation of a Piezoelectric Energy Harvester Produced with a Finite Element Method"

Transcription

1 TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS Vol. 11, No. 5, pp , October 25, 2010 Regular Paper pissn: eissn: DOI: /TEEM Design and Evaluation of a Piezoelectric Energy Harvester Produced with a Finite Element Method Chul Min Kim, Chang-Il Kim, Joo-Hee Lee, Jong-Hoo Paik, Jeong-Ho Cho, Myoung-Pyo Chun, Young-Hun Jeong, and Young-Jin Lee Korea Institute of Ceramic Engineering and Technology, Seoul , Korea Received June 22, 2010; Revised August 9, 2010; Accepted September 1, 2010 Piezoelectric energy harvesting uses piezoelectric, which is able to convert unused mechanical vibration energy to electrical energy, such as with motor and machinery. The piezoelectric energy harvester was constructed with a cantilever made of lead zirconate titanate with a metal plate. The primary material was soft lead zirconium titanate (PZT-5H) due to the large strain availability, acceptable mechanical strength and high piezoelectric constant. This technique s drawback is that the energy efficiency is lower than the other energy harvesting methods, but this study increases the output electric power efficiency by analyzing a finite element method for the structure of the piezoelectric energy harvester. We manufactured two cantilever types as follows: the L-60 and L-33 bimorph piezoelectric energy harvesters. Their resulting energy harvesters were able to obtain high voltage values as follows: 27.4 mv and 40.6 mv. Moreover, these results have a similar band of resonance frequency it comparison to the simulation. Consequently, this study was confirmed with validity. The output electric powers of the L-60 and L-33 types have 3.1 mw/s and 5.8 mw/s with 47 Hz and 148 Hz of resonance frequency and then, the load resistivities were 100 kω and 10 kω, respectively. Keywords: Piezoelectric energy harvester, PZT, Finite element method, Resonance frequency, Bimorph 1. INTRODUCTION Energy harvesting, defined as a process in which energy is derived from external sources such as solar power, thermal energy, wind energy and kinetic energy captured, has been widely investigated [1-5]. Table 1 shows the comparison of power density generated from various power sources. Although solar energy has a relatively large power density (15 mw/cm 3 ) outside, it sharply decreases inside [6]. Moreover, energy produced via solar power is negligent when it is dark outside. However, since vibration is less dependent on the place and time, it is more valuable for energy harvesting. Piezoelectric energy harvesting is well known to convert mechanical energy, such as vibration, to electrical energy. The technique has some advantages when compared to other energy harvesting techniques. Primarily, it has a very simple structure, Author to whom all correspondence should be addressed: yjlee@kicet.re.kr composed of piezoelectric ceramics and conducting electrodes. Moreover, it is always functional within the operation frequency ranges whenever ambient vibration exists [7]. Piezoelectric energy harvesting has attracted much interest for use in various portable electronic devices due to some strong advantages. In particular, its low-power consumption could make the weight of batteries abruptly decrease and self-powered devices more available in the ubiquitous life of harvesting mechanical energy [8-10]. However, the technology of piezoelectric energy harvesting is only able to produce a few microwatts, which results from a high voltage, but a ultimately low current, when compared to other harvesting technologies of solar or wind energy. Thus, recent topics of piezoelectric energy harvesting lie in the enhancement of piezoelectric constants for a higher power density and structure development of energy harvesters within an optimized scheme. In order to improve the piezoelectric properties, we have optimized a structure of piezoelectric energy harvesters as a bimorph type cantilever by a finite element method. Further- Copyright 2010 KIEEME. All rights reserved

2 Trans. Electr. Electron. Mater. 11(5) 206 (2010): C. M. Kim et al. 207 Table 1. Comparison of the power density generated from various power sources. Power source Power density Source of information Solar (outdoors at noon) Solar (outdoors at noon) Vibrations Temperature gradient Acoustic noise (100 db) 15 mw/cm 3 15 μw/cm μw/cm 3 40 μw/cm 3 from nw/cm 3 Commonly available Commonly available Roundy [2] Thermolife Commonly available more, we have fabricated a piezoelectric energy harvester using piezoelectric materials with excellent piezoelectric properties and then have evaluated it systematically. 2. EXPERIMENTS 2.1 Piezoelectric energy harvesting Piezoelectric energy harvesting, which converts mechanical vibration energy to electrical energy, generally uses a piezoelectric ceramic. The piezoelectric materials are normally classified as two different types, based on the energy conversion direction. The first one is the actuator type, in which the piezoelectric element undergoes a dimension change with an electric field application. The electric energy is converted into mechanical energy based on the indirect piezoelectric effect. The second type is called the sensor type, in which an electric charge is produced with the application of a mechanical vibration [11]. This study uses the sensor type and piezoelectric cantilever in order to harvest the surrounding waste energy. The output power density (W) is defined via the following Eq. (1): Fig. 1. The modeling of a two layer lead zirconium titanate (PZT) bender mounted as a cantilever beam. Al: aluminum, SUS: steel use stainless, Cu: copper. Table 2. Simulation variables. Variables Type Length Width Materials Bimorph mm 2-45 mm PZT5/Cu PZT: lead zirconium titanate, Cu: copper. 1 2 T W = g33 d33 F3 2 wl (1) This equation consists of the force (F), thickness (T), cantilever s length (L), width (W) piezoelectric constant (d 33 ), and output voltage coefficient (g 33 ). In order to produce a higher electrical harvest, the piezoelectric properties must be improved and the structure must be optimized [12]. 2.2 Design of the piezoelectric energy harvester using a finite element method Figure 1 shows the modeling of a piezoelectric energy harvester, which is fixed at line A. It consists of three layers with a top and bottom PZT layer and a metal shim middle layer, chosen for two reasons. Firstly, the bending element has been chosen because the machinery demands lower resonance frequencies between 50 Hz and 150 Hz, as well as the attainment of higher strains. Second, for a given force input, the cantilever results in the highest average strain, and the output power is closely related to the average strain developed in the bender. Therefore, in order to design an optimized structure, the variables were changed because the resonance frequency and output voltage were different due to cantilever variants, such as materials, length, and width. We used the metal plates aluminum (Al), copper (Cu), and steel use stainless (SUS). In order to check the varying PZT quality, the properties of PZT 4, PZT5A, PZT5H, and PZT 8 were used. Fig. 2. The modeling using ANSYS simulation. The simulation in ANSYS, ver. 10 (ANSYS Inc., Canonsburg, PA, USA)was used and modal, harmonic, and transients of the simulation analysis were performed. Figure 2 is the meshed cantilever and Table 2 shows the simulation condition variables. The damping coefficient is 0.1 and the electric fields are zero. The sine waveform s force is 1 N, with a duration of msec. 3. RESULTS AND DISCUSSION 3.1 Results for the resonance frequency and output voltage through a harmonic and transient analysis Tendency of the output voltage when changing the PZT and metal properties Transient analysis is able to attain an output voltage and was performed in order to select the PZT and metal materials [13].

3 208 Trans. Electr. Electron. Mater. 11(5) 206 (2010): C. M. Kim et al. Fig. 3. Results of the output voltage when the materials are changed. Table 3. Results of the output voltage (mv) when the materials are changed. Substrate Output voltage (mv) PZT5/Al PZT5/SUS PZT5/Cu PZT4/Cu PZT8/Cu PZT: lead zirconium titanate, Al: aluminum, SUS: steel use stainless, Cu: copper. The PZT material can be categorized into three types, as follows: soft, hard, and neutral. We simulated by selecting a PZT sheet and a metal plate. PZT is divided up into PZT4, PZT5H, and PZT8 [14]. These properties were reported within several papers and were known to simulate the piezoelectric energy harvester. The PZT5H is soft, and PZT 4 is hard, and PZT 8 has a neutral characteristic. Moreover, because the PZT sheet is patched to a metal plate, we also simulated the various types of metal plates, such as Cu, Al, and SUS. Figure 3 and Table 3 show the simulation output voltages for each material property. When the PZT properties were compared, PZT 4, PZT 5, and PZT 8 were V, V, and V, respectively. Copper has the highest output voltage of all the metals. Shown in the simulation results, the PZT 5H and the copper plate have a high output voltage in comparison to others. Therefore, the best materials are PZT5H and copper plate Resonance frequency tendencies and the output voltage when changing the length and width Figures 4 and show the resonance frequency and output voltage of the piezoelectric sheet while changing the length via harmonic and transient analysis. As the lengths are changed from 30 mm to 90 mm, with a fixed width of 10 mm, the output voltages decrease from 0.09 mv to 0.03 mv and the resonance frequency slopes also decrease. Therefore, a piezoelectric cantilever s width is one method used to improve the output voltage within industry. Figures 5 and show the resonance frequency and output voltage of the piezoelectric sheet when the width changes via harmonic and transient analysis. These widths are changed from 2 mm to 25 mm, with a fixed length of 60 mm. Its output voltage slope decreases when increasing from 2 mm until 15 mm of the width of the piezoelectric bimorph cantilever, but had close to the same values when the width if greater than 15 mm. Contrary Fig. 4. Results of output voltage [mv] and Resonance Frequency (Hz) when changing the cantilever length. Table 4. Simulation results. Type L-60 L-33 Resonance frequency (Hz) Length (mm) to the length results, the slope of the resonance frequency increases slightly. However, the length variable is more susceptible to resonance frequency because the width of the piezoelectric bimorph cantilever is almost unchanged when compared to the length. As mentioned, for the case of machinery, mechanical vibration has 50~150 Hz, which is a natural frequency. In order to utilize this energy harvester, the lengths of 60 mm and 40 mm are not used because they have a resonance frequency of 50 Hz and 150 Hz. Therefore, we selected the size of piezoelectric energy harvester via simulation results. The size is mm 3 and mm 3 and they have the resonance frequency of 50 Hz and 150 Hz, respectively. Figures 4 and 5 and Table 4 show the simulation results for both the L-60 and L-33 piezoelectric energy harvester types. 3.2 Evaluation of the power generation system Measurement method Width (mm) Output voltage (mv) In order to design a structure able to use 50 Hz, Bimorph type 35 35

4 Trans. Electr. Electron. Mater. 11(5) 206 (2010): C. M. Kim et al. 209 ( a ) Fig. 6. The produced L-60 and L-33 bimorph piezoelectric energy harvester. Fig. 5. Results of output voltage (mv) and resonance frequency (Hz) when changing the cantilever width. cantilevers are produced for demonstrating a feasibility study about the simulation results and measurement. Figures 6 and show the produced bimorph piezoelectric energy harvester and then, we named one sample L-60 and the other sample L-33. The output voltages for each were measured with the first mode resonance frequency is the largest on the Z axis. Figure 7 shows the measuring instrument. When a vibration exciter was vibrated, the Piezoelectric Energy Harvester was measured with variable frequencies and load resistivities. Then, the output voltage was measured via an oscilloscope Measurement and evaluation of L-60 and L-33 piezoelectric energy harvester types ier Fig. 7. Experimental setup. Cantilever Vibration Exciter The measurement results in Fig. 8 show the output voltage (mv ) produced from both the L-60 and L-33 types when the input natural frequency changes. Then, the output voltage was measured when the frequency was 10~200 Hz and 10 MΩ. In the resulting measurement, the output voltage obtained the best value within the resonance frequency band, but it dropped remarkably within the other bands. When the L-60 type has a resonance frequency of 47 Hz, the output voltage was 27.4 mv. Similar to the L-33 type, it has 148 Hz and 40.6 mv. Moreover, these results have a similar band of resonance frequency in comparison to the simulation. Consequently, piezoelectric energy harvesters, having a resonance frequency of both 50 Hz and 150 Hz, were produced. Figures 9 and show the measurement results of output power density for both L-60 and L-33 type energy harvesters at resonance frequency, which causes the load resistivity range to be from 1 kω to 10 MΩ. As shown in Figure 9, the L-60 type was measured in order to prove the validity and the load resistivity was changed from 1 kω to 10 MΩ when the resonance frequency was 47 Hz. The measurement results show that the best power can be attained at 3.1 mv with a load resistivity of 100 kω. Similar to the L-33 type, Fig. 9 shows the power density (mv) when load resistivity was changed from 1 kω to 10 MΩ with a fixed frequency of 148 Hz.

5 210 Trans. Electr. Electron. Mater. 11(5) 206 (2010): C. M. Kim et al. Fig. 10. Image of the illuminated LED. Fig. 8. Output voltages of L-60 and L-33 energy harvesters when changing the natural frequency input in the range of 10~200 Hz. resonance frequency of 50 Hz and 150 Hz, were produced and the output voltages of L-60 and L-33 were then 3.1 mw/s and 5.8 mw/s, respectively. Next, as shown in Figure 10, in order to check the output electricity, the produced piezoelectric energy harvester was connected to a Light Emitting Diode (LED) lamp (BIWV-PB5C3T, Ningbo-Bright cop., Ningbo, China). When the energy harvester vibrated, the LED lamp lit up. 4. CONCLUSIONS In this study, the piezoelectric energy harvester is produced in order to use piezoelectric able to convert unused mechanical vibration energy to electrical energy, such as with motor and machinery, which has a natural frequency of approximately 50~150 Hz. Our primary focus was to investigate how to improve the energy efficiency. First, in order to optimize the structure and show the tendency, a piezoelectric cantilever was designed and produced to demonstrate a feasibility study about the simulation results and measurements. Second, the materials of the cantilever are selected and simulated with the resonance frequency and output voltage of the piezoelectric while changing the length and width via harmonic and transient analysis. Third, shown in the simulation results, in order to design a structure able to use 50 Hz and 150 Hz, Bimorph type cantilevers were produced and their sizes were mm2 and mm2. The output voltages of were measured where the first mode resonance frequency is the largest on the Z axis. Finally, in the simulation results, we show that the LED lamp lit up when an energy harvester was vibrated. The power was compared between an L-60 and L-33 energy harvester, with output voltages of L-60 and L-33 being 3.1 mw/s and 5.8 mw/s, respectively. ACKNOWLEDGMENTS Fig. 9. Measured results for output power density of L-60 type and L-33 type when changing the load resistivity in the range of 1 k~10 MΩ at their resonance frequency. This study was carried out with research funds provided by Korea Institute of Construction & Transportation Technology Evaluation and Planning. The authors are grateful for the supports. This study uses a rectifier circuit in order to disregard the impedance matching and the capacitor of 47 μf. An analysis study for bimorph, the piezoelectric energy harvesters, having the REFERENCE [1] N. S. Shenck and J. A. Paradiso, IEEE Micro 21, 30 (2001) [DOI:

6 Trans. Electr. Electron. Mater. 11(5) 206 (2010): C. M. Kim et al / ]. [2] S. L. Eli and K. W. Paul, Smart Mater. Struct. 15, 1413 (2006) [DOI: / /15/5/030]. [3] E. Minazara, D. Vasic, F. Costa, and G. Poulin, Ultrasonics 44 Suppl 1, e699 (2006) [DOI: /j.ultras ]. [4] M. Ericka, D. Vasic, F. Costa, and G. Poulain, IEEE Ultrasonics Symposium (Rotterdam, the Netherlands 2005 Sep ) p. 946 [DOI: /ULTSYM ]. [5] H. A. Sodano, J. Lloyd, and D. J. Inman, Smart Mater. Struct. 15, 1211 (2006) [DOI: / /15/5/007]. [6] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, Proceedings of the 33rd Annual Hawaii International Conference on System Sciences (Maui, Hawaii 2000 Jun. 4-7) [DOI: / HICSS ]. [7] C. B. Williams, R. C. Woods, and R. B. Yates, IEE Colloquium on Compact Power Sources (Digest No. 96/107) (London 1996 May 8) p. 7/1. [8] C. I. Kim, Y. H. Jeoung, Y. J. Lee, J. H. Paik, and S. Nahm, J. KIEEME 21, 1071 (2008). [9] J. Baker, S. Roundy, and P. Wright, Energy Conversion Engineering Conference (San Francisco, CA 2005 Aug) p [10] H. S. Yoon, G. Washington, and A. Danak, J. Intell. Mater. Syst. Struct. 16, 877 (2005) [DOI: / x ]. [11] T. J. Johnson, D. Charnegie, W. W. Clark, M. Buric, and G. Kusic, Proc. SPIE 6169, 61690D (2006) [DOI: / ]. [12] Q. M. Wang and L. Eric Cross, J. Am. Ceram. Soc. 82, 103 (1999) [DOI: /j tb01729.x]. [13] C. M. Kim, Y. J. Lee, and J. H. Paik, J. KIEEME 22, 832 (2009). [14] H. J. Lee and D. A. Saravanos, The Effect of Temperature Dependent Material Nonlinearities on the Response of Piezoelectric Composite Plates [NASA/TM ] (National Aeronautics and Space Administration Lewis Research Center, Cleveland, 1997).

Research Paper Comparison of Energy Harvesting using Single and Double Patch PVDF with Hydraulic Dynamism

Research Paper Comparison of Energy Harvesting using Single and Double Patch PVDF with Hydraulic Dynamism INTERNATIONAL JOURNAL OF R&D IN ENGINEERING, SCIENCE AND MANAGEMENT Vol., Issue 1, May 16, p.p.56-67, ISSN 393-865X Research Paper Comparison of Energy Harvesting using Single and Double Patch PVDF with

More information

1241. Efficiency improvement of energy harvester at higher frequencies

1241. Efficiency improvement of energy harvester at higher frequencies 24. Efficiency improvement of energy harvester at higher frequencies Giedrius Janusas, Ieva Milasauskaite 2, Vytautas Ostasevicius 3, Rolanas Dauksevicius 4 Kaunas University of Technology, Kaunas, Lithuania

More information

A novel piezoelectric energy harvester designed for singlesupply pre-biasing circuit

A novel piezoelectric energy harvester designed for singlesupply pre-biasing circuit A novel piezoelectric energy harvester designed for singlesupply pre-biasing circuit N Mohammad pour 1 2, D Zhu 1*, R N Torah 1, A D T Elliot 3, P D Mitcheson 3 and S P Beeby 1 1 Electronics and Computer

More information

A Review of MEMS Based Piezoelectric Energy Harvester for Low Frequency Applications

A Review of MEMS Based Piezoelectric Energy Harvester for Low Frequency Applications Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 9, September 2014,

More information

ELECTRICAL PROPERTIES AND POWER CONSIDERATIONS OF A PIEZOELECTRIC ACTUATOR

ELECTRICAL PROPERTIES AND POWER CONSIDERATIONS OF A PIEZOELECTRIC ACTUATOR ELECTRICAL PROPERTIES AND POWER CONSIDERATIONS OF A PIEZOELECTRIC ACTUATOR T. Jordan*, Z. Ounaies**, J. Tripp*, and P. Tcheng* * NASA-Langley Research Center, Hampton, VA 23681, USA ** ICASE, NASA-Langley

More information

Keywords: piezoelectric, micro gyroscope, reference vibration, finite element

Keywords: piezoelectric, micro gyroscope, reference vibration, finite element 2nd International Conference on Machinery, Materials Engineering, Chemical Engineering and Biotechnology (MMECEB 2015) Reference Vibration analysis of Piezoelectric Micromachined Modal Gyroscope Cong Zhao,

More information

Power Enhancement for Piezoelectric Energy Harvester

Power Enhancement for Piezoelectric Energy Harvester , July 4-6, 2012, London, U.K. Power Enhancement for Piezoelectric Energy Harvester Sutrisno W. Ibrahim, and Wahied G. Ali Abstract Piezoelectric energy harvesting technology has received a great attention

More information

Gas turbine engine condition monitoring wirelessly by vibration energy harvesting

Gas turbine engine condition monitoring wirelessly by vibration energy harvesting Gas turbine engine condition monitoring wirelessly by vibration energy harvesting Dr. Daisy Rani Alli 1, A.S.R Kaushik 2 1. Asst Professor, Instrument Technology, Andhra University, Visakhapatnam, Andhra

More information

Hybrid Vibration Energy Harvester Based On Piezoelectric and Electromagnetic Transduction Mechanism

Hybrid Vibration Energy Harvester Based On Piezoelectric and Electromagnetic Transduction Mechanism Hybrid Vibration Energy Harvester Based On Piezoelectric and Electromagnetic Transduction Mechanism Mohd Fauzi. Ab Rahman 1, Swee Leong. Kok 2, Noraini. Mat Ali 3, Rostam Affendi. Hamzah 4, Khairul Azha.

More information

DESIGN AND DEVELOPMENT OF ACTUATION PART OF PIEZOELECTRIC GENERATOR PROTOTYPING FOR ALTERNATIVE POWER GENERATION

DESIGN AND DEVELOPMENT OF ACTUATION PART OF PIEZOELECTRIC GENERATOR PROTOTYPING FOR ALTERNATIVE POWER GENERATION National Conference in Mechanical Engineering Research and Postgraduate Students (1 st NCMER 2010) 26-27 MAY 2010, FKM Conference Hall, UMP, Kuantan, Pahang, Malaysia; pp. 516-527 ISBN: 978-967-5080-9501

More information

INVENTION DISCLOSURE- ELECTRONICS SUBJECT MATTER IMPEDANCE MATCHING ANTENNA-INTEGRATED HIGH-EFFICIENCY ENERGY HARVESTING CIRCUIT

INVENTION DISCLOSURE- ELECTRONICS SUBJECT MATTER IMPEDANCE MATCHING ANTENNA-INTEGRATED HIGH-EFFICIENCY ENERGY HARVESTING CIRCUIT INVENTION DISCLOSURE- ELECTRONICS SUBJECT MATTER IMPEDANCE MATCHING ANTENNA-INTEGRATED HIGH-EFFICIENCY ENERGY HARVESTING CIRCUIT ABSTRACT: This paper describes the design of a high-efficiency energy harvesting

More information

Chapter 30: Principles of Active Vibration Control: Piezoelectric Accelerometers

Chapter 30: Principles of Active Vibration Control: Piezoelectric Accelerometers Chapter 30: Principles of Active Vibration Control: Piezoelectric Accelerometers Introduction: Active vibration control is defined as a technique in which the vibration of a structure is reduced or controlled

More information

Modal Analysis of Microcantilever using Vibration Speaker

Modal Analysis of Microcantilever using Vibration Speaker Modal Analysis of Microcantilever using Vibration Speaker M SATTHIYARAJU* 1, T RAMESH 2 1 Research Scholar, 2 Assistant Professor Department of Mechanical Engineering, National Institute of Technology,

More information

Study on Vibration Isolation Design of Dual Piezoelectric Cooling Jets

Study on Vibration Isolation Design of Dual Piezoelectric Cooling Jets From the SelectedWorks of Innovative Research Publications IRP India Summer May 1, 2015 Study on Vibration Isolation Design of Dual Piezoelectric Cooling Jets Innovative Research Publications, IRP India,

More information

Wafer-Level Vacuum-Packaged Piezoelectric Energy Harvesters Utilizing Two-Step Three-Wafer Bonding

Wafer-Level Vacuum-Packaged Piezoelectric Energy Harvesters Utilizing Two-Step Three-Wafer Bonding 2017 IEEE 67th Electronic Components and Technology Conference Wafer-Level Vacuum-Packaged Piezoelectric Energy Harvesters Utilizing Two-Step Three-Wafer Bonding Nan Wang, Li Yan Siow, Lionel You Liang

More information

Piezoelectric Generator for Powering Remote Sensing Networks

Piezoelectric Generator for Powering Remote Sensing Networks Piezoelectric Generator for Powering Remote Sensing Networks Moncef Benjamin. Tayahi and Bruce Johnson moncef@ee.unr.edu Contact Details of Author: Moncef Benjamin. Tayahi Phone: 775-784-6103 Fax: 775-784-6627

More information

An Ultrahigh Sensitive Self-Powered Current Sensor Utilizing a Piezoelectric Connected-In-Series Approach

An Ultrahigh Sensitive Self-Powered Current Sensor Utilizing a Piezoelectric Connected-In-Series Approach An Ultrahigh Sensitive Self-Powered Current Sensor Utilizing a Piezoelectric Connected-In-Series Approach Po-Chen Yeh, Tien-Kan Chung *, Chen-Huang Lai Department of Mechanical Engineering, National Chiao

More information

Analysis of Discrete & Integrated Circuits for Piezoelectric Energy Harvesting

Analysis of Discrete & Integrated Circuits for Piezoelectric Energy Harvesting Analysis of Discrete & Integrated Circuits for Piezoelectric Energy Harvesting Aditya Kurude 1, Mayur Bhole 2 BE (E&TC), PVG s COET, Pune, India 1 BE (E&TC), PVG s COET, Pune, India 2 Abstract: This paper

More information

Development of Wireless Health Monitoring System for Isolated Space Structures

Development of Wireless Health Monitoring System for Isolated Space Structures Trans. JSASS Aerospace Tech. Japan Vol. 12, pp. 55-60, 2014 Development of Wireless Health Monitoring System for Isolated Space Structures By Yuta YAMAMOTO 1) and Kanjuro MAKIHARA 2) 1) Department of Aerospace

More information

Instantaneous Baseline Damage Detection using a Low Power Guided Waves System

Instantaneous Baseline Damage Detection using a Low Power Guided Waves System Instantaneous Baseline Damage Detection using a Low Power Guided Waves System can produce significant changes in the measured responses, masking potential signal changes due to structure defects [2]. To

More information

FLUTTER CONTROL OF WIND TUNNEL MODEL USING A SINGLE ELEMENT OF PIEZO-CERAMIC ACTUATOR

FLUTTER CONTROL OF WIND TUNNEL MODEL USING A SINGLE ELEMENT OF PIEZO-CERAMIC ACTUATOR 24 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES FLUTTER CONTROL OF WIND TUNNEL MODEL USING A SINGLE ELEMENT OF PIEZO-CERAMIC ACTUATOR Naoki Kawai Department of Mechanical Engineering, University

More information

Implementation of Synchronized Triple Bias-Flip Interface Circuit towards Higher Piezoelectric Energy Harvesting Capability

Implementation of Synchronized Triple Bias-Flip Interface Circuit towards Higher Piezoelectric Energy Harvesting Capability ICAST2015 #072 Implementation of Synchronized Triple Bias-Flip Interface Circuit towards Higher Piezoelectric Energy Harvesting Capability Yuheng Zhao, Chenbin Zhou, and Junrui Liang * Mechatronics and

More information

Preliminary study of the vibration displacement measurement by using strain gauge

Preliminary study of the vibration displacement measurement by using strain gauge Songklanakarin J. Sci. Technol. 32 (5), 453-459, Sep. - Oct. 2010 Original Article Preliminary study of the vibration displacement measurement by using strain gauge Siripong Eamchaimongkol* Department

More information

XYZ Stage. Surface Profile Image. Generator. Servo System. Driving Signal. Scanning Data. Contact Signal. Probe. Workpiece.

XYZ Stage. Surface Profile Image. Generator. Servo System. Driving Signal. Scanning Data. Contact Signal. Probe. Workpiece. Jpn. J. Appl. Phys. Vol. 40 (2001) pp. 3646 3651 Part 1, No. 5B, May 2001 c 2001 The Japan Society of Applied Physics Estimation of Resolution and Contact Force of a Longitudinally Vibrating Touch Probe

More information

Simulation of All-Optical XOR, AND, OR gate in Single Format by Using Semiconductor Optical Amplifiers

Simulation of All-Optical XOR, AND, OR gate in Single Format by Using Semiconductor Optical Amplifiers Simulation of All-Optical XOR, AND, OR gate in Single Format by Using Semiconductor Optical Amplifiers Chang Wan Son* a,b, Sang Hun Kim a, Young Min Jhon a, Young Tae Byun a, Seok Lee a, Deok Ha Woo a,

More information

Design and Optimization of Ultrasonic Vibration Mechanism using PZT for Precision Laser Machining

Design and Optimization of Ultrasonic Vibration Mechanism using PZT for Precision Laser Machining Available online at www.sciencedirect.com Physics Procedia 19 (2011) 258 264 International Conference on Optics in Precision Engineering and Nanotechnology Design and Optimization of Ultrasonic Vibration

More information

Wafer-level Vacuum Packaged X and Y axis Gyroscope Using the Extended SBM Process for Ubiquitous Robot applications

Wafer-level Vacuum Packaged X and Y axis Gyroscope Using the Extended SBM Process for Ubiquitous Robot applications Proceedings of the 17th World Congress The International Federation of Automatic Control Wafer-level Vacuum Packaged X and Y axis Gyroscope Using the Extended SBM Process for Ubiquitous Robot applications

More information

Design of High-efficiency Soft-switching Converters for High-power Microwave Generation

Design of High-efficiency Soft-switching Converters for High-power Microwave Generation Journal of the Korean Physical Society, Vol. 59, No. 6, December 2011, pp. 3688 3693 Design of High-efficiency Soft-switching Converters for High-power Microwave Generation Sung-Roc Jang and Suk-Ho Ahn

More information

the pilot valve effect of

the pilot valve effect of Actiive Feedback Control and Shunt Damping Example 3.2: A servomechanism incorporating a hydraulic relay with displacement feedback throughh a dashpot and spring assembly is shown below. [Control System

More information

Properties of Interdigital Transducers for Lamb-Wave Based SHM Systems

Properties of Interdigital Transducers for Lamb-Wave Based SHM Systems Properties of Interdigital Transducers for Lamb-Wave Based SHM Systems M. MANKA, M. ROSIEK, A. MARTOWICZ, T. UHL and T. STEPINSKI 2 ABSTRACT Recently, an intensive research activity has been observed concerning

More information

Modelling and Simulation of Piezoelectric Cantilevers in RF MEMS Devices for Energy Harvesting Applications

Modelling and Simulation of Piezoelectric Cantilevers in RF MEMS Devices for Energy Harvesting Applications 15 17th UKSIM-AMSS International Conference on Modelling and Simulation Modelling and Simulation of Piezoelectric Cantilevers in RF MEMS Devices for Energy Harvesting Applications Kshitij Chopra Department

More information

Switched-Capacitor Converters: Big & Small. Michael Seeman Ph.D. 2009, UC Berkeley SCV-PELS April 21, 2010

Switched-Capacitor Converters: Big & Small. Michael Seeman Ph.D. 2009, UC Berkeley SCV-PELS April 21, 2010 Switched-Capacitor Converters: Big & Small Michael Seeman Ph.D. 2009, UC Berkeley SCV-PELS April 21, 2010 Outline Problem & motivation Applications for SC converters Switched-capacitor fundamentals Power

More information

General Study on Piezoelectric Transformer

General Study on Piezoelectric Transformer General Study on Piezoelectric Transformer 1 KWOK K.F., 1 DONG P., 1 CHENG K.W.E., KWOK K.W., 1 HO Y.L., WANG X.X. and CHAN H. 1 Power Electronics Research Center, Department of Electrical Engineering,

More information

Research Article Active Sensing Based Bolted Structure Health Monitoring Using Piezoceramic Transducers

Research Article Active Sensing Based Bolted Structure Health Monitoring Using Piezoceramic Transducers Distributed Sensor Networks Volume 213, Article ID 58325, 6 pages http://dx.doi.org/1.1155/213/58325 Research Article Active Sensing Based Bolted Structure Health Monitoring Using Piezoceramic Transducers

More information

Journal of Advanced Mechanical Design, Systems, and Manufacturing

Journal of Advanced Mechanical Design, Systems, and Manufacturing Vol. 4, No. 1, 1 Improvement of Self-sensing Piezoelectric Actuator Control Using Permittivity Change Detection* Yusuke ISHIKIRIYAMA ** and Takeshi MORITA ** **Graduate School of Frontier Sciences, The

More information

SELECTION OF MATERIALS AND SENSORS FOR HEALTH MONITORING OF COMPOSITE STRUCTURES

SELECTION OF MATERIALS AND SENSORS FOR HEALTH MONITORING OF COMPOSITE STRUCTURES SELECTION OF MATERIALS AND SENSORS FOR HEALTH MONITORING OF COMPOSITE STRUCTURES 1,2 Seth. S. Kessler and 1 S. Mark Spearing 1 Technology Laboratory for Advanced Composites Department of Aeronautics and

More information

Available online at ScienceDirect. Procedia Computer Science 79 (2016 )

Available online at   ScienceDirect. Procedia Computer Science 79 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 79 (2016 ) 785 792 7th International Conference on Communication, Computing and Virtualization 2016 Electromagnetic Energy

More information

Analysis and design of a micro electromagnetic vibration energy harvester Xiongshi Wang 1,a, Binzhen Zhang 1, b, Junping Duan 1, c, Suping Xu 1, d

Analysis and design of a micro electromagnetic vibration energy harvester Xiongshi Wang 1,a, Binzhen Zhang 1, b, Junping Duan 1, c, Suping Xu 1, d 6th International Conference on Machinery, Materials, Environment, Biotechnology and Computer (MMEBC 2016) Analysis and design of a micro electromagnetic vibration energy harvester Xiongshi Wang 1,a, Binzhen

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 2013 http://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Engineering Acoustics Session 1pEAb: Transduction, Transducers, and Energy

More information

ULTRASOUND IN CFRP DETECTED BY ADVANCED OPTICAL FIBER SENSOR FOR COMPOSITE STRUCTURAL HEALTH MONITORING

ULTRASOUND IN CFRP DETECTED BY ADVANCED OPTICAL FIBER SENSOR FOR COMPOSITE STRUCTURAL HEALTH MONITORING 21 st International Conference on Composite Materials Xi an, 20-25 th August 2017 ULTRASOUND IN CFRP DETECTED BY ADVANCED OPTICAL FIBER SENSOR FOR COMPOSITE STRUCTURAL HEALTH MONITORING Qi Wu 1, 2, Yoji

More information

Partial Discharge Signal Detection by Piezoelectric Ceramic Sensor and The Signal Processing

Partial Discharge Signal Detection by Piezoelectric Ceramic Sensor and The Signal Processing Journal of Electroceramics, 13, 487 492, 2004 C 2004 Kluwer Academic Publishers. Manufactured in The Netherlands. Partial Discharge Signal Detection by Piezoelectric Ceramic Sensor and The Signal Processing

More information

Ya WANG, Ph.D Assistant Professor State University of New York, Stony Brook

Ya WANG, Ph.D Assistant Professor State University of New York, Stony Brook Ya WANG, Ph.D Assistant Professor State University of New York, Stony Brook Department of Mechanical Engineering State University of New York, Stony Brook 153 Light Engineering, Stony Brook, NY 11790 Phone:

More information

STUDY OF VIBRATION MODAL ESTIMATION FOR COMPOSITE BEAM WITH PZT THIN FILM SENSOR SYSTEM

STUDY OF VIBRATION MODAL ESTIMATION FOR COMPOSITE BEAM WITH PZT THIN FILM SENSOR SYSTEM STUDY OF VIBRATION MODAL ESTIMATION FOR COMPOSITE BEAM WITH PZT THIN FILM SENSOR SYSTEM Nobuo Oshima, Takehito Fukuda and Shinya Motogi Faculty of Engineering, Osaka City University 3-3-38, Sugimoto, Sumiyoshi-ku,

More information

Research Article An Investigation of Structural Damage Location Based on Ultrasonic Excitation-Fiber Bragg Grating Detection

Research Article An Investigation of Structural Damage Location Based on Ultrasonic Excitation-Fiber Bragg Grating Detection Advances in Acoustics and Vibration Volume 2013, Article ID 525603, 6 pages http://dx.doi.org/10.1155/2013/525603 Research Article An Investigation of Structural Damage Location Based on Ultrasonic Excitation-Fiber

More information

Feasibility Studies of Piezoelectric as a Source for Street Lighting

Feasibility Studies of Piezoelectric as a Source for Street Lighting World Applied Sciences Journal 34 (3): 363-368, 016 ISSN 1818-495 IDOSI Publications, 016 DOI: 10.589/idosi.wasj.016.34.3.15667 Feasibility Studies of Piezoelectric as a Source for Street Lighting 1 1

More information

Self powered microsystem with electromechanical generator

Self powered microsystem with electromechanical generator Self powered microsystem with electromechanical generator JANÍČEK VLADIMÍR, HUSÁK MIROSLAV Department of Microelectronics FEE CTU Prague Technická 2, 16627 Prague 6 CZECH REPUBLIC, http://micro.feld.cvut.cz

More information

Smart design piezoelectric energy harvester with self-tuning

Smart design piezoelectric energy harvester with self-tuning Smart design piezoelectric energy harvester with self-tuning L G H Staaf 1, E Köhler 1, P D Folkow 2, P Enoksson 1 1 Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg,

More information

Experimental investigation of crack in aluminum cantilever beam using vibration monitoring technique

Experimental investigation of crack in aluminum cantilever beam using vibration monitoring technique International Journal of Computational Engineering Research Vol, 04 Issue, 4 Experimental investigation of crack in aluminum cantilever beam using vibration monitoring technique 1, Akhilesh Kumar, & 2,

More information

Integration Platforms Towards Wafer Scale

Integration Platforms Towards Wafer Scale Integration Platforms Towards Wafer Scale Alic Chen, WeiWah Chan,Thomas Devloo, Giovanni Gonzales, Christine Ho, Mervin John, Jay Kaist,, Deepa Maden, Michael Mark, Lindsay Miller, Peter Minor, Christopher

More information

Applications of Energy Harvesting

Applications of Energy Harvesting Electronics and Computer Science Applications of Energy Harvesting Prof Steve Beeby Dept. of Electronics and Computer Science ICT-Energy Workshop September 15, 2015 Overview Introduction to Energy Harvesting

More information

Comparative Study of Bio-implantable Acoustic Generator Architectures

Comparative Study of Bio-implantable Acoustic Generator Architectures Comparative Study of Bio-implantable Acoustic Generator Architectures D Christensen, S Roundy University of Utah, Mechanical Engineering, S. Central Campus Drive, Salt Lake City, UT, USA E-mail: dave.christensen@utah.edu

More information

Simulation of RFID-based Folded Patched Antenna for Strain Sensing

Simulation of RFID-based Folded Patched Antenna for Strain Sensing Simulation of RFID-based Folded Patched Antenna for Strain Sensing Can Jiang 1), *Liyu Xie 2), Shicong Wang 3), Guochun Wan 4) and Songtao Xue 5) 1), 2), 5) Research Institute of Structure Engineering

More information

Bandwidth Widening Strategies for Piezoelectric Based Energy Harvesting from Ambient Vibration Sources

Bandwidth Widening Strategies for Piezoelectric Based Energy Harvesting from Ambient Vibration Sources 11 International Conference on Computer Applications and Industrial Electronics (ICCAIE 11) Bandwidth Widening Strategies for Piezoelectric Based Energy Harvesting from Ambient Vibration Sources Swee-Leong,

More information

Instantaneous Baseline Structural Damage Detection Using a Miniaturized Piezoelectric Guided Waves System

Instantaneous Baseline Structural Damage Detection Using a Miniaturized Piezoelectric Guided Waves System KSCE Journal of Civil Engineering (2010) 14(6):889-895 DOI 10.1007/s12205-010-1137-x Structural Engineering www.springer.com/12205 Instantaneous Baseline Structural Damage Detection Using a Miniaturized

More information

Multiple crack detection of pipes using PZT-based guided waves

Multiple crack detection of pipes using PZT-based guided waves Multiple crack detection of pipes using PZT-based guided waves *Shi Yan 1), Ji Qi 2), Nai-Zhi Zhao 3), Yang Cheng 4) and Sheng-Wenjun Qi 5) 1), 2), 3), 4) School of Civil Engineering, Shenyang Jianzhu

More information

Partial Discharge Detection of High Voltage Switchgear Using a Ultra High Frequency Sensor

Partial Discharge Detection of High Voltage Switchgear Using a Ultra High Frequency Sensor TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS Vol. 14, No. 4, pp. 211-215, August 25, 2013 Regular Paper pissn: 1229-7607 eissn: 2092-7592 DOI: http://dx.doi.org/10.4313/teem.2013.14.4.211 Partial

More information

Energy Circulation Methods for Surface Acoustic Wave Motor

Energy Circulation Methods for Surface Acoustic Wave Motor Electronics and Communications in Japan, Part 3, Vol. 87, No. 2, 2004 Translated from Denshi Joho Tsushin Gakkai Ronbunshi, Vol. J86-A, No. 4, April 2003, pp. 345 353 Energy Circulation Methods for Surface

More information

Title: Reference-free Structural Health Monitoring for Detecting Delamination in Composite Plates

Title: Reference-free Structural Health Monitoring for Detecting Delamination in Composite Plates Title: Reference-free Structural Health Monitoring for Detecting Delamination in Composite Plates Authors (names are for example only): Chul Min Yeum Hoon Sohn Jeong Beom Ihn Hyung Jin Lim ABSTRACT This

More information

Electromagnetic Bandgap Design for Power Distribution Network Noise Isolation in the Glass Interposer

Electromagnetic Bandgap Design for Power Distribution Network Noise Isolation in the Glass Interposer 2016 IEEE 66th Electronic Components and Technology Conference Electromagnetic Bandgap Design for Power Distribution Network Noise Isolation in the Glass Interposer Youngwoo Kim, Jinwook Song, Subin Kim

More information

Stabilized Interrogation and Multiplexing. Techniques for Fiber Bragg Grating Vibration Sensors

Stabilized Interrogation and Multiplexing. Techniques for Fiber Bragg Grating Vibration Sensors Stabilized Interrogation and Multiplexing Techniques for Fiber Bragg Grating Vibration Sensors Hyung-Joon Bang, Chang-Sun Hong and Chun-Gon Kim Division of Aerospace Engineering Korea Advanced Institute

More information

Preparation of arc broadband piezoelectric composite vibrator and its transducer array

Preparation of arc broadband piezoelectric composite vibrator and its transducer array IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Preparation of arc broadband piezoelectric composite vibrator and its transducer array To cite this article: Miaojie Lv et al

More information

Finite Element Analysis and Test of an Ultrasonic Compound Horn

Finite Element Analysis and Test of an Ultrasonic Compound Horn World Journal of Engineering and Technology, 2017, 5, 351-357 http://www.scirp.org/journal/wjet ISSN Online: 2331-4249 ISSN Print: 2331-4222 Finite Element Analysis and Test of an Ultrasonic Compound Horn

More information

Electromagnetic Vibration Energy Harvesting for Railway Applications

Electromagnetic Vibration Energy Harvesting for Railway Applications Electromagnetic Vibration Energy Harvesting for Railway Applications. Bradai 1,2*,. aifar 1,2, C. Viehweger 1, O. Kanoun 1 1 Dept. of Electrical Engineering and Information Technology, Technische Universität

More information

Passively Self-Tuning Piezoelectric Energy Harvesting System

Passively Self-Tuning Piezoelectric Energy Harvesting System Passively Self-Tuning Piezoelectric Energy Harvesting System C G Gregg, P Pillatsch, P K Wright University of California, Berkeley, Department of Mechanical Engineering, Advanced Manufacturing for Energy,

More information

A Color LED Driver Implemented by the Active Clamp Forward Converter

A Color LED Driver Implemented by the Active Clamp Forward Converter A Color LED Driver Implemented by the Active Clamp Forward Converter C. H. Chang, H. L. Cheng, C. A. Cheng, E. C. Chang * Power Electronics Laboratory, Department of Electrical Engineering I-Shou University,

More information

EEE, St Peter s University, India 2 EEE, Vel s University, India

EEE, St Peter s University, India 2 EEE, Vel s University, India Torque ripple reduction of switched reluctance motor drives below the base speed using commutation angles control S.Vetriselvan 1, Dr.S.Latha 2, M.Saravanan 3 1, 3 EEE, St Peter s University, India 2 EEE,

More information

INSPECTION OF THERMAL BARRIERS OF PRIMARY PUMPS WITH PHASED ARRAY PROBE AND PIEZOCOMPOSITE TECHNOLOGY

INSPECTION OF THERMAL BARRIERS OF PRIMARY PUMPS WITH PHASED ARRAY PROBE AND PIEZOCOMPOSITE TECHNOLOGY INSPECTION OF THERMAL BARRIERS OF PRIMARY PUMPS WITH PHASED ARRAY PROBE AND PIEZOCOMPOSITE TECHNOLOGY J. Poguet Imasonic S.A. France E. Abittan EDF-GDL France Abstract In order to meet the requirements

More information

Selective Excitation of Lamb Wave Modes in Thin Aluminium Plates using Bonded Piezoceramics: Fem Modelling and Measurements

Selective Excitation of Lamb Wave Modes in Thin Aluminium Plates using Bonded Piezoceramics: Fem Modelling and Measurements ECNDT 6 - Poster 5 Selective Excitation of Lamb Wave Modes in Thin Aluminium Plates using Bonded Piezoceramics: Fem Modelling and Measurements Yago GÓMEZ-ULLATE, Francisco MONTERO DE ESPINOSA, Instituto

More information

System-level simulation of a self-powered sensor with piezoelectric energy harvesting

System-level simulation of a self-powered sensor with piezoelectric energy harvesting 2007 International Conference on Sensor Technologies and Applications System-level simulation of a self-powered sensor with piezoelectric energy harvesting Loreto Mateu and Francesc Moll Universitat Politècnica

More information

Strategies for increasing the operating frequency range of vibration energy harvesters: a review

Strategies for increasing the operating frequency range of vibration energy harvesters: a review IOP PUBLISHING Meas. Sci. Technol. 21 (2010) 022001 (29pp) MEASUREMENT SCIENCE AND TECHNOLOGY doi:10.1088/0957-0233/21/2/022001 TOPICAL REVIEW Strategies for increasing the operating frequency range of

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 2013 http://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Structural Acoustics and Vibration Session 5aSA: Applications in Structural

More information

Wojciech BATKO, Michał KOZUPA

Wojciech BATKO, Michał KOZUPA ARCHIVES OF ACOUSTICS 33, 4 (Supplement), 195 200 (2008) ACTIVE VIBRATION CONTROL OF RECTANGULAR PLATE WITH PIEZOCERAMIC ELEMENTS Wojciech BATKO, Michał KOZUPA AGH University of Science and Technology

More information

324 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 34, NO. 2, APRIL 2006

324 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 34, NO. 2, APRIL 2006 324 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 34, NO. 2, APRIL 2006 Experimental Observation of Temperature- Dependent Characteristics for Temporal Dark Boundary Image Sticking in 42-in AC-PDP Jin-Won

More information

High Sensitivity Interferometric Detection of Partial Discharges for High Power Transformer Applications

High Sensitivity Interferometric Detection of Partial Discharges for High Power Transformer Applications High Sensitivity Interferometric Detection of Partial Discharges for High Power Transformer Applications Carlos Macià-Sanahuja and Horacio Lamela-Rivera Optoelectronics and Laser Technology group, Universidad

More information

Power processing circuits for electromagnetic, electrostatic and piezoelectric inertial energy scavengers

Power processing circuits for electromagnetic, electrostatic and piezoelectric inertial energy scavengers Microsyst Technol (27) 13:1629 1635 DOI 1.17/s542-6-339- TECHNICAL PAPER Power processing circuits for electromagnetic, electrostatic and piezoelectric inertial energy scavengers P. D. Mitcheson Æ T. C.

More information

Passive Polymer. Figure 1 (a) and (b). Diagram of a 1-3 composite (left) and a 2-2 composite (right).

Passive Polymer. Figure 1 (a) and (b). Diagram of a 1-3 composite (left) and a 2-2 composite (right). MINIMISATION OF MECHANICAL CROSS TALK IN PERIODIC PIEZOELECTRIC COMPOSITE ARRAYS D. Robertson, G. Hayward, A. Gachagan and P. Reynolds 2 Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow,

More information

Wireless Temperature and Illuminance Sensor Nodes With Energy Harvesting from Insulating Cover of Power Cords for Building Energy Management System

Wireless Temperature and Illuminance Sensor Nodes With Energy Harvesting from Insulating Cover of Power Cords for Building Energy Management System Wireless Temperature and Illuminance Sensor Nodes With Energy Harvesting from Insulating Cover of Power Cords for Building Energy Management System Masanobu Honda, Takayasu Sakurai, and Makoto Takamiya

More information

PACKAGING OF STRUCTURAL HEALTH MONITORING COMPONENTS

PACKAGING OF STRUCTURAL HEALTH MONITORING COMPONENTS PACKAGING OF STRUCTURAL HEALTH MONITORING COMPONENTS Seth S. Kessler Metis Design Corporation S. Mark Spearing Massachusetts Institute of Technology Technology Laboratory for Advanced Composites National

More information

MICROMACHINED INTERFEROMETER FOR MEMS METROLOGY

MICROMACHINED INTERFEROMETER FOR MEMS METROLOGY MICROMACHINED INTERFEROMETER FOR MEMS METROLOGY Byungki Kim, H. Ali Razavi, F. Levent Degertekin, Thomas R. Kurfess G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta,

More information

Low Pass Harmonic Filters

Low Pass Harmonic Filters Exclusive e-rated Provider PRODUCT SHEET HARMITIGATOR TM Low Pass Harmonic Filters A solution for electrical distribution systems that require stable, reliable power, characterized by unparalleled power

More information

A New Soft Recovery PWM Quasi-Resonant Converter With a Folding Snubber Network

A New Soft Recovery PWM Quasi-Resonant Converter With a Folding Snubber Network 456 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 49, NO. 2, APRIL 2002 A New Soft Recovery PWM Quasi-Resonant Converter With a Folding Snubber Network Jin-Kuk Chung, Student Member, IEEE, and Gyu-Hyeong

More information

Vibrational Energy Scavenging Via Thin Film Piezoelectric Ceramics

Vibrational Energy Scavenging Via Thin Film Piezoelectric Ceramics Vibrational Energy Scavenging Via Thin Film Piezoelectric Ceramics Elizabeth K. Reilly 1, Eric Carleton 2, Shad Roundy 3, and Paul Wright 1 1 University of California Berkeley, Department of Mechanical

More information

Autonomous Wireless Sensor Node with Thermal Energy Harvesting for Temperature Monitoring of Industrial Devices

Autonomous Wireless Sensor Node with Thermal Energy Harvesting for Temperature Monitoring of Industrial Devices Autonomous Wireless Sensor Node with Thermal Energy Harvesting for Temperature Monitoring of Industrial Devices https://doi.org/10.3991/ijoe.v13i04.6802 Liqun Hou North China Electric Power University,

More information

LONG DISTANCE FAR FIELD POWER TRANSFER PAST, PRESENT AND FUTURE HUBREGT J. VISSER

LONG DISTANCE FAR FIELD POWER TRANSFER PAST, PRESENT AND FUTURE HUBREGT J. VISSER LONG DISTANCE FAR FIELD POWER TRANSFER PAST, PRESENT AND FUTURE HUBREGT J. VISSER CONTENTS 1. INTRODUCTION 2. THE EARLY HISTORY OF RWPT 3. THE MODERN HISTORY OF RWPT 4. RWPT BASICS 5. EXAMPLES 6. FUTURE

More information

Wearable PZT sensors for distributed soft contact sensing (Design and Signal Conditioning Manual)

Wearable PZT sensors for distributed soft contact sensing (Design and Signal Conditioning Manual) Wearable PZT sensors for distributed soft contact sensing (Design and Signal Conditioning Manual) Harshal Sonar, Prof. Jamie Paik Reconfigurable Robotics Lab, EPFL Contact: harshal.sonar@epfl.ch February,

More information

POCKET DEFORMABLE MIRROR FOR ADAPTIVE OPTICS APPLICATIONS

POCKET DEFORMABLE MIRROR FOR ADAPTIVE OPTICS APPLICATIONS POCKET DEFORMABLE MIRROR FOR ADAPTIVE OPTICS APPLICATIONS Leonid Beresnev1, Mikhail Vorontsov1,2 and Peter Wangsness3 1) US Army Research Laboratory, 2800 Powder Mill Road, Adelphi Maryland 20783, lberesnev@arl.army.mil,

More information

RF(Radio Frequency) MEMS (Micro Electro Mechanical

RF(Radio Frequency) MEMS (Micro Electro Mechanical Design and Analysis of Piezoelectrically Actuated RF-MEMS Switches using PZT and AlN PrashantTippimath M.Tech., Scholar, Dept of ECE M.S.Ramaiah Institute of Technology Bengaluru tippimathprashant@gmail.com

More information

Piezoelectric Sensors and Actuators

Piezoelectric Sensors and Actuators Piezoelectric Sensors and Actuators Outline Piezoelectricity Origin Polarization and depolarization Mathematical expression of piezoelectricity Piezoelectric coefficient matrix Cantilever piezoelectric

More information

Application Specification Accelerometer ACH AUG 98 Rev A

Application Specification Accelerometer ACH AUG 98 Rev A Application Specification Accelerometer ACH-04-08-05 114-27002 27 AUG 98 Rev A 1.0 INTRODUCTION This specification covers the application requirements of Measurement Specialties Accelerometer ACH-04-08-05.

More information

150 kj Compact Capacitive Pulsed Power System for an Electrothermal Chemical Gun

150 kj Compact Capacitive Pulsed Power System for an Electrothermal Chemical Gun J Electr Eng Technol Vol. 7, No. 6: 971-976, 2012 http://dx.doi.org/10.5370/jeet.2012.7.6.971 ISSN(Print) 1975-0102 ISSN(Online) 2093-7423 150 kj Compact Capacitive Pulsed Power System for an Electrothermal

More information

Indoor Light Energy Harvesting System for Energy-aware Wireless Sensor Node

Indoor Light Energy Harvesting System for Energy-aware Wireless Sensor Node Available online at www.sciencedirect.com Energy Procedia 16 (01) 107 103 01 International Conference on Future Energy, Environment, and Materials Indoor Light Energy Harvesting System for Energy-aware

More information

An Active Efficiency Rectifier with Automatic Adjust of Transducer Capacitance in Energy Harvesting Systems

An Active Efficiency Rectifier with Automatic Adjust of Transducer Capacitance in Energy Harvesting Systems An Active Efficiency Rectifier with Automatic Adjust of Transducer Capacitance in Energy Harvesting Systems B.Swetha Salomy M.Tech (VLSI), Vaagdevi Institute of Technology and Science, Proddatur, Kadapa

More information

Supplementary Information. Highly conductive and flexible color filter electrode using multilayer film

Supplementary Information. Highly conductive and flexible color filter electrode using multilayer film Supplementary Information Highly conductive and flexible color filter electrode using multilayer film structure Jun Hee Han 1, Dong-Young Kim 1, Dohong Kim 1, and Kyung Cheol Choi 1,* 1 School of Electrical

More information

Recently, the piezoelectric properties of several nanowires,

Recently, the piezoelectric properties of several nanowires, 1.6 V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers Xi Chen,*, Shiyou Xu, Nan Yao,*, and Yong Shi*, Department of Mechanical Engineering, Stevens Institute of Technology, Castle Point

More information

Investigation on Sensor Fault Effects of Piezoelectric Transducers on Wave Propagation and Impedance Measurements

Investigation on Sensor Fault Effects of Piezoelectric Transducers on Wave Propagation and Impedance Measurements Investigation on Sensor Fault Effects of Piezoelectric Transducers on Wave Propagation and Impedance Measurements Inka Buethe *1 and Claus-Peter Fritzen 1 1 University of Siegen, Institute of Mechanics

More information

A Wire-Guided Transducer for Acoustic Emission Sensing

A Wire-Guided Transducer for Acoustic Emission Sensing A Wire-Guided Transducer for Acoustic Emission Sensing Ian T. Neill a, I. J. Oppenheim a*, D. W. Greve b a Dept. of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213

More information

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 1.852

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 1.852 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY A Bridgeless Boost Rectifier for Energy Harvesting Applications Rahul *1, H C Sharad Darshan 2 *1,2 Dept of EEE, Dr. AIT Bangalore,

More information

Novel Approach to Make Low Cost, High Density PZT Phased Array and Its Application in Structural Health Monitoring

Novel Approach to Make Low Cost, High Density PZT Phased Array and Its Application in Structural Health Monitoring Novel Approach to Make Low Cost, High Density PZT Phased Array and Its Application in Structural Health Monitoring B. XU, S. BUHLER, K. L1TIAU, S. ELROD, S. UCKUN, V. HAFIYCHUK and V. SMELYANSKIY ABSTRACT

More information

A Novel Dual-Band Scheme for Magnetic Resonant Wireless Power Transfer

A Novel Dual-Band Scheme for Magnetic Resonant Wireless Power Transfer Progress In Electromagnetics Research Letters, Vol. 80, 53 59, 2018 A Novel Dual-Band Scheme for Magnetic Resonant Wireless Power Transfer Keke Ding 1, 2, *, Ying Yu 1, 2, and Hong Lin 1, 2 Abstract In

More information

Design of High PAE Class-E Power Amplifier For Wireless Power Transmission

Design of High PAE Class-E Power Amplifier For Wireless Power Transmission This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. IEICE Electronics Express, Vol.*, No.*, 1 8 Design of High PAE Class-E Power Amplifier

More information