Speed of Sound. Introduction. Ryerson University - PCS 130

Size: px
Start display at page:

Download "Speed of Sound. Introduction. Ryerson University - PCS 130"

Transcription

1 Introduction Speed of Sound In many experiments, the speed of an object such as a ball dropping or a toy car down a track can be measured (albeit with some help from devices). In these instances, these objects are quite tangible and can be seen with the naked eye. Sound however is more elusive as it is hard for one to see but the speed can be similarly measured. Physically speaking, sound is a pressure wave propagated by the air particles. The wave propagates in the longitudinal direction (same direction as motion of travel of the wave) but is often visualized as a transverse wave (for easier representation). The speed at which that sound travels is given by the frequency of osciallation and wavelength: v = λf (1) If we know those two quantities, we could in fact determine the speed of sound. In this experiment, we can generate sounds of various single frequencies using things such as tuning forks, and tone generators. Determining wavelength can prove to be more challenging. However, if one were to create a system of standing waves, since the nodes of oscillation are fixed, we could relate the length of the tube system to the wavelength. Consider a tube with one end open and the other closed with length L. If standing waves were created such that at the open end, we get a loud volume (antinode) then we can deduce the wavelength as a function of length. As it turns out, many frequencies satisfy this condition for a closed ended tube of length L. The higher frequencies are typically referred to as the nth harmonic. f n = nv ; n = 1, 3, 5... (2) 4L Visual representation of standing waves in a closed ended tube Page 1 of 5

2 Speed of Sound setup Page 2 of 5

3 Apparatus Tone generator software (Audacity) Computer Adjustable closed ended tube system Tone generator (speaker) Water Thermometer Beaker Pre-Lab Questions Please complete the following questions prior to coming to lab. At the beginning of lab, you will be given a short quiz which is heavily based on one (or more) of these questions. 1.) Read through the entire lab writeup before beginning. 2.) From Eqn. 1, derive Eqn ) Describe how the first fundamental frequency changes when you change the length of an closed ended tube system. Write the general equation for length of an closed ended tube system as a function of frequency and harmonic number, n. 4.) In a closed ended tube system, describe where the nodes and anti-nodes are located when a standing (resonant) sound wave is formed. Try to describe this for the general case. 5.) Does the speed of sound increase or decrease with air temperature? In a few sentences explain why. Procedure 1.) Using a thermometer, record the ambient temperature of the room. 2.) Slowly fill the closed ended tube system with water making sure not to overfill the tube. The vertical position of the water reservoir dictates the water level in the plastic tube. The air volume above forms the closed ended tube system. 3.) Position the closed ended tube system at a comfortable height and connect the speaker to the headphone port of the computer. Make sure not to strain the wire. 4.) Make sure your computer s volume is set quite low. You can always increase the volume if the tone is too soft, but playing an extremely loud tone is unpleasant for everyone! Page 3 of 5

4 5.) Open the program Audacity which you can use to generate pure tones. To generate a tone, select Generate Tone. Leave the waveform as Sine, enter the frequency ( Hz is recommended), the amplitude (1 is recommended), and the duration (1 minute is recommended). Then click Generate Tone. 6.) Calculate the expected (theoretical) length at which you would expect the first harmonic to appear. 7.) Starting with a water level around where you would expect the first harmonic (in theory), click the green arrow in the audacity program to play the tone. 8.) Adjust the height of the water reservoir and determine the length at which the first resonance occurs. This is when you hear a volume maximum. 9.) Repeat the process again for four different frequencies. Analysis 1.) With the data obtained, plot tube length versus inverse frequency ( 1 f ). 2.) Find the value of the speed of sound v using a linear fit to your results. 3.) Use the relationship between the speed of sound in air v and the temperature T (expressed in Celsius) to determine a theoretical value of v: v = T (3) 4.) Find the percentage error of your v value from the value obtained above. 5.) What possible sources of error affected your results? Which one do you think had the largest effect. Wrap Up The following questions are designed to make sure that you understand the physics implications of the experiment and also to extend your knowledge of the physical concepts covered. Each member of your group should be able to answer any/all of these questions. Your TA will check that this is the case; please check out with your TA before exiting lab. 1.) With the frequencies you used, calculate the length needed for a few of the higher order harmonics. Using the experimental setup, see if you can hit a higher order harmonic - you might have to remove water from the apparatus to reach a low enough water level. 2.) What fundamental frequency would you need to generate for a closed ended tube of 13.5 cm? Calculate the frequency (using your speed of sound) and then verify it by generating a tone of that frequency and adjusting the tube length around 13.5 cm to ensure the max volume is indeed there. Page 4 of 5

5 Last Few Steps 1.) Save your data (in any format) with an easily identifiable name. 2.) Submit your data file to your group submission folder on D2L. 3.) Once this is complete and are certain that the data is saved, restart the computer when all experiments are completed. 4.) Tidy up your work station by ensuring the station is ready for your fellow students in other sections. Page 5 of 5

Sound Waves and Beats

Sound Waves and Beats Physics Topics Sound Waves and Beats If necessary, review the following topics and relevant textbook sections from Serway / Jewett Physics for Scientists and Engineers, 9th Ed. Traveling Waves (Serway

More information

Waves and Sound Practice Test 43 points total Free- response part: [27 points]

Waves and Sound Practice Test 43 points total Free- response part: [27 points] Name Waves and Sound Practice Test 43 points total Free- response part: [27 points] 1. To demonstrate standing waves, one end of a string is attached to a tuning fork with frequency 120 Hz. The other end

More information

Name: Lab Partner: Section:

Name: Lab Partner: Section: Chapter 11 Wave Phenomena Name: Lab Partner: Section: 11.1 Purpose Wave phenomena using sound waves will be explored in this experiment. Standing waves and beats will be examined. The speed of sound will

More information

Part I. Open Open Pipes. A 35 cm long string is played at its fundamental frequency.

Part I. Open Open Pipes. A 35 cm long string is played at its fundamental frequency. Part I Open Open Pipes A 35 cm long pipe is played at its fundamental frequency. 1. What does the waveform look like inside the pipe? 2. What is this frequency s wavelength? 3. What is this frequency being

More information

(a) What is the tension in the rope? (b) With what frequency must the rope vibrate to create a traveling wave with a wavelength of 2m?

(a) What is the tension in the rope? (b) With what frequency must the rope vibrate to create a traveling wave with a wavelength of 2m? 1. A rope is stretched between two vertical supports. The points where it s attached (P and Q) are fixed. The linear density of the rope, μ, is 0.4kg/m, and the speed of a transverse wave on the rope is

More information

Properties of Sound. Goals and Introduction

Properties of Sound. Goals and Introduction Properties of Sound Goals and Introduction Traveling waves can be split into two broad categories based on the direction the oscillations occur compared to the direction of the wave s velocity. Waves where

More information

Physics 2310 Lab #2 Speed of Sound & Resonance in Air

Physics 2310 Lab #2 Speed of Sound & Resonance in Air Physics 2310 Lab #2 Speed of Sound & Resonance in Air Objective: The objectives of this experiment are a) to measure the speed of sound in air, and b) investigate resonance within air. Apparatus: Pasco

More information

Resonance Tube. 1 Purpose. 2 Theory. 2.1 Air As A Spring. 2.2 Traveling Sound Waves in Air

Resonance Tube. 1 Purpose. 2 Theory. 2.1 Air As A Spring. 2.2 Traveling Sound Waves in Air Resonance Tube Equipment Capstone, complete resonance tube (tube, piston assembly, speaker stand, piston stand, mike with adaptors, channel), voltage sensor, 1.5 m leads (2), (room) thermometer, flat rubber

More information

Lab 5: Cylindrical Air Columns

Lab 5: Cylindrical Air Columns Lab 5: Cylindrical Air Columns Objectives By the end of this lab you should be able to: Calculate the normal mode frequencies of an air column. correspond to a pressure antinode - the middle of a hump.

More information

Resonance Tube Lab 9

Resonance Tube Lab 9 HB 03-30-01 Resonance Tube Lab 9 1 Resonance Tube Lab 9 Equipment SWS, complete resonance tube (tube, piston assembly, speaker stand, piston stand, mike with adaptors, channel), voltage sensor, 1.5 m leads

More information

Resonance Tube. 1 Purpose. 2 Theory. 2.1 Air As A Spring. 2.2 Traveling Sound Waves in Air

Resonance Tube. 1 Purpose. 2 Theory. 2.1 Air As A Spring. 2.2 Traveling Sound Waves in Air Resonance Tube Equipment Capstone, complete resonance tube (tube, piston assembly, speaker stand, piston stand, mike with adapters, channel), voltage sensor, 1.5 m leads (2), (room) thermometer, flat rubber

More information

Speed of Sound in Air

Speed of Sound in Air Speed of Sound in Air OBJECTIVE To explain the condition(s) necessary to achieve resonance in an open tube. To understand how the velocity of sound is affected by air temperature. To determine the speed

More information

MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START

MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START Laboratory Section: Last Revised on September 21, 2016 Partners Names: Grade: EXPERIMENT 11 Velocity of Waves 1. Pre-Laboratory Work [2 pts] 1.) What is the longest wavelength at which a sound wave will

More information

Acoustic Resonance Lab

Acoustic Resonance Lab Acoustic Resonance Lab 1 Introduction This activity introduces several concepts that are fundamental to understanding how sound is produced in musical instruments. We ll be measuring audio produced from

More information

Standing Waves in Air

Standing Waves in Air Standing Waves in Air Objective Students will explore standing wave phenomena through sound waves in an air tube. Equipment List PASCO resonance tube with speaker and microphone, PASCO PI-9587B Digital

More information

PhyzLab: Fork it Over

PhyzLab: Fork it Over PhyzLab: Fork it Over a determination of the speed of sound Pre-Lab. STANDING WAVES IN GENERAL a. Consider the standing waves illustrated below. i. Label each end either fixed or free. ii. Label the nodes

More information

PC1141 Physics I. Speed of Sound. Traveling waves of speed v, frequency f and wavelength λ are described by

PC1141 Physics I. Speed of Sound. Traveling waves of speed v, frequency f and wavelength λ are described by PC1141 Physics I Speed of Sound 1 Objectives Determination of several frequencies of the signal generator at which resonance occur in the closed and open resonance tube respectively. Determination of the

More information

Ph 2306 Experiment 2: A Look at Sound

Ph 2306 Experiment 2: A Look at Sound Name ID number Date Lab CRN Lab partner Lab instructor Ph 2306 Experiment 2: A Look at Sound Objective Because sound is something that we can only hear, it is difficult to analyze. You have probably seen

More information

Waves & Interference

Waves & Interference Waves & Interference I. Definitions and Types II. Parameters and Equations III. Sound IV. Graphs of Waves V. Interference - superposition - standing waves The student will be able to: HW: 1 Define, apply,

More information

Date Period Name. Write the term that corresponds to the description. Use each term once. beat

Date Period Name. Write the term that corresponds to the description. Use each term once. beat Date Period Name CHAPTER 15 Study Guide Sound Vocabulary Review Write the term that corresponds to the description. Use each term once. beat Doppler effect closed-pipe resonator fundamental consonance

More information

Resonant Tubes A N A N

Resonant Tubes A N A N 1 Resonant Tubes Introduction: Resonance is a phenomenon which is peculiar to oscillating systems. One example of resonance is the famous crystal champagne glass and opera singer. If you tap a champagne

More information

Chapter 12. Preview. Objectives The Production of Sound Waves Frequency of Sound Waves The Doppler Effect. Section 1 Sound Waves

Chapter 12. Preview. Objectives The Production of Sound Waves Frequency of Sound Waves The Doppler Effect. Section 1 Sound Waves Section 1 Sound Waves Preview Objectives The Production of Sound Waves Frequency of Sound Waves The Doppler Effect Section 1 Sound Waves Objectives Explain how sound waves are produced. Relate frequency

More information

Waves transfer energy NOT matter Two categories of waves Mechanical Waves require a medium (matter) to transfer wave energy Electromagnetic waves no

Waves transfer energy NOT matter Two categories of waves Mechanical Waves require a medium (matter) to transfer wave energy Electromagnetic waves no 1 Waves transfer energy NOT matter Two categories of waves Mechanical Waves require a medium (matter) to transfer wave energy Electromagnetic waves no medium required to transfer wave energy 2 Mechanical

More information

Study of Standing Waves to Find Speed of Sound in Air

Study of Standing Waves to Find Speed of Sound in Air Study of Standing Waves to Find Speed of Sound in Air Purpose Using mobile devices as sound analyzer and sound generator to study standing waves and determine the speed of sound in air. Theory The velocity

More information

Preview. Sound Section 1. Section 1 Sound Waves. Section 2 Sound Intensity and Resonance. Section 3 Harmonics

Preview. Sound Section 1. Section 1 Sound Waves. Section 2 Sound Intensity and Resonance. Section 3 Harmonics Sound Section 1 Preview Section 1 Sound Waves Section 2 Sound Intensity and Resonance Section 3 Harmonics Sound Section 1 TEKS The student is expected to: 7A examine and describe oscillatory motion and

More information

Name: Date: Period: Physics: Study guide concepts for waves and sound

Name: Date: Period: Physics: Study guide concepts for waves and sound Name: Date: Period: Physics: Study guide concepts for waves and sound Waves Sound What is a wave? Identify parts of a wave (amplitude, frequency, period, wavelength) Constructive and destructive interference

More information

No Brain Too Small PHYSICS

No Brain Too Small PHYSICS WAVES: STANDING WAVES QUESTIONS No Brain Too Small PHYSICS PAN FLUTES (2016;1) Assume the speed of sound in air is 343 m s -1. A pan flute is a musical instrument made of a set of pipes that are closed

More information

SECTION A Waves and Sound

SECTION A Waves and Sound AP Physics Multiple Choice Practice Waves and Optics SECTION A Waves and Sound 2. A string is firmly attached at both ends. When a frequency of 60 Hz is applied, the string vibrates in the standing wave

More information

5: SOUND WAVES IN TUBES AND RESONANCES INTRODUCTION

5: SOUND WAVES IN TUBES AND RESONANCES INTRODUCTION 5: SOUND WAVES IN TUBES AND RESONANCES INTRODUCTION So far we have studied oscillations and waves on springs and strings. We have done this because it is comparatively easy to observe wave behavior directly

More information

Chapter 17. Linear Superposition and Interference

Chapter 17. Linear Superposition and Interference Chapter 17 Linear Superposition and Interference Linear Superposition If two waves are traveling through the same medium, the resultant wave is found by adding the displacement of the individual waves

More information

Interference & Superposition. Creating Complex Wave Forms

Interference & Superposition. Creating Complex Wave Forms Interference & Superposition Creating Complex Wave Forms Waves & Interference I. Definitions and Types II. Parameters and Equations III. Sound IV. Graphs of Waves V. Interference - superposition - standing

More information

Chapter 3. Experiment 1: Sound. 3.1 Introduction

Chapter 3. Experiment 1: Sound. 3.1 Introduction Chapter 3 Experiment 1: Sound 3.1 Introduction Sound is classified under the topic of mechanical waves. A mechanical wave is a term which refers to a displacement of elements in a medium from their equilibrium

More information

SECTION A Waves and Sound

SECTION A Waves and Sound AP Physics Multiple Choice Practice Waves and Optics SECTION A Waves and Sound 1. Which of the following statements about the speed of waves on a string are true? I. The speed depends on the tension in

More information

A mechanical wave is a disturbance which propagates through a medium with little or no net displacement of the particles of the medium.

A mechanical wave is a disturbance which propagates through a medium with little or no net displacement of the particles of the medium. Waves and Sound Mechanical Wave A mechanical wave is a disturbance which propagates through a medium with little or no net displacement of the particles of the medium. Water Waves Wave Pulse People Wave

More information

CHAPTER 11 TEST REVIEW -- MARKSCHEME

CHAPTER 11 TEST REVIEW -- MARKSCHEME AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response MULTIPLE CHOICE DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM

More information

PHYS102 Previous Exam Problems. Sound Waves. If the speed of sound in air is not given in the problem, take it as 343 m/s.

PHYS102 Previous Exam Problems. Sound Waves. If the speed of sound in air is not given in the problem, take it as 343 m/s. PHYS102 Previous Exam Problems CHAPTER 17 Sound Waves Sound waves Interference of sound waves Intensity & level Resonance in tubes Doppler effect If the speed of sound in air is not given in the problem,

More information

Frequency f determined by the source of vibration; related to pitch of sound. Period T time taken for one complete vibrational cycle

Frequency f determined by the source of vibration; related to pitch of sound. Period T time taken for one complete vibrational cycle Unit 1: Waves Lesson: Sound Sound is a mechanical wave, a longitudinal wave, a pressure wave Periodic sound waves have: Frequency f determined by the source of vibration; related to pitch of sound Period

More information

Physics 1C. Lecture 14C. "The finest words in the world are only vain sounds if you cannot understand them." --Anatole France

Physics 1C. Lecture 14C. The finest words in the world are only vain sounds if you cannot understand them. --Anatole France Physics 1C Lecture 14C "The finest words in the world are only vain sounds if you cannot understand them." --Anatole France Standing Waves You can also create standing waves in columns of air. But in air,

More information

Physics I Notes: Chapter 13 Sound

Physics I Notes: Chapter 13 Sound Physics I Notes: Chapter 13 Sound I. Properties of Sound A. Sound is the only thing that one can hear! Where do sounds come from?? Sounds are produced by VIBRATING or OSCILLATING OBJECTS! Sound is a longitudinal

More information

An introduction to physics of Sound

An introduction to physics of Sound An introduction to physics of Sound Outlines Acoustics and psycho-acoustics Sound? Wave and waves types Cycle Basic parameters of sound wave period Amplitude Wavelength Frequency Outlines Phase Types of

More information

Resonance in Air Columns

Resonance in Air Columns Resonance in Air Columns When discussing waves in one dimension, we observed that a standing wave forms on a spring when reflected waves interfere with incident waves. We learned that the frequencies at

More information

SOUND & MUSIC. Sound & Music 1

SOUND & MUSIC. Sound & Music 1 SOUND & MUSIC Sound is produced by a rapid variation in the average density or pressure of air molecules. We perceive sound as these pressure changes cause our eardrums to vibrate. Sound waves are produced

More information

Standing Waves in an Air Column

Standing Waves in an Air Column Standing Waves in an Air Column PURPOSE To observe resonance of sound waves in an air column open at one end and closed at the other. To determine the speed of sound in air and the effect of the air temperature

More information

Warm-Up. Think of three examples of waves. What do waves have in common? What, if anything, do waves carry from one place to another?

Warm-Up. Think of three examples of waves. What do waves have in common? What, if anything, do waves carry from one place to another? Warm-Up Think of three examples of waves. What do waves have in common? What, if anything, do waves carry from one place to another? WAVES Physics Waves If you can only remember one thing Waves transmit

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science MOCK EXAMINATION PHY207H1S. Duration 3 hours NO AIDS ALLOWED

UNIVERSITY OF TORONTO Faculty of Arts and Science MOCK EXAMINATION PHY207H1S. Duration 3 hours NO AIDS ALLOWED UNIVERSITY OF TORONTO Faculty of Arts and Science MOCK EXAMINATION PHY207H1S Duration 3 hours NO AIDS ALLOWED Instructions: Please answer all questions in the examination booklet(s) provided. Completely

More information

Worksheet 15.2 Musical Instruments

Worksheet 15.2 Musical Instruments Worksheet 15.2 Musical Instruments 1. You and your group stretch a spring 12 feet across the floor and you produce a standing wave that has a node at each end and one antinode in the center. Sketch this

More information

Sound Lab BACKGROUND MATERIALS

Sound Lab BACKGROUND MATERIALS BACKGROUND A closed tube (one open end, one closed end) will resonate with a tuning fork when the frequency of the tube is related to that of the tuning fork. Since the closed end of the tube must be a

More information

ABC Math Student Copy

ABC Math Student Copy Page 1 of 17 Physics Week 9(Sem. 2) Name Chapter Summary Waves and Sound Cont d 2 Principle of Linear Superposition Sound is a pressure wave. Often two or more sound waves are present at the same place

More information

A Level. A Level Physics. WAVES: Combining Waves (Answers) OCR. Name: Total Marks: /30

A Level. A Level Physics. WAVES: Combining Waves (Answers) OCR. Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. OCR A Level A Level Physics WAVES: Combining Waves (Answers) Name: Total Marks: /30 Maths Made Easy Complete Tuition Ltd 2017 1. To produce

More information

Week 15. Mechanical Waves

Week 15. Mechanical Waves Chapter 15 Week 15. Mechanical Waves 15.1 Lecture - Mechanical Waves In this lesson, we will study mechanical waves in the form of a standing wave on a vibrating string. Because it is the last week of

More information

Waves-Wave Behaviors

Waves-Wave Behaviors 1. While playing, two children create a standing wave in a rope, as shown in the diagram below. A third child participates by jumping the rope. What is the wavelength of this standing wave? 1. 2.15 m 2.

More information

Waves and Sound. AP Physics 1

Waves and Sound. AP Physics 1 Waves and Sound AP Physics 1 What is a wave A WAVE is a vibration or disturbance in space. A MEDIUM is the substance that all SOUND WAVES travel through and need to have in order to move. Classes of waves

More information

Copyright 2010 Pearson Education, Inc.

Copyright 2010 Pearson Education, Inc. 14-7 Superposition and Interference Waves of small amplitude traveling through the same medium combine, or superpose, by simple addition. 14-7 Superposition and Interference If two pulses combine to give

More information

Physics 1021 Experiment 3. Sound and Resonance

Physics 1021 Experiment 3. Sound and Resonance 1 Physics 1021 Sound and Resonance 2 Sound and Resonance Introduction In today's experiment, you will examine beat frequency using tuning forks, a microphone and LoggerPro. You will also produce resonance

More information

Introduction. Physics 1CL WAVES AND SOUND FALL 2009

Introduction. Physics 1CL WAVES AND SOUND FALL 2009 Introduction This lab and the next are based on the physics of waves and sound. In this lab, transverse waves on a string and both transverse and longitudinal waves on a slinky are studied. To describe

More information

Chapter PREPTEST: SHM & WAVE PROPERTIES

Chapter PREPTEST: SHM & WAVE PROPERTIES 2 4 Chapter 13-14 PREPTEST: SHM & WAVE PROPERTIES Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A load of 45 N attached to a spring that is hanging vertically

More information

EXPERIMENT 8: SPEED OF SOUND IN AIR

EXPERIMENT 8: SPEED OF SOUND IN AIR LAB SECTION: NAME: EXPERIMENT 8: SPEED OF SOUND IN AIR Introduction: In this lab, you will create standing sound waves in a column of air confined to a tube. You will be able to change the frequency of

More information

Waves Q1. MockTime.com. (c) speed of propagation = 5 (d) period π/15 Ans: (c)

Waves Q1. MockTime.com. (c) speed of propagation = 5 (d) period π/15 Ans: (c) Waves Q1. (a) v = 5 cm (b) λ = 18 cm (c) a = 0.04 cm (d) f = 50 Hz Q2. The velocity of sound in any gas depends upon [1988] (a) wavelength of sound only (b) density and elasticity of gas (c) intensity

More information

Sound Waves Practice Problems PSI AP Physics 1. (D) It cannot be determined with the given information.

Sound Waves Practice Problems PSI AP Physics 1. (D) It cannot be determined with the given information. Sound Waves Practice Problems PSI AP Physics 1 Name Multiple Choice 1. Two sound sources S 1 and S 2 produce waves with frequencies 500 Hz and 250 Hz. When we compare the speed of wave 1 to the speed of

More information

THE PRINCIPLE OF LINEAR SUPERPOSITION AND INTERFERENCE PHENOMENA

THE PRINCIPLE OF LINEAR SUPERPOSITION AND INTERFERENCE PHENOMENA THE PRINCIPLE OF LINEAR SUPERPOSITION AND INTERFERENCE PHENOMENA PREVIEW When two waves meet in the same medium they combine to form a new wave by the principle of superposition. The result of superposition

More information

LAB 10: OSCILLATIONS AND SOUND

LAB 10: OSCILLATIONS AND SOUND 159 Name Date Partners LAB 10: OSCILLATIONS AND SOUND (Image from http://archive.museophile.org/sound/) OBJECTIVES To understand the effects of damping on oscillatory motion. To recognize the effects of

More information

AP Physics B (Princeton 15 & Giancoli 11 & 12) Waves and Sound

AP Physics B (Princeton 15 & Giancoli 11 & 12) Waves and Sound AP Physics B (Princeton 15 & Giancoli 11 & 12) Waves and Sound Preview What are the two categories of waves with regard to mode of travel? Mechanical Electromagnetic Which type of wave requires a medium?

More information

3A: PROPERTIES OF WAVES

3A: PROPERTIES OF WAVES 3A: PROPERTIES OF WAVES Int roduct ion Your ear is complicated device that is designed to detect variations in the pressure of the air at your eardrum. The reason this is so useful is that disturbances

More information

PHYSICS LAB. Sound. Date: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY

PHYSICS LAB. Sound. Date: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY PHYSICS LAB Sound Printed Names: Signatures: Date: Lab Section: Instructor: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY Revision August 2003 Sound Investigations Sound Investigations 78 Part I -

More information

AP PHYSICS WAVE BEHAVIOR

AP PHYSICS WAVE BEHAVIOR AP PHYSICS WAVE BEHAVIOR NAME: HB: ACTIVITY I. BOUNDARY BEHAVIOR As a wave travels through a medium, it will often reach the end of the medium and encounter an obstacle or perhaps another medium through

More information

Chapter 16 Sound. Copyright 2009 Pearson Education, Inc.

Chapter 16 Sound. Copyright 2009 Pearson Education, Inc. Chapter 16 Sound 16-6 Interference of Sound Waves; Beats Sound waves interfere in the same way that other waves do in space. 16-6 Interference of Sound Waves; Beats Example 16-12: Loudspeakers interference.

More information

Regents Physics Lab #28R. Sound Waves

Regents Physics Lab #28R. Sound Waves Name Date Regents Physics Lab #28R Period Mrs. Nadworny Partners: Due Date Research Problem Sound Waves The sound produced by a tuning fork in air exists as variations in air pressure that spread out longitudinally

More information

WAVES. Chapter Fifteen MCQ I

WAVES. Chapter Fifteen MCQ I Chapter Fifteen WAVES MCQ I 15.1 Water waves produced by a motor boat sailing in water are (a) neither longitudinal nor transverse. (b) both longitudinal and transverse. (c) only longitudinal. (d) only

More information

1) The time for one cycle of a periodic process is called the A) period. B) frequency. C) wavelength. D) amplitude.

1) The time for one cycle of a periodic process is called the A) period. B) frequency. C) wavelength. D) amplitude. Practice quiz for engineering students. Real test next Tuesday. Plan on an essay/show me work question as well. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers

More information

Copyright 2009 Pearson Education, Inc.

Copyright 2009 Pearson Education, Inc. Chapter 16 Sound 16-1 Characteristics of Sound Sound can travel through h any kind of matter, but not through a vacuum. The speed of sound is different in different materials; in general, it is slowest

More information

Linguistics 401 LECTURE #2. BASIC ACOUSTIC CONCEPTS (A review)

Linguistics 401 LECTURE #2. BASIC ACOUSTIC CONCEPTS (A review) Linguistics 401 LECTURE #2 BASIC ACOUSTIC CONCEPTS (A review) Unit of wave: CYCLE one complete wave (=one complete crest and trough) The number of cycles per second: FREQUENCY cycles per second (cps) =

More information

Experiment P36: Resonance Modes and the Speed of Sound (Voltage Sensor, Power Amplifier)

Experiment P36: Resonance Modes and the Speed of Sound (Voltage Sensor, Power Amplifier) PASCO scientific Vol. 2 Physics Lab Manual: P36-1 Experiment P36: Resonance Modes and the Speed of Sound (Voltage Sensor, Power Amplifier) Concept Time SW Interface Macintosh File Windows File waves 45

More information

The Semiconductor Diode

The Semiconductor Diode Physics Topics The Semiconductor Diode If necessary, review the following topics and relevant textbook sections from Neamen Semiconductor Physics and Devices, 4th Ed. Section 8.1.5, especially equation

More information

a. Determine the wavelength of the sound. b. Determine the speed of sound in the air inside the tube.

a. Determine the wavelength of the sound. b. Determine the speed of sound in the air inside the tube. 1995B6. (10 points) A hollow tube of length Q. open at both ends as shown above, is held in midair. A tuning fork with a frequency f o vibrates at one end of the tube and causes the air in the tube to

More information

A Level. A Level Physics. WAVES: Combining Waves (Answers) AQA. Name: Total Marks: /30

A Level. A Level Physics. WAVES: Combining Waves (Answers) AQA. Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. AQA A Level A Level Physics WAVES: Combining Waves (Answers) Name: Total Marks: /30 Maths Made Easy Complete Tuition Ltd 2017 1. To produce

More information

Waves-Wave Behaviors

Waves-Wave Behaviors 1. While playing, two children create a standing wave in a rope, as shown in the diagram below. A third child participates by jumping the rope. What is the wavelength of this standing wave? 1. 2.15 m 2.

More information

describe sound as the transmission of energy via longitudinal pressure waves;

describe sound as the transmission of energy via longitudinal pressure waves; 1 Sound-Detailed Study Study Design 2009 2012 Unit 4 Detailed Study: Sound describe sound as the transmission of energy via longitudinal pressure waves; analyse sound using wavelength, frequency and speed

More information

Pre Test 1. Name. a Hz b Hz c Hz d Hz e Hz. 1. d

Pre Test 1. Name. a Hz b Hz c Hz d Hz e Hz. 1. d Name Pre Test 1 1. The wavelength of light visible to the human eye is on the order of 5 10 7 m. If the speed of light in air is 3 10 8 m/s, find the frequency of the light wave. 1. d a. 3 10 7 Hz b. 4

More information

Physics 20 Lesson 31 Resonance and Sound

Physics 20 Lesson 31 Resonance and Sound Physics 20 Lesson 31 Resonance and Sound I. Standing waves Refer to Pearson pages 416 to 424 for a discussion of standing waves, resonance and music. The amplitude and wavelength of interfering waves are

More information

DC and AC Circuits. Objective. Theory. 1. Direct Current (DC) R-C Circuit

DC and AC Circuits. Objective. Theory. 1. Direct Current (DC) R-C Circuit [International Campus Lab] Objective Determine the behavior of resistors, capacitors, and inductors in DC and AC circuits. Theory ----------------------------- Reference -------------------------- Young

More information

Name: Date: Period: IB Physics SL Y2 Option A (Sight and Wave Phenomena Part 1) Midterm Exam Study Guide Exam Date: Thursday, March 12, 2015

Name: Date: Period: IB Physics SL Y2 Option A (Sight and Wave Phenomena Part 1) Midterm Exam Study Guide Exam Date: Thursday, March 12, 2015 Name: Date: Period: Objectives: IB Physics SL Y2 Option A (Sight and Wave Phenomena Part 1) Midterm Exam Study Guide Exam Date: Thursday, March 12, 2015 A.1.1 Describe the basic structure of the human

More information

(3) A traveling wave transfers, but it does not transfer.

(3) A traveling wave transfers, but it does not transfer. AP PHYSICS TEST 9 Waves and Sound (1) Give a good physics definition of a wave. (2) Any wave has as its source. (3) A traveling wave transfers, but it does not transfer. (4) What is a mechanical wave?

More information

Measuring the Speed of Sound in Air Using a Smartphone and a Cardboard Tube

Measuring the Speed of Sound in Air Using a Smartphone and a Cardboard Tube Measuring the Speed of Sound in Air Using a Smartphone and a Cardboard Tube arxiv:1812.06732v1 [physics.ed-ph] 17 Dec 2018 Abstract Simen Hellesund University of Oslo This paper demonstrates a variation

More information

Physics B Waves and Sound Name: AP Review. Show your work:

Physics B Waves and Sound Name: AP Review. Show your work: Physics B Waves and Sound Name: AP Review Mechanical Wave A disturbance that propagates through a medium with little or no net displacement of the particles of the medium. Parts of a Wave Crest: high point

More information

Review of Standing Waves on a String

Review of Standing Waves on a String Review of Standing Waves on a String Below is a picture of a standing wave on a 30 meter long string. What is the wavelength of the running waves that the standing wave is made from? 30 m A.

More information

SUMMARY. ) f s Shock wave Sonic boom UNIT. Waves transmit energy. Sound is a longitudinal mechanical wave. KEY CONCEPTS CHAPTER SUMMARY

SUMMARY. ) f s Shock wave Sonic boom UNIT. Waves transmit energy. Sound is a longitudinal mechanical wave. KEY CONCEPTS CHAPTER SUMMARY UNIT D SUMMARY KEY CONCEPTS CHAPTER SUMMARY 9 Waves transmit energy. Crest, trough, amplitude, wavelength Longitudinal and transverse waves Cycle Period, frequency f 1_ T Universal wave equation v fλ Wave

More information

L 5 Review of Standing Waves on a String

L 5 Review of Standing Waves on a String L 5 Review of Standing Waves on a String Below is a picture of a standing wave on a 30 meter long string. What is the wavelength of the running waves that the standing wave is made from? 30

More information

Spring 2004 M2.1. Lab M2. Ultrasound: Interference, Wavelength, and Velocity

Spring 2004 M2.1. Lab M2. Ultrasound: Interference, Wavelength, and Velocity Spring 2004 M2.1 Lab M2. Ultrasound: Interference, Wavelength, and Velocity The purpose in this lab exercise is to become familiar with the properties of waves: frequency, wavelength, phase and velocity.

More information

26 Sep. 10 PHYS102 2

26 Sep. 10 PHYS102 2 RESONANCE IN STRINGS INTRODUCTION A sine wave generator drives a string vibrator to create a standing wave pattern in a stretched string. The driving frequency and the length, density, and tension of the

More information

LAB 12: OSCILLATIONS AND SOUND

LAB 12: OSCILLATIONS AND SOUND 193 Name Date Partners LAB 12: OSCILLATIONS AND SOUND Animals can hear over a wider frequency range of humans, but humans can hear over a wide frequency from 20 Hz to 20,000 Hz (Image from http://archive.museophile.org/sound/)

More information

Lab 12. Vibrating Strings

Lab 12. Vibrating Strings Lab 12. Vibrating Strings Goals To experimentally determine relationships between fundamental resonant of a vibrating string and its length, its mass per unit length, and tension in string. To introduce

More information

Sound Waves and Beats

Sound Waves and Beats Sound Waves and Beats Computer 32 Sound waves consist of a series of air pressure variations. A Microphone diaphragm records these variations by moving in response to the pressure changes. The diaphragm

More information

Sound. Use a Microphone to analyze the frequency components of a tuning fork. Record overtones produced with a tuning fork.

Sound. Use a Microphone to analyze the frequency components of a tuning fork. Record overtones produced with a tuning fork. Sound PART ONE - TONES In this experiment, you will analyze various common sounds. You will use a Microphone connected to a computer. Logger Pro will display the waveform of each sound, and will perform

More information

Physics 1C. Lecture 14B

Physics 1C. Lecture 14B Physics 1C Lecture 14B "I did never know so full a voice issue from so empty a heart: but the saying is true 'The empty vessel makes the greatest sound'." --William Shakespeare Doppler Effect Why does

More information

Standing Waves. Miscellaneous Cables and Adapters. Capstone Software Clamp and Pulley White Flexible String

Standing Waves. Miscellaneous Cables and Adapters. Capstone Software Clamp and Pulley White Flexible String Partner 1: Partner 2: Section: Partner 3 (if applicable): Purpose: Continuous waves traveling along a string are reflected when they arrive at the (in this case fixed) end of a string. The reflected wave

More information

Sound of Music. This lab is due at the end of the laboratory period

Sound of Music. This lab is due at the end of the laboratory period Name: Partner(s): 1114 section: Desk # Date: Purpose Sound of Music This lab is due at the end of the laboratory period To create and play musical notes using standing waves in a pipe closed at one end.

More information

Ch 26: Sound Review 2 Short Answers 1. What is the source of all sound?

Ch 26: Sound Review 2 Short Answers 1. What is the source of all sound? Ch 26: Sound Review 2 Short Answers 1. What is the source of all sound? 2. How does a sound wave travel through air? 3. What media transmit sound? 4. What determines the speed of sound in a medium? 5.

More information

Chapter 05: Wave Motions and Sound

Chapter 05: Wave Motions and Sound Chapter 05: Wave Motions and Sound Section 5.1: Forces and Elastic Materials Elasticity It's not just the stretch, it's the snap back An elastic material will return to its original shape when stretched

More information

Waves and Sound. Review 10

Waves and Sound. Review 10 Review 10 Waves and Sound 1. A spring stretches by 25 cm when a 0.5 kg mass is suspended from its end. a. Determine the spring constant. b. How much elastic potential energy is stored in the spring when

More information

v = λf 1. A wave is created on a Slinky such that its frequency is 2 Hz and it has a wavelength of 1.20 meters. What is the speed of this wave?

v = λf 1. A wave is created on a Slinky such that its frequency is 2 Hz and it has a wavelength of 1.20 meters. What is the speed of this wave? Today: Questions re: HW Examples - Waves Wave Properties > Doppler Effect > Interference & Beats > Resonance Examples: v = λf 1. A wave is created on a Slinky such that its frequency is 2 Hz and it has

More information