Smart Networks and Smart Cities

Size: px
Start display at page:

Download "Smart Networks and Smart Cities"

Transcription

1 Fare clic per modificare stili del testo dello schema Secondo livello Terzo livello Quarto livello New IoT communication technologies for Smart Networks and Smart Cities Univ. Prof. Dr. Andrea M. Tonello Chair of Embedded Communication Systems University of Klagenfurt - European Utility Week 2018 Vienna Austria Diehl Event 6 November 2018 Copyright notice: These slides may contain copyrighted material. They cannot be copied or distributed without copyright holders permission 1

2 Abstract The talk covers advances on telecommunication technology for applications in IoT, smart cities and smart grids. Emphasis is given to the requirements posed by massive networks in such applications, and the technical approaches for massive connectivity offered by new wireless and power line communication technologies. In particular, long range and low power wireless access, 4G-5G cellular machine type communications, as well as narrow band and broad band PLC for IoT will be overviewed. Coexistence and interoperability issues will also be addressed. A.M. Tonello, November

3 Content IoT domains and requirements for communications Communication technologies Radio technologies for massive connectivity Power line communications Interoperability and novel paradigms for networking 3

4 IoT domains 4

5 IoT spans several market verticals People Energy Transportation Industry Smart City Agriculture Health Education Photos source: 5

6 Services and communication requirements People Internet access, mobile services, gaming Smart and assisted living Children, pet tracking Energy - resources Smart grids, renewables Metering (electricity, water, gas) Asset management, maintenance Transportation Autonomous driving Safety, intelligent transportation Aerial taxis navigation Industry Robotics Asset and process management Logistics QoS Data rate Latency Range Battery life QoS Data rate Latency Range Battery life QoS Data rate Latency Range Battery life Data rate Range Battery life QoS Latency 6

7 Some numbers Data rate per node: 10 bps 10 Gbps (sensor reading multimedia) Latency: 1 ms 200 ms (autonomous driving voice) Range: 1 m 20 km (personal device wildlife tracking) Battery life: 1 day 10 years (gadgets metering) Node density: 1/m 2 1/km 2 (personal device remote sensors) Massive amount of nodes 9 Mil. devices in an area of 20x20 km Data traffic of 60 GB per user per month by 2021 Photo source: 7

8 How can we provide connectivity? 8

9 Main communication technologies Wireless radio Short range: NFC, Bluetooth, Zigbee, Z-Wave, WiFi Medium range: WiMax, 2G-4G cellular Long range: WMBus, DASH7, RPMA, WIZE, Sigfox, LoRa GSM-IoT, emtc, NB-IoT 5G (to come) Power line Narrow band PLC: Prime, G3-PLC, IEEE , ITU G.hnem Broad band PLC: IEEE 1901, ITU G.hn, IEEE Wireline Fiber: FTTN, FTTC, FTTB, FTTH Twisted pair: ADSL, ADSL2, VDSL, G.fast 9

10 Radio regulatory framework Unlicensed spectrum Licensed spectrum 10

11 Unlicensed spectrum Europe (CEPT- ERC Recommendation 70-03, 2018): Non specific short range devices tracking, tracing, data acquisition devices 2.4 Band Signal bandwidth Power Duty cycle khz 500 mw e.r.p. 1.0 % duty cycle (note 1) Not specified 10 mw e.r.p. 0.1 % duty cycle (note 1) Not specified 10 mw e.r.p % duty cycle except for 00:00 h to 06:00 h local time where the duty cycle limit is 0.1% (note 1) Not specified 10 mw e.r.p. 0.1 % duty cycle (note 1) Not specified 10 mw e.r.p. 10 % duty cycle (note 1) Not specified 1 mw e.r.p. Power density: No requirement except for (note 11) -13 dbm/10 khz khz 10 mw e.r.p. No requirement except for (note 11) khz 25 mw e.r.p. 0.1% duty cycle khz for 47 or more channels (note 2) 25 mw e.r.p. 0.1% duty cycle or LBT (notes 1 and 5) Not specified 25 mw e.r.p. Power density: -4.5 dbm/100 khz (note 7) 0.1% duty cycle or LBT+AFA (notes 1, 5 and 6) khz, for 1 or more channels modulation 25 mw e.r.p. 0.1% duty cycle or LBT + AFA (notes 1 and 5) bandwidth 300 khz (note 2) khz Very 500 mw e.r.p. fragmented (note 5) 10% duty cycle for network access points (notes 6 and 7) 2.5% duty cycle otherwise Not specified for 1 or more channels (note 2) 25 mw e.r.p. 1% duty cycle or LBT +AFA (note 1) Not specified for 1 or more channels (note 2) 25 mw e.r.p. 0.1% duty cycle or LBT+AFA (note 1) Not specified for 1 or more channels 500 mw e.r.p. 10% duty cycle or LBT+AFA (note 1) Not specified for 1 or more channels 5 mw e.r.p.; 25 mw e.r.p. No requirement for 5 mw e.r.p.; 1% duty cycle or LBT+AFA (note 1) for 25 mw e.r.p khz 25 mw e.r.p. 0.1% duty cycle. For ER-GSM protection ( MHz, where applicable): the duty cycle is limited to 0.01% and to a maximum transmit on- time of 5ms/1s khz 500 mw e.r.p. 2.5% duty cycle and APC required (note 1). For ER-GSM protection ( MHz, where applicable), the duty cycle is limited to 0.01% and limited to a maximum transmit on time of 5ms/1s (note 2) khz 25 mw e.r.p. 1% duty cycle. For ER-GSM protection ( MHz, where applicable): the duty cycle is limited to 0.01% and to a maximum transmit on time of 5ms/1s khz 25 mw e.r.p. 0.1% duty cycle. For ER-GSM protection ( MHz, where applicable): the duty cycle is limited to 0.01% and to a maximum transmit on- time of 5ms/1s khz except for the 4 channels identified in note 9 where 400 khz applies 25 mw e.r.p. except for the 4 channels identified in note 9 where 100 mw e.r.p. applies 1% duty cycle (note 10). For ER-GSM protection ( MHz, where applicable): the duty cycle is limited to 0.01% and to a maximum transmit on- time of 5ms/1s Not specified 10 mw e.i.r.p. No requirement 11

12 Radio technologies 12

13 WiFi ah WM-Bus DASH7 Ingenu RPMA Main radio systems: unlicensed spectrum Band Unlicensed under 1GHz, except TV Channel width 1/2/4/8/16 MHz Modulation and Access technique Transmitted power OFDM - TDMA 0 dbm to 30 dbm, depending on region RX sensitivity (implementation specific) -92 dbm (2 MHz) Range (under ideal conditions) 1 km (rural) Star, tree (2- hop) Topology Data rate DL 150 kb/s, up to 300 Mb/s Data rate UL 150 kb/s, up to 300 Mb/s Mobility Nodes per gateway Battery life (estimated given duty cycle) IPv6 No week Likely 868 MHz 169 MHz 10 khz to 100 khz FSK 10 dbm -105 dbm 500 m Star kb/s kb/s No Not specified Years No ISM 2.4 GHz 25 or FSK - CSMA 433 MHz: km Tree by kb/s kb/s No N/A 10 years Likely EU: 433/ khz 10 dbm default, (connectionl USA: /915 MHz: star or ess) MHz +27 dbm mesh ISM 2.4 GHz 1 MHz CDMA - RPMA Up to 43 dbm -142 dbm 15 km (rural) Star 50 kb/s 50 kb/s Yes Likely WIZE 169 MHz km kb/s kb/s No years Likely SIGFOX LoRa ISM 2.4 GHz MHz ISM 2.4 GHz EU: 433/ /915 USA: 902 MHz 100 Hz BPSK - Aloha Up to 20 dbm -142 dbm 5-10 km (urban), 100 km (rural) 125 khz FSK + Chirp spread spectrum LoRa WAN EU: 14 dbm US: 27 dbm -137 dbm 5 km (urban), 15 km (rural) Star 4x8b/day 100 b/s No years Unlikely Star EU: 30 b/s- 50 kb/s US: kb/s EU: 30 b/s- 50 kb/s US: kb/s No years Likely REF. I. C. R. Tardy et al., Comparison of wireless techniques applied to environmental sensor monitoring, Sintef tech. Report, REF. G. A. Akpakwu et al., A survey on 5G networks for the internet of things: communication technologies and challenges, IEEE Access,

14 Cellular IoT: licensed spectrum Band GPRS MHz licensed EC-GSM-IoT MHz licensed LTE Cat-M1 (emtc) MHz licensed or shared LTE Cat-NB1 (NB-IoT) MHz licensed or shared Channel width Modulation and Access technique Transmitted power RX sensitivity (implementation specific) Range (under ideal conditions) NB-IoT can be flexibly deployed in GSM or LTE spectrum Topology Data rate DL Data rate UL Mobility Nodes per gateway Battery life (estimated given duty cycle) 200 khz GMSK - TDMA Up to 43 dbm -114 dbm 5 km Star 10 kb/s 10 kb/s Yes week No 200 khz GMSK, 8-PSK TDMA-FDMA 1.08 (1.4) SC-FDMA (UL) MHz OFDMA (DL) 180 (200) khz SC-FDMA (UL) OFDMA (DL) 33 dbm 23 dbm 23 dbm 20 dbm 23 dbm 20 dbm -131 dbm 5 km Star kb/s kb/s Yes years Yes dbm 5 km (rural) Star <1 Mb/s <1 Mb/s Yes years Yes -144 dbm 5 km (rural) Star 170 kb/s 250 kb/s Yes years Yes IPv6 NB-IoT GSM Carriers NB-IoT LTE Carriers NB-IoT LTE Carriers Standalone Operation In-Band Operation Guard Band Operation 14

15 Key performance indicators Radio technology is the preferred solution for: Battery powered applications (e.g., gas/water metering) Mobile applications (e.g, waste tracking) Key performance indicators (KPIs) Spectrum Coverage Latency Battery life Size Nodes per gateway Congestion management Network scalability Capex, Opex, 15

16 Power line communications 16

17 PLC applications in the IoT domain INTERNET Network Operator house MV/LV substation LV PLC LV PLC MV PLC MV PLC MV/LV substation MV PLC HV/MV station building MV/LV LV PLC substation house Smart home Electricity metering Core network Backhauling E-car and charging Smart grid 17

18 PLC standards and the smart grid Home Automation ISO/IEC EIA 600 IEC IEEE P ITU-T G High Speed HAN ITU-T G.9960 G9961 IEEE P1901 Metering & SG ITU-T G ITU-T G9960 IEEE P IEC For metering: Narrow Band PLC (9-500 khz) is OK For more demanding services Broad Band PLC (2-86 MHz) may be preferred Internet LV line MV line Narrow Band PLC IEEE ITU G.hnem Prime G3-PLC Broad Band PLC IEEE 1901 IEEE (for IoT, just completed) ITU G.hn IEC : HomePlug Green PHY REF. A. M. Tonello, A. Pittolo, Considerations on narrowband and broadband power line communication for smart grids, IEEE SmartGridCom

19 PLC for grid sensing and predictive maintenance PLC modems can be used as network probes (high frequency sensors) PLC for sensing the grid can be used for Topology estimation Switches status monitoring Loads identification Users branching on-off Fault detection and localization Cables aging detection Phase detection REF. F. Passerini, A. M. Tonello, Using communications for grid discovery and diagnostics, Encyclopedia of Wireless Networks 2018 Photo source: 19

20 Connectivity is not sufficient The full service needs to be provided 20

21 Parties and complexity management End users Smart city Smart industry Smart cars Smart health Smart grids Smart buildings Access requests Data IoT providers Subscribtion Access control Resource management QoS management Infrastructure providers Actions and management Raw data Edge, fog, cloud End-devices Network providers Computing providers REF. R. Yu et al, The fog of things paradigm: road toward on-demand internet of things, IEEE Communications Magazine

22 Convergence (interoperability) is necessary Convergence can be realized at the edge and cloud level Network slicing Virtual slices to share the network infrastructure and deliver a certain service with guaranteed QoS and security Network functions are realized in the Cloud Cloud network functions Access functions (management of user and control plane) are offloaded to the Edge Edge access functions Overall orchestration with AI mechanisms Access Access Access 22

23 Take away conclusions 23

24 Take away conclusions We made significant progress in connectivity Low power wireless access technologies are the current solution for battery powered IoT devices 5G R&D focuses more on IoT, now Harmonization and standardization have to be completed PLC has a role in the smart grid and for providing a backbone Wide set of requirements and massive amount of nodes bring Challenges to guarantee high QoS Opportunities for the intelligent orchestration of the network 24

25 Thank you! For any further question: Andrea Tonello University of Klagenfurt 25

Narrow Band PLC, Broad Band PLC and Next Generation PLC

Narrow Band PLC, Broad Band PLC and Next Generation PLC IX Workshop on Power Line Communications Klagenfurt 21-22 September 2015 Narrow Band PLC, Broad Band PLC and Next Generation PLC Andrea M. Tonello email: tonello@ieee.org A. M. Tonello 2015. This material

More information

NB IoT RAN. Srđan Knežević Solution Architect. NB-IoT Commercial in confidence Uen, Rev A Page 1

NB IoT RAN. Srđan Knežević Solution Architect. NB-IoT Commercial in confidence Uen, Rev A Page 1 NB IoT RAN Srđan Knežević Solution Architect NB-IoT Commercial in confidence 20171110-1 Uen, Rev A 2017-11-10 Page 1 Massive Iot market outlook M2M (TODAY) IOT (YEAR 2017 +) 15 Billion PREDICTED IOT CONNECTED

More information

Smart Meter connectivity solutions

Smart Meter connectivity solutions Smart Meter connectivity solutions BEREC Workshop Enabling the Internet of Things Brussels, 1 February 2017 Vincenzo Lobianco AGCOM Chief Technological & Innovation Officer A Case Study Italian NRAs cooperation

More information

Seminar on Low Power Wide Area Networks

Seminar on Low Power Wide Area Networks Seminar on Low Power Wide Area Networks Luca Feltrin RadioNetworks, DEI, Alma Mater Studiorum - Università di Bologna Technologies Overview State of the Art Long Range Technologies for IoT Cellular Band

More information

Mario Maniewicz Deputy-Director, Radiocommunication Bureau Commonwealth Spectrum Management Forum London, October 2017

Mario Maniewicz Deputy-Director, Radiocommunication Bureau Commonwealth Spectrum Management Forum London, October 2017 ITU-R studies in support of the Internet of Things Mario Maniewicz Deputy-Director, Radiocommunication Bureau Commonwealth Spectrum Management Forum London, October 2017 1 Internet of Things (IoT, MTC,

More information

Some Areas for PLC Improvement

Some Areas for PLC Improvement Some Areas for PLC Improvement Andrea M. Tonello EcoSys - Embedded Communication Systems Group University of Klagenfurt Klagenfurt, Austria email: andrea.tonello@aau.at web: http://nes.aau.at/tonello web:

More information

Low Frequency, Narrowband PLC Standards for Smart Grid The PLC Standards Gap!

Low Frequency, Narrowband PLC Standards for Smart Grid The PLC Standards Gap! Low Frequency, Narrowband PLC Standards for Smart Grid The PLC Standards Gap! Don Shaver TI Fellow Director, Communications and Medical Systems Laboratory Texas Instruments Incorporated December 3, 2009

More information

ETSI work on IoT connectivity: LTN, CSS, Mesh and Others. Josef BERNHARD Fraunhofer IIS

ETSI work on IoT connectivity: LTN, CSS, Mesh and Others. Josef BERNHARD Fraunhofer IIS ETSI work on IoT connectivity: LTN, CSS, Mesh and Others Josef BERNHARD Fraunhofer IIS 1 Outline ETSI produces a very large number of standards covering the entire domain of telecommunications and related

More information

Tomorrow s Wireless - How the Internet of Things and 5G are Shaping the Future of Wireless

Tomorrow s Wireless - How the Internet of Things and 5G are Shaping the Future of Wireless Tomorrow s Wireless - How the Internet of Things and 5G are Shaping the Future of Wireless Jin Bains Vice President R&D, RF Products, National Instruments 1 We live in a Hyper Connected World Data rate

More information

Report. Comparison of wireless techniques applied to environmental sensor monitoring. SINTEF A Unrestricted

Report. Comparison of wireless techniques applied to environmental sensor monitoring. SINTEF A Unrestricted - Unrestricted Report Comparison of wireless techniques applied to environmental sensor monitoring Author(s) Isabelle Catherine Rebecca Tardy Niels Aakvaag, Bård Myhre, Roy Bahr SINTEF Digital Acoustics

More information

Ammar Abu-Hudrouss Islamic University Gaza

Ammar Abu-Hudrouss Islamic University Gaza Wireless Communications n Ammar Abu-Hudrouss Islamic University Gaza ١ Course Syllabus References 1. A. Molisch,, Wiely IEEE, 2nd Edition, 2011. 2. Rappaport, p : Principles and Practice, Prentice Hall

More information

Standardization on Home NW in ITU-T T SG15

Standardization on Home NW in ITU-T T SG15 S2-1. Standardization on Home NW in ITU-T T SG15 March 7, 2011 NTT Advanced Technology Corp. Yoshihiro Kondo Copyright 2010 NTT Advanced Technology Corporation Outline Overview of Home NW in Q4/SG15 G.hn

More information

LPWAN Narrowband Technologies (LoRaWAN, SigFox, etc.) for M2M Networks and Internet of Things Design

LPWAN Narrowband Technologies (LoRaWAN, SigFox, etc.) for M2M Networks and Internet of Things Design LPWAN Narrowband Technologies (LoRaWAN, SigFox, etc.) for M2M Networks and Internet of Things Design Valery Tikhvinsky, Professor MTUCI, Doctor of Economics Science, Deputy CEO of JSC «NIITC» on Innovation

More information

License Exempt Spectrum and Advanced Technologies. Marianna Goldhammer Director Strategic Technologies

License Exempt Spectrum and Advanced Technologies. Marianna Goldhammer Director Strategic Technologies License Exempt Spectrum and Advanced Technologies Marianna Goldhammer Director Strategic Technologies Contents BWA Market trends Power & Spectral Ingredients for Successful BWA Deployments Are regulations

More information

Next Generation AMI. Reji Kumar Pillai President India Smart Grid Forum (ISGF)

Next Generation AMI. Reji Kumar Pillai President India Smart Grid Forum (ISGF) Next Generation AMI Reji Kumar Pillai President India Smart Grid Forum (ISGF) Introduction Electromechanical Meters Electronic Meters AMR and Prepaid Meters Smart Meters Today s scenario: Gateways/DCU/Aggregators

More information

Wireless & Cellular Communications

Wireless & Cellular Communications Wireless & Cellular Communications Slides are adopted from Lecture notes by Professor A. Goldsmith, Stanford University. Instructor presentation materials for the book: Wireless Communications, 2nd Edition,

More information

So many wireless technologies Which is the right one for my application?

So many wireless technologies Which is the right one for my application? So many wireless technologies Which is the right one for my application? Standards Certification Education & Training Publishing Conferences & Exhibits Don Dickinson 2013 ISA Water / Wastewater and Automatic

More information

Does anybody really know what 5G is? Does anybody really care?

Does anybody really know what 5G is? Does anybody really care? Does anybody really know what 5G is? Does anybody really care? Dean Mischke P.E., V.P. Finley Engineering Company, Inc. What is 5G? Salvation for Wireless Companies *Qualcomm CEO Steve Mollenkopf s keynote

More information

Guide to Wireless Communications, Third Edition Cengage Learning Objectives

Guide to Wireless Communications, Third Edition Cengage Learning Objectives Guide to Wireless Communications, Third Edition Chapter 9 Wireless Metropolitan Area Networks Objectives Explain why wireless metropolitan area networks (WMANs) are needed Describe the components and modes

More information

Aalborg Universitet. Published in: 2017 IEEE 85th Vehicular Technology Conference (VTC Spring)

Aalborg Universitet. Published in: 2017 IEEE 85th Vehicular Technology Conference (VTC Spring) Aalborg Universitet Coverage and Capacity Analysis of Sigfox, LoRa, GPRS, and NB-IoT Vejlgaard, Benny; Lauridsen, Mads; Nguyen, Huan Cong; Kovács, István; Mogensen, Preben Elgaard; Sørensen, Mads Published

More information

Distribution Automation Smart Feeders in a Smart Grid World Quanta Technology LLC

Distribution Automation Smart Feeders in a Smart Grid World Quanta Technology LLC Distribution Automation Smart Feeders in a Smart Grid World DA Communications Telecommunications Services This diagram depicts the typical telecommunications services used to interconnect a Utility s customers,

More information

Wireless Broadband Networks

Wireless Broadband Networks Wireless Broadband Networks WLAN: Support of mobile devices, but low data rate for higher number of users What to do for a high number of users or even needed QoS support? Problem of the last mile Provide

More information

LoRa/LRSC. Wireless Long Range Network for M2M Communication

LoRa/LRSC. Wireless Long Range Network for M2M Communication Marcus Oestreicher oes@zurich.ibm.com LoRa/LRSC Wireless Long Range Network for M2M Communication Overview Introduction to LoRa IBM LRSC - Long Range Signaling & Control LoRaWAN Specification Demo Introduction

More information

Preferred 5G Options of UK Network Providers for up-grading the 5G IC Test Bed based on the value to their 2020 road maps

Preferred 5G Options of UK Network Providers for up-grading the 5G IC Test Bed based on the value to their 2020 road maps Survey Results Preferred 5G Options of UK Network Providers for up-grading the 5G IC Test Bed based on the value to their 2020 road maps Prof Stephen Temple CBE Technical Secretary to SAB (5G IC) What

More information

AIS Annual Investor Day 2016 Digital Transformation at AIS. 18 November 2016

AIS Annual Investor Day 2016 Digital Transformation at AIS. 18 November 2016 AIS Annual Investor Day 2016 Digital Transformation at AIS 18 November 2016 Addressing consumer s future demand with AIS technology roadmap Kriengsak Wanichnatee Chief Technology Officer 1 Global Technology

More information

Broadband Wireless Access: A Brief Introduction to IEEE and WiMAX

Broadband Wireless Access: A Brief Introduction to IEEE and WiMAX Broadband Wireless Access: A Brief Introduction to IEEE 802.16 and WiMAX Prof. Dave Michelson davem@ece.ubc.ca UBC Radio Science Lab 26 April 2006 1 Introduction The IEEE 802.16/WiMAX standard promises

More information

EE 577: Wireless and Personal Communications

EE 577: Wireless and Personal Communications EE 577: Wireless and Personal Communications Dr. Salam A. Zummo Lecture 1: Introduction 1 Common Applications of Wireless Systems AM/FM Radio Broadcast VHF and UHF TV Broadcast Cordless Phones (e.g., DECT)

More information

Guidelines for communication system of smart meters PLC, RF, cellular network (3G/4G) CENTRAL ELECTRICITY AUTHORITY

Guidelines for communication system of smart meters PLC, RF, cellular network (3G/4G) CENTRAL ELECTRICITY AUTHORITY Guidelines for communication system of smart meters PLC, RF, cellular network (3G/4G) CENTRAL ELECTRICITY AUTHORITY 2018 1. Requirement of Advanced Metering Infrastructure (AMI) : The following are the

More information

Panoramica sui segnali radio in ambito IoT (cellular IoT, LPWAN) Daniela Valente ISCOM

Panoramica sui segnali radio in ambito IoT (cellular IoT, LPWAN) Daniela Valente ISCOM Panoramica sui segnali radio in ambito IoT (cellular IoT, LPWAN) Daniela Valente ISCOM Outline Overview Cellular IoT LPWA (Low Power Wide Area) Conclusions Machine-type communications Different solutions

More information

PERCEIVED INFINITE CAPACITY

PERCEIVED INFINITE CAPACITY WHY 5G? Prof. Rahim Tafazolli, University of Surrey, r.tafazolli@surrey.ac.uk All rights reserved PERCEIVED INFINITE CAPACITY New communication paradigm For 5G and Beyond 1 All rights reserved CONTENTS

More information

IRN Vehicular Communications Part II Introduction to Radio Networks

IRN Vehicular Communications Part II Introduction to Radio Networks IRN Vehicular Communications Part II Introduction to Radio Networks Roberto Verdone Slides are provided as supporting tool, they are not a textbook! roberto.verdone@unibo.it +39 051 20 93817 Office Hours:

More information

Japan s Radio Policies Towards 5G

Japan s Radio Policies Towards 5G Japan s Radio Policies Towards 5G November 9, 2016 New-Generation Mobile Communications Office Land Mobile Communications Division Radio Department, Telecommunications Bureau Ministry of Internal Affairs

More information

REGULATORY GUILDELINES FOR DEPLOYMENT OF BROADBAND SERVICES ON THE GHz BAND

REGULATORY GUILDELINES FOR DEPLOYMENT OF BROADBAND SERVICES ON THE GHz BAND REGULATORY GUILDELINES FOR DEPLOYMENT OF BROADBAND SERVICES ON THE 5.2-5.9 GHz BAND PREAMBLE The Nigerian Communications Commission has opened up the band 5.2 5.9 GHz for services in the urban and rural

More information

Sharing scenarios of 5G (IMT-2020) networks with the incumbent and future satellite communication systems

Sharing scenarios of 5G (IMT-2020) networks with the incumbent and future satellite communication systems Sharing scenarios of 5G (IMT-2020) networks with the incumbent and future satellite communication systems AGENDA Past and Present: IMT VS. FSST AGENDA 5GT Satellite Communications Future: IMT AND FSST

More information

CPET 565/499 Mobile Computing Systems. Mobile Wireless Networking Infrastructure & Technologies

CPET 565/499 Mobile Computing Systems. Mobile Wireless Networking Infrastructure & Technologies CPET 565/499 Mobile Computing Systems Lecture 2 Mobile Networking Communication Infrastructures and Technologies Fall 202 A Specialty Course for Purdue University s M.S. in Technology Graduate Program

More information

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE Overview 18-759: Wireless Networks Lecture 9: OFDM, WiMAX, LTE Dina Papagiannaki & Peter Steenkiste Departments of Computer Science and Electrical and Computer Engineering Spring Semester 2009 http://www.cs.cmu.edu/~prs/wireless09/

More information

Objectives, characteristics and functional requirements of wide-area sensor and/or actuator network (WASN) systems

Objectives, characteristics and functional requirements of wide-area sensor and/or actuator network (WASN) systems Recommendation ITU-R M.2002 (03/2012) Objectives, characteristics and functional requirements of wide-area sensor and/or actuator network (WASN) systems M Series Mobile, radiodetermination, amateur and

More information

EE 304 TELECOMMUNICATIONs ESSENTIALS HOMEWORK QUESTIONS AND ANSWERS

EE 304 TELECOMMUNICATIONs ESSENTIALS HOMEWORK QUESTIONS AND ANSWERS Homework Question 1 EE 304 TELECOMMUNICATIONs ESSENTIALS HOMEWORK QUESTIONS AND ANSWERS Allocated channel bandwidth for commercial TV is 6 MHz. a. Find the maximum number of analog voice channels that

More information

5G Standardization Status in 3GPP

5G Standardization Status in 3GPP As the radio interface of mobile phones has evolved, it has typically been changed about every ten years, and the 5G (5th Generation) interface is expected to start being used in the 2020s. Similar to

More information

OFDM the 3 rd generation of narrowband Power Line Communications

OFDM the 3 rd generation of narrowband Power Line Communications OFDM the 3 rd generation of narrowband Power Line Communications 4 th Annual European Utilities Intelligent Metering Barcelona, May 2008 About ADD GRUP ADD GRUP history: 1992 ADD was founded as a high

More information

Smart Policy for Smart Radios

Smart Policy for Smart Radios Smart Policy for Smart Radios William Lehr wlehr@mit.edu Massachusetts Institute of Technology 37 th Annual PURC Conference: Smart Technology vs. Smart Policy? Public Utility Research Center, University

More information

Know Your Options: Selecting the Right Remote Site Wireless Communications Technology for Collection & Reuse Distribution Systems

Know Your Options: Selecting the Right Remote Site Wireless Communications Technology for Collection & Reuse Distribution Systems Know Your Options: Selecting the Right Remote Site Wireless Communications Technology for Collection & Reuse Distribution Systems Standards Certification Education & Training Publishing Conferences & Exhibits

More information

Contents. Introduction Why 5G? What are the 4G limitations? Key consortium and Research centers for the 5G

Contents. Introduction Why 5G? What are the 4G limitations? Key consortium and Research centers for the 5G Contents Introduction Why 5G? What are the 4G limitations? Key consortium and Research centers for the 5G Technical requirements & Timelines Technical requirements Key Performance Indices (KPIs) 5G Timelines

More information

Path to 5G Radio Access Network

Path to 5G Radio Access Network Path to 5G Radio Access Network Eduardo Inzunza RF-Test Market Development Dec-2017 2016 2017 Viavi Solutions Inc. 1 Topics 5G RAN Introduction 5G Evolution 5G Revolution 2 Cellular evolution APPS 10101

More information

SEN366 (SEN374) (Introduction to) Computer Networks

SEN366 (SEN374) (Introduction to) Computer Networks SEN366 (SEN374) (Introduction to) Computer Networks Prof. Dr. Hasan Hüseyin BALIK (8 th Week) Cellular Wireless Network 8.Outline Principles of Cellular Networks Cellular Network Generations LTE-Advanced

More information

EC 551 Telecommunication System Engineering Mohamed Khedr

EC 551 Telecommunication System Engineering Mohamed Khedr EC 551 Telecommunication System Engineering Mohamed Khedr http://webmail.aast.edu/~khedr Syllabus Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week

More information

The Assesement of LoRaWAN Protocol Operation Mode Impact on Average Power Consumption of End-Node Network Device

The Assesement of LoRaWAN Protocol Operation Mode Impact on Average Power Consumption of End-Node Network Device The Assesement of LoRaWAN Protocol Operation Mode Impact on Average Power Consumption of End-Node Network Device Alexander B. Ilinukh obcessedman@gmail.com Nikita V. Smirnov zigman.nikita@mail.ru Konstantin

More information

IEEE PROPOSED AMENDMENTS TO WORKING DOCUMENT TOWARDS PRELIMINARY DRAFT NEW RECOMMENDATION ITU-R F.[9B/BWA]

IEEE PROPOSED AMENDMENTS TO WORKING DOCUMENT TOWARDS PRELIMINARY DRAFT NEW RECOMMENDATION ITU-R F.[9B/BWA] Approved by the IEEE 802.16 WG (2004-07-15) and the IEEE 802 Executive Committee (2004-07-16). 2004-07-15 IEEE L802.16-04/25 INTERNATIONAL TELECOMMUNICATION UNION RADIOCOMMUNICATION STUDY GROUPS Document

More information

ECS455: Chapter 4 Multiple Access

ECS455: Chapter 4 Multiple Access ECS455: Chapter 4 Multiple Access Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th 1 Office Hours: BKD 3601-7 Tuesday 9:30-10:30 Tuesday 13:30-14:30 Thursday 13:30-14:30 ECS455: Chapter 4 Multiple

More information

500 Series AP and SM CAP and CSM Licensed, Reliable Wireless Connectivity

500 Series AP and SM CAP and CSM Licensed, Reliable Wireless Connectivity 500 Series AP and SM CAP 35500 and CSM 35500 Licensed, Reliable Wireless Connectivity Reliable, Cost Effective Connectivity 3.5 GHz Licensed Band OFDM nlos and NLOS Connectivity High Downlink AND Uplink

More information

Full Spectrum: Mission Critical Private Wireless Networks

Full Spectrum: Mission Critical Private Wireless Networks Full Spectrum: Mission Critical Private Wireless Networks Licensed, Point-to-Multipoint, Broadband Wireless Networks fullspectrumnet.com 1 Company Introduction fullspectrumnet.com 2 Full Spectrum Background

More information

2.4GHz & 900MHz UNLICENSED SPECTRUM COMPARISON A WHITE PAPER BY INGENU

2.4GHz & 900MHz UNLICENSED SPECTRUM COMPARISON A WHITE PAPER BY INGENU 2.4GHz & 900MHz UNLICENSED SPECTRUM COMPARISON A WHITE PAPER BY INGENU 2.4 GHZ AND 900 MHZ UNLICENSED SPECTRUM COMPARISON Wireless connectivity providers have to make many choices when designing their

More information

Department of Computer Science Institute for System Architecture, Chair for Computer Networks

Department of Computer Science Institute for System Architecture, Chair for Computer Networks Department of Computer Science Institute for System Architecture, Chair for Computer Networks LTE, WiMAX and 4G Mobile Communication and Mobile Computing Prof. Dr. Alexander Schill http://www.rn.inf.tu-dresden.de

More information

Wireless Networks: An Introduction

Wireless Networks: An Introduction Wireless Networks: An Introduction Master Universitario en Ingeniería de Telecomunicación I. Santamaría Universidad de Cantabria Contents Introduction Cellular Networks WLAN WPAN Conclusions Wireless Networks:

More information

Keysight Technologies Narrowband IoT (NB-IoT): Cellular Technology for the Hyperconnected IoT

Keysight Technologies Narrowband IoT (NB-IoT): Cellular Technology for the Hyperconnected IoT Ihr Spezialist für Mess- und Prüfgeräte Keysight Technologies Narrowband IoT (): Cellular Technology for the Hyperconnected IoT Application Note datatec Ferdinand-Lassalle-Str. 52 72770 Reutlingen Tel.

More information

Cognitive Cellular Systems in China Challenges, Solutions and Testbed

Cognitive Cellular Systems in China Challenges, Solutions and Testbed ITU-R SG 1/WP 1B WORKSHOP: SPECTRUM MANAGEMENT ISSUES ON THE USE OF WHITE SPACES BY COGNITIVE RADIO SYSTEMS (Geneva, 20 January 2014) Cognitive Cellular Systems in China Challenges, Solutions and Testbed

More information

William Stucke Principal WSA South Africa. Power Line Telecommunications: Standards, spectrum and broadband issues

William Stucke Principal WSA South Africa. Power Line Telecommunications: Standards, spectrum and broadband issues William Stucke Principal WSA South Africa Power Line Telecommunications: Standards, spectrum and broadband issues Power Line Telecommunications: Standards, spectrum and broadband issues Background Narrowband

More information

A 5G Paradigm Based on Two-Tier Physical Network Architecture

A 5G Paradigm Based on Two-Tier Physical Network Architecture A 5G Paradigm Based on Two-Tier Physical Network Architecture Elvino S. Sousa Jeffrey Skoll Professor in Computer Networks and Innovation University of Toronto Wireless Lab IEEE Toronto 5G Summit 2015

More information

LoRaWAN. All of the gateways in a network communicate to the same server, and it decides which gateway should respond to a given transmission.

LoRaWAN. All of the gateways in a network communicate to the same server, and it decides which gateway should respond to a given transmission. LoRaWAN All of the gateways in a network communicate to the same server, and it decides which gateway should respond to a given transmission. Any end device transmission can be heard by multiple receivers,

More information

[Raghuwanshi*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

[Raghuwanshi*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY PERFORMANCE ANALYSIS OF INTEGRATED WIFI/WIMAX MESH NETWORK WITH DIFFERENT MODULATION SCHEMES Mr. Jogendra Raghuwanshi*, Mr. Girish

More information

Mobile Communication Services on Aircraft Publication date: May /34/EC Notification number: 2014/67/UK

Mobile Communication Services on Aircraft Publication date: May /34/EC Notification number: 2014/67/UK Draft UK Interface Requirement 2070 Mobile Communication Services on Aircraft Publication date: May 2014 98/34/EC Notification number: 2014/67/UK Contents Section Page 1 References 3 2 Foreword 4 3 Minimum

More information

Vehicle-to-X communication using millimeter waves

Vehicle-to-X communication using millimeter waves Infrastructure Person Vehicle 5G Slides Robert W. Heath Jr. (2016) Vehicle-to-X communication using millimeter waves Professor Robert W. Heath Jr., PhD, PE mmwave Wireless Networking and Communications

More information

Alternative Frequency Selection of Long Term Evolution (LTE) Technology in Indonesia

Alternative Frequency Selection of Long Term Evolution (LTE) Technology in Indonesia Alternative Frequency Selection of Long Term Evolution (LTE) Technology in Indonesia Uke Kurniawan Usman, Galuh Prihatmoko Faculty of Electrical Engineering and Communication Telkom Institute of Technology

More information

Fracking for 5G: Reconfigurable RF and High-Efficiency Millimeter-wave Circuits to Find Elusive Spectrum

Fracking for 5G: Reconfigurable RF and High-Efficiency Millimeter-wave Circuits to Find Elusive Spectrum Fracking for 5G: Reconfigurable RF and High-Efficiency Millimeter-wave Circuits to Find Elusive Spectrum Dr. James Buckwalter RF & Mixed-circuit Integrated Circuits Laboratory University of California

More information

3GPP Standards for the Internet-of-Things

3GPP Standards for the Internet-of-Things 3GPP Standards for the Internet-of-Things Philippe Reininger Chairman of 3GPP RAN WG 3 (Huawei) 3GPP 2016 1 Partnership Organizational Partners (SDOs) Regional standards organizations: ARIB (Japan), ATIS

More information

Wireless Comm. Dept. of CCL/ITRI 電通所無線通訊技術組 Overview. 工研院電通所 M100 林咨銘 2005/1/13

Wireless Comm. Dept. of CCL/ITRI 電通所無線通訊技術組 Overview. 工研院電通所 M100 林咨銘 2005/1/13 802.16 Overview 工研院電通所 M100 林咨銘 tmlin@itri.org.tw 2005/1/13 Outline Introduction 802.16 Working group WiMAX 802.16 Overview Comparison of IEEE standards Wi-Fi vs WiMAX Summary 2 Introduction Current IEEE

More information

RAPTORXR. Broadband TV White Space (TVWS) Backhaul Digital Radio System

RAPTORXR. Broadband TV White Space (TVWS) Backhaul Digital Radio System RAPTORXR Broadband TV White Space (TVWS) Backhaul Digital Radio System TECHNICAL OVERVIEW AND DEPLOYMENT GUIDE CONTACT: BBROWN@METRICSYSTEMS.COM Broadband White Space Mesh Infrastructure LONG REACH - FAST

More information

WiMAX/ Wireless WAN Case Study: WiMAX/ W.wan.6. IEEE 802 suite. IEEE802 suite. IEEE 802 suite WiMAX/802.16

WiMAX/ Wireless WAN Case Study: WiMAX/ W.wan.6. IEEE 802 suite. IEEE802 suite. IEEE 802 suite WiMAX/802.16 W.wan.6-2 Wireless WAN Case Study: WiMAX/802.16 W.wan.6 WiMAX/802.16 IEEE 802 suite WiMAX/802.16 PHY Dr.M.Y.Wu@CSE Shanghai Jiaotong University Shanghai, China Dr.W.Shu@ECE University of New Mexico Albuquerque,

More information

Wireless and Mobile Network Architecture. Outline. Introduction. Cont. Chapter 1: Introduction

Wireless and Mobile Network Architecture. Outline. Introduction. Cont. Chapter 1: Introduction Wireless and Mobile Network Architecture Chapter 1: Introduction Prof. Yuh-Shyan Chen Department of Computer Science and Information Engineering National Taipei University Sep. 2006 Outline Introduction

More information

Wireless WANS and MANS. Chapter 3

Wireless WANS and MANS. Chapter 3 Wireless WANS and MANS Chapter 3 Cellular Network Concept Use multiple low-power transmitters (100 W or less) Areas divided into cells Each served by its own antenna Served by base station consisting of

More information

Affordable Backhaul for Rural Broadband: Opportunities in TV White Space in India

Affordable Backhaul for Rural Broadband: Opportunities in TV White Space in India Affordable Backhaul for Rural Broadband: Opportunities in TV White Space in India Abhay Karandikar Professor and Head Department of Electrical Engineering Indian Institute of Technology Bombay, Mumbai

More information

Wireless and Mobile Network Architecture

Wireless and Mobile Network Architecture Wireless and Mobile Network Architecture Chapter 1: Introduction Prof. Yuh-Shyan Chen Department of Computer Science and Information Engineering National Taipei University Sep. 2006 1 Outline Introduction

More information

Personal Communication System

Personal Communication System Personal Communication System Differences Between Cellular Systems and PCS IS-136 (TDMA) PCS GSM i-mode mobile communication IS-95 CDMA PCS Comparison of Modulation Schemes Data Communication with PCS

More information

EAI Endorsed Transactions

EAI Endorsed Transactions EAI Endorsed Transactions Research Article Evaluation of LPWAN technology for Smart City Hussein Mroue 1, Guillaume Andrieux 1, Eduardo Motta Cruz 1, Gilles Rouyer 2 1 Polytech Nantes IETR laboratory La

More information

Evolution of cellular wireless systems from 2G to 5G. 5G overview th October Enrico Buracchini TIM INNOVATION DEPT.

Evolution of cellular wireless systems from 2G to 5G. 5G overview th October Enrico Buracchini TIM INNOVATION DEPT. Evolution of cellular wireless systems from 2G to 5G 5G overview 6-13 th October 2017 Enrico Buracchini TIM INNOVATION DEPT. Up to now.we are here. Source : Qualcomm presentation @ 5G Tokyo Bay Summit

More information

IMT-2000 members UTRA-TDD and UTRA-FDD

IMT-2000 members UTRA-TDD and UTRA-FDD IMT-2000 members UTRA-TDD and UTRA-FDD Dr. Christian Menzel, SIEMENS AG christian.menzel@icn.siemens.de Author Siemens AG, Munich Siemens AG 2000 IMT-2000_UTRA_TDD_FDD_1 UTRA (FDD + TDD)! IMT-2000 and

More information

5G deployment below 6 GHz

5G deployment below 6 GHz 5G deployment below 6 GHz Ubiquitous coverage for critical communication and massive IoT White Paper There has been much attention on the ability of new 5G radio to make use of high frequency spectrum,

More information

Chapter 1 INTRODUCTION

Chapter 1 INTRODUCTION Introduction to Wireless & Mobile Systems Chapter 1 INTRODUCTION 1 The History of Mobile Radio Communication (1/4) 1880: Hertz Initial demonstration of practical radio communication 1897: Marconi Radio

More information

Chapter 6 Applications. Office Hours: BKD Tuesday 14:00-16:00 Thursday 9:30-11:30

Chapter 6 Applications. Office Hours: BKD Tuesday 14:00-16:00 Thursday 9:30-11:30 Chapter 6 Applications 1 Office Hours: BKD 3601-7 Tuesday 14:00-16:00 Thursday 9:30-11:30 Chapter 6 Applications 6.1 3G (UMTS and WCDMA) 2 Office Hours: BKD 3601-7 Tuesday 14:00-16:00 Thursday 9:30-11:30

More information

OBJECTIVES. Understand the basic of Wi-MAX standards Know the features, applications and advantages of WiMAX

OBJECTIVES. Understand the basic of Wi-MAX standards Know the features, applications and advantages of WiMAX OBJECTIVES Understand the basic of Wi-MAX standards Know the features, applications and advantages of WiMAX INTRODUCTION WIMAX the Worldwide Interoperability for Microwave Access, is a telecommunications

More information

Service and technology neutrality - universal service obligations

Service and technology neutrality - universal service obligations Service and technology neutrality - universal service obligations Jochen Mezger General Manager Program Distribution Service and technology neutrality EBU spectrum policy 3.6.2008 IRT Mezger Technology

More information

Performance indicators towards sustainability. Reporting framework for cities

Performance indicators towards sustainability. Reporting framework for cities Performance indicators towards sustainability Reporting framework for cities Ioannis Ch. Saridakis Standardization Division Alexandros I. Psyrris, Electrical and Computer Engineer, MSc Technical Officer,

More information

wireless Wireless RF Solutions Ultimate Long Range, Low Power Solutions

wireless Wireless RF Solutions Ultimate Long Range, Low Power Solutions wireless Ultimate Long Range, Low Power Solutions Wireless RF Solutions Excels In Harsh Environments Long Range > 2 Mile Range In Dense Urban Environments Multi-Year Battery Operation Tens of Thousand

More information

RECOMMENDATION ITU-R F Radio interface standards for broadband wireless access systems in the fixed service operating below 66 GHz

RECOMMENDATION ITU-R F Radio interface standards for broadband wireless access systems in the fixed service operating below 66 GHz Rec. ITU-R F.1763 1 RECOMMENDATION ITU-R F.1763 Radio interface standards for broadband wireless access systems in the fixed service operating below 66 GHz (Question ITU-R 236/9) (2006) 1 Introduction

More information

Direct Link Communication II: Wireless Media. Current Trend

Direct Link Communication II: Wireless Media. Current Trend Direct Link Communication II: Wireless Media Current Trend WLAN explosion (also called WiFi) took most by surprise cellular telephony: 3G/4G cellular providers/telcos/data in the same mix self-organization

More information

Chapter 1 INTRODUCTION

Chapter 1 INTRODUCTION Chapter 1 INTRODUCTION 1 The History of Mobile Radio Communication (1/3) 1880: Hertz Initial demonstration of practical radio communication 1897: Marconi Radio transmission to a tugboat over an 18 mi path

More information

Direct Link Communication II: Wireless Media. Current Trend

Direct Link Communication II: Wireless Media. Current Trend Direct Link Communication II: Wireless Media Current Trend WLAN explosion (also called WiFi) took most by surprise cellular telephony: 3G/4G cellular providers/telcos/data in the same mix self-organization

More information

Department of Computer Science Institute for System Architecture, Chair for Computer Networks

Department of Computer Science Institute for System Architecture, Chair for Computer Networks Department of Computer Science Institute for System Architecture, Chair for Computer Networks LTE, WiMAX and 4G Mobile Communication and Mobile Computing Prof. Dr. Alexander Schill http://www.rn.inf.tu-dresden.de

More information

Technical Aspects of LTE Part I: OFDM

Technical Aspects of LTE Part I: OFDM Technical Aspects of LTE Part I: OFDM By Mohammad Movahhedian, Ph.D., MIET, MIEEE m.movahhedian@mci.ir ITU regional workshop on Long-Term Evolution 9-11 Dec. 2013 Outline Motivation for LTE LTE Network

More information

WiMAX and Non-Standard Solutions

WiMAX and Non-Standard Solutions Unit 14 WiMAX and Non-Standard Solutions Developed by: Ermanno Pietrosemoli, EsLaREd Creative Commons License: Attribution Non-Commercial Share-Alike 3.0 Objectives Describe WiMAX technology, its motivation

More information

Wireless communication for Smart Buildings

Wireless communication for Smart Buildings Wireless communication for Smart Buildings Table of contents 1. The Smart Buildings...2 2. Smart Buildings and Wireless technologies...3 3. The link budget...5 3.1. Principles...5 3.2. Maximum link budget...6

More information

AUSTRALASIAN RAILWAY ASSOCIATION SUBMISSION

AUSTRALASIAN RAILWAY ASSOCIATION SUBMISSION AUSTRALASIAN RAILWAY ASSOCIATION SUBMISSION To The Department of Communications and the Arts/ The International Telecommunications Union (ITU) On the Railway Radiocommunications Systems between Train and

More information

ECE 271 INTRODUCTION TO TELECOMMUNICATION NETWORKS HOMEWORK QUESTIONS ECE 271 HOMEWORK-1

ECE 271 INTRODUCTION TO TELECOMMUNICATION NETWORKS HOMEWORK QUESTIONS ECE 271 HOMEWORK-1 ECE 271 INTRODUCTION TO TELECOMMUNICATION NETWORKS HOMEWORK QUESTIONS Homework Question 1 ECE 271 HOMEWORK-1 Allocated channel bandwidth for commercial TV is 6 MHz. a. Find the maximum number of analog

More information

Wireless WAN Case Study: WiMAX/ W.wan.6

Wireless WAN Case Study: WiMAX/ W.wan.6 Wireless WAN Case Study: WiMAX/802.16 W.wan.6 Dr.M.Y.Wu@CSE Shanghai Jiaotong University Shanghai, China Dr.W.Shu@ECE University of New Mexico Albuquerque, NM, USA W.wan.6-2 WiMAX/802.16 IEEE 802 suite

More information

GC9838-LR - INTELLIGENT HYBRID PLC-RF DIN RAIL MODEM

GC9838-LR - INTELLIGENT HYBRID PLC-RF DIN RAIL MODEM GC9838-LR - INTELLIGENT HYBRID PLC-RF DIN RAIL MODEM and a built-in sub-ghz wireless module to allow adaptive networking over different media. The wireless connectivity can be available in LoRa for tree-structure

More information

WHITE PAPER. The 450 MHz Band For the Smart Grid and Smart Metering

WHITE PAPER. The 450 MHz Band For the Smart Grid and Smart Metering WHITE PAPER The 450 MHz Band For the Smart Grid and Smart Metering List of Used Acronyms 2G: The second generation of wireless communications technology. 3G: The third generation of wireless communications

More information

Institute of Electrical and Electronics Engineers (IEEE) PROPOSED AMENDMENTS TO ANNEX 15 TO DOCUMENT 8A/202

Institute of Electrical and Electronics Engineers (IEEE) PROPOSED AMENDMENTS TO ANNEX 15 TO DOCUMENT 8A/202 2005-07-20 IEEE L802.16-05/043r1 INTERNATIONAL TELECOMMUNICATION UNION RADIOCOMMUNICATION STUDY GROUPS *** DRAFT *** Document 12 July 2005 English only Source: Annex 15 to Document 8A/202 Question: 212/8

More information

Mark Niehus, RCDD DAS Simplified

Mark Niehus, RCDD DAS Simplified Mark Niehus, RCDD DAS Simplified Agenda- next 50 minutes Quick snapshot of wireless in enterprise space- and where we are going Technologies explored: -WIFI Bluetooth -ZigBee NFC -NFC licensed spectrum

More information

Overview of IEEE Broadband Wireless Access Standards. Timo Smura Contents. Network topologies, frequency bands

Overview of IEEE Broadband Wireless Access Standards. Timo Smura Contents. Network topologies, frequency bands Overview of IEEE 802.16 Broadband Wireless Access Standards Timo Smura 24.02.2004 Contents Fixed Wireless Access networks Network topologies, frequency bands IEEE 802.16 standards Air interface: MAC +

More information

Wireless TDMA Mesh Networks

Wireless TDMA Mesh Networks Wireless TDMA Mesh Networks Vinay Ribeiro Department of Computer Science and Engineering IIT Delhi Outline What are mesh networks Applications of wireless mesh Quality-of-service Design and development

More information